Manipulator. Newton-Euler. Equations. Coordinate- invariant. algorithms for. robot. dynamics. Lagrange's. Equations with
Chapter 4 Robot Dynamics and Control
Summer School-Math. Methods in
[email protected] 13-31 July 2009
1 Lecture Notes for A Mathematical Introduction to Robotic Manipulation
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator
By Z.X. Li∗ and Y.Q. Wu#
Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
∗
Dept. of ECE, Hong Kong University of Science & Technology # School of ME, Shanghai Jiaotong University
24 July 2009
Chapter 4 Robot Dynamics and Control
Summer School-Math. Methods in
[email protected] 13-31 July 2009
2
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
Chapter 4 Robot Dynamics and Control 1 Lagrangian Equations 2 Inertial Properties of Rigid Body 3 Dynamics of an Open-chain Manipulator 4 Newton-Euler Equations 5 Coordinate-invariant algorithms for robot dynamics 6 Lagrange’s Equations with Constraints
Chapter 4 Robot Dynamics and Control
4.1 Lagrangian Equations ◻ A Simple Example: Chapter 4 Robot Dynamics and Control Lagrangian Equations
m
Newton’s Equation: m¨x = Fx
Dynamics of an Open-chain Manipulator
Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
m¨y = Fy − mg Momentum: Px = m˙x d dt Px
=
Py = m˙y d Fx , dt Py = Fy − mg
Fy
F Fx
mg
♢ Review:
Inertial Properties of Rigid Body
Newton-Euler Equations
3
y
⇔
Lagrangian Equation: d ∂L ∂L − = Fx dt ∂˙x ∂x d ∂L ∂L − = Fy dt ∂˙y ∂y Lagrangian function: L = T − V, Px = ∂L ∂˙x , Py = Kinetic energy: T = 21 m(˙x2 + y˙2 )2 Potential energy: V = mgy
x
∂L ∂˙y
Chapter 4 Robot Dynamics and Control
4.1 Lagrangian Equations 4 ◻ Generalization to multibody systems: Chapter 4 Robot Dynamics and Control
y m3
Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
q3
m2 q2 m1
qi , i = 1, . . . , n: generalized coordinates Kinetic energy: T = T(q, q˙ ) Potential energy: V = V(q) Lagrangian: L(q, q˙ ) = T(q, q˙ ) − V(q) τi , i = 1, . . . , n: external force on qi Lagrangian Equation:
q1 x
d ∂L ∂L − = τi , i = 1, . . . , n dt ∂˙qi ∂qi
Chapter 4 Robot Dynamics and Control
4.1 Lagrangian Equations 5 ◇ Example: Pendulum equation Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
y Generalized coordinate: 1 θ∈S Kinematics: x x = l sin θ, y = −l cos θ ˙ y˙ = l sin θ ⋅ θ˙ ⇒ x˙ = l cos θ ⋅ θ, Kinetic energy: θ 1 1 2 ˙2 2 2 ˙ ˙ T(θ, θ) = m(˙x + y ) = ml θ 2 2 Potential energy: mg V = mgl(1 − cos θ) Lagrangian function: 1 ∂L ˙ ∂L = −mgl sin θ L = T − V = ml2 θ˙ − mgl(1 − cos θ), ⇒ = ml2 θ, 2 ∂θ ∂ θ˙ Equation of motion: d ∂L ∂L − = τ ⇒ ml2 θ¨ + mgl sin θ = τ dt ˙ ∂θ
Chapter 4 Robot Dynamics and Control
4.1 Lagrangian Equations 6 ◇ Example: Dynamics of a Spherical Pendulum Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ l sin θ cos ϕ ⎤ ⎢ ⎥ r(θ, ϕ) = ⎢ l sin θ sin ϕ ⎥ ⎢ −l cos θ ⎥ ⎣ ⎦ 1 1 T = m∥˙r∥2 = ml2 (θ˙2 + (1 − cos2 θ)ϕ˙2 ) 2 2 V = −mgl cos θ 1 L(q, q˙ ) = ml2 (θ˙ + (1 − cosθ )ϕ˙2 ) + mgl cos θ 2
θ
ϕ
mg
Chapter 4 Robot Dynamics and Control
4.1 Lagrangian Equations 7
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎧ d ∂L d ⎪ ˙ = ml2 θ, ¨ ∂L = ml2 sin θ cos θ ϕ˙2 − mgl sin θ ⎪ = (ml2 θ) ⎪ ⎪ ⎪ ˙ ∂θ ⎪ dt ∂ θ dt ⎨ d d ∂L ⎪ ⎪ ˙ = ml2 sin2 θ ϕ¨ + 2ml2 sin θ cos θ θ˙ϕ, ˙ ∂L = 0 ⎪ = (ml2 sin2 θ ϕ) ⎪ ⎪ ˙ ⎪ ∂ϕ ⎩ dt ∂ ϕ dt [
ml2 0 ][ 0 ml2 s2θ
θ¨ ] + [ −ml2 sθ cθ ϕ˙2 ] + [ mglsθ ] = [ 0 ] 0 0 ϕ¨ 2ml2 sθ cθ θ˙ ϕ˙
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 8 ◻ Kinetic energy of a rigid body: Chapter 4 Robot Dynamics and Control
r
Lagrangian Equations Inertial Properties of Rigid Body
B
ra A
gab
Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
Volume occupied by the body: Mass density: Mass: Mass center: Relative to frame at the mass center:
V ρ(r) m= ρ(r)dV V 1 r≜ ρ(r)rdV m V r=0
∫
∫
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 9 In A-frame Chapter 4 Robot Dynamics and Control
1 ˙ 2 dV = 1 ˙ + ∥Rr∥ ˙ 2 )dV ρ(r)∥p˙ + Rr∥ ρ(r)(∥p˙ ∥2 + 2p˙ T Rr 2 V 2 V 1 1 ˙ ˙ 2 dV = m∥p˙ ∥2 + p˙ T R ρ(r)rdV + ρ(r)∥Rr∥ 2 2 V ´¹¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¸¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¶
Lagrangian Equations
Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
∫
∫
Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator
∫
T=
∫
=0
1 2
∫
V
1 = 2 1 = 2
˙ 2 dV ρ(r)∥Rr∥ 1
1
˙ dV = ˆ dV = ∫ ρ(r)∥ˆr ω∥ dV ρ(r)∥ωr∥ ∫ ρ(r)∥R Rr∥ 2 ∫ 2 1 1 ∫ ρ(r)(−ω ˆr ω)dV = 2 ω ( ∫ (−ρ(r)ˆr) dV) ω ≜ 2 ω I ω T
2
T 2
2
T
2
2
T
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 10 where Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
I =− with Ixx =
∫
∫ ρ(r)(y
2
⎡ Ixx Ixy Ixz ⎢ ρ(r)ˆr2 dV ≜ ⎢ ⎢ Ixy Iyy Iyz ⎢ Ixz Iyz Izz ⎣ + z2 )dxdydz, Ixy = −
⎤ ⎥ ⎥ ⎥ ⎥ ⎦
∫ ρ(r)xydxdydz
1 1 1 1 T = m∥p˙ ∥2 + (ωb )T I b ωb = m∥RT p˙ ∥2 + (ωb )T I b ωb 2 2 2 2 1 b T mI 0 = (V ) [ ] Vb 0 Ib 2 ´¹¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¸ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹¶ Mb
˙ and vb = RT p˙ , M b is the For Vˆ b = g −1 ⋅ g˙ , with ωˆ b = RT ⋅ R Generalized inertia matrix in B frame.
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 11 ◇ Example: M b for a rectangular object Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
z
m lωh Ixx = ρ(y2 + z2 )dxdydz
ρ=
∫
y
V
=ρ
h 2
ω 2
l 2
− h2
− ω2
− 2l
∫ ∫ ∫
= ρ(
h
1 m (lω3 h + lωh3 )) = (ω2 + h2 ) 12 12
Ixy = − = −ρ
(y2 + z2 )dxdydz
∫
V
ρxydv = −ρ
h 2
ω 2
− h2
− ω2
∫ ∫
l
h 2
ω 2
l 2
− h2
− ω2
− 2l
∫ ∫ ∫
y 2 2 x ∣ dydz = 0 2 −l 2
xydxdydz
x l w
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ ⎢ ⎢ I =⎢ ⎢ ⎢ ⎣
m 2 12 (w
+h ) 0 0 2
Vˆ 1 = g1−1 ⋅ g˙1 , M1 1 T = V1T M1 V1 2 V1 = Adg0 V2
m 2 12 (l
0 + h2 ) 0
⎤ ⎥ ⎥ ⎥ , M = [ mI03×3 I0 ] m 2 2 ⎥ ⎥ 12 (w + l ) ⎦ 0 0
g0 A
B
g1 (t)
g2 (t)
g0
1 1 1 T = (Adg0 V2 )T M1 (Adg0 V2 ) = V2T AdTg0 M1 Adg0 V2 ≜ V2T M2 V2 2 2 2
◻ M under change of frames: M2 = AdTg0 M1 Adg0
12
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 13 ◇ Example: Dynamics of a 2-dof planar robot Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ Ixxi ⎢ Ii = ⎢ 0 ⎢ 0 ⎣
0 Iyyi 0
0 0 Izzi
⎤ ⎥ ⎥ , i = 1, 2 ⎥ ⎦
˙ = 1 m1 ∥v1 ∥2 + 1 ωT I1 ω1 T(θ, θ) 2 2 1 1 1 + m2 ∥v2 ∥2 + ωT2 I2 ω2 2 2
l2 r 2 θ2
l1
y r1
x
0 ω1 = [ 0 ] θ˙1
ω2 = [
0 0 ] θ˙1 + θ˙2
θ1
Chapter 4 Robot Dynamics and Control
4.2 Intertial Properties of Rigid Body 14 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
xi Pi = [ yi ]: Mass center γi : Distance from joint i to mass center 0 x˙ 1 = −r1 s1 θ˙1 x1 = r1 c1 ⇒ y1 = r1 s1 y˙1 = r1 c1 θ˙1 x˙ 2 = −(l1 s1 + r2 s12 )θ˙1 − r2 s12 θ˙2 x2 = l1 c1 + r2 c12 ⇒ y2 = l1 s1 + r2 s12 y˙1 = (l1 c1 + r2 c12 )θ˙1 + r2 c12 θ˙2 ˙ = 1 m1 (x˙ 2 + y˙2 ) + 1 Iz θ˙2 + 1 m2 (x˙ 2 + y˙2 ) + 1 Iz (θ˙2 + θ˙2 ) T(θ, θ) 1 2 2 1 2 2 2 1 1 2 2 2 1 ˙ 1 α + 2βc δ + βc2 = [θ˙1 θ˙2 ] [ δ + βc 2 ] [ θ˙ 1 ] δ 2 θ2 2 ´¹¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¸¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¶ α=
Iz1 + Iz2 + m1 r12
+ m2 (l12
¨ ⇒ M(θ) [ θ¨ 1 θ2
M(θ) + r22 ), β
= m2 l1 r2 , δ = Iz2 + m2 r22 , L = T ˙ −βs2 θ˙2 −βx ]+[ ] [ θ˙ 1 ] = [ ττ21 ] ˙ βs2 θ 1 0 θ2
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 15 ◻ Dynamics of open-chain manipulator: Chapter 4 Robot Dynamics and Control
Definition: ˆ ˆ Li : frame at mass center of link i, gsli (θ) = expξ1 θ 1 ⋯ expξi θ i gsli (o) θ1 θ2
Lagrangian Equations
l2 L3
L2
Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator
θ3 l1
r1 l0
r2
L1 r0 S
Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ ⎢ ⎢ ⎢ ⎢ b b † † † Vsli = Jsli (θ)θ˙ = [ξ1 ξ2 ⋯ ξi 0 ⋯ 0] ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
θ˙1 ⋮ θ˙i θ˙i+1 ⋮ θ˙n
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ = Ji (θ)θ˙ ⎥ ⎥ ⎥ ⎥ ⎦
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 16 ξj† = Ad−1 (eξj+1 θ j+1 ⋯eξi θ i gsli (0))ξj , j ≤ i ˆ
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
ˆ
˙ = 1 (V b )T M b V b = 1 θ˙T J T (θ)M b Ji (θ)θ˙ Ti (θ, θ) i sli i i 2 sli 2 n ˙ = 1 θ˙T M(θ)θ, ˙ T(θ) = ∑ Ti (θ, θ) 2 i=1
1 n ∑ Mij (θ)θ˙i θ˙j 2 i,j=1 Vi (θ) = mi ghi (θ), V(θ) = ∑ mi ghi (θ)
M(θ) = ∑ JiT (θ)Mib Ji (θ) = i
hi (θ): Height of Li ,
Lagrange’s Equation: d ∂L ∂L − = Γi , i = 1, . . . , n, dt ∂ θ˙i ∂θ i
i=1
⎞ n d ∂L d ⎛n ˙ ij θ˙j = Mij θ˙j = ∑ Mij θ¨j + M ∑ dt ∂ θ˙i dt ⎝ j=1 ⎠ j=1
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 17 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
∂L 1 n ∂Mkj ˙ ˙ ∂V = ∑ θkθj − ∂θ i 2 j,k=1 ∂θ i ∂θ i n
˙ ij = ∑ M k
∂Mij ˙ θk ∂θ k
n
∂Mij ˙ ˙ 1 ∂Mkj ˙ ˙ ∂V ⇒ ∑ Mij θ¨j + ∑ ( θj θk − θk θj) + = Γi 2 ∂θ i ∂θ i j=1 j,k=1 ∂θ k n n ∂V ⇒ ∑ Mij θ¨j + ∑ Γijk θ˙k θ˙j + = Γi ∂θ i j=1 j,k=1
Γijk =
1 ∂Mij ∂Mik ∂Mkj ( + − ) 2 ∂θ k ∂θ j ∂θ i
θ˙i ⋅ θ˙j , i ≠ j : Coriolis force
θ˙i2 : Centrifugal force n n ˙ = ∑ Γk θ˙k = 1 ∑ ( ∂Mij + ∂Mik − ∂Mkj )θ˙k Define: cij (θ, θ) ij 2 k=1 ∂θ k ∂θ j ∂θ i k=1 ˙ θ˙ + N(θ) = τ ⇒ M(θ)θ¨ + C(θ, θ)
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 18 Property 1: Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
1 2
M(θ) = M T (θ), θ˙T M(θ)θ˙ ≥ 0, θ˙T M(θ)θ˙ = 0 ⇔ θ = 0 ˙ − 2C ∈ Rn×n is skew symmetric M
Proof : ˙ − 2C)ij = M ˙ ij − 2cij (θ) (M n ∂M ∂Mkj ˙ ∂Mij ˙ ∂Mik ˙ ij ˙ =∑ θk − θk − θk + θk ∂θ k ∂θ j ∂θ i k=1 ∂θ k n
=∑ k=1
∂Mkj ˙ ∂Mik ˙ θk − θk ∂θ i ∂θ j
˙ − 2C)T = −(M ˙ − 2C) Switching i and j shows (M
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 19 ◇ Example: Planar 2-DoF Robot (continued)
Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
m11 (θ) = α + 2β cos θ 2 , m22 = δ
m12 (θ) = m21 (θ) = δ + β cos θ 2 ˙ = −β sin θ 2 ⋅ θ˙2 , c12 (θ, θ) ˙ = −β sin θ 2 (θ˙1 + θ˙2 ) c11 (θ, θ)
˙ = β sin θ 2 ⋅ θ˙1 , c22 (θ, θ) ˙ =0 c21 (θ, θ)
⎧ ⎪ ⎪ Γ111 = ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Γ2 = ⎪ ⎪ ⎪ 11 ⎨ ⎪ ⎪ 1 ⎪ Γ12 = ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 2 ⎪ ⎪ Γ12 = ⎪ ⎪ ⎩
1 ∂M11 ∂M11 ∂M11 1 ∂M11 ( + − )= =0 2 ∂θ 1 ∂θ 1 ∂θ 1 2 ∂θ 1 1 ∂M11 ∂M12 ∂M21 1 ∂M11 ( + − )= = −β sin θ 2 2 ∂θ 2 ∂θ 1 ∂θ 1 2 ∂θ 2 1 ∂M11 1 ∂M12 ∂M11 ∂M12 ( + − )= = −β sin θ 2 2 ∂θ 1 ∂θ 2 ∂θ 1 2 ∂θ 2 1 ∂M12 ∂M12 ∂M22 ∂M12 1 ∂M22 ( + − )= − = −β sin θ 2 2 ∂θ 2 ∂θ 2 ∂θ 1 ∂θ 2 2 ∂θ 1
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 20 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎧ 1 ⎪ ⎪ Γ21 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 2 ⎪ ⎪ Γ ⎪ ⎪ ⎪ 21 ⎨ ⎪ ⎪ 1 ⎪ Γ22 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 2 ⎪ ⎪ Γ22 ⎪ ⎪ ⎩
1 ∂M21 ∂M21 ∂M11 ∂M21 1 ∂M11 + − )= − = β sin θ 2 = ( 2 ∂θ 1 ∂θ 1 ∂θ 2 ∂θ 1 2 ∂θ 2 1 ∂M21 ∂M22 ∂M21 1 ∂M22 = ( + − )= =0 2 ∂θ 2 ∂θ 1 ∂θ 2 2 ∂θ 1 1 ∂M22 ∂M21 ∂M12 1 ∂M22 = ( + − )= =0 2 ∂θ 1 ∂θ 2 ∂θ 2 2 ∂θ 1 1 ∂M22 ∂M22 ∂M22 1 ∂M22 = ( + − )= =0 2 ∂θ 2 ∂θ 2 ∂θ 2 2 ∂θ 2 ˙ ˙ ˙ − 2C = [ −2β sin θ 2 ⋅ θ 2 −β sin θ 2 ⋅ θ 2 ] M −β sin θ 2 ⋅ θ˙2 0 −2β sin θ 2 ⋅ θ˙2 −2β sin θ 2 (θ˙1 + θ˙2 ) −[ ] 2β sin θ 2 ⋅ θ˙ 1 0 0 β sin θ 2 (2θ˙1 + θ˙2 ) =[ ] ⇐ skew-symmetric ˙ ˙ −β sin θ 2 (2θ 1 + θ 2 ) 0
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 21 ◇ Example: Dynamics of a 3-dof robot Chapter 4 Robot Dynamics and Control
θ1
⎡ ⎢ ⎢ Lagrangian ⎢ Equations ξ 1 = ⎢ ⎢ ⎢ ⎢ Inertial ⎣ Properties of Rigid Body
Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
0 0 0 0 0 1
⎤ ⎡ 0 ⎥ ⎢ −l0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ , ξ 2 = ⎢ −1 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ 1 ⎦ ⎣
⎤ ⎡ 0 ⎥ ⎢ −l0 ⎥ ⎢ ⎥ ⎢ l1 ⎥ , ξ 3 = ⎢ −1 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ ⎦ ⎣ 1
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
θ2
θ3 l1
l2 L3
L2 r1 l0
r2
L1 r0 S
⎡ ⎢ I gsl1 (0) = ⎢ ⎢ ⎢ 0 ⎣
⎤ ⎡ 0 ⎢ ( 0 ) ⎥ ⎥, gsl (0) = ⎢ I ⎥ 2 ⎢ r0 ⎥ ⎢ 0 1 ⎦ ⎣
⎤ ⎡ 0 ⎢ ( r1 ) ⎥ ⎥, gsl (0) = ⎢ I ⎥ 3 ⎢ l0 ⎥ ⎢ 0 1 ⎦ ⎣
0 ⎤ ( l 1 + r2 ) ⎥ ⎥ ⎥ l0 ⎥ 1 ⎦
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 22 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ mi 0 0 ⎤ ⎢ 0 mi 0 ⎥ 0 ⎢ ⎥ ⎢ 0 0 mi ⎥ Mi = ⎢ Ixi 0 0 ⎥ ⎢ ⎥ ⎢ 0 Iy i 0 ⎥ 0 ⎢ ⎥ ⎢ 0 0 Iz i ⎥ ⎣ ⎦ mi : The mass of the object Ixi : The moment of inertia about the x axis Γ112 = (Iy2 − Iz2 − m2 r12 )c2 s2 + (Iy2 − Iz3 )c23 s23 − m3 (l1 c2 + r2 c23 )(l1 s2 + r2 s23 ) Γ113 = (Iy3 − Iz3 )c23 s23 − m3 r2 s23 (l1 c2 + r2 c23 ) 1 Γ12 = (Iy2 − Iz2 − m2 r12 )c2 s2 + (Iy3 − Iz3 )c23 s23 − m3 (l1 c2 + r2 c23 )(l1 s2 + r2 s23 ) 1 Γ13 = (Iy3 − Iz3 )c23 s23 − m3 r2 s23 (l1 c2 + r2 c23 ) 1 Γ21 = (Iz2 − Iy2 + m2 r12 )c2 s2 + (Iz3 − Iy3 )c23 s23 + m3 (l1 c2 + r2 c23 )(l1 s2 + r2 s23 ) 3 2 3 Γ22 = −l1 m3 r2 s3 , Γ23 = −l1 m3 r2 s3 , Γ23 = −l1 m3 r2 s3 2 Γ311 = (Iz3 − Iy3 )c23 s23 + m3 r2 s23 (l1 c2 + r2 c23 ) , Γ32 = l 1 m3 r2 s 3
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 23 ˙ = ∂V , V(θ) = m1 gh1 (θ) + m2 gh2 (θ) + m2 gh3 (θ) N(θ, θ) ∂θ Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
gsli (θ) = eξ1 θ 1 ⋯eξi θ i gsli (0) ⇒ ˆ
ˆ
h1 (θ) = r0 , h2 (θ) = l0 − r1 sin θ, h3 (θ)
= l0 − l1 sin θ 2 − r2 sin(θ 2 + θ 3 )gsli (θ)
= eξ1 θ 1 ⋯eξi θ i gsli (0) ⇒ ˆ
ˆ
h1 (θ) = r0 , h2 (θ) = l0 − r1 sin θ, h3 (θ)
= l0 − l1 sin θ 2 − r2 sin(θ 2 + θ 3 )
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 24 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
⎡ ⎢ ⎢ ⎢ b J1 = Jsl1 (θ) = ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎢ ⎢ ⎢ J2 = Jslb2 (θ) = ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎢ ⎢ ⎢ b J3 = Jsl3 (θ) = ⎢ ⎢ ⎢ ⎢ ⎣
0 0 0 ⎤ 0 0 0 ⎥ ⎥ 0 0 0 ⎥ 0 0 0 ⎥ ⎥ 0 0 0 ⎥ 1 0 0 ⎥ ⎦ −r1 c2 0 0 ⎤ 0 0 0 ⎥ ⎥ 0 −r1 0 ⎥ 0 −1 0 ⎥ ⎥ −s2 0 0 ⎥ c2 0 0 ⎥ ⎦ −l2 c2 − r2 c23 0 0 ⎤ 0 l1 s3 0 ⎥ ⎥ 0 −r2 − l1 c3 −r2 ⎥ 0 −1 −1 ⎥ ⎥ −s23 0 0 ⎥ ⎥ c23 0 0 ⎦
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 25 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
M11 M12 M13 M(θ) = [ M21 M22 M23 ] = J1T M1 J1 + J2T M2 J2 + J3T M3 J3 M31 M32 M33 2 M11 = Iy2 s2 + Iy3 s223 + Iz1 + Iz2 c22 + Iz3 c223 + m2 r12 c22 + m3 (l1 c2 + r2 c23 )2
M12 = M13 = M21 = M31 = 0
M22 = Ix2 + Ix3 + m2 l12 + M2 r12 + m3 r22 + 2m3 l1 r2 c3 M23 = Ix3 + m3 r22 + m3 l1 r2 c3 M32 = Ix3 + m3 r22 + m3 l1 r2 c3 M33 = Ix3 + m3 r22
n n ˙ = ∑ Γk θ˙k = 1 ∑ ( ∂Mij + ∂Mik − ∂Mkj ) θ˙k Cij (θ, θ) ij 2 k=1 ∂θ k ∂θ j ∂θ i k=1
Chapter 4 Robot Dynamics and Control
4.3 Dynamics of Open-chain Manipulator 26 Chapter 4 Robot Dynamics and Control Lagrangian Equations Inertial Properties of Rigid Body Dynamics of an Open-chain Manipulator Newton-Euler Equations Coordinateinvariant algorithms for robot dynamics Lagrange’s Equations with Constraints
◻ Additional Properties of the dynamics in terms of POE: Define:
⎧ ⎪ Ad−1ξˆj+1 θ j+1 ξˆ θ i > j ⎪ ⎪ ⋯e i i ⎪ ⎪ e Aij = ⎨I i=j ⎪ ⎪ ⎪ ⎪ ⎪ i