Many books on polarization give tables of Mueller matrices. Here we give a table of Mueller matrices M , coherency matrices C , and coherency matrix factors F ...
A table of some coherency matrices, coherency matrix factors (CMFs), and their respective Mueller matrices Colin J. R. Sheppard1, Aymeric Le Gratiet1 and Alberto Diaspro1,2,3 1
Nanophysics Department, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy University of Genoa, 16145 Genoa, Italy 3 Nikon Imaging Center, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy 2
Many books on polarization give tables of Mueller matrices. Here we give a table of Mueller matrices M , coherency matrices C , and coherency matrix factors F for different polarization components. F is not given for some complicated cases. In many cases, though, F has a very simple form. The terms are defined in the Appendix. Free space
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
⎞ ⎛ ⎟ ⎜ ⎟ ,C = 2 ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎛ 1 ⎟ ⎜ 0 ⎟ ,F = 2 ⎜ ⎟ ⎜ 0 ⎟⎠ ⎜⎝ 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Diattenuating retarder Phase shift Δ . Diattenuation D = cosκ =
p12 − p22 , p12 + p22
p1 , p2 are the maximum and minimum amplitude coefficients. Oriented at an angle φ . Terminology as in [1] ⎛ 1 ⎜ ⎜ cosκ cos 2φ M = M 00 ⎜ sin 2φ ⎜ ⎜⎝ 0
cosκ cos 2φ
cosκ sin 2φ
cos 2 φ + cos Δ sinκ sin 2 φ
0
0
sin φ + cos Δ sinκ cos 2 φ
sin Δ sinκ sin 2φ
− sin Δ sinκ cos 2φ
2
⎞ ⎟ − sin Δ sinκ sin 2φ ⎟ , sin Δ sinκ cos 2φ ⎟⎟ ⎟⎠ cos Δ sinκ 0
⎛ 1+ cos Δ sinκ (cosκ − i sin Δ sinκ )cos 2φ (cosκ − i sin Δ sinκ )sin 2φ ⎜ 2 (cosκ + i sin Δ sinκ )cos 2φ (1− cos Δ sinκ )cos 2φ (1− cos Δ sinκ )sin 2φ cos 2φ C = M 00 ⎜ ⎜ (cosκ + i sin Δ sinκ )sin 2φ (1− cos Δ sinκ )sin 2φ cos 2φ (1− cos Δ sinκ )sin 2 2φ ⎜ ⎜⎝ 0 0 0 ⎛ 1+ cos Δ sinκ ⎜ (cosκ + i sin Δ sinκ )cos 2φ M 00 ⎜ F= 1+ cos Δ sinκ ⎜ (cosκ + i sin Δ sinκ )sin 2φ ⎜ 0 ⎝
0 ⎞ ⎟ 0 ⎟ , 0 ⎟⎟ 0 ⎟⎠
0 0 0 ⎞ 0 0 0 ⎟ ⎟. 0 0 0 ⎟ ⎟ 0 0 0 ⎠
1
Diattenuating retarder at 0 (horizontal) Phase shift Δ . Diattenuation D = cosκ =
p12 − p22 , p12 + p22
p1 , p2 are the maximum and minimum amplitude coefficients. Terminology as in [1] ⎛ 1 ⎜ cosκ M = M 00 ⎜ ⎜ 0 ⎜⎝ 0
cosκ 1 0 0
0 0 cos Δ sinκ − sin Δ sinκ
⎛ 1+ cos Δ sinκ ⎜ cosκ + i sin Δ sinκ ⎜ F= 0 1+ cos Δ sinκ ⎜ ⎜⎝ 0 M 00
⎞ ⎛ 1+ cos Δ sinκ ⎟ ⎜ cosκ + i sin Δ sinκ ⎟ ,C = M 00 ⎜ 0 ⎟ ⎜ ⎟⎠ ⎜⎝ 0
0 0 sin Δ sinκ cos Δ sinκ 0 0 0 0
0 0 0 0
0 0 0 0
cosκ − i sin Δ sinκ 1− cos Δ sinκ 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟, ⎟ ⎟⎠
⎞ ⎟ ⎟. ⎟ ⎟⎠
Elliptic diattenuator
D = cosκ =
p12 − p22 p12 + p22
The ratio between the strengths of components of the electric field = tan χ , ellipticity angle = χ . Oriented at an angle φ . Terminology as in [1]. ⎛ 2( p12 + p22 ) ⎜ 2 2 1 ⎜ 2( p1 − p2 )cos 2 χ cos 2φ M= ⎜ 2 4 ⎜ 2( p1 − p22 )cos 2 χ sin 2φ ⎜ ⎜⎝ 2( p12 − p22 )sin 2 χ
2( p12 − p22 )cos 2 χ cos 2φ p2 (3p1 + p2 ) + 2( p1 − p2 ) cos 2 χ cos 2φ 2
2
( p1 − p2 )2 cos 2 2 χ sin 4φ ( p1 − p2 )2 sin 4 χ cos 2φ
2
⎞ ⎟ ⎟ ⎟, p2 (3p1 + p2 ) + 2( p1 − p2 )2 cos 2 2 χ sin 2 2φ ( p1 − p2 )2 sin 4 χ sin 2φ ⎟ ⎟ ( p1 − p2 )2 sin 4 χ sin 2φ ( p1 + p2 )2 + ( p1 − p2 )2 cos 4 χ ⎟⎠ 2( p12 − p22 )cos 2 χ sin 2φ
2( p12 − p22 )sin 2 χ
( p1 − p2 ) cos 2 χ sin 4φ
( p1 − p2 )2 sin 4 χ cos 2φ
2
2
⎛ ( p1 + p2 )2 ( p12 − p22 )cos 2 χ cos 2φ ( p12 − p22 )cos 2 χ sin 2φ ( p12 − p22 )sin 2 χ ⎜ 2 2 2 2 2 2 2 2 2 ( p1 − p2 ) cos 2 χ cos 2φ ( p1 − p2 )cos 2 χ sin 2φ cos 2φ ( p1 − p22 )sin 2 χ cos 2 χ cos 2φ 1 ⎜ ( p1 − p2 )cos 2 χ cos 2φ C= ⎜ 2 2 2 2 2 2 ⎜ ( p1 − p2 )cos 2 χ sin 2φ ( p1 − p2 )cos 2 χ sin 2φ cos 2φ ( p1 − p2 )2 cos 2 2 χ sin 2 2φ ( p12 − p22 )sin 2 χ cos 2 χ sin 2φ ⎜ 2 2 2 2 2 2 ⎜⎝ ( p1 − p2 )sin 2 χ ( p1 − p2 )sin 2 χ cos 2 χ cos 2φ ( p1 − p2 )sin 2 χ cos 2 χ sin 2φ ( p1 − p2 )2 sin 2 2 χ ⎛ p1 + p2 ⎜ 1 ⎜ ( p1 − p2 )cos 2 χ cos 2φ F= 2 ⎜⎜ ( p1 − p2 )cos 2 χ sin 2φ ⎜⎝ ( p1 − p2 )sin 2 χ
⎞ ⎟ ⎟ ⎟, ⎟ ⎟ ⎟⎠
0 0 0 ⎞ ⎟ 0 0 0 ⎟ . 0 0 0 ⎟ ⎟ 0 0 0 ⎠⎟
2
Elliptic diattenuator at 0
D = cosκ =
p12 − p22 p12 + p22
The ratio between the strengths of components of the electric field = tan χ , ellipticity angle = χ . Terminology as in [1].
⎛ 1 ⎜ 2 p1 ⎜ cosκ cos 2 χ M= 1+ cosκ ⎜ 0 ⎜ ⎜⎝ cosκ sin 2 χ ⎛ 1+ sinκ ⎜ p ⎜ cosκ cos 2 χ C= 1+ cosκ ⎜ 0 ⎜ ⎜⎝ cosκ sin 2 χ
0
sinκ + (1− sinκ )cos 2 2 χ
0
0 (1− sinκ )sin 2 χ cos 2 χ
sinκ 0
cosκ cos 2 χ (1− sinκ )cos 2 χ 0 (1− sinκ )sin 2 χ cos 2 χ
1+ sinκ 1− sinκ cos 2 χ 0 1− sinκ sin 2 χ
⎞ ⎟ (1− sinκ )sin 2 χ cos 2 χ ⎟ ⎟, 0 ⎟ sinκ + (1− sinκ )sin 2 2 χ ⎟⎠ cosκ sin 2 χ
⎞ ⎟ 0 (1− sinκ )sin 2 χ cos 2 χ ⎟ ⎟, 0 0 ⎟ ⎟⎠ 0 (1− sinκ )sin 2 2 χ 0
2
2 1
⎛ ⎜ p1 ⎜ F= .⎜ 1+ cosκ ⎜ ⎜⎝
cosκ cos 2 χ
cosκ sin 2 χ
⎛ 0 0 0 ⎞ p1 + p2 ⎟ ⎜ 1 ⎜ ( p1 − p2 )cos 2 χ 0 0 0 ⎟ ⎟= 2⎜ 0 0 0 0 ⎟ ⎜ ⎜ ( p − p ⎟ 0 0 0 ⎠ 1 2 )sin 2 χ ⎝
0 0 0 ⎞ ⎟ 0 0 0 ⎟ . 0 0 0 ⎟ ⎟ 0 0 0 ⎟⎠
Linear diattenuator Oriented at an angle φ .
D = cosκ =
p12 − p22 . p12 + p22
Terminology as in [1].
⎛ 1 cosκ cos 2φ cosκ sin 2φ 0 ⎜ 2 2 2 0 p1 ⎜ cosκ cos 2φ cos 2φ + sinκ sin 2φ (1− sinκ )sin 2φ cos 2φ M= 1+ cosκ ⎜ cosκ sin 2φ (1− sinκ )sin 2φ cos 2φ sin 2 2φ + sinκ cos 2 2φ 0 ⎜ ⎜⎝ 0 0 0 sinκ ⎛ 1+ sinκ cosκ cos 2φ cosκ sin 2φ ⎜ 2 2 (1− sinκ )cos 2φ (1− sinκ )sin 2φ cos 2φ p1 ⎜ cosκ cos 2φ C= 1+ cosκ ⎜ cosκ sin 2φ (1− sinκ )sin 2φ cos 2φ (1− sinκ )sin 2 2φ ⎜ ⎜⎝ 0 0 0 ⎛ ⎜ p1 ⎜ F= 1+ cosκ ⎜ ⎜ ⎜⎝
1+ sinκ 1− sinκ cos 2φ 1− sinκ sin 2φ 0
⎛ p1 + p2 0 0 0 ⎞ ⎟ ⎜ 1 ⎜ ( p1 − p2 )cos 2φ 0 0 0 ⎟ ⎟= 2⎜ ( p1 − p2 )sin 2φ 0 0 0 ⎟ ⎜ ⎜⎝ ⎟ 0 0 0 0 ⎠
⎞ ⎟ ⎟, ⎟ ⎟ ⎟⎠
0 ⎞ ⎟ 0 ⎟ , 0 ⎟⎟ 0 ⎟⎠
0 0 0 ⎞ ⎟ 0 0 0 ⎟ . 0 0 0 ⎟ ⎟ 0 0 0 ⎟⎠
3
Linear diattenuator at 0
χ = 0 , M 00 =
1 2
(p
2 1
)
+ p22 =
⎛ p2 + p2 1 2 ⎜ 1 ⎜ p12 − p22 M= ⎜ 2 0 ⎜ ⎜ 0 ⎝
p12 . Terminology as in [1]. 1+ cosκ
p12 − p22
0
p12 + p22
0
0
2 p1 p2
0
0
⎞ ⎟ 0 ⎟ p12 = ⎟ 0 ⎟ 1+ cosκ 2 p1 p2 ⎟⎠ 0
⎛ ( p + p )2 1 2 ⎜ 1 ⎜ p12 − p22 C= 2⎜ 0 ⎜ ⎜⎝ 0
0 0 ⎞ ⎟ p12 0 0 ⎟= ⎟ 0 0 ⎟ 1+ cosκ 0 0 ⎟⎠
( p1 − p2 )
⎛ p1 + p2 ⎜ 1 ⎜ p1 − p2 F= 2⎜ 0 ⎜ 0 ⎝
0 0 0 ⎞ ⎟ p1 0 0 0 ⎟= ⎟ 1+ cosκ 0 0 0 ⎟ 0 0 0 ⎠
p12 − p22 2
0 0
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
⎛ 1 ⎜ cosκ ⎜ ⎜ 0 ⎜⎝ 0
⎛ 1+ sinκ ⎜ cosκ ⎜ 0 ⎜ ⎜⎝ 0
1+ sinκ 1− sinκ 0 0
cosκ 1 0 0
cosκ 1− sinκ 0 0
0 0 sinκ 0 0 0 0 0
0 0 0 0
0 0 0 Δ sinκ
⎞ ⎟ ⎟, ⎟ ⎟⎠
⎞ ⎟ ⎟, ⎟ ⎟⎠
0 0 0 ⎞ ⎟ 0 0 0 ⎟. 0 0 0 ⎟ ⎟ 0 0 0 ⎠
Elliptic polarizer at 0 The ratio between the strengths of components of the electric field = tan χ , ellipticity angle = χ . Terminology as in [1].
⎛ 1 ⎜ p ⎜ cos 2 χ M= 2 ⎜ 0 ⎜ ⎜⎝ sin 2 χ
0 sin 2 χ cos 2 χ
⎛ 1 ⎜ cos 2 χ p F= 1 ⎜ 0 2⎜ ⎜ sin 2 χ ⎝
0 0 0 ⎞ 0 0 0 ⎟ ⎟. 0 0 0 ⎟ 0 0 0 ⎟⎠
cos 2 χ
⎞ ⎛ 1 ⎟ ⎜ 2 0 sin 2 χ cos 2 χ ⎟ cos 2 χ p ,C = 1 ⎜⎜ ⎟ 2 0 0 0 ⎟ ⎜ 2 ⎟⎠ ⎜⎝ sin 2 χ 0 sin 2 χ sin 2 χ
0
cos 2 χ 2
2 1
cos 2 χ
⎞ ⎟ 0 sin 2 χ cos 2 χ ⎟ ⎟, 0 0 ⎟ ⎟⎠ 0 sin 2 2 χ 0
cos 2 χ 2
0 sin 2 χ cos 2 χ
sin 2 χ
Linear total polarizer Oriented at an angle φ . Terminology as in [1].
⎛ 1 cos 2φ sin 2φ ⎜ 2 cos 2φ sin 2φ cos 2φ p ⎜ cos 2φ M= ⎜ 2 sin 2 2φ ⎜ sin 2φ sin 2φ cos 2φ ⎜⎝ 0 0 0
⎛ 0 ⎞ 1 cos 2φ sin 2φ ⎟ ⎜ 2 2 0 ⎟ cos 2φ cos 2φ sin 2φ cos 2φ p ,C = 1 ⎜ ⎟ ⎜ 2 0 ⎟ sin 2 2φ ⎜ sin 2φ sin 2φ cos 2φ ⎜⎝ 0 ⎟⎠ 0 0 0
2 1
⎛ 1 ⎜ cos 2φ p F= 1 ⎜ 2 ⎜ sin 2φ ⎜ 0 ⎝
0 ⎞ ⎟ 0 ⎟ , 0 ⎟⎟ 0 ⎟⎠
0 0 0 ⎞ 0 0 0 ⎟ ⎟. 0 0 0 ⎟ ⎟ 0 0 0 ⎠
Linear polarizer at 0
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0
⎞ ⎛ ⎟ ⎜ ⎟ ,F = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
4
Linear polarizer at 45
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 1 0
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎛ 1 −1 0 0 ⎞ ⎟ ⎜ −1 1 0 0 ⎟ ,C = ⎜ 0 0 0 0 ⎟ ⎜ ⎜⎝ 0 0 0 0 ⎟⎠
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 −1 0
0 0 0 0
1 0 1 0
0 0 0 0
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0
⎞ ⎛ ⎟ ⎜ ⎟ ,F = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Linear polarizer at 90
⎛ 1 −1 0 0 ⎞ ⎟ ⎜ −1 1 0 0 ⎟ ,F = ⎜ 0 0 0 0 ⎟ ⎜ ⎜⎝ 0 0 0 0 ⎟⎠
1 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
⎛ 0 −1 0 ⎞ ⎟ ⎜ 0 0 0 ⎟ ,F = ⎜ 0 1 0 ⎟ ⎜ ⎜⎝ 0 0 0 ⎟⎠
1 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Linear polarizer at 135
⎛ 0 −1 0 ⎞ ⎟ ⎜ 0 0 0 ⎟ ,C = ⎜ 0 1 0 ⎟ ⎜ ⎜⎝ 0 0 0 ⎟⎠
1 0 −1 0
Circular diattenuator Diattenuation D = cosκ =
M 00 =
1 2
(p
2 1
)
+ p22 =
p12 − p22 , p12 + p22
p12 , 1+ cosκ
p1 , p2 are the maximum and minimum amplitude coefficients. Terminology as in [1].
⎛ 1 p12 ⎜ 0 ⎜ M= 1+ cosκ ⎜ 0 ⎜⎝ cosκ ⎛ ⎜ p1 ⎜ F= 1+ cosκ ⎜ ⎜ ⎝
0 sinκ 0 0
0 0 sinκ 0
⎞ ⎟ p12 ⎟ ,C = 1+ cosκ ⎟ ⎟⎠
cosκ 0 0 1
⎛ p1 + p2 0 0 0 ⎞ ⎟ ⎜ 1 ⎜ 0 0 0 ⎟ 0 = ⎜ 0 0 0 ⎟ 0 2 ⎟ ⎜ p −p 0 0 0 ⎠ 2 ⎝ 1
1+ sinκ 0 0 1− sinκ
⎛ 1+ sinκ ⎜ 0 ⎜ 0 ⎜ ⎜⎝ cosκ
0 0 0 0
0 cosκ 0 0 0 0 0 1− sinκ
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
⎞ ⎟ ⎟, ⎟ ⎟⎠
0 0 0 ⎞ ⎟ 0 0 0 ⎟ . 0 0 0 ⎟ 0 0 0 ⎟⎠
Circular polarizer, left
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 1
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 1
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 0 1
⎞ ⎛ ⎟ ⎜ ⎟ ,F = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
0 0 0 0
0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
⎛ 1 0 −1 ⎞ ⎜ 0 0 0 ⎟ ⎟ ,C = ⎜ 0 0 ⎟ ⎜ 0 ⎜⎝ −1 0 1 ⎟⎠
0 0 0 0
⎛ 1 0 −1 ⎞ ⎜ 0 0 0 ⎟ ⎟ ,F = ⎜ 0 0 ⎟ ⎜ 0 ⎜⎝ −1 0 1 ⎟⎠
0 0 0 0
Circular polarizer, right
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
5
Rotator Circular retarder with retardance = 2θ .
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 cos 2θ 0 − sin 2θ 0 0
⎛ cosθ ⎜ 0 F= 2⎜ 0 ⎜ ⎜⎝ i sin θ
0 0 0 0
0 sin 2θ cos 2θ 0 0 0 0 0
0 0 0 0
0 0 0 1
⎛ 2 cos 2 θ ⎞ ⎜ ⎟ 0 ⎟ ,C = ⎜ 0 ⎜ ⎟ ⎜ i sin 2θ ⎟⎠ ⎝
0 0 0 0
0 −i sin 2θ 0 0 0 0 0 2sin 2 θ
⎞ ⎟ ⎟, ⎟ ⎟ ⎠
⎞ ⎟ ⎟. ⎟ ⎟⎠
Elliptic retarder Phase shift between the two eigenstates = Δ , The ratio between the strengths of components of the electric field = tan χ , ellipticity angle = χ . Oriented at an angle φ . Terminology as in [1]. ⎛ ⎜ ⎜ ⎜ 1⎜ M= 4⎜ ⎜ ⎜ ⎜ ⎝
1
0 0 0 Δ 2 Δ 2 2 2 Δ 2 2 Δ 0 cos − sin (sin 2 χ − cos 2 χ cos 4φ ) sin cos 2 χ sin 4φ + sin Δ sin 2 χ sin sin 4 χ cos2φ − sin Δ cos2 χ sin 2φ 2 2 2 2 Δ Δ Δ Δ 0 sin 2 cos2 2 χ sin 4φ − sin Δ sin 2 χ cos2 − sin 2 (sin 2 2 χ + cos2 2 χ cos 4φ ) sin 2 sin 4 χ sin 2φ + sin Δ cos2 χ cos2φ 2 2 2 2 Δ Δ 2 Δ 2 Δ 0 sin sin 4 χ cos2φ + sin Δ cos2 χ sin 2φ sin sin 4 χ sin 2φ − sin Δ cos2 χ cos2φ cos2 − sin 2 cos 4 χ 2 2 2 2 2
⎛ Δ 2 cos2 −i sin Δ cos2 χ cos2φ −i sin Δ cos2 χ sin 2φ −i sin Δ sin 2 χ ⎜ 2 ⎜ Δ Δ Δ ⎜ i sin Δ cos2 χ cos2φ 2sin 2 cos2 2 χ cos2 2φ sin 2 cos2 2 χ sin 4φ sin 2 sin 4 χ cos2φ 1⎜ 2 2 2 C= ⎜ 4⎜ 2 Δ 2 2 Δ 2 2 2 Δ i sin Δ cos2 χ sin 2 φ sin cos 2 χ sin 4 φ 2sin cos 2 χ sin 2 φ sin sin 4 χ sin 2φ ⎜ 2 2 2 ⎜ Δ Δ Δ ⎜ i sin Δ sin 2 χ sin 2 sin 4 χ cos2φ sin 2 sin 4 χ sin 2φ 2sin 2 sin 2 2 χ ⎜⎝ 2 2 2 ⎛ Δ cos ⎜ 2 ⎜ Δ ⎜ i sin cos2 χ cos2φ 1 ⎜ 2 ⎜ F= Δ 2⎜ ⎜ i sin 2 cos2 χ sin 2φ ⎜ Δ ⎜ i sin sin 2 χ ⎜⎝ 2
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
⎞ ⎟ ⎟ ⎟ ⎟ ⎟, ⎟ ⎟ ⎟ ⎟ ⎟⎠
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟ ⎟. 0 0 0 ⎟⎟ ⎟ 0 0 0 ⎟⎟ ⎠
6
Elliptic retarder at 0 Phase shift between the two eigenstates = Δ , The ratio between the strengths of components of the electric field = tan χ , ellipticity angle = χ . Terminology as in [1].
⎛ ⎜ M = ⎜⎜ ⎜ ⎜⎝
1 0
0 cos 2 χ + cos Δ sin 2 2 χ
0 sin Δ sin 2 χ
0
− sin Δ sin 2 χ
cos Δ
2
0 (1− cos Δ)sin 2 χ cos 2 χ
⎛ Δ cos 2 ⎜ 2 ⎜ Δ Δ ⎜ i sin cos cos 2 χ C = 2⎜ 2 2 ⎜ 0 ⎜ ⎜ Δ Δ ⎜ i sin cos sin 2 χ 2 2 ⎝ ⎛ Δ cos ⎜ 2 ⎜ Δ ⎜ i sin cos 2 χ F= 2⎜ 2 ⎜ 0 ⎜ ⎜ Δ ⎜ i sin sin 2 χ 2 ⎝
− sin Δ cos 2 χ
Δ Δ cos cos 2 χ 2 2 Δ sin 2 cos 2 2 χ 2 0 Δ sin 2 sin 2 χ cos 2 χ 2
−i sin
⎞ 0 ⎟ (1− cos Δ)sin 2 χ cos 2 χ ⎟ ⎟, sin Δ cos 2 χ ⎟ sin 2 2 χ + cos Δ cos 2 2 χ ⎟⎠
Δ Δ cos sin 2 χ 2 2 Δ sin 2 sin 2 χ cos 2 χ 2 0 Δ sin 2 sin 2 2 χ 2
0 −i sin 0 0 0
⎞ ⎟ ⎟ ⎟ ⎟, ⎟ ⎟ ⎟ ⎟ ⎠
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟ . ⎟ 0 0 0 ⎟ ⎟ 0 0 0 ⎟ ⎠
Linear retarder Phase shift Δ , Oriented at an angle φ .Terminology as in [1].
⎛ ⎜ M=⎜ ⎜ ⎜ ⎜⎝
1 0
0 cos 2φ + cos Δ sin 2 2φ
0 (1− cos Δ)sin 2φ cos 2φ
0 (1− cos Δ)sin 2φ cos 2φ
sin 2 2φ + cos Δ cos 2 2φ
0
2
sin Δ sin 2φ
⎛ Δ cos 2 ⎜ 2 ⎜ Δ Δ ⎜ i sin cos cos 2φ C = 2⎜ 2 2 ⎜ Δ ⎜ i sin cos Δ sin 2φ ⎜ 2 2 ⎜ 0 ⎝ ⎛ Δ cos ⎜ 2 ⎜ Δ ⎜ i sin cos 2φ F= 2⎜ 2 ⎜ ⎜ i sin Δ sin 2φ ⎜ 2 ⎜ 0 ⎝
− sin Δ cos 2φ
Δ Δ cos cos 2φ 2 2 Δ sin 2 cos 2 2φ 2 Δ sin 2 sin 2φ cos 2φ 2 0
−i sin
⎞ 0 ⎟ − sin Δ sin 2φ ⎟ , sin Δ cos 2φ ⎟ ⎟ ⎟⎠ cos Δ
Δ Δ cos sin 2φ 2 2 Δ sin 2 sin 2φ cos 2φ 2 Δ sin 2 sin 2 2φ 2 0
−i sin
⎞ 0 ⎟ ⎟ ⎟ 0 ⎟ , ⎟ 0 ⎟ ⎟ ⎟ 0 ⎠
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟ . ⎟ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎠
7
Linear retarder at 0 Phase shift Δ
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0
⎛ Δ cos 2 ⎜ 0 0 ⎞ 2 ⎜ 0 0 ⎟ Δ Δ ⎟ ,C = 2 ⎜⎜ i sin cos cos Δ sin Δ ⎟ 2 2 ⎜ − sin Δ cos Δ ⎟⎠ 0 ⎜ ⎜⎝ 0
0 1 0 0
⎛ Δ ⎜ cos 2 ⎜ Δ ⎜ F = 2 ⎜ i sin 2 ⎜ 0 ⎜ ⎜⎝ 0
Δ Δ cos 2 2 Δ sin 2 2 0 0
−i sin
⎞ 0 0 ⎟ ⎟ ⎟ 0 0 ⎟, ⎟ 0 0 ⎟ 0 0 ⎟⎠
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟. ⎟ 0 0 0 ⎟ 0 0 0 ⎟⎠
Quarter-‐wave retarder at 0
⎛ ⎜ M=⎜ ⎜ ⎜⎝
0 0 1 0
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
⎛ 1 −i 0 0 ⎞ ⎟ ⎜ i 1 0 0 ⎟ ,F = ⎜ 0 0 0 0 ⎟ ⎜ ⎜⎝ 0 0 0 0 ⎟⎠
1 i 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
⎛ 0 −i 0 ⎞ ⎟ ⎜ 0 0 0 ⎟ ,F = ⎜ 0 1 0 ⎟ ⎜ ⎜⎝ 0 0 0 ⎟⎠
1 0 i 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
1 0 0 0
0 0 1 0 0 0 0 −1
1 0 0 0
0 0 0 1
⎛ 0 0 ⎞ ⎟ ⎜ 0 −1 ⎟ ,C = ⎜ 1 0 ⎟ ⎜ ⎜⎝ 0 0 ⎟⎠
1 0 i 0
1 0 0 0
0 1 0 0
⎛ 0 0 ⎞ ⎟ ⎜ 0 0 ⎟ ,C = ⎜ 0 −1 ⎟ ⎜ ⎜⎝ 1 0 ⎟⎠
1 i 0 0 −i 1 0 0 0 0 0 0 0 0 0 0
Quarter-‐wave retarder at 45
⎛ ⎜ M=⎜ ⎜ ⎜⎝
Quarter-‐wave retarder at 90
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎞ ⎛ ⎟ ⎜ ⎟ ,F = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 −i 0 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
⎛ 0 i 0 ⎞ ⎟ ⎜ 0 0 0 ⎟ ,F = ⎜ 0 1 0 ⎟ ⎜ ⎜⎝ 0 0 0 ⎟⎠
1 0 −i 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Quarter-‐wave retarder at 135
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0 0 0 0 −1
0 0 1 0
0 1 0 0
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 −i 0
8
Circular retarder Phase shift Δ .
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0 cos Δ sin Δ 0 − sin Δ cos Δ 0 0 0
⎛ Δ ⎜ cos 2 ⎜ 0 ⎜ F= 2⎜ 0 ⎜ ⎜ i sin Δ ⎜⎝ 2
⎛ Δ cos 2 ⎜ ⎞ 2 ⎜ ⎟ 0 ⎟ ,C = 2 ⎜⎜ 0 ⎟ ⎜ ⎟⎠ Δ ⎜ i sin cos Δ ⎜⎝ 2 2
0 0 0 1
⎞ ⎟ ⎟ ⎟, ⎟ ⎟ ⎟ ⎟⎠
Δ Δ cos 2 2 0 0 Δ sin 2 2
0 0 −i sin 0 0 0 0 0 0
⎞ 0 0 0 ⎟ ⎟ 0 0 0 ⎟ . 0 0 0 ⎟ ⎟ 0 0 0 ⎟⎟ ⎠
Quarter-‐wave retarder circular left
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
1 0 0 i
0 0 0 0
⎛ 1 0 −i ⎞ ⎜ 0 0 0 ⎟ ⎟ ,F = ⎜ 0 0 ⎟ ⎜ 0 ⎜⎝ i 0 1 ⎟⎠
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
⎛ 0 i ⎞ ⎟ ⎜ 0 0 ⎟ ,C = ⎜ 0 0 ⎟ ⎜ ⎜⎝ 0 1 ⎟⎠
1 0 0 −i
0 0 0 0
⎛ 0 i ⎞ ⎟ ⎜ 0 0 ⎟ ,F = ⎜ 0 0 ⎟ ⎜ ⎜⎝ 0 1 ⎟⎠
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
1 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 1
Quarter-‐wave retarder circular right
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 −i
0 0 0 0
1 0 0 −i
Half-‐wave retarder (pseudorotator) Oriented at an angle φ .
⎛ ⎜ M=⎜ ⎜ ⎜ ⎝
1 0 0 cos 4φ
0 sin 4φ
0
sin 4φ
− cos 4φ
0
0
0
⎛ 0 ⎜ cos 2φ F= 2⎜ ⎜ sin 2φ ⎜ 0 ⎝
⎛ 0 ⎞ ⎟ ⎜ 0 ⎟ ,C = ⎜ ⎜ 0 ⎟ ⎟ ⎜ −1 ⎠ ⎝
0 0 0 1+ cos 4φ
0 sin 4φ
0
sin 4φ
1− cos 4φ
0
0
0
0 ⎞ 0 ⎟ ⎟, 0 ⎟ ⎟ 0 ⎠
0 0 0 ⎞ 0 0 0 ⎟ ⎟. 0 0 0 ⎟ ⎟ 0 0 0 ⎠
Half-‐wave retarder 0
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0
⎛ 0 0 0 ⎞ ⎟ ⎜ 1 0 0 ⎟ ,C = 2 ⎜ 0 −1 0 ⎟ ⎜ ⎜⎝ 0 0 −1 ⎟⎠
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
⎞ ⎛ 0 ⎟ ⎜ 1 ⎟ ,F = 2 ⎜ ⎟ ⎜ 0 ⎟⎠ ⎜⎝ 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
9
Half-‐wave retarder 90 ( M,C are same as for 0 )
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0
⎛ 0 0 0 ⎞ ⎟ ⎜ 1 0 0 ⎟ ,C = 2 ⎜ 0 −1 0 ⎟ ⎜ ⎜⎝ 0 0 −1 ⎟⎠
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
⎞ ⎛ 0 ⎟ ⎜ −1 ⎟ ,F = 2 ⎜ ⎟ ⎜ 0 ⎟⎠ ⎜⎝ 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Normal reflection from a dielectric Refractive index = n
⎛ ⎛ n − 1⎞ ⎜ ⎜ M=⎜ ⎝ n + 1 ⎟⎠ ⎜ ⎜⎝ 2
⎛ n − 1 ⎛ ⎞⎜ ⎜ F= 2⎜ ⎝ n + 1 ⎟⎠ ⎜ ⎜⎝
1 0 0 0
⎛ 0 0 0 ⎞ 2⎜ ⎟ ⎛ n − 1⎞ 1 0 0 ⎟ ,C = 2 ⎜ ⎜ ⎝ n + 1 ⎟⎠ ⎜ 0 −1 0 ⎟ ⎜⎝ 0 0 −1 ⎟⎠ 0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
⎞ ⎟ ⎟, ⎟ ⎟⎠
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Half-‐wave retarder 45
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎛ 1 0 0 0 ⎞ ⎟ ⎜ 0 −1 0 0 ⎟ ,C = 2 ⎜ 0 0 1 0 ⎟ ⎜ ⎜⎝ 0 0 0 −1 ⎟⎠
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
⎞ ⎛ 0 ⎟ ⎜ 0 ⎟ ,F = 2 ⎜ ⎟ ⎜ 1 ⎟⎠ ⎜⎝ 0
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Half-‐wave retarder 135
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1
⎞ ⎛ ⎟ ⎜ ⎟ ,C = 2 ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
⎞ ⎛ 0 ⎟ ⎜ 0 ⎟ ,F = 2 ⎜ ⎟ ⎜ −1 ⎟⎠ ⎜⎝ 0
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎛ 1 0 0 0 ⎞ ⎟ ⎜ 0 −1 0 0 ⎟ ,C = 2 ⎜ 0 0 −1 0 ⎟ ⎜ ⎜⎝ 0 0 0 1 ⎟⎠
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
⎞ ⎛ 0 ⎟ ⎜ 0 ⎟ ,F = 2 ⎜ ⎟ ⎜ 0 ⎟⎠ ⎜⎝ 1
⎛ ⎜ M=⎜ ⎜ ⎜⎝
1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1
⎞ ⎛ ⎟ ⎜ ⎟ ,C = 2 ⎜ ⎟ ⎜ ⎟⎠ ⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
⎞ ⎛ 0 ⎟ ⎜ 0 ⎟ ,F = 2 ⎜ ⎟ ⎜ 0 ⎟⎠ ⎜⎝ −1
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Half-‐wave retarder left
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
Half-‐wave retarder right
0 0 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟. ⎟ ⎟⎠
10
Aligned linear diattenuation and retardance
⎛ ⎜ M=⎜ ⎜ ⎜⎝
⎛ A+C A B 0 0 ⎞ ⎟ ⎜ B + iD B A 0 0 ⎟ ,C = ⎜ 0 0 C D ⎟ 0 ⎜ ⎜⎝ 0 0 −D C ⎟⎠ 0
B − iD A−C 0 0
0 0 0 0
0 0 0 0
⎞ ⎟ ⎟, ⎟ ⎟⎠
⎛ A+ R A− R (B − iD) (C − R) (B − iD) ⎜ (C + R) 2R(R + C) 2R(R − C) ⎜ ⎜ (A + R)(B 2 + D 2 ) (A − R)(B 2 + D 2 ) F=⎜ ⎜ 2R(R + C) 2R(R − C) ⎜ 0 0 ⎜ ⎜⎝ 0 0
⎞ 0 0 ⎟ ⎟ ⎟ 0 0 ⎟, ⎟ ⎟ 0 0 ⎟ 0 0 ⎟⎠
A ≥ C, R = B 2 + C 2 + D 2 . Medium of scattering particles obeying reciprocity and with a plane of symmetry [2]
⎛ A0 + B0 ⎜ C M=⎜ ⎜ 0 ⎜ 0 ⎝
⎛ A0 + A C − iD ⎞ ⎜ ⎟ C + iD B0 + B A+ B 0 0 ⎟ ,C = ⎜ ⎜ ⎟ 0 A− B D 0 0 ⎜ ⎟ 0 −D A0 − B0 ⎠ ⎜⎝ 0 0 C
0
0
⎞ ⎟ 0 0 ⎟ ⎟, B0 − B 0 ⎟ 0 A0 − A ⎟⎠ 0
0
A0 ≥ A ≥ 0, B0 ≥ B ≥ 0. Rotationally symetric medium of asymmetric scatterers in the direct forward scattering direction [2]
⎛ A0 + B0 ⎜ 0 M=⎜ ⎜ 0 ⎜ I−F ⎝
0 A −J 0
⎛ A0 + A 0 ⎞ ⎜ ⎟ 0 B0 J 0 ⎟ ,C = ⎜ ⎜ ⎟ A 0 0 −iF ⎜ 0 A0 − B0 ⎟⎠ ⎜⎝ I + iJ 0 0
F+I
0 iF B0 0
I − iJ ⎞ ⎟ 0 ⎟ ⎟, 0 ⎟ A0 − A ⎟⎠
⎛ A0 + R A0 − R (I − iJ ) (A − R) (I − iJ ) 0 ⎜ (A + R) 2R(R + A) 2R(R − A) ⎜ ⎜ i B+F ⎜ 0 0 ⎜ 2 F=⎜ B+F ⎜ 0 0 ⎜ 2 ⎜ ⎜ (A0 + R)(I 2 + J 2 ) (A0 − R)(I 2 + J 2 ) 0 ⎜ ⎜⎝ 2R(R + A) 2R(R − A)
⎞ ⎟ ⎟ ⎟ i B−F ⎟ − ⎟ 2 ⎟, B−F ⎟ ⎟ 2 ⎟ ⎟ 0 ⎟ ⎟⎠ 0
A0 ≥ A ≥ 0, B0 ≥ 0, R = A 2 + I 2 + J 2 .
11
Medium of asymmetric scatterers in the exact backscattering direction [2]
⎛ A0 + B C L I ⎜ C A + B J K M=⎜ ⎜ −L −J A− B D ⎜ I K −D A 0 −B ⎝
⎞ ⎛ A0 + A C − iD ⎟ ⎜ 2B ⎟ ,C = ⎜ C + iD ⎟ ⎜ 0 0 ⎟ ⎜ I + iJ K + iL ⎠ ⎝
I − iJ ⎞ ⎟ 0 K − iL ⎟ , ⎟ 0 0 0 A0 + A ⎟⎠ 0
A0 ≥ A ≥ 0, B ≥ 0. Medium of asymmetric scatterers in the non-‐exact backscattering direction, with rotational symmetry of the medium [2]
⎞ ⎟ ⎟ ,C = ⎟ ⎟ ⎠
⎛ A0 + A1 ⎜ 0 1⎜ ⎜ 2 0 ⎜ ⎜⎝ 2I
A0 + A1 + 2I
A0 + A1 − 2I
0
0
0
0
0
0
A0 + A1 + 2I
− A0 + A1 − 2I
0
⎛ A0 + B 0 0 I ⎜ 0 B 0 0 M=⎜ ⎜ 0 0 −B 0 ⎜ I 0 0 A 1−B ⎝ ⎛ ⎜ 1 ⎜⎜ F= 2⎜ ⎜ ⎜ ⎝
0
0
A0 − A1 + 4B
0
0
A0 − A1
0
0
⎞ ⎟ 0 ⎟ ⎟, 0 ⎟ A0 + A1 ⎟⎠ 2I
⎞ ⎟ ⎟ 0 ⎟ , A0 ≥ A1 ≥ 0, B ≥ 0. 2(A0 − A1 ) ⎟ ⎟ ⎟ 0 ⎠ 0
2(A0 − A1 + 4B)
Medium of asymmetric scatterers in the exact backscattering direction, with rotational symmetry of the medium [2]
⎛ A0 + B 0 0 I ⎜ 0 B 0 0 M=⎜ ⎜ 0 0 −B 0 ⎜ I 0 0 A 0 −B ⎝ ⎛ ⎜ 1 ⎜ F= ⎜ 2⎜ ⎜ ⎝
⎞ ⎛ ⎟ ⎜ ⎟ ,C = ⎜ ⎟ ⎜ ⎟ ⎜ ⎠ ⎝
A0 + I
A0 − I
0
0 0
0 0
2 B 0
A0 + I
− A0 − I
0
A0 0 0 I
I ⎞ ⎟ 2B 0 0 ⎟ , 0 0 0 ⎟ 0 0 A0 ⎟⎠ 0
0
0 ⎞ ⎟ 0 ⎟ , A ≥ 0, B ≥ 0. ⎟ 0 0 ⎟ 0 ⎟⎠
G-‐antisymmetric Mueller matrix [3]
⎛ ⎜ ⎜ M=⎜ ⎜ ⎜⎝ ⎛ ⎜ ⎜ F=⎜ ⎜ ⎜ ⎜⎝
a
p1
p2
p1
a
p6
p2
p6
a
p3
p5
− p4
(a + r)3/2 a + r ( p1 + ip4 ) a + r ( p2 + ip5 ) a + r ( p3 + ip6 )
⎛ p3 ⎞ 2a ⎟ ⎜ − p5 ⎟ ⎜ p1 + ip4 ,C = ⎜ ⎟ p4 p + ip5 ⎟ ⎜ 2 ⎟ ⎜ a ⎠ ⎝ p3 + ip6
p1 − ip4
p2 − ip5
0
0
0
0
0
0
p3 − ip6 ⎞ ⎟ 0 ⎟ ⎟, 0 ⎟ ⎟⎠ 0
0 0 ⎞ ⎟ a − r ( p1 + ip4 ) 0 0 ⎟ ⎟. a − r ( p2 + ip5 ) 0 0 ⎟ ⎟ a − r ( p3 + ip6 ) 0 0 ⎟⎠ (a − r)3/2
r = a 2 + p12 + p22 + p32 + p42 + p52 + p62 ,a ≥ r.
12
G-‐symmetric Mueller matrix [3]
⎛ 0 ⎜ ⎜ − p1 M=⎜ − p2 ⎜ ⎜⎝ − p3
p1
p2
0
p6
p6
0
p5
p4
⎛ p3 ⎞ ⎟ ⎜ p5 ⎟ ⎜ ,C = ⎜ p4 ⎟ ⎟ ⎜ ⎜⎝ 0 ⎟⎠
0 0
0 0
0 p6 + ip3
0
p6 − ip3
0
0
p5 + ip2
p4 − ip1
⎞ 0 p5 − ip2 ⎟ ⎟. p4 + ip1 ⎟ ⎟ ⎟⎠ 0
Diagonal Mueller matrix (canonical Mueller matrix,Type1)
M = diag ( d0 + d1 + d2 + d3 ,d0 + d1 − d2 − d3
d0 − d1 + d2 − d3 ,d0 − d1 − d2 + d3 ) ,
C = 2 diag ( d0 ,d1 ,d2 ,d3 ) , F = 2 diag
(
)
d0 , d1 , d2 , d3 .
Canonical Mueller matrix, Type 2 (Ossikovski)[4]
⎛ 2d0 ⎜ ⎜ d0 M=⎜ 0 ⎜ ⎜⎝ 0 ⎛ ⎜ ⎜ F=⎜ ⎜ ⎜ ⎜ ⎝
−d0
0
0
0
0
d2
0
0
⎛ d0 + d2 0 ⎞ ⎟ ⎜ 0 ⎟ 0 ⎜ ,C = ⎜ ⎟ 0 0 ⎟ ⎜ ⎟ ⎜ d2 ⎠ 0 ⎝
d0 + d2
0
0
0
d0 − d2
0
0
0
−i d0
0
0
0
0
d0 − d2
0
0
d0
0
id0
⎞ ⎟ 0 ⎟ , −id0 ⎟ ⎟ d0 ⎟⎠ 0
0 ⎞ ⎟ 0 ⎟ ⎟. 0 ⎟ ⎟ 0 ⎟⎠
d0
Canonical Mueller matrix, Type 2 (Bolshakov) [5, 6]
⎛ 2d0 ⎜ ⎜ d1 − d0 M=⎜ 0 ⎜ ⎜⎝ 0 ⎛ ⎜ ⎜ F=⎜ ⎜ ⎜ ⎜ ⎝
d0 − d1
0
2d1
0
0
d2
0
0
⎛ d0 + d1 + d2 0 ⎞ ⎟ ⎜ 0 ⎟ 0 ⎜ ,C = ⎟ ⎜ 0 0 ⎟ ⎜ ⎜⎝ d2 ⎟⎠ 0
d0 + d1 + d2
0
0
0
d0 + d1 − d2
0
0
0
i d0 − d1
0
0
d0 − d1
0 d0 + d1 − d2 0 0
⎞ ⎟ 0 0 ⎟ , d0 − d1 i(d0 − d1 ) ⎟ ⎟ −i(d0 − d1 ) d0 − d1 ⎟⎠ 0
0
0 ⎞ ⎟ 0 ⎟ ⎟ ,d0 ≥ d1 ,d0 + d1 − d2 ≥ 0,d0 + d1 + d2 > 0. 0 ⎟ ⎟ 0 ⎟⎠
13
Parameterized deterministic mueller matrix [7] ⎛ 1 ⎜ ⎜ ⎜ 2φ ⎜ l sin φ cosθ1 − 2mnsin 2 sin Δθ1 M = M 00 ⎜ ⎜ m sin φ cosθ − 2nl sin 2 φ sin Δθ 2 2 ⎜ 2 ⎜ ⎜ nsin φ cosθ − 2lm sin 2 φ sin Δθ 3 3 ⎜⎝ 2
φ l sin φ cosθ1 + 2mnsin 2 sin Δθ1 2 2 2φ cosφ + 2l sin 2 2φ −nsin φ sin θ 3 + 2lm sin cos Δθ 3 2 2φ m sin φ sin θ 2 + 2nl sin cos Δθ 2 2
φ φ m sin φ cosθ 2 + 2nl sin 2 sin Δθ 2 nsin φ cosθ 3 + 2lm sin 2 sin Δθ 3 2 2 2φ 2φ nsin φ cosθ 3 + 2lm sin cos Δθ 3 −m sin φ cosθ 2 + 2nl sin cos Δθ 2 2 2 2 2φ 2φ cosφ + 2m sin l sin φ cosθ1 + 2mnsin cos Δθ1 2 2 2φ 2 2φ −l sin φ sin θ1 + 2mnsin cos Δθ1 cosφ + 2n sin 2 2
l + m + n = 1 , Δθ i = (θ i+1 − θ i−1 ) in cyclic order, so that Δθ1 + Δθ 2 + Δθ 3 = 0 . 2
2
2
⎛ ⎜ ⎜ ⎜ ⎜ C = 2M 00 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝
cos 2 1 2
φ 2
l sin φ eiθ1
1 2
m sin φ eiθ 2
1 2
nsin φ eiθ 3
1 2
l sin φ e−iθ1 l 2 sin 2
φ 2
φ lm sin 2 eiΔθ 3 2 φ nl sin 2 e−iΔθ 2 2
⎛ φ cos ⎜ 2 ⎜ φ iθ1 ⎜ ⎜ l sin 2 e F = 2M 00 ⎜ ⎜ m sin φ eiθ 2 ⎜ 2 ⎜ φ ⎜ nsin eiθ 3 ⎜⎝ 2
1 2
m sin φ e−iθ 2
φ lm sin 2 e−iΔθ 3 2 φ 2 m sin 2 2 φ mnsin 2 eiΔθ1 2
1 2
nsin φ e−iθ 3
φ nl sin 2 eiΔθ 2 2 2 φ −iΔθ1 mnsin e 2 φ n 2 sin 2 2
⎞ ⎟ ⎟ ⎟ ⎟ ⎟, ⎟ ⎟ ⎟ ⎟ ⎟⎠
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟ ⎟. 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟⎟ ⎠
14
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
Uniform deterministic medium [8, 9]
L = LB − iLD , L ′ = LB′ − iLD′ and C = CB − iCD , are the generalized retardances of the medium, where the linear diattenuation in the x-y and 45 directions are LD and LD′ , respectively, the circular diattenuation is CD , the corresponding −1 retardances are LB, LB′,CB , all real and [m −1 ] , the amplitude absorption parameter is α / 2[m ]
(
T = (L, L ′,−C)T , T ⋅ T∗ = L + L ′ + C , T = L2 + L ′2 + C 2 2
2
2
)
1/2
2
2
τ = − argTz, tan τ =
= TB − iTD .
tan( 12 Tz) T TD 2 = = p . p is the homogeneity. κ = arg cos ( 12 Tz ) is , β = − arg tan ( 12 Tz ) , 2 ∗ tan (φ / 2) TB T⋅T
(
)
the geometric phase.
⎛ sin ( 1 Tz ) ⎞ . κ − β + τ = arg ⎜ 1 2 ⎝ 2 Tz ⎟⎠ ⎧⎪ 2 2⎫ T ⋅ T∗ ⎪ 1 M 00 = e−α z ⎨ cos ( 12 Tz ) + 2 sin ( 2 Tz ) ⎬ , T ⎩⎪ ⎭⎪ 2 ⎧⎪ ⎫ sin ( 12 Tz ) 2 2 ⎪ M 11 = e−α z ⎨ cos ( 12 Tz ) − T ⋅ T∗ − 2 L ⎬ , 2 T ⎪⎩ ⎪⎭ 2 ⎧⎪ ⎫ sin ( 12 Tz ) 2 2 ⎪ M 22 = e−α z ⎨ cos ( 12 Tz ) − T ⋅ T∗ − 2 L ′ ⎬ , 2 T ⎪⎩ ⎪⎭ 2 ⎧⎪ ⎫ sin ( 12 Tz ) 2 2 ⎪ ∗ M 33 = e−α z ⎨ cos ( 12 Tz ) − T ⋅ T − 2 C ⎬. 2 T ⎩⎪ ⎭⎪
(
⎧ M 01 ⎫⎪ − α z ⎪ sinTz ⎬ = −e ⎨ M 10 ⎪ Tz ⎩⎪ ⎭ ±
±
±
+
(
)
2
z2 ⎫
[ LB′.CD − LD′.CB ] 2 ⎪⎬, ⎭⎪
2
z2 ⎫
[CB.LD − CD.LB ] 2 ⎪⎬, ⎭⎪
[CD cos(β − τ ) + CBsin(β − τ )] z
sin ( 12 Tz ) 1 2 Tz
M 12 ⎫⎪ −α z ⎧⎪ sinTz ⎬ = e ⎨± M 21 ⎪ Tz ⎩⎪ ⎭
)
[ LD′ cos(β − τ ) + LB′ sin(β − τ )] z
sin ( 12 Tz ) 1 2 Tz
M 03 ⎫⎪ −α z ⎧⎪ sinTz ⎬=e ⎨ M 30 ⎪ Tz ⎩⎪ ⎭
(
[ LD cos(β − τ ) + LBsin(β − τ )] z
sin ( 12 Tz ) 1 2 Tz
⎧ M 02 ⎫⎪ − α z ⎪ sinTz ⎬ = −e ⎨ M 20 ⎪ Tz ⎩⎪ ⎭
)
2
z2 ⎫
[ LB.LD′ − LD.LB′ ] 2 ⎪⎬, ⎭⎪
[CB cos(β − τ ) − CD sin(β − τ )] z
sin ( 12 Tz ) 1 2 Tz
2
z2 ⎫
[ LB.LB′ + LD.LD′ ] 2 ⎪⎬, ⎭⎪
15
M 13 ⎫⎪ −α z ⎧⎪ sinTz ⎬ = e ⎨± M 31 ⎪ Tz ⎪⎩ ⎭ −
sin ( 12 Tz ) 1 2 Tz
M 23 ⎫⎪ −α z ⎧⎪ sinTz ⎬ = e ⎨± M 32 ⎪ Tz ⎪⎩ ⎭ −
[ LB′ cos(β − τ ) − LD′ sin(β − τ )] z 2
z2 ⎫
[CB.LB + CD.LD ] 2 ⎪⎬, ⎭⎪
[ LD sin(β − τ ) − LB cos(β − τ )] z
sin ( 12 Tz ) 1 2 Tz
2
z2 ⎫
[ LB′.CB + LD′.CD ] 2 ⎪⎬. ⎭⎪
⎛ 2 iL∗ sin 12 T ∗z ⎜ cos ( 12 Tz ) T∗ ⎜ 2 ⎜ 2 L iL 1 ⎜ − sin ( 12 Tz ) 2 sin ( 2 Tz ) T T ⎜ C = 2e−α z ⎜ 2 L ′L∗ ⎜ iL ′ 1 1 − sin Tz ( ) 2 2 sin ( 2 Tz ) ⎜ T T ⎜ ⎜ iC 2 CL∗ ⎜ sin ( 12 Tz ) − 2 sin ( 12 Tz ) ⎜⎝ T T
(
⎛ φ cos 2 ⎜ 2 ⎜ ⎜ ⎜ φ iL e−i( β −τ ) ⎜ − sin 2 ∗ 1/2 T ⋅ T ⎜ = 2M 00 ⎜ φ iL ′ ⎜ e−i( β −τ ) ⎜ − sin 2 ∗ 1/2 T ⋅ T ⎜ ⎜ iC ⎜ sin φ e−i( β −τ ) ⎜ 2 T ⋅ T∗ 1/2 ⎝
( (
(
sin
iL ′ ∗ sin T∗
)
(
1 2
−
L′
2
T
2
sin ( 12 Tz )
)
L φ 2 ( T ⋅ T∗ )1/2
sin 2
φ LL ′ ∗ 2 ( T ⋅ T∗ )1/2
)
sin 2
φ L ′L∗ 2 ( T ⋅ T∗ )1/2
sin 2
L′ φ 2 ( T ⋅ T∗ )1/2
⎛ cos ( 12 Tz ) ⎜ ⎜ − iL sin 1 Tz (2 ) ⎜ T − α z/2 ⎜ F = 2e ⎜ − iL ′ sin ( 1 Tz ) 2 ⎜ T ⎜ ⎜ iC sin ( 12 Tz ) ⎜⎝ T
0 0 0 0
− sin 2
φ CL∗ 2 ( T ⋅ T∗ )1/2
2
− sin 2
φ CL ′ ∗ 2 ( T ⋅ T∗ )1/2
⎛ φ cos eiκ ⎜ ⎞ 2 0 0 ⎜ ⎟ φ iL ⎜ ei(κ −β +τ ) ⎜ − sin 2 0 0 ⎟⎟ ∗ 1/2 T⋅T ⎜ ⎟ = 2M ⎜ 00 φ iL ′ 0 0 ⎟ ⎜ − sin ei(κ −β +τ ) ⎟ 2 T ⋅ T∗ 1/2 ⎜ ⎟ ⎜ 0 0 ⎟⎟ φ iC ⎜ ei(κ −β +τ ) ⎠ ⎜ sin 2 ∗ 1/2 T ⋅ T ⎜⎝
(
−
2
(
)
(
)
)
iC ∗ sin T∗
(
1 2
T ∗z
)
−
2 LC ∗ 1 2 sin ( 2 Tz ) T
−
2 L ′C ∗ 1 2 sin ( 2 Tz ) T
2 CL ′ ∗ 1 2 sin ( 2 Tz ) T
φ iL∗ φ iL ′ ∗ i( β −τ ) e sin ei( β −τ ) 2 ( T ⋅ T∗ )1/2 2 ( T ⋅ T∗ )1/2 2
)
2 LL ′ ∗ 1 2 sin ( 2 Tz ) T
sin 2
)
T ∗z
C
2
T
2
sin ( 12 Tz )
2
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
⎞ φ iC ∗ i( β −τ ) e ⎟ 2 ( T ⋅ T∗ )1/2 ⎟ ⎟ ∗ ⎟ LC 2φ − sin 1/2 ⎟ ∗ 2 (T ⋅ T ) ⎟ ⎟. ∗ L ′C ⎟ 2φ − sin ⎟ 2 ( T ⋅ T∗ )1/2 ⎟ ⎟ 2 C φ ⎟ sin 2 ⎟ 2 ( T ⋅ T∗ )1/2 ⎠
− sin
⎞ 0 0 0 ⎟ ⎟ ⎟ 0 0 0 ⎟ ⎟ ⎟. 0 0 0 ⎟ ⎟ ⎟ ⎟ 0 0 0 ⎟ ⎟⎠
Appendix We review the basic definitions and terminology [2, 10]. The electric field vector is e (complex). The polarization matrix (sometimes called the coherency or coherence matrix) is
P = e e† ,
(1)
16
where denotes an average (time or space) and the dagger means complex conjugate transpose. The Stokes matrix S is the polarization matrix represented in the Pauli basis. Written as a column vector it becomes the Stokes vector s . The Mueller matrix describes the transformation of the Stokes vector from s to s′ :
s′ = Ms.
(2)
In a similar way, the Mueller matrix in the Cartesian (standard) representation, N , describes the transformation of the polarization vector p (the polarization matrix written in column vector form) to p′ [11-‐13]:
p′ = Np.
(3)
We take the Pauli matrices in their usual order in optics, but also orthonormalize them ( {σ µ , σν } = Tr{σ †µ σν } = δ µν ) [11, 13]:
σµ =
1 ⎛ 1 0 ⎞ 1 ⎛ 1 0 ⎞ , , 2 ⎜⎝ 0 1 ⎟⎠ 2 ⎜⎝ 0 −1 ⎟⎠
(4)
1 ⎛ 0 1 ⎞ 1 ⎛ 0 −i ⎞ , . 2 ⎜⎝ 1 0 ⎟⎠ 2 ⎜⎝ i 0 ⎟⎠
ˆ µ is the unitary matrix Λ (so ΛΛ = I 4 , the 4 × 4 unit matrix) Then the 4 × 4 matrix formed from the four Pauli vectors σ †
given by [11]
Λ=
( σˆ
0
σˆ 1
σˆ 2
σˆ 3
)
⎛ 1 ⎜ ⎜ = 2⎜ ⎜⎝
1 1 0 0 0 0 1 −1
0 0 ⎞ 1 −i ⎟ ⎟. 1 i ⎟ 0 0 ⎟⎠
(5)
The Mueller matrix M represents transformation of the Stokes vector s to s′ : s′ = Ms, where the 16 elements of the Mueller matrix are real. An Hermitian matrix C , called the coherency matrix, can be generated from the Mueller matrix by [14, 15]
C = ∑ M µν Γ µν
(6)
µ ,ν
where the 16 × (4 × 4) (i.e. sixteen 4 × 4 ) unitary coherency basis matrices Γ µν are defined by
Γ µν = Λ† (σ µ ⊗ σν∗ )Λ.
(7)
Here ⊗ means Kronecker (outer) product [14]. We have the relationships Γ †µν = Γ µν ( Γ µν is Hermitian), and
Γ νµ = Γ ∗µν = Γ Tµν , where † signifies conjugate transpose, T signifies transpose and ∗ signifies complex conjugate. Then
p = Λs.
(8)
If the Pauli matrices are trace-‐normalized, {σ µ , σν } = Tr{σ †µ σν } = δ µν , then Λ is unitary. Then
N = ΛMΛ† ,M = Λ†NΛ.
(9)
For a deterministic system, (i.e. one that can be described by a Jones matrix), the electric field vector is transformed from e to e′ by the Jones matrix J , with column vector j . Then
e′ = Je.
(10)
The Jones vector written in the Pauli representation c is related to j by
j = Λc.
(11)
N = J ⊗ J∗ ,
(12)
M = Λ† (J ⊗ J∗ )Λ.
(13)
Then
so that
We define
17
K = [Λ ⊗ (Λ−1 )T ]
(14)
where ⊗ means Kronecker (outer) product. If M and N are written as column vectors m,n , then [16]
n = Km.
(15)
If Λ is unitary, ΛΛ = I 4 , the 4 × 4 identity matrix, and †
K = (Λ ⊗ Λ∗ )
(16)
is also unitary, so m = K n . N can be converted into an Hermitian matrix H by a partial rearrangement of rows operation [12, 13]. H is the covariance matrix, also called the standard Hermitian matrix. In terms of column vectors this can be written †
h = Rn. The matrix R is both orthogonal and unitary, so that R
−1
(17)
= R , and so n = Rh . R can be written
R = I2 ⊗ A 2 ⊗ I2 ,
(18)
−1
where (A 2 ) = I 4 , so that also A 2 = A 2 . It is found that [17] 2
3
(
)
A 2 = ∑ σ µ ⊗ σ †µ . µ =0
(19)
i.e. equal to the trace of the matrix of the basis matrices σ µ ⊗ σν† . From Eqs. 15 and 17, we have
h = RKm = Ψm,
(20)
Ψ = RK,
(21)
H = jj† = j ⊗ j∗ .
(22)
H = Λ(cc† )Λ† = Λ(c ⊗ c∗ )Λ† .
(23)
where
is unitary. For a deterministic system,
This can also be written
The coherency matrix C , also called the Pauli Hermitian matrix, is given by
C = Λ†HΛ, H = ΛCΛ† ,
(24)
C = cc† = c ⊗ c∗ .
(25)
[13-‐15, 18]. For a deterministic system
We see that Eqs. 23 and 25 are consistent with Eq. 24. Also, the similarity of Eqs. 9 and 24, allows us to write in column vector form, using Eq. 15,
h = Kg,
(26)
where H written in column vector form is h , and C written in column vector form is g . From Eqs. 20 and 26, we then have
g = K†h = Γm,
(27)
Γ = Ψ †RΨ = K†RK,
(28)
where
and ΨΓΨ † = ΨΓ † Ψ † , so Γ = Γ −1 is an involutory matrix. Finally, we have the relationship
g = Ψ †n = K†Rn.
(29)
Hence the matrices, written in column vector form, can be calculated from each other using vector multiplications by R and K . The polarization matrix is transformed according to
P′ = JPJ † .
(30)
18
An arbitrary, non-‐deterministic polarization matrix can be decomposed by summing over the four eigenvalues (called the Kraus decomposition [19], like a coherent mode decomposition) 3
P′ = ∑ Jα PJα† ,
(31)
α =0
Jα = λa Jα , where Jα is a normalized Jones matrix. This allows a combination of Jones matrices to be used to represent a non-‐deterministic system. A similar form for the Stokes matrix, i.e. the Stokes vector written in matrix form, rather than the Jones matrix, seems not to exist [20]. For a deterministic system, the coherency matrix factorizes, C = cc † (Eq. 25). The coherency matrix is non-‐negative definite, and any non-‐negative definite Hermitian matrix can be factorized into the product of a matrix and its conjugate transpose . So we can factorize any coherency matrix, whether deterministic or not, into the product of a matrix F and its conjugate transpose [21]. We have 3
3
3
(
C = UDU † = ∑ λα Cα = ∑ UDα U † = ∑ U Dα α =0
α =0
Cα = uα uα† ,Fα = U Dα , F = U diag
(
α =0
)( U
Dα
) = ∑F F †
3
α =0
α
† α
= FF† ,
(32)
)
λ0 , λ1 , λ2 , λ 3 ,
where λα are the eigenvalues of C , D is the diagonal matrix of eigenvalues, Dα is the matrix of a single eigenvalue,
uα are the normalized eigenvectors of C , and U the matrix of eigenvectors. The square root of a diagonal matrix is equal to the matrix of the square roots of the elements. We call F the coherency matrix factor (CMF). It consists of the four component c-‐vectors, weighted by the square roots of the coherency matrix eigenvalues, and arranged in column vector form. Each column of F has an arbitrary phase, which cancels upon multiplication to give C . The first row of F can be taken as real and positive. In the same way that we can factorize the coherency matrix, we can factorize the covariance matrix H , to give the covariance matrix factor (the matrix of weighted Jones-‐vectors), E [21]: 3
3
3
(
H = VDV † = ∑ λα Hα = ∑ VDα V † = ∑ V Dα α =0
α =0
Hα = v α v α† ,Eα = V Dα , E = V diag
(
α =0
)( V
Dα
) = ∑E E †
3
α =0
α
† α
= EE† ,
(33)
)
λ0 , λ1 , λ2 , λ 3 ,
where λα are the eigenvalues of H , equal to the eigenvalues of C , v α are the normalized eigenvectors of H , and
V the matrix of eigenvectors. We call E the covariance matrix factor. It consists of the four component Jones vectors, weighted by the square roots of the covariance matrix eigenvalues, and arranged in column vector form.
References 1. J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, Boca Raton FL, 2016). 2. C. J. R. Sheppard, M. Castello, and A. Diaspro, "Expressions for parallel decomposition of the Mueller matrix," J. Opt. Soc. Am. A 33, 741-‐751 (2016). 3. C. V. M. van der Mee, "An eigenvalue criterion for matrices transforming Stokes parameters," J. Math. Phys. 34, 5072-‐5088 (1993). 4. R. Ossikovski, "Canonical forms of depolarizing Mueller matrices," J. Opt. Soc. Am. A 27, 123-‐130 (2010). 5. Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman, "Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications," Operator Theory: Advances and Applications 87, 61-‐94 (1996). 6. Y. Bolshakov, C. V. M. van der Mee, A. C. M. Ran, B. Reichstein, and L. Rodman, "Errata for: Polar decompositions in finite dimensional indefinite scalar product spaces: Special case and applications," Intergral Equations and Operator Theory 27, 497-‐501 (1997). 7. C. J. R. Sheppard, "Parameterization of the Mueller matrix," J. Opt. Soc. Am. A 33, 2323-‐2332 (2016). 8. J. A. Schellman and H. P. Jensen, "Optical spectroscopy of oriented molecules," Chem. Rev. 87, 1359-‐1399 (1987). 9. C. J. R. Sheppard, "Parameterization of the deterministic Mueller matrix: application to a uniform medium," J. Opt. Soc. Am. A 34, 602-‐608 (2017). 10. C. J. R. Sheppard, M. Castello, and A. Diaspro, "Three-‐dimensional polarization algebra," J. Opt. Soc. Am. A 33, 1938-‐ 1947 (2016). 11. R. W. Schmieder, "Stokes-‐algebra formalism," J. Opt. Soc. Am. 59, 297-‐302 (1969).
19
12. R. Simon, "The connection between Mueller and Jones matrices of polarization optics," Optics Comm. 42, 293-‐297 (1982). 13. A. Aiello and J. P. Woerdman, "Linear algebra for Mueller calculus," ArXiv:math-‐ph 0412061 (2006). 14. S. R. Cloude, "Group theory and polarization algebra," Optik 75, 26-‐36 (1986). 15. S. R. Cloude, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geoscience and Remote Sensing 34, 498-‐518 (1996). 16. D. G. M. Anderson and R. Barakat, "Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix," J. Opt. Soc. Am. A 11, 2305-‐2319 (1994). 17. C. Rakotonirina, "Expression of a tensor commutation matrix in terms of the generalized Gell-‐Mann matrices," International Journal of Mathematics and Mathematical Sciences 2007, 20672 (2007). 18. S. R. Cloude, "Depolarization by aerosols: Entropy of the Amsterdam light scattering database," J. Quantitative Spectroscopy and Radiative Transfer 110, 1665-‐1676 (2009). 19. K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory (Springer, 1983). 20. C. J. R. Sheppard, M. Castello, and A. Diaspro, "Expressions for parallel decomposition of the Mueller matrix: erratum," J. Opt. Soc. Am. A 34, 813 (2017). 21. C. J. R. Sheppard, A. Le Gratiet, and A. Diaspro, "Factorization of the coherency matrix of polarization optics," Optics Letters, submitted.
20