1 an agent autonomy approach to probabilistic physics

2 downloads 0 Views 123KB Size Report
MODELING OF DYNAMIC SYSTEMS WITH INTERACTING FAILURE MECHANISMS. Katherine Gromek. Mohammad Modarres. Center for Risk and Reliability.
 

AN  AGENT  AUTONOMY  APPROACH  TO  PROBABILISTIC  PHYSICS-­‐OF-­‐FAILURE   MODELING  OF  DYNAMIC  SYSTEMS  WITH  INTERACTING  FAILURE  MECHANISMS  

Katherine  Gromek   Mohammad  Modarres   Center  for  Risk  and  Reliability   Department  of  Mechanical  Engineering   University  of  Maryland   College  Park,  MD  20742     As  products  and  systems  are  becoming  increasingly  complex,  they  experience  new  and   multifaceted  failure  modes  resulting  from  convoluted  and  often  interdependent  physical   failure  mechanisms.  At  the  same  time  life  tests  of  such  systems  are  costly  and  time   consuming.  Coupled  with  the  requirement  for  extensive  field  data  for  empirical  modeling   and  assessment  of  reliability  measures,  prediction  of  reliability  and  risk  of  complex   systems  needs  consideration  of  fresh  and  more  efficient  methods.       As  an  alternative  to  fully  empirical  reliability  modeling  established  without  consideration   of   the   underlying   physical   processes   that   lead   to   failure   (i.e.,   failure   mechanisms),   the   Physics-­‐of-­‐Failure   (PoF)   approach   [1]   is   a   powerful   option   for   reliability   assessment   of   complex   systems.   The   PoF   approach   is   based   on   modeling   and   simulation   of   the   relevant   physical   processes   that   contribute   to   degradation   and   leading   to   failures.   The   PoF-­‐based   (or  mechanistic-­‐based)  reliability  models  provide  comprehensive  representation  of  system   degradation,   capable   of   bringing   many   influential   factors   into   the   life   and   reliability   assessment.  These  factors  include  environmental  and  operational  stresses,  mission  profile   and   manufacturing   processes.   As   such,   the   PoF   approach   makes   reliability   and   risk   assessment  more  relevant  and  highly  system-­‐specific.       Due  to  the  diversity  of  components  and  their  failure  mechanisms,  complexity  of  system   logic  and  various  types  of  dependencies  at  all  levels  of  system  hierarchy,  comprehensive   use  of  PPoF  approach  in  risk  and  reliability  modeling  of  a  complex  dynamic  system  can  be   very  challenging,  if  not  impossible.    Traditional  static  models  of  system  reliability  (such  as   Fault  Tree,  Event  Tree  and  Reliability  Block  Diagram),  as  well  as  dynamic  methods  of   system  modeling  (Markov  Chains,  Stochastic  Petri  Nets,  Dynamic  Event  Trees)  are  not   always  capable  of  properly  incorporating  physical  models  of  system  components  and  also   impose  new  challenges.  For  example:  1)  very  limited  ability  to  model  dynamics  of  system   hardware  over  time,  including  degraded  states  of  a  system,  and  2)  inability  to  provide   quantitative  causal  relations  between  several  competing  interacting  and  interdependent   failure  mechanisms  of  one  or  multiple  components.     This  paper  outlines  a  framework  for  PPoF-­‐based  reliability  modeling  using  the  agent-­‐based   computing.  PPoF  models  will  be  used  to  make  a  robust  real-­‐time  simulation  of  system   components  and  failure  processes,  so  that  the  system  level  modeling  will  constitute   checking  the  status  of  components  at  any  given  time.  “Agent  Autonomy”  concept  will  be   used  as  a  solution  method  for  the  PPoF  modeling.  This  concept  has  originated  from   Artificial  Intelligence  (AI)  developments  in  Multi  Agents  System  (MAS)  [2].     1

  Critical  challenges  addressed  in  this  research  include  modeling  agent  anatomy  within  the   scope  of  PoF  models  of  the  system  and  introduction  of  agent  learning  as  a  main  property  of   intelligent  agents.  Bayesian  probabilistic  framework  used  in  risk  assessment  provides  the   formalisms  for  agent  learning.  Another  key  property  of  intelligent  agents  is  their  ability  to   activate,  deactivate  and  completely  redefine  themselves,  which  makes  the  agents   autonomous  and  fundamentally  different  than  existing  methods  of  PoF  reliability  modeling.     The  agent  structure  proposed  in  this  work  introduces  and  combines  several  types  of  agents   to   optimize   the   use   of   data,   and   allow   mutual   communication   between   agents   possible.   Different   levels   of   agent   autonomy   can   be   defined,   depending   on   the   nature   of   degradation   and  physical  failure  processes  occurring  in  the  given  system  and  complexity  of  interactions   between   system   components   and   piece   parts,   such   as   in   the   example   conceptually   described  by  Figure  1.  An  intelligent  agent  further  represents  each  element  of  the  hierarchy   shown  in  Figures  1  and  is  simulated  using  agent-­‐based  computing.       The   paper   will   demonstrate   the   agent-­‐based   PPoF   method   with   an   example   of   reliability   assessment  of  a  turbine  system.     Figure1   Overall  Structure  of  POF  models  used  in  agent-­‐based  system  reliability  assessment     System Hierarchy Flow Chart

d

Physical or Performance Degradation Falling Below Endurance or Requirements

t

Non-Degrading Failure Physical or Performance Violates Threshold (e.g. Stress>Strength)

Component 1 Part 2

Part 1 FM1 FM2 FM3 d D1(t)>Xa1

t

D2(t)>Xa2

d L>S

Rv12

Rvd

V4

d

FM4 FM5

V1 31 Rv

Rev

V2 Rv2

V1

1

V3

V1

Physical and Causal Relationship

d

Associative Relationship

Type of Relations (R) • Physical Functions • Semi-Empirical Functions • Empirical Functions • Association Relationships (correlation, etc.)

V

Rde

E1

E2

E3

E

Stress variables Causing Degradation or Failure when Strength is exceeded Enablers - Relationships Connecting Coupling Factors To Stresses

  [1]   K.  Chatterjee,  M.  Modarres,  J.  Bernstein,  D.  Nicholls,  Celebrating  Fifty  Years  of   Physics  of  Failure,  Proceedings  of  the  2013  Reliability  and  Maintainability  Symposium   (RAMS),  Jan.  2013,  Orlando,  FL.   [2]     Panait,  Liviu;  Luke,  Sean,  Cooperative  Multi-­‐Agent  Learning:  The  State  of  the  Art,   Autonomous  Agents  and  Multi-­‐Agent  Systems  11  (3):  387–434  (2005).   2