1 Selective inhibition of Proprionibacterium acnes by

4 downloads 0 Views 7MB Size Report
role in acne treatment through modulation of the skin microbiome ...... It should be noted, however, that in the United States the Federal Drug ...... Felter, H. & Lloyd, J. 1898, "Phytolacca" in King's American Dispensatory Ohio Valley Co.,.
   

 

 

Selective  inhibition  of  Proprionibacterium  acnes  by  Calendula  officinalis:  a  potential   role  in  acne  treatment  through  modulation  of  the  skin  microbiome     Latifa  Pelletier-­‐Ahmed   Abstract   Recent   investigations   into   the   skin   microbiome   have   revealed   many   potential   beneficial   effects   for   commensal   skin   bacteria   like   Staphylococcus   epidermidis.   These   effects   include   anti-­‐ inflammatory  and  antimicrobial  effects.  Current  treatment  of  acne  vulgaris  frequently  involves   antimicrobial   treatment   that   is   non-­‐selective   against   Proprionibacterium   acnes   resulting   in   eradication  of  other  commensal  bacterial  like   S.  epidermidis.  This  study  screened  6  proprietary   hydroethanolic   plant   extracts:   Calendula   officinalis,   Berberis   vulgaris,   Mahonia   aquifolium,   Phytolacca   decandra,   Lavandula   angustifolia,   and   Echinacea   purpurea/Echinacea   angustifolia.   The  results  of  screening  showed  that  Calendula  was  selectively  able  to  inhibit  P.  acnes  but  not  S.   epidermidis.   The   minimum   inhibitory   concentration   was   0.078   g/mL   equivalent   to   weight   of   dried  herb  not  dried  extract.  An  aqueous  extract  of  Calendula  flowers  was  found  to  have  the   same  selective  antibacterial  effects.  The  results  indicate  that  Calendula  has  the  potential  to  be   a  topical  prebiotic  for  the  treatment  of  acne.                          

1    

 

 

   

 

 

Table  of  Contents   Abstract  ..................................................................................................................................  1   Abbreviations  .........................................................................................................................  4   Introduction  ...........................................................................................................................  5   Overview  .........................................................................................................................................  5   Acne  vulgaris  ...................................................................................................................................  7   Definition  ............................................................................................................................................  7   Pathogenesis  .......................................................................................................................................  9   Epidemiology  and  psychological  consequences  ................................................................................  10   Conventional  treatment  ....................................................................................................................  10   Topical  treatment  ..............................................................................................................................  10   Oral  Treatment  ..................................................................................................................................  13   Antibiotic  resistance  ..........................................................................................................................  16   Complementary  and  alternative  medicine   .......................................................................................  17   Propionibacterium  acnes   ...............................................................................................................  18   Staphylococcus  epidermidis  ...........................................................................................................  21   Current  study  –  topical  prebiotics  ..................................................................................................  24   Phytolacca  decandra  L.  .....................................................................................................................  25   Calendula  officinalis  L.  .......................................................................................................................  27   Mahonia  aquifolium  (Pursh)  Nutt.  ....................................................................................................  29   Berberis  vulgaris  L.  ............................................................................................................................  30   Lavandula  angustifolia  L.  ..................................................................................................................  31   Echinacea  purpurea  (L)  Moench/  angustifolia  DC.  ............................................................................  32   Methods  ...............................................................................................................................  33   Preparation  of  ethanolic  extracts  ...................................................................................................  33   Bacterial  Sensitivity  Testing  ...........................................................................................................  35   Minimum  Inhibitory  Concentration  ................................................................................................  35   Statistical  analysis  ..........................................................................................................................  37   Results  and  Discussion  ..........................................................................................................  37   Preparation  of  extracts  ..................................................................................................................  37    Bacterial  Sensitivity  .......................................................................................................................  38   Minimum  inhibitory  concentration  ................................................................................................  41   Aqueous  extraction  of  Calendula  ...................................................................................................  42   Commensal  bacteria  ......................................................................................................................  43   Bacterial  resistance  ........................................................................................................................  44   Calendula  .......................................................................................................................................  45   Dosage  ...............................................................................................................................................  46   Constituents  ......................................................................................................................................  46   Antimicrobial  .....................................................................................................................................  47   Anti-­‐inflammatory  .............................................................................................................................  48   Antioxidant  ........................................................................................................................................  48   Wound  healing  ..................................................................................................................................  50   2    

 

 

   

 

 

Angiogenic  .........................................................................................................................................  51   Immunostimulating  ...........................................................................................................................  52   Skin  parameters  ................................................................................................................................  52   Antitumour  ........................................................................................................................................  52   Case  studies  .......................................................................................................................................  53   Clinical  trials  ......................................................................................................................................  53   Safety  ................................................................................................................................................  55  

Conclusion  ............................................................................................................................  56   Bibliography  .........................................................................................................................  57   Appendix  I  ............................................................................................................................  73   Appendix  II  ...........................................................................................................................  75   Appendix  III  ..........................................................................................................................  78   Appendix  IV  ..........................................................................................................................  79   Appendix  V  ...........................................................................................................................  81   Appendix  VI  ..........................................................................................................................  90   Appendix  VII  .........................................................................................................................  91                                 3    

 

 

   

 

 

Abbreviations     AMP   Berberis   Calendula   CAM   CFU   COC   COX   DMSO   Echinacea   E.  coli   IL   Lavandula   LPS   LTA   Mahonia   MIC    MRSA   OA   P.  acnes   P.  aeruginosa   PDGF   Phytolacca   PI3-­‐K   PSM   S.  aureus   S.  epidermidis   S.  fecalis   TLR   TNF-­‐α   TTC   UVB  

 

antimicrobial  peptides   Berberis  vulgaris   Calendula  officinalis   chick  chorioallantoic  membrane   colony  forming  unit   combined  oral  contraceptive   cyclooxygenase   dimethyl  sulfoxide   Echinacea  purpurea/Echinacea  angustifolia   Escherichia  coli   interleukin   Lavandula  angustifolia   lipopolysaccharide   lipoteichoic  acid     Mahonia  aquifolium   minimum  inhibitory  concentration   methicillin-­‐resistant  Staphylococcus  aureus   oleanolic  acid   Proprionibacterium  acnes   Pseudomonas  aeruginosa   Platelet  derived  growth  factor   Phytolacca  decandra   Phosphoinositide  3-­‐kinase   phenol  soluble  modulin   Staphylococcus  aureus   Staphylococcus  epidermidis   Streptococcus  fecalis   toll-­‐like  receptor   tumour  necrosis  factor-­‐alpha   threshold  for  toxicological  concern   ultraviolet  B  

     

4    

 

 

   

 

 

Introduction  

Overview   The  microbiome  is  the  collection  of  microorganisms  including  bacteria,  viruses  and  fungi  that   live  on  the  exposed  surfaces  of  the  human  body  including  the  gastrointestinal  tract,  lungs,  and   skin.  It  is  estimated  that  these  organisms  number  as  many  as  100  trillion  organisms,  about  10   times   the   number   of   cells   in   the   human   body.   Increasingly   research   is   elucidating   how   these   organisms  have  profound  impacts  on  human  physiology  and  health.  Research  has  focused  on   the  gut  microflora,  which  plays  a  key  role  in  digestion  and  immunity.  Dysbiosis,  or  an  increase   in  pathogenic  microbes  relative  to  beneficial  ones,  in  the  gut  has  been  linked  with  conditions   such   as   allergy,   obesity,   inflammatory   bowel   disease,   diabetes   mellitus,   atherosclerosis   and   cancer  (Mankowska-­‐Wierzbicka  et  al.,  2015).     However,   little   is   known   about   the   skin   microflora   where   it   is   estimated   that   there   are   one   billion   bacteria   per   square   centimetre   of   human   skin.   Bacteria   on   the   human   skin   can   be   transient,  referring  to  contaminant  bacteria  that  cannot  colonise  the  skin;  temporary  residents,   referring  to  bacteria  that  do  not  typically  live  on  the  skin  but  can  colonise  the  skin;  or  resident   referring   to   bacteria   that   continuously   colonise   the   skin   surface   (Mankowska-­‐Wierzbicka   et   al.,   2015;   Grice   et   al.,   2008).   The   composition   of   these   species   depends   on   host   conditions   such   as   moisture,  temperature,  pH,  ultraviolet  radiation,  growth  substrate  content  and  concentration,   secretion   of   chemicals   that   inhibit   growth,   as   well   as   the   interrelationships   between   microorganisms   (Christensen   and   Bruggeman,   2014;   Grice   et   al.,   2008;   Bojar   and   Holland,   2004).   Resident  bacteria  are  mainly  Gram-­‐positive  and  have  evolved  to  tolerate  harsh  environmental   conditions  such  as  low  nutrients,  acidity,  desiccation,  and  continual  shedding  of  epithelial  cells.   Resident   species   include   Proprionibacteria,   coagulase-­‐negative   Staphylococci,   Micrococci,   Corynebacteria   and   Acinebacteria   (Krutmann,   2009).   Knowledge   of   the   skin   microflora   until   recently   has   been   limited   to   culture-­‐dependent   assays,   however,   it   has   been   estimated   that   less   than   1%   of   all   bacteria   species   can   be   cultivated   (Grice   et   al.,   2008).   Genetic   sequencing   of   skin  bacteria  of  the  antecubital  crease  (inner  elbow)  has  revealed  113  operational  taxonomic   units 1  in   7   divisions   (in   order   of   abundance):   Proteobacteria   mainly   from   the   genera                                                                                                               1

Operational  taxonomic  unit:  a  species  defined  solely  by  its  genetic  material.      

5    

 

 

   

 

 

Pesudomonas   and   Janthinobacterium;   Actinobacteria   mainly   from   the   genera   Kocuria   and   Proprionibacteria;   Firmicutes;   Bacteriodetes;   and   Cyanobacteria   (Grice   et   al.;   2008).   Further,   metagenomic  studies  have  shown  that  the  relative  abundance  of  phyla  in  the  antecubital  and   popliteal   (underside   of   knee)   creases   differs   between   individuals   (Kong   et   al.,   2012).     Metagenomic   studies   challenge   assumptions   based   on   culture-­‐based   assays   of   bacterial   abundance.  However,  metagenomic  studies  of  the  bioburden2  of  Staphylococcus  aureus  found   in  the  human  nares  supported  the  findings  of  culture-­‐based  assays  (Kong  et  al.,  2012).  These   findings   suggest   that   our   understanding   of   skin   microbial   ecology   is   in   its   infancy   as   new   technologies  begin  to  provide  data  on  difficult-­‐to-­‐cultivate  bacteria.     Beneficial  roles  of  resident  bacteria  include:  inhibition  of  pathogenic  species,  further  processing   of   skin   proteins,   free   fatty   acids,   and   sebum   (Roth   and   James,   1988).   Dysbiosis   of   the   skin   microbiota  is  associated  with  diseases  such  as  atopic  dermatitis  or  eczema,  rosacea,  psoriasis   and  acne  vulgaris  (Mankowska-­‐Wierzbicka  et  al.,  2015).  Atopic  dermatitis  has  been  associated   with   a   decreased   production   of   antimicrobial   peptides   (AMPs)   by   keratinocytes   and   lesions   frequently  colonised  and  infected  with  S.  aureus  (Ong  et  al.,  2002).     The   importance   of   understanding   how   our   microbiota   influence   our   health   is   increasingly   important   with   growing   urbanisation   as   theories   emerge   suggesting   that   decreased   contact   with   natural   environmental   elements   or   decreased   exposure   to   environmental   microbes,   the   biodiversity   and   the   hygiene   hypotheses   respectively,   have   negative   impacts   on   microbiome   diversity   and   health.   Decreased   exposure   to   environmental   biodiversity   was   associated   in   a   decreased  biodiversity  in  Gram-­‐negative  gammaproteobacteria  and  an  increased  incidence  of   atopy   or   allergy   (Hanski   et   al.,   2012).   Metagenomic   studies   have   found   decreased   microbial   diversity  is  associated  with  flare-­‐ups  of  atopic  dermatitis  (Kong  et  al.,  2012).   Evidence  now  exists  that  begins  to  support  the  idea  of  a  skin,  gut  and  brain  communication  axis.   In   particular,   the   gut   and   skin   have   similar   neuronal   and   inflammatory   activity   (Arck   et   al.,   2010).  This  brings  into  question  the  generalised  use  of  antibiotics  and  antimicrobial  agents  for   the  treatment  of  skin  conditions  when  the  full  impact  these  products  have  on  the  skin  and  body,   mediated   via   the   microbiome,   is   not   fully   understood.   Lai   et   al.   (2009)   suggest   that   with   recent  

                                                                                                            2

 Number  of  bacteria  found  on  a  non-­‐sterilised  surface.  

6    

 

 

   

 

 

findings  demonstrating  the  benefit  of  commensal  bacteria  in  human  health  the  indiscriminate   use  of  topical  and  systemic  antibiotics  should  be  avoided.    

Acne  vulgaris   Definition   Acne   vulgaris   is   a   chronic   inflammatory   disease   of   the   pilosebaceous   unit   or   hair   follicles   associated  with  an  oil  gland.  Acne  lesions  are  characterised  by  excess  production  of  sebum  that   is  colonised  by  large  numbers  of  Proprionibacterium  acnes.    Lesions  can  be  non-­‐inflammatory   as  open  or  closed  comedones,  or  inflammatory  as  papules,  pustules  or  nodules  (Figures  1  and  2)   (Walsh  et  al.,  2016;  Williams  et  al.,  2012).  Areas  of  the  body  rich  in  sebaceous  glands  include   the  head,  chest  and  back  (Bojar  and  Holland,  2004).    

  Figure  1.  Changes  to  the  sebaceous  follicle  in  an  acne  lesion.  A)  a  normal  sebaceous  follicle,  B)  a   comedone,  C)  an  inflammatory  acne  lesion  with  a  ruptured  follicular  wall.  Image  taken  from   Williams  et  al.  (2012).  

7    

 

 

   

 

 

  Figure  2.  Different  grades  of  acne:  A)  comedonal  facial  acne,  B)  moderate  inflammatory  facial   acne,   C)   moderate   inflammatory   back   acne,   D)   severe   inflammatory   facial   acne,   E)   severe,   inflammatory  back  acne.    Image  taken  from  Asai  et  al.  (2016).   With   regards   to   clinical   practice,   however,   there   is   no   universally   accepted   grading   scale   for   acne  severity.  Recently,  18  grading  scales  were  ranked  based  on  a  range  of  criteria  (Tan  et  al.,   8    

 

 

   

 

 

2013).  One  of  the  highest  rated  grading  scales  developed  by  Tan  et  al.  (2007)  is  presented  in   Figure  3.      

  Figure  3.  Grading  scale  for  acne  severity  taken  from  Tan  et  al.  (2007).     Pathogenesis     Four  processes  are  involved  in  the  pathogenesis  of  acne:  inflammation  and  immune  response   leading   to   increased   inflammatory   mediators;   altered   keratinisation   leading   to   abnormal   follicular   growth   and   differentiation;   sebaceous   gland   hyperplasia   and   seborrhoea3  controlled   by  androgens;  and  colonisation  of  the  follicle  by  P.  acnes  (Williams  et  al.,  2012).    However,  a   complete   understanding   of   the   molecular   and   cellular   mechanisms   that   underlie   acne   have   yet   to  be  elucidated  (Zaenglein  et  al.,  2016).   Abnormal   keratinisation   is   the   result   of   keratinocyte   hyperproliferation   and   reduced   desquamation   leading   to   increased   cohesion   between   keratinocytes.   The   accumulated   keratinocytes  combine  with  sebum,  which  causes  a  plug  to  form  in  the  follicular  duct.  This  leads   to  the  formation  of  a  comedone  (Cunliffe  et  al.,  2000).  The  formation  of  a  biofilm  by  P.  acnes   may   enhance   the   formation   of   microcomedones   by   forming   a   glue   that   holds   corneocytes4   together  to  form  a  plug  of  the  follicle  (Burkhart  and  Burkhart,  2007).   P.  acnes  flourish  in  the  lipid-­‐rich  anaerobic  sebaceous  follicle  comedone  or  non-­‐inflammatory   acne  lesion.  However,  while  the  existence  of  distinct  factors  that  contribute  to  acne  formation   is   clear,   the   exact   cause   and   effect   relationships   are   not.   Current   topics   of   debate   include   whether  comedone  formation  precedes  or  is  the  result  of  inflammation  (Del  Rosso  and  Kircik,                                                                                                               3 4

 Increased  sebum  production.    A  keratinocyte  in  the  terminal  phase  of  differentiation.  

9    

 

 

   

 

 

2013);  whether  the  initial  cellular  infiltrate  is  neutrophilic  or  lymphocytic;  or  whether  P.  acnes   initiates  or  exacerbates  inflammation  (Bojar  and  Holland,  2004).  The  oxidation  of  lipids  found  in   sebum  can  also  trigger  the  production  of  inflammatory  mediators  (Walsh  et  al.,  2016).     Other  cutaneous  microorganisms  that  are  associated  with  the  pilosebaceous  follicle  that  may   play   a   role   in   the   pathogenesis   of   acne   include   Staphylococcus   epidermidis   and   the   yeast   Malassezia  spp.  (Bojar  and  Holland,  2004).     Epidemiology  and  psychological  consequences   Acne   affects   almost   all   people   aged   15-­‐17   years;   it   is   moderate-­‐severe   in   %15-­‐20   of   this   age   group.  However,  acne  often  persists  into  adulthood.  Major  side  effects  of  acne  are  scarring  and,   if  acne  persists  into  adulthood,  a  negative  impact  on  self-­‐esteem  (Williams  et  al.,  2012).   Psychological  consequences  of  acne  in  adolescents  include  a  decreased  quality  of  life,  lowered   self-­‐esteem  and  self-­‐worth,  increased  feelings  of  uselessness,  and  lower  body  satisfaction.  Acne   is  also  linked  to  psychiatric  disorders  such  as  anxiety,  depression  and  suicide  ideation  (Misery,   2011).   Increased   acne   severity   was   associated   with   higher   rates   of   suicide   ideation5  among   4744  adolescents  (Halvorsen  et  al.,  2011).     Conventional  treatment   Conventional   treatment   includes   topical   and   oral   treatments.   Treatment   regimens   serve   to   prevent  further  acne  formation  rather  than  treat  existing  acne  (Williams  et  al.,  2012).  Although   there   are   numerous   studies   on   acne   treatment,   there   remain   a   large   number   of   biases   in   published   trials   (Ingram   et   al.,   2010).   A   lack   of   standardised   assessment   tools   to   characterise   acne  severity  limits  the  comparability  between  studies.  Population  biases  have  left  a  research   gap  among  the  treatment  of  acne  in  people  of  colour  (Zaenglein  et  al.,  2016).   Topical  treatment   Topical  treatment  is  the  first-­‐line  of  therapy  in  conventional  acne  treatment  (Zaenglein  et  al.,   2016).   Topical   treatments   include:   benzoyl   peroxide,   topical   retinoids,   topical   antibiotics,   and   salicyclic  acid  (Williams  et  al.,  2012).                                                                                                               5

 Self-­‐reported  thoughts  related  to  suicide  or  suicide-­‐related  acts  (Halvorsen  et  al.,  2011).  

10    

 

 

   

 

 

Benzoyl  peroxide     Benzoyl   peroxide   is   a   strong   oxidising   agent   that   produces   free   radicals   that   are   toxic   to   bacterial   cell   membranes   (Sagransky   et   al.,   2009).   It   is   antibacterial   to   several   species   of   Proprionibacteria   including   P.   acnes   as   well   as   Staphylococcus   epidermidis,   Staphylococcus   hominus   and   the   yeast   Pityrosporum   ovale   (Cove   and   Holland,   1983).   An   indirect   anti-­‐ inflammatory   action   has   been   attributed   to   benzoyl   peroxide   through   its   cytotoxicity   to   neutrophils   thus   preventing   the   release   of   inflammatory   cytokines   (Hegemann   et   al.,   1994).   Further,  it  acts  as  a  comedolytic  and  keratolytic  agent  (Sagransky  et  al.,  2009).  Benzoyl  peroxide   may   cause   hypersensitivity   reactions,   contact   sensitization,   burning,   excessive   erythema,   dryness,  scaling  and  peeling.  As  a  strong  oxidising  agent  it  can  bleach  hair  and  clothes.  It  must   be  used  for  a  minimum  of  3  weeks  to  see  results,  with  the  maximum  improvement  occurring   after  8  to  12  weeks.  The  incidence  of  adverse  effects  decreases  with  long-­‐term  use  (Zaenglein   et  al.,  2016,  Supplement  Table  I;  Sagransky  et  al.,  2009).   Benzoyl   peroxide   is   frequently   recommended   as   combination   treatment   with   either   topical   retinoids  or  antibiotics.  In  particular,  benzoyl  peroxide  has  been  shown  to  kill  resistant  strains   of  P.  acnes  (Leyden  et  al.,  2008)  and  so  can  be  used  in  combination  with  antibiotics  to  prevent   the   development   of   antibiotic   resistance   (Sagransky   et   al.,   2009).   However,   in   general   few   combinations   have   been   adequately   tested   against   relevant   monotherapies   (Williams   et   al.,   2012).   Salicyclic  acid     Salicyclic   acid   is   an   exfoliant   used   to   control   the   symptomatic   signs   of   acne.   Shalita   (1981)   demonstrated  efficacy  for  the  treatment  of  salicyclic  acid  in  mild  to  moderate  acne;  however,   there  are  no  studies  that  show  it  is  superior  to  other  products  (Williams  et  al.,  2012).    Salicyclic   acid  is  applied  initially  once  per  day  and  may  be  increased  to  2  to  3  times  per  day.  The  main   side  effects  are  dryness,  redness  and  peeling.  Hypersensitivity  reactions  and  salicylate  toxicity   may   occur.   Combination   with   other   therapies   may   result   in   a   cumulative   irritant   and   drying   effect  (Zaenglein  et  al.,  2016,  Supplement  Table  II).   Retinoids     Topical  retinoids  are  vitamin  A  analogues  that  bind  to  retinoic  acid  receptors,  the  main  effect  of   11    

 

 

   

 

 

which  is  the  prevention  of  the  formation  of  the  comedone  (Zaenglein  et  al.,  2016).  They  also   have   a   strong   effect   against   keratinisation   and   a   moderate   effect   against   inflammation   (Williams  et  al.,  2012).  The  use  of  retinoids  can  be  limited  by  their  side  effects  including  dry  skin,   peeling,   scaling,   flaking,   erythema,   pruritis6,   skin   tenderness,   and   hyper-­‐/hypopigmentation.   There   is   increased   risk   for   sunburn   as   retinoids   interact   with   ultraviolet   light   resulting   in   photosensitivity.  Exposure  to  wind  and  cold  can  also  increase  irritation  (Zaenglein  et  al.,  2016,   Supplement   Table   VII).   They   also   have   a   teratogenic 7  effect   and   are   contraindicated   in   pregnancy.  Women  are  encouraged  to  concomitantly  take  birth  control  (Williams  et  al.,  2012).   Antibiotics   Topical  antibiotics  are  believed  to  act  directly  through  antibacterial  action  against  P.  acnes  as   well  as  through  anti-­‐inflammatory  mechanisms.  They  have  limited  effect  against  non-­‐inflamed   acne   lesions.   The   antibiotics   primarily   used   in   topical   preparations   are   erythromycin   and   clindamycin,   however,   the   effect   of   erythromycin   may   be   declining   due   to   antibiotic   resistance   (Williams  et  al.,  2012).  In  response  to  growing  concerns  regarding  antibiotic  resistance  topical   antibiotics  are  not  recommended  as  a  monotherapy  (Walsh  et  al.,  2016).   Clindamycin   is   currently   the   preferred   topical   antibiotic,   although   it   is   only   supported   by   one   randomised,  double-­‐blind,  placebo-­‐controlled  12-­‐week  clinical  trial  in  46  patients  (Kuhlman  and   Callen,  1986).  Side  effects  include  severe  colitis,  dermatitis,  folliculitis,  photosensitivity,  pruritis,   erythema,  dry  skin  and  peeling.  Clindamycin  in  combination  with  benzoyl  peroxide  was  shown   to   be   better   than   either   alone   in   treating   moderate   to   severe   acne   in   a   multicentre,   randomised,   double-­‐blind   trial   with   2813   patients   (Thiboutot   et   al.,   2008).   Side   effects   of   the   combined  treatment  include:  erythema,  peeling,  drying,  burning,  and  anaphylaxis  (Zaenglein  et   al.,  2016,  Supplement  Tables  V  &  VI).       Erythromycin   is   a   topical   treatment   for   mild   to   moderate   inflammatory   acne.   Besides   a   risk   for   the   development   of   antibiotic   resistance   there   is   also   a   risk   for   developing   colitis   caused   by   superinfection   with   Clostridium   difficile.   Topical   erythromycin   can   also   interact   with   cosmetic   cleansing   products   especially   those   with   abrasive,   peeling   and   desquamating   properties.   To   prevent   antibiotic   resistance   erythromycin   is   recommended   in   combination   with   benzoyl                                                                                                               6 7

 Skin  itching.    An  agent  that  may  cause  birth  defects.  

12    

 

 

   

 

 

peroxide.   Side   effects   of   the   combined   treatments   include:   pseudomembranous   colitis,   urticaria,   dryness,   itching,   burning   sensation,   erythema,   skin   discolouration,   oiliness,   and   skin   tenderness  (Zaenglein  et  al.,  2016,  Supplement  Tables  III  &  IV).     Oral  Treatment     Antibiotics   Oral  antibiotics  are  usually  reserved  for  more  severe  acne  (Williams  et  al.,  2012).  In  addition  to   their   antimicrobial   properties   they   have   substantial   anti-­‐inflammatory   effects;   however,   their   anti-­‐inflammatory   activity   has   only   been   established   in   vitro   (Walsh   et   al.,   2016).   They   are   effective  against  inflammatory  lesions  but  do  not  completely  clear  acne.  They  are  used  at  low   doses   for   long   periods   of   time   so   there   is   an   increased   concern   for   antibiotic   resistance.   The   evidence   of   the   superiority   of   one   type   of   antibiotic   over   another   is   limited;   however,   tetracyclines  (tetracycline,  minocycline,  and  doxycycline)  are  the  preferred  choice.  The  choice   of   which   antibiotic   to   use   should   be   evaluated   based   on   the   side   effect   profile   and   costs   (Williams  et  al.,  2012).  For  example,  oral  clindamycin  is  associated  with  serious  gastrointestinal   side  effects  and  the  liver  and  kidney  function  need  to  be  monitored  regularly  with  prolonged   use  (Walsh  et  al.,  2016).  Treatment  with  antibiotics  for  acne  has  been  shown  to  increase  the   risk   of   developing   upper   respiratory   tract   infections   (Margolis   et   al.,   2005).   Further,   as   increased   understanding   of   the   gut   microbiome   associates   dysbiosis   with   diseases   such   as   diabetes   type   II,   obesity   and   allergic   disease   (Hernandez,   2016;   Ipci   et   al.,   2016;   Turta   and   Rautava,   2016)   established   ideas   regarding   the   risks   and   benefits   of   antibiotic   use   must   re-­‐ evaluated,  particularly  in  vulnerable  adolescent  populations.   The  tetracycline  class  of  antibiotics  are  considered  the  first  line  of  treatment  for  moderate  to   severe   inflammatory   acne   and   are   recommended   as   adjuncts   to   topical   treatments.   Tetracycline   is   the   most   recommended   followed   by   minocycline   and   doxycycline.   However,   a   Cochrane   review   did   not   find   any   evidence   to   support   the   use   of   one   tetracycline   over   any   other  (Garner  et  al.,  2012).  Their  mechanism  of  action  is  to  inhibit  bacterial  protein  synthesis  by  

13    

 

 

   

 

 

binding   to   the   30S   ribosomal   subunit.   Demonstrated   anti-­‐inflammatory   effects   include   inhibition  of  chemotaxis8  and  metalloproteinase  activity  (Zaenglein  et  al.,  2016).   Tetracyclines   are   recommended   for   long-­‐term   use   and   are   associated   with   a   range   of   side   effects  that  are  covered  in  detail  in  Appendix  1.  Common  side  effects  include  gastrointestinal   disturbance   and   vaginal   candidiasis.   Darkening   of   tooth   enamel   has   led   to   the   contraindication   of   tetracyclines   in   children   less   than   8   years   of   age.   Tetracycline   is   associated   with   adverse   effects   to   the   gastrointestinal   system,   teeth,   skin,   kidneys,   liver,   and   blood   as   well   as   hypersensitivity   reactions.   Minocycline   is   most   commonly   associated   with   tinnitus,   dizziness,   and  pigment  deposition  in  the  skin,  mucous  membrane  and  teeth;  however,  may  also  adversely   affect   the   gastrointestinal   system,   genitourinary   system,   liver,   respiratory   system,   kidneys,   musculoskeletal   system,   and   blood.   Rarely   it   may   cause   drug-­‐induced   lupus   and   other   hypersensitivity  reactions.  Doxycycline  is  associated  with  adverse  effects  to  the  gastrointestinal   system,   skin,   kidneys,   and   blood   as   well   as   hypersensitivity   reactions   (Zaenglein   et   al.,   2016,   Supplement  Tables  XIV,  XV  &  XVI).     Combined  oral  contraceptives   Combined   oral   contraceptives   (COCs)   that   contain   oestrogen   (ethinyl   estradiol)   and   progestogen  are  used  because  oestrogen  suppresses  sebaceous  gland  activity  and  reduces  the   formation   of   ovarian   and   adrenal   androgens.   Progestogen-­‐only   contraceptives   should   be   avoided   because   they   bind   to   both   progesterone   and   androgen   receptors.   Third   generation   progestogens   are   more   selective   to   progesterone   receptors   but   carry   an   increased   risk   of   thromboembolism  (Williams  et  al.,  2012).  Five  randomised,  controlled  trials  have  consistently   demonstrated   a   significant   improvement   in   acne   vulgaris   with   COCs   compared   with   placebo   controls   (Maloney   et   al.,   2009;   Plewig   et   al.,   2009;   Koltun   et   al.,   2008;   Lucky   et   al.,   2008;   Maloney  et  al.,  2008).  It  should  be  noted,  however,  that  in  the  United  States  the  Federal  Drug   Administration  (FDA)  specifies  that  COCs  should  only  be  prescribed  for  acne  in  women  who  also   desire  contraception  (Zaenglein  et  al.,  2016).     COCs  containing  ethinyl  estadiol  and  a  progestin  are  prescribed  to  treat  acne  in  women  after   menarche.   The   contraindication   and   adverse   effect   profiles   differ   between   drugs,   which   are   covered  in  detail  in  Appendix  II.  COCs  are  primarily  contraindicated  in  oestrogen  or  progestin                                                                                                               8

 Attraction  of  cells,  e.g.  neutrophils,  towards  a  chemical  stimulus.  

14    

 

 

   

 

 

sensitive   cancers   such   as   breast   cancer,   hepatic   disease,   and   vascular   disorders   or   diseases.   Side  effects  associated  with  COCs  can  affect  the  cardiovascular  system,  gastrointestinal  system,   central   nervous   system,   endocrine   system,   genitourinary   system,   blood,   eyes,   skin,   liver   and   kidneys.  COCs  may  also  interact  with  a  range  of  other  drugs  including  drugs  that  may  be  used  in   acne   treatment   such   as   tetracyclines   (Zaenglein   et   al.,   2016,   Supplement   Tables   XXIII,   XIV,   XXV,   &  XXVI).                                                             Isotretinoin   Oral  isotretinoin,  made  infamous  under  its  trade  name  Accutane,  is  a  vitamin  A  analogue  that  is   very  effective  and  results  in  a  clinical  cure  85%  of  the  time.  Relapse  rates  are  21%  and  are  dose-­‐ dependent.  However,  it  is  reserved  for  severe  recalcitrant  nodulocystic  scarring  acne  because   of   the   associated   side   effects   (Williams   et   al.,   2012).   It   is   recommended   for   treatment   for   between  15  to  20  weeks.  Side  effects  are  covered  in  detail  in  Appendix  III.  Common  side  effects   include   cheilitis,   dry   skin,   nose   bleeds,   secondary   infection,   temporary   worsening   of   lesions,   photosensitivity,  increased  serum  lipids,  and  changes  to  the  mucocutaneous,  musculoskeletal   and   ophthalmic   systems   mimicking   hypervitaminosis   A.   Less   common   side   effects   include   inflammatory   bowel   disease,   depression,   anxiety,   mood   changes,   cardiovascular   risk   factors,   increased  bone  mineralization,  increased  scarring,  and  colonization  with  S.  aureus.  Isotretinoin   may   also   interact   with   other   acne   drugs   such   as   tetracyclines   and   COCs   (Zaenglein   et   al.,   2016;   Williams  et  al.,  2012).   The  link  between  isotretinoin  and  depression  and  suicide  is  disputed  (Misery,  2011).  Kontaxakis   et  al.  (2009)  reviewed  the  data  linking  isotretinoin  with  psychological  effects.  They  concluded   that   there   is   a   plausible   link   between   isotretinoin   and   psychopathology   not   limited   to   depression,  however,  that  more  evidence  is  required  to  confirm  a  causal  link.  Isotretinoin  is  a   known   teratogen.   In   the   United   States   hundreds   of   reports   of   congenital   defects   in   exposed   pregnancies   were   reported   following   isotretinoin’s   initial   release   in   1982   (Dai   et   al.,   1992).   This   led   to   the   implementation   of   the   risk   management   program   iPLEDGE   in   the   United   States   to   prevent   pregnancies   exposed   to   isotretinoin.   Despite   this,   however,   there   are   still   150   isotretinoin-­‐exposed  pregnancies  in  the  United  States  every  year  (Collins  et  al.,  2014).    

15    

 

 

   

 

 

Antibiotic  resistance     As  the  global  use  of  antibiotics  continues  to  rise,  many  countries  have  reported  that  more  than   50%  of  P.  acnes  strains  are  resistant  to  topical  macrolides9.  Further,  the  incidence  of  P.  acnes   resistant   bacteria   found   in   patients   has   increased   from   20%   in   1978   to   62%   in   1996.   Both   topical   and   oral   antibiotics   are   of   equal   importance   in   the   issue   of   antibiotic   resistance.   Part   of   the   difficulty   in   detecting   resistance   is   that   it   does   not   necessarily   translate   directly   into   treatment   because   acne   is   not   exclusively   an   infectious   disease.   Therefore,   resistance   may   manifest  as  no  response  or  a  reduced  response  to  treatment  (Walsh  et  al.,  2016).  An  additional   complication   is   that   despite   protocols   to   reduce   antibiotic   resistance,   the   adolescent   population   group   remains   notoriously   difficult   with   regards   to   compliance   (Williams   et   al.,   2012).     Resistance   is   not   limited   to   P.   acnes   bacteria   as   topical   antibiotics   can   affect   all   susceptible   cutaneous  bacteria.  Resistant  strains  of  S.  epidermidis  have  been  documented  with  an  increase   in  the  number  of  resistant  strains  following  long-­‐term  antibiotic  therapy  (Nishijima  et  al.,  2000).   Mills  et  al.  (2002)  found  that  in  208  acne  patients  87%  had  erythromycin-­‐resistant  coagulase-­‐ negative   Staphylococci,   which   increased   to   98%   after   12   weeks   of   therapy.   No   significant   improvement  was  observed  which  the  authors  related  to  the  additional  presence  of  resistant  P.   acnes  strains.   One  of  the  primary  concerns  regarding  the  development  of  resistant  commensal  bacteria  such   as   P.   acnes   and   S.   epidermidis,   is   that   they   can   become   opportunistic   pathogens   in   clinical   settings  where  there  are  vulnerable  populations  such  as  the  elderly  or  immune-­‐compromised   patients   who   are   undergoing   surgery.   Moreover,   what   is   of   even   greater   concern   is   the   increased  incidence  of  resistant  pathogenic  bacteria  as  a  result  of  antibiotic  treatment  for  acne   vulgaris.  Topical  and  internal  antibiotic  use  has  been  associated  with  an  increase  from  20%-­‐85%   in  the  number  of  tetracycline-­‐resistant  Streptococcus  pyogenes  found  in  the  oropharynx  (Levy   et  al.,  2003)  and  increases  in  erythromycin-­‐resistant  S.  aureus  from  15%-­‐40%  have  been  found   in  the  anterior  nares  following  treatment  with  erythromycin  (Mills  et  al.,  2002).    

                                                                                                            9

 A  type  of  antibiotic  that  contains  a  lactone  ring  e.g.  erythromycine  

16    

 

 

   

 

 

Gentamicin   and   oxacillin   resistant   S.   epidermidis   isolates   have   been   found   among   biofilm   forming   clinical   strains   (Kozitskaya   et   al.,   2004).   It   has   been   shown   in   vivo   that   methicillin-­‐ resistant   genes   can   be   transferred   via   horizontal   gene   transfer   between   S.   aureus   species   (Wielders  et  al.,  2001).  Genome  analysis  indicates  that  horizontal  gene  transfer  of  methicillin-­‐ resistant   genes   between   S.   epidermidis   and   S.   aureus   is   possible   (Gill   et   al.,   2005;   Hassan   et   al.,   2004).  Further,  Staphylococci  are  noted  for  their  adaptability  and  have  been  shown  to  have  a   high   capacity   for   recombination   indicating   that   S.   epidermidis   have   the   potential   to   evolve   novel   virulent   and   resistant   traits   (Zieburh   et   al.,   2006).   With   the   increasing   number   of   methicillin-­‐resistant   Staphylococcus   aureus   (MRSA)   related   infections   and   deaths   in   a   clinical   setting  the  possibility  of  added  collateral  damage  from  methicillin-­‐resistant  S.  epidermidis  is  a   major   concern.   Moreover,   commonly   used   antibiotics   used   to   treat   acne,   clindamycin   and   doxycycline,   are   also   used   in   the   treatment   of   MRSA.   Added   to   this   the   fact   that   resistant   bacteria  can  easily  spread  through  skin-­‐to-­‐skin  contact  between  individuals  who  are  receiving   antibiotic  acne  treatment  and  vulnerable  individuals  who  are  not  directly  receiving  treatment   (Walsh  et  al.,  2016).     Complementary  and  alternative  medicine     Complementary   and   alternative   medicine   therapies   are   widely   and   popularly   used;   however,   robust   scientific   evidence   is   lacking   to   support   their   usage   in   acne   vulgaris   (Williams   et   al.,   2012).  Over  100  plants  have  been  implicated  as  having  possible  treatment  effects  in  acne  due   to  possessing  antibacterial,  anti-­‐inflammatory,  antioxidant  and  anti-­‐androgen  effects  (Azimi  et   al.,  2012).     A   single   blind,   randomised   control   trial   compared   tea   tree   oil   with   benzoyl   peroxide   in   124   patients  and  found  that  both  significantly  improved  the  number  of  inflamed  and  non-­‐inflamed   acne  lesions.  Tea  tree  oil  was  slower  acting  but  presented  with  fewer  side  effects  (Basset  et  al.,   1990).  A  randomised,  double-­‐blind  controlled  trial  found  a  5%  tea  tree  oil  topical  preparation   to   be   more   effective   than   control   in   60   patients   with   regards   to   acne   severity   and   total   numbers  of  acne  lesions  (Enshaieh  et  al.,  2007).  

17    

 

 

   

 

 

Internally,   Berberis   vulgaris   aqueous   extract   was   shown   to   significantly   reduce   numbers   of   inflamed   and   on   non-­‐inflamed   lesions   and   acne   severity   over   placebo   in   49   adolescents   (Fouladi,  2012).   In   a   novel   approach   to   acne   treatment   taking   into   account   the   complex   interrelationships   of   the   microbiota,   Bockmuhl   et   al.   (2006)   have   looked   into   the   role   of   herbs   as   prebiotics.   The   concept   of   prebiotics   is   well   known   in   the   gut   where   they   are   described   as   non-­‐digestible   food   components   that   selectively   support   the   growth   of   certain   bacteria   that   can   play   a   role   in   supporting   human   health   (Gibson   and   Roberfroid,   1995).   Bockmuhl   and   his   team   screened   100   plant   extracts,   5   of   which   (Pinus   sylvestris,   Ribes   nigrum,   Lamium   album,   Thea   sinensis,   and   Panax  ginseng)  showed  the  ability  to  inhibit  P.  acnes  and  promote  the  growth  of  S.  epidermidis.     A  combination  of  P.  sylvestris  and  R.  nigrum  extracts  showed  the  best  results.  Expanding  on  this   work   they   tested   an   extract   combination   of   P.   sylvestris,   R.   nigrum,   and   P.   ginseng   on   the   forehead  of  11  female  volunteers  for  21  days.  They  used  fluorescence  in  situ  hybridization  to   observe   bacterial   populations   on   the   skin   to   avoid   the   biases   of   bacterial   culture   assays.   Although   the   small   sample   size   was   not   statistically   significant   the   results   showed   a   trend   towards   decreasing   the   P.   acnes   population   while   the   total   bacterial   population   remained   unchanged.   Unpublished   work   by   this   team   showed   that   the   herbal   formulation   was   better   tolerated  on  the  skin  compared  with  conventional  topical  antibiotics.  The  authors  hypothesized   that  prebiotic  treatment  has  the  theoretical  potential  to  rebalance  the  skin  microflora  for  long-­‐ term  improvement.  However,  further  research  is  required  to  confirm  this  hypothesis.     Several   preliminary   studies   have   found   positive   results   looking   at   the   role   of   supplements   in   acne.   An   observational   study   found   a   reduction   in   acne   lesions   with   zinc   combined   with   antioxidants   (Sardana   and   Garg,   2010).   A   prospective,   randomized,   open-­‐label   trial   found   a   reduction  in  acne  lesions  with  probiotic  treatment  (Jung  et  al.,  2013).    

Propionibacterium  acnes   P.   acnes   is   a   gram-­‐positive   bacterium.   It   is   non-­‐motile   having   a   typical   coryneforme10  shape   with   irregular,   short   branching.   They   are   not   strict   anaerobes   as   described   in   much   of   the   literature   because   they   can   tolerate   the   presence   of   oxygen.   They   have   been   previously                                                                                                               10

 Having  a  rod-­‐like  or  club-­‐like  shape.  

18    

 

 

   

 

 

classified  as  Corynebacterium  spp.,  Bacillus  spp.,  and  anaerobic  diphtheroids.  Their  structurally   resilient   Gram-­‐positive   cell   wall   makes   them   resistant   to   desiccation,   osmotic   shock   and   mechanical  stress  (Bojar  and  Holland,  2004).     P.   acnes   is   a   commensal   skin   bacteria   that   is   found   in   the   sebaceous   follicles   of   those   with   and   without  acne  (Walsh  et  al.,  2016;  Dessinioti  et  al.,  2010).  P.  acnes  is  involved  in  the  early  and   late   pathophysiological   processes   of   acne   (Walsh   et   al.,   2016)   including   the   induction   and   maintenance   of   inflammation.   However,   the   exact   mechanism   of   its   involvement   in   acne   pathogenesis  is  controversial  (Dessinioti  et  al.,  2010).  Moreover  there  are  distinct  strains  of  P.   acnes  with  some  strains  having  been  associated  with  more  severe  acne  (Beylot  et  al.,  2013).     Key  mechanisms  through  which  P.  acnes  is  involved  in  the  pathogenesis  of  acne  are  production   of   lipases,   proteases,   and   hyaluronidases;   production   of   chemotactic   agents;   activation   of   classical   and   alternate   complement   pathways;   induction   of   inflammatory   cytokines   TNF11-­‐α,   IL12-­‐1α,  IL-­‐1β,  IL-­‐8;  increases  in  the  expression  of  TLR213,  TLR4  and  MMP14-­‐9;  and  modulation  of   keratinocyte  differentiation  (Dessinioti  et  al.,  2010;  Ingram  et  al.,  1980;  Puhvel  and  Sakamoto,   1980;   Webster   and   Leyden,   1980;   Scott   et   al.,   1979;   Webster   et   al.,   1979;   Hoeffler,   1977;   Puhvel  and  Reisner,  1972).  Further,  the  formation  of  a  biofilm  may  enhance  the  formation  of   microcomedones  by  binding  corneocytes  together  to  form  a  plug  of  the  follicle  (Burkhart  and   Burkhart,  2007).   P.   acnes   has   been   shown   to   be   involved   in   increased   proliferation   of   keratinocytes   with   effects   on   keratinocyte   differentiation.   It   activates   the   innate   immunity   through   TLR2   and   protease-­‐ activated  receptors,  which  induce  the  production  of  inflammatory  cytokines  and  MMPs  (Beylot   et  al.,  2013;  Del  Rosso  and  Kircik,  2013;  Jugeau  et  al.,  2005;  Shibata  et  al.  2009;  Kim  et  al.,  2002).   The   drug   retinoic   acid   downregulates   TLR2   thereby   decreasing   the   release   of   inflammatory   cytokines  induced  by  P.  acnes  ligands  (Liu  et  al.,  2005  found  in  Dessinioti  et  al.,  2010).                                                                                                               11

 Tumour  necrosis  factor.    Interleukin.   13  Toll-­‐like  receptors  are  mammalian  analogues  to  toll  proteins  first  identified  in  Drosophila.  They  are   transmembrane  proteins  and  form  part  of  the  innate  immune  response  against  pathogens  such  as  bacteria,  fungi   and  parasites.  Pathogenic  ligands  that  bind  to  the  extracellular  domains  of  TLRs  result  in  nuclear  translocation  of   the  transcription  factor  nuclear  factor  kappa-­‐B  (NFκB)  which  regulates  gene  expression  of  many  genes  involved  in   the  immune  response  including  inflammatory  cytokines  (Dessinioti  et  al.,  2010).   14  Matrix  metalloproteinase:  involved  in  the  breakdown  of  the  extracellular  matrix  and  include  collagenases,   gelatinases,  stomelysins,  and  matrilysins  (Dessinioti  et  al.,  2010).   12

19    

 

 

   

 

 

The   production   of   inflammatory   cytokines   by   P.   acnes   followed   by   the   initiation   of   the   inflammatory   cascade   has   been   demonstrated   in   human   sebocytes   (Huang   et   al.,   2015)   and   keratinocytes   (Schaller   et   al.,   2005;   Graham   et   al.,   2004;   Heymann,   2006).   In   monocytes   P.   acnes  has  been  shown  to  stimulate  cytokines  such  as  IL-­‐1β,  IL-­‐8,  IL-­‐12  and  TNF-­‐α  (Sugisaki  et  al.,   2009;   Kim   et   al.,   2002;   Vowels   et   al.,   1995).   Although,   proinflammatory   cytokines   such   as   IL-­‐1α   and   β   and   TNF-­‐α   have   been   found   in   healthy   sebaceous   glands   as   well   (Antilla   et   al.,   1992;   Boehm  et  al.,  1995).     The  relationship  between  acne  pathogenesis  and  different  inflammatory  cytokines  induced  by   P.  acnes  has  also  been  explored.  IL-­‐1α  has  been  shown  to  cause  hypercornification  (Guy  et  al.,   1996;   Guy   et   al.   1998).   Il-­‐8   is   chemotactic   towards   neutrophils,   which   release   lysosomal   enzymes  disrupting  the  epithelium  and  leading  to  increased  inflammation  (Hoeffer  et  al.,  1976;   Webster   et   al.,   1980b).   IL-­‐12   leads   to   a   shift   towards   a   TH15-­‐1   mediated   immune   response   suggesting   a   possible   autoimmune   mechanism   (Kim   et   al.,   2002).   TNF-­‐α   is   involved   in   the   maturation  and  migration  of  Langerhans  cells  (a  type  of  dendritic  cell)  from  the  epidermis  into   the   lymphatic   circulation   for   presentation   of   antigens   to   T   cells   in   local   lymph   nodes.   This   plays   a  vital  part  in  the  induction  of  the  cutaneous  immune  response  (Kimber  et  al.,  2002;  Caux  et  al.,   1992;  Kaplan  et  al.,  1992).   P.   acnes   modulates   integrin   and   filaggrin   protein   expression.   Integrins   are   involved   in   the   proliferation   and   differentiation   of   keratinocytes   and   filaggrin   plays   a   key   role   in   the   keratinisation   process.   Dysregulation   of   these   processes:   hyperproliferation;   abnormal   differentiation;   and   decreased   desquamation   possibly   the   result   of   premature   termination   of   the  keratinsation  process,  lead  the  formation  of  comedones  (Jarrouse  et  al.,  2007).   Certain   strains   of   P.   acnes   have   been   shown   in   keratinocytes   to   induce   human   β-­‐defensin-­‐2   mRNA,   a   type   of   antimicrobial   peptide   (Nagy   et   al.,   2005).   Modulation   of   antimicrobial   peptide   may  play  a  role  in  acne  pathogenesis,  however,  is  also  suggestive  of  the  complex  dynamics  of   the  skin  microbiome.    

                                                                                                            15

 T  helper  cell.  

20    

 

 

   

 

 

Staphylococcus  epidermidis   Coagulase-­‐negative   S.   epidermidis   is   a   commensal   skin   bacteria   that   has   been   shown   to   co-­‐ colonise   with   P.   acnes   in   acne   lesions   (Fitz-­‐Gibbon   et   al.,   2013;   Nishijima   et   al.,   2000).   S.   epidermidis  is  involved  in  the  protection  of  skin  from  infections  and  other  environmental  insults.   Theoretically,  S.  epidermidis  could  play  at  role  in  skin  barrier  function  and  the  development  of   innate  immune  responses  (Krutmann,  2009).  S.  epidermidis  has  recently  gained  notoriety  in  a   clinical   setting   where   it   can   become   an   opportunistic   pathogen   in   clinical   environments   (Christensen  and  Bruggeman,  2014).   Nosocomial  infections  are  usually  associated  with  medical  devices  such  as  an  intravascular  or   intrathecal16  catheter,  urinary  catheters  and  pace  maker  electrodes.  Patients  most  likely  to  be   affected   are   long-­‐term   care   patients   such   as   elderly   patients,   critically   ill   patients   and   immunocompromised  patients.  The  ability  to  form  biofilms  has  been  identified  as  a  key  feature   of  pathogenic  S.  epidermidis  strains.  Biofilms  are  communities  of  microorganisms  that  secrete   polysaccharides  and  proteins  to  form  an  extracellular  matrix  that  can  stick  to  surfaces  such  as   metal   or   plastic.   Biofilms   serve   to   protect   microorganisms   from   environmental   stressors   including  antibiotics  (Figure  4)  (Ziebuhr  et  al.,  2006).    

  Figure  4.  Factors  involved  in  the  initial  adherence  and  biofilm  formation  in  Staphylococci.  Taken   from  Ziebuhr  et  al.  (2016).                                                                                                                 16

 Introduction  into  the  spinal  canal  or  subarachnoid  space.  

21    

 

 

   

 

 

S.   epidermidis   produces   compounds   that   inhibit   the   growth   of   non-­‐native   potentially   pathogenic   micro-­‐organisms   (Christensen   and   Bruggeman,   2014).   Phenol   soluble   modulins   (PSMs)  are  a  family  of  peptides  that  are  produced  by  almost  all  Staphylococci  species.  Δ-­‐toxin  a   PSM   in   S.   epidermidis   was   shown   (in   vitro   and   in   vivo   in   mice)   to   interact   with   host   antimicrobial  peptides  to  enhance  antimicrobial  activity  against  Group  A  Streptococcus  (Cogen   et  al.,  2010).   Bacteriocins   are   another   group   of   peptides   or   proteins   that   have   antibacterial   activity.   Lantibiotics   are   a   class   of   bacteriocin   peptides   containing   the   amino   acids   lanthionine   or   methyllanthionine  and  are  frequently  produced  by  S.  epidermidis    (Christensen  and  Bruggeman,   2014).   Pep5,   epicidin   280,   epilancin   K7   and   epidermin   are   all   well   characterised   lantibiotics.   Pep5  and  epicidin  are  both  produced  by  clinical  strains  of  S.  epidermidis.  Pep5  and  epidermin   are   both   of   interest   in   their   potential   to   inhibit   biofilm-­‐producing   strains   of   S.   epidermidis   in   clinical  environments  (Bastos  et  al.,  2009).     S.   epidermidis   was   also   shown   to   modulate   keratinocyte   expression   of   antimicrobial   peptides   human   β-­‐defensin-­‐2   and   human   β-­‐defensin-­‐3   as   well   as   enhance   inhibition   of   group   A   Streptococcus  and  S.  aureus  by  cell  lysate  (Li  et  al.,  2013;  Lai  et  al.,  2010).   A  recent  study  by  Xia  et  al.  (2016)  has  looked  at  the  ability  of  Staphylococcal  lipoteichoic  acid   (LTA)   to   reduce   the   P.   acnes   induced   production   of   inflammatory   cytokines   interleukin   (IL)-­‐6   and   tumour   necrosis   factor   (TNF)-­‐α   in   mouse   ears.   Their   research   demonstrated   that   this   response  was  specific  to  keratinocytes  rather  than  monocytes.  The  authors  postulated  this  to   be  due  to  the  need  of  keratinocytes  to  recognise  commensal  skin  bacteria  while  monocytes  are   normally  in  a  sterile  environment.   LTA   was   shown   to   induce   the   production   of   micro   RNAs   (miRNA),   which   are   small   noncoding   single-­‐stranded   RNAs   that   regulate   gene   expression   on   a   post-­‐transcriptional   level   by   preventing   gene   translation   (Ambros,   2004).   Only   the   inhibition   of   miR-­‐143   abrogated   the   inhibitory   effect   of   LTA   on   P.   acnes   induced   production   of   IL-­‐6   and   TNF-­‐α   in   keratinocytes.   The   mechanism   of   action   was   deduced   through   further   experimentation   showing   firstly   that   LTA   binding   to   the   toll-­‐like   receptor   2   (TLR2)   induced   the   production   of   miR-­‐143   in   human   and   murine   keratinocytes   as   well   as   mouse   ears.   Further,   TLR2-­‐deficient   keratinocytes   were   not   22    

 

 

   

 

 

induced   by   LTA   to   produce   miR-­‐143.   TLRs   are   well   known   for   their   role   in   producing   proinflammatory  signals  in  response  to  microbial  stimuli  (Lai  et  al.,  2009).   P.  acnes  was  shown  to  be  unable  to  induce  an  inflammatory  response  in  TLR2-­‐deficient  mice.   This  confirms  previous  work  that  has  indicated  the  role  of  TLR2  in  inflammation  induced  by  P.   acnes  (Kim  et  al.,  2002).  It  was  then  demonstrated  that  miR-­‐143  targets  the  3’-­‐UTR17  region  of   the   TLR2   itself,   decreasing   the   expression   of   TLR2.   Overexpression   of   TLR2   by   human   keratinocytes  abrogated  the  anti-­‐inflammatory  effect  of  LTA  on  P.  acnes  induced  production  of   IL-­‐6  and  TNF-­‐α.  Finally,  injection  of  mouse  ears  with  miR-­‐143  antagomir18  before  being  injected   with   P.   acnes   and   LTA   restored   the   inflammatory   response   that   was   inhibited   by   injection   of   P.   acnes  and  LTA  only.     Figure   5   shows   clearly   the   relationship   of   S.   epidermidis   mediated   posttranscriptional   regulation  of  TLR2  expression  preventing  the  binding  of  ligands  from  P.  acnes  that  lead  to  the   production   of   inflammatory   cytokines.   The   main   limitation   of   this   study,   as   admitted   by   the   authors,   was   that   the   LTA   used   was   sourced   from   S.   aureus   and   not   S.   epidermidis,   which   is   currently  not  commercially  available.  However,  LTA  sourced  from  S.  aureus  and  S.  epidermidis   have   been   shown   to   have   similar   structure   and   function   (Weidenmaier   et   al.,   2004).    

  Figure   5.   Staphylococcus   epidermidis   inhibits   inflammation   induced   by   Proprionibacterium   acnes.  Staphylococcal  lipoteichoic  acid  binds  to  TLR2,  which  induces  the  production  of  miR-­‐143   by  keratinocytes.  MiR-­‐143  binds  to  the  3’UTR  region  of  TLR2  mRNA  preventing  its  translation   into   protein.   The   decreased   production   of   TLR2   by   keratinocytes   results   in   a   decreased                                                                                                               17

 Untranslated  region.    Oligonucleotides  that  are  used  to  prevent  microRNA  binding  to  mRNA.  

18

23    

 

 

   

 

 

production   of   inflammatory   mediators   TNF-­‐α   and   IL-­‐6   induced   by   the   binding   of   P.   acnes   ligands  to  TLR2.  Image  taken  from  Skabytska  and  Biedermann  (2016).   Lai  et  al.  (2009)  also  showed  previously  that  Staphylococcal  LTA  suppressed  skin  inflammation   during   wound   repair   through   TLR2-­‐dependent   inhibition   of   TLR3   mediated   production   of   IL6   and  TNF-­‐α.  Their  findings  are  suggestive  of  the  delicate  balance  required  for  maintaining  skin   homeostasis   subsequent   to  injury.  The  presence  of   anti-­‐inflammatory   bacterial  products   is   of   value  in  preventing  undesirable  levels  of  inflammation  that  could  impede  wound  healing.     S.  epidermidis  has  also  been  shown  to  inhibit  the  growth  of  P.  acnes  through  the  fermentation   of  glycerol   in  vitro.  Further,  inhibition  of  P.  acnes  did  not  occur  in  the  absence  of  fermentation.   Glycerol  is  a  naturally  produced  metabolite  on  the  human  skin  that  can  be  metabolised  to  short   chain  fatty  acids.  This  suggests  a  possible  role  for  topical  applications  that  provide  substrates   for  fermentation  in  the  treatment  of  acne  (Wang  et  al.,  2014).   Different   strains   of   S.   epidermidis   have   been   shown   to   have   different   levels   of   antimicrobial   activity   towards   P.   acnes.   However,   no   difference   in   activity   was   detected   between   S.   epidermidis   collected   from   healthy   skin   versus   acne-­‐affected   skin.   Therefore   the   role   of   S.   epidermidis   in   inhibiting   P.   acnes   in   an   in   vivo   environment   remains   to   be   elucidated.   In   particular,  it  was  shown  that  differences  in  environment,  agar  medium  versus  broth,  resulted  in   different  antimicrobial  activity  (Christensen  et  al.,  2016).   Overall,  more  work  needs  to  be  done  to  confirm  the  role  of  S.  epidermidis  in  skin  health  in   humans.  However,  these  studies  are  suggestive  of  the  complexity  of  interactions  between   resident  microbes  and  hosts,  and  how  these  interactions  can  support  and  maintain  health.      

Current  study  –  topical  prebiotics   There   are   two   key   reasons   as   to   why   alternatives   to   the   current   acne   protocol   should   be   considered:   the   growth   of   antibiotic   resistance,   and   adverse   effects   caused   by   current   drug   treatments.   The   popularity   of   natural   products   for   acne   treatment   makes   research   into   this   area  important  and  vital  for  public  interest.  As  our  understanding  of  the  complex  interactions   that   occur   between   our   body   and   the   microbiome   increase,   holistic   and   novel   ways   of   understanding  and  treating  pathology  become  validated.  

24    

 

 

   

 

 

The   current   study   draws   strongly   on   the   idea   of   a   topical   prebiotic   proposed   in   the   work   of   Bockmuhl  et  al.  (2006)  that  identified  several  herbs  that  act  selectively  to  inhibit  P.  acnes  while   leaving   S.   epidermidis   populations   intact.   A   prebiotic   strategy   would   involve   an   antimicrobial   strategy  to  reduce  P.  acnes  overgrowth  while  leaving  commensal  bacterial  such  a  S.  epidermidis   unharmed   (Krutmann,   2009).   Therefore,   the   current   study   proposes   to   identify   herbs   that   selectively  reduce  P.  acnes  without  inhibiting  the  growth  S.  epidermidis.       Six  herbs  were  selected  for  initial  screening.  Herbs  were  chosen  based  on  meeting  one  or  all  of   three  criteria:  traditional  use  in  acne  vulgaris,  evidence  for  antibacterial  properties  and  clinical   evidence   for   use   in   acne.   Other   additional   relevant   factors   in   acne   treatment   such   as   antioxidant   properties   were   considered   where   data   on   the   original   selection   criteria   was   lacking.     Phytolacca  decandra  L.      

  Figure  6.  Phytolacca  decandra.  Photo  credit  Peter  Jarrett.    

25    

 

 

   

 

 

Phytolacca   decandra   L.   synonymous   with   P.   americana,   commonly   known   as   pokeweed,   belongs   to   the   Phytolaccaceae   family   native   to   the   Americas,   but   now   distributed   in   Africa   and   Asia  (Figure  6)  (Patra  et  al.,  2014).   The   eclectics19  traditionally   used   Phytolacca   topically   and   internally   for   pustular   skin   conditions   (Felter  and  Lloyd,  1898).  One  can  infer  that  this  could  include  pustular,  inflammatory  acne.     P.   americana   crude   methanolic   extract   strongly   inhibited   Porphyromonas   gingivalis   and   Streptococcus  mutans,  bacteria  implicated  in  periodontal  inflammation  and  disease,  however,   the  effect  on  Escherichia  coli  was  negligible  (Patra  et  al.,  2014).     A   methanol   extract   of   a   related   species   P.   dodecandra   from   the   Ethopian   tradition   of   plant-­‐ based  medicine  has  been  shown  to  inhibit  the  growth  of  Pseudomonas  aeruginosa  but  not  S.   aureus   and   E.   coli   (Tadeg   et   al.,   2005).   Hydromethanolic   extract   of   the   same   species   had   a   minimum   inhibitory   concentration   (MIC)   of   250   mg/mL   for   Streptococcus   pyogens   and   P.   aeruginosa  but  no  effect  on  S.  aureus,  E.  coli  and  Proteus  vulgaris  (Taye  et  al.,  2011).    

                                                                                                            19

th

 Eclectic  medicine  was  a  branch  of  American  medicine  that  emerged  in  the  19  century  that  drew  on  a  range  of   herbal  medicines.  

26    

 

 

   

 

 

Calendula  officinalis  L.    

  Figure  7.  Calendula  officinalis.    Photo  credit  Peter  Jarrett.     Calendula   officinalis   L.   is   commonly   known   as   pot   marigold   and   belongs   to   the   Asteraceae   family  (Figure  7).  It  is  native  to  Asia  and  southern  Europe  (Basch  et  al.,  2006).   Calendula  has  been  shown  to  be  antibacterial  against  S.  aureus,  which  is  a  causative  agent  in   skin  infections  and  aggravates  conditions  such  as  psoriasis  and  atopic  dermatitis  (Roopashree   et  al.,  2008).   A  calendula  extract  tested  on  oral  biofilms  did  not  show  any  antibacterial  activity  against  Gram-­‐ positive  Streptococci  bacteria,  Actinomyces  viscosus  or  Lactobacillus  casei  (Modesto,  Lima  and   de  Uzeda,  2000).   Dumenil  et  al.  (1980)  found  amongst  dry  flower  extracts  of  water,  45%  and  80%  ethanol,  only   the   80%   ethanol   extract   showed   antibacterial   activity   against   E.   coli,   P.   aeruginosa,   S.   aureus   and   Streptococcus   fecalis   at   concentrations   of   50   mg/mL   and   25   mg/mL   for   S.   aureus   and   S.   27    

 

 

   

 

 

fecalis.   A   fresh   plant   extract   using   water   and   acetone   showed   antibacterial   activity   against   S.   aureus  at  concentrations  of  10  mg/mL  and  against  S.  fecalis  at  50  mg/mL.   Methanolic  and  ethanolic  extracts  were  shown  to  have  some  antibacterial  effects  against   Gram-­‐positive  and  Gram-­‐negative  bacteria  including  S.  aureus,  but  not  as  much  as  the   antibiotic  ciprofloxacin  at  the  same  concentration  (Efstratiou  et  al.,  2012).   Ethanolic  and  aqueous  extracts  of  Calendula  flowers  were  shown  to  inhibit  coagulase-­‐positive   Staphylococci,   coagulase-­‐negative   Staphylococci,   and   P.   aeruginosa.   No   inhibitory   effect   was   demonstrated  in  Enterococci  spp.  (Mathur  and  Goyal,  2011).   Aqueous  and  ethanolic  flower  extracts  were  shown  to  inhibit  the  growth  of  E.  coli,  Salmonella   typhi,  Klebsiella  pneumoniae,  Enterobacter  aerigenes  but  not  Agrobacterium  tumefaciens  (Bissa   and  Bohra,  2011).   Antibacterial   activity   against   Gram-­‐positive   bacteria   was   demonstrated   from   the   hexanic   fraction   of   an   ethanolic   extract   of   Calendula   flowers   but   not   the   dichloromethane   fraction.   Different  strains  of  S.  aureus  showed  MICs  ranging  from  0.19  mg/mL  to  4.37  mg/mL  (Parente  et   al.,  2011).     Oleanolic  acid  (OA)  and  its  glycoside  and  glucuronide  derivatives  from  Calendula  were  tested   for   antibacterial   activity.   OA   was   shown   to   have   the   most   antibacterial   activity   and   demonstrated  antibacterial  activity  against  S.  epidermidis.  Data  for  any  antibacterial  activity  of   the   OA   glycosides   or   glucuronides   was   not   reported.   Free   OA   is   found   in   the   roots   (not   the   flowers)  of  Calendula  derived  from  the  deglycosylation  of  accumulated  OA  glycosides  (Szakiel   et  al.,  2008).        

28    

 

 

   

 

 

Mahonia  aquifolium  (Pursh)  Nutt.    

  Figure  8.  Mahonia  aquifolium.  Photo  credit  Peter  Jarrett.     Mahonia  aquifolium  (Pursh)  Nutt.  synonymous  with  Berberis  aquifolium  is  commonly  known  as   Oregon  grape  and  belongs  to  the  Berberidaceae  family  (Figure  8).  Mahonia  is  native  to  western   North   America   and   was   traditionally   used   in   the   treatment   of   dermatological   disease   (Wiesenauer   and   Ludtke,   1996).   Mahonia   contains   the   alkaloid   berberine   with   known   antimicrobial  activity  (Cernakova  and  Kostalova,  2002).     One   study   tested   20   strains   of   coagulase-­‐negative   staphylococci   including   14   strains   of   S.   epidermidis   and   20   strains   of   P.   acnes   against   a   crude   extract   from   the   stem   and   bark   of   Mahonia  as  well  as  against  the  main  protoberberine  alkaloids,  berberine  and  jatrorrhizine.    The   MICs  indicating  the  lowest  concentration  for  inhibiting  microbial  growth  were  determined.  P.   acnes  was  inhibited  the  most  by  the  crude  extract  and  alkaloids  relative  to  the  Staphylococci   species.   One   strain   of   S.   epidermidis   was   not   inhibited   by   any   agent   at   the   highest   tested   concentration  of  500  µg/mL.  This  was  in  contrast  to  the  antibiotic  ciprofloxacin  which  inhibited   all   strains   of   staphylococci.   The   study   concluded   that   the   crude   extract   and   protoberberine   alkaloids   of   Mahonia   were   inferior   to   antibiotic   drugs   currently   used   in   clinical   practice   (Slobodnikova  et  al.,  2004).    

29    

 

 

   

 

 

The   hydroxylated   alkaloids   jatrorrhizine   and   magnoflorine   extracted   from   the   stem   bark   of   Mahonia   were   shown   to   have   antioxidant   effects   in   ethanolic   and   liposomal   bilayer   environments.  The  antioxidant  properties  were  more  potent  in  the  liposomal  bilayer  owing  to   the   lipophilic   nature   of   the   compounds.   Berberine   was   only   shown   to   have   modest   antioxidant   properties,   which   was   related   to   its   chemical   structure   lacking   a   hydroxyl   group   available   for   hydrogen  donation  in  redox20  reactions  (Rackova  et  al.,  2004).     Berberis  vulgaris  L.    

  Figure  9.  Aerial  parts  of  Berberis  vulgaris,  taken  from  Zarei  et  al.  (2015).     Berberis   vulgaris   L.,   commonly   known   as   barberry,   is   native   to   Europe,   North   Africa   and   Asia   (Figure   7)   (Zarei   et   al.,   2015).   The   one   of   the   key   constituents   of   Berberis   is   the   isoquinoline   alkaloid   berberine.   Berberine   is   well   known   for   its   antibacterial   properties   against   a   range   of   bacteria  including  methicillin-­‐resistant  S.  aureus  (Kang  et  al.,  2015;  Peng,  et  al.,  2015;  Azimi  et   al.,   2012,   Yu   et   al.,   2005).   Berberine   has   been   shown   to   be   bacteriostatic   against   S.   epidermidis   and  inhibit  biofilm  formation  at  doses  smaller  than  the  MIC  (Wang  et  al.,  2009).  Further,  in  vivo   berberine   has   been   shown   to   restore   intestinal   gut   flora   following   treatment   of   Clostridium   difficile   infection   with   the   antibiotic   vancomycin,   suggesting   bacterial   modulating   capabilities   (Lv  et  al.,  2015).    

                                                                                                            20

 Reduction-­‐oxidation.  

30    

 

 

   

 

 

A   4-­‐week   placebo-­‐controlled   trial   in   49   adolescents   found   significant   improvements   in   total   acne   lesions   and   acne   severity   in   participants   given   600   mg   capsules   per   day   of   an   aqueous   extract  of  Berberis  (Fouladi,  2012).     Lavandula  angustifolia  L.    

  Figure  10.  Lavandula  angustifolia.  Photo  credit  Peter  Jarrett.     Lavandula   angustifolia   L.,   commonly   known   as   lavender,   is   in   the   Lamiaceae   family   and   is   native   to   the   Mediterranean   (Figure   10).   Lavandula   is   traditionally   indicated   in   acne   and   has   plausible  theoretical  indications  for  acne  due  to  anti-­‐inflammatory  and  antimicrobial  properties   (Basch   et   al.   2004).   Most   studies   on   Lavandula   have   been   done   using   the   essential   oil   only,   which  limits  the  conclusions  that  can  be  made  regarding  the  whole  plant  extract.     Several   studies   have   demonstrated   the   antibacterial   properties   of   Lavandula   essential   oil   against   MRSA   (Ester   et   al.,   2014;   Roller   et   al.,   2009).   One   study   demonstrated   antibacterial   activity  of  Lavandula  essential  oil  varieties  from  Poland  against  non-­‐MRSA  S.  aureus.  Different   varieties  of  Lavandula  were  shown  to  have  different  chemical  profiles  relative  the  volatile  oils   present.  The  different  varieties  demonstrated  different  antibacterial  strengths  (Adaszynska  et  

31    

 

 

   

 

 

al.,   2013).   Other   studies   have   also   demonstrated   the   antibacterial   activity   of   Lavandula   against   Staphylococcus  ssp.  including  S.  epidermidis  (Sienkiewicz  et  al.;  Sokovic  et  al.  2010).     An  ethnobotanical  study  from  Turkey  looked  at  the  whole  plant  ethanolic  exract  from  a  related   species;  Lavandula  stoechas.  The  extract  was  shown  to  have  no  antibacterial  activity  against  S.   epidermidis.  A  relevant  traditional  use  for  this  species  is  topically  on  inflamed  wounds  (Uzun  et   al.,  2004).     Echinacea  purpurea  (L)  Moench/  angustifolia  DC.    

  Figure  11.  Echinacea  purpurea.  Photo  credit  Peter  Jarrett.     Echinacea   purpurea   (L)   Moench   and   Echinacea   angustifolia   DC.   are   both   commonly   referred   to   as   Echinacea   (Figure   11).   They   are   in   the   Asteraceae   family   and   are   native   to   central   North   America.   Traditional   indications   and   theoretical   indications   with   limited   evidence   include   treatment   for   acne.   Traditional   usage   with   precedence   and   recommendations   by   modern   practitioners  include  topical  application  to  promote  wound  healing  (Basch  et  al.,  2005).   A  proprietary  65%  ethanol  extract  of  Echinacea  purpurea  aerial  parts  and  root,  Echinaforce®  by   A.  Vogel  Bioforce  AG,  was  found  to  significantly  inhibit  the  growth  of  P.  acnes  bacteria.  Further,   the  same  inhibitory  effect  was  not  shown  for  S.  aureus,  although  the  data  was  not  shown.  P.   32    

 

 

   

 

 

acnes   was   also   shown   to   stimulate   the   production   of   the   inflammatory   cytokines   1L-­‐6   and   1L-­‐8   on  trachea-­‐bronchial  and  lung  derived  human  epithelial  cell  lines.  Incubation  of  the  epithelial   cells  and  P.  acnes  with  a  1:100  dilution  of  Echinacea  extract  resulted  in  an  inhibition  of  cytokine   production.  This  suggests  the  potential  for  Echinacea  in  treating  two  key  aspects  in  the  known   pathogenesis  of  acne,  inflammation  and  P.  acnes  proliferation  (Sharma  et  al.  2011).     Methods    

Preparation  of  ethanolic  extracts   Six   proprietary   alcoholic   herbal   extracts   were   selected   for   the   initial   bacterial   sensitivity   test.   These   were   Phytolacca   decandra,   Calendula   officinalis,   Berberis   aquifolium,   Berberis   vulgaris,   Lavandula   angustifolia   and   a   blend   of   Echinacea   purpurea   (60%)   and   Echinaea   angustifolia   (40%).   Table   1   shows   the   tincture   strengths   (drug   extract   ratio),   percentage   alcohol,   manufacturer,  batch  number  and  expiration  date  of  the  selected  herbs.  The  concentrations  of   the  equivalent  amount  of  dried  or  fresh  herb  (g)  per  mL  were  1.0  g/mL  for  Phytolacca,  0.625   g/mL   for   Calendula,   and   2.5   g/mL   for   the   other   four   plants.   However,   the   amount   of   plant   extract   obtained   from   a   fresh   plant   does   not   account   for   the   water   weight,   which   is   80%   on   average  (Bone,  2003).  Therefore  it  should  be  noted  that  the  amount  of  plant  material  used  in   fresh   plant   extraction   of   Lavender   would   be   significantly   less   than   that   used   in   a   dry   plant   extraction.     Mediherb   has   high   standards   of   quality   assurance,   which   includes   following   guidelines  published  by  the  British  Pharmacopoeia  (British  Pharmacopoeia  Commission,  2016),   to   ensure   the   identity   of   the   plant   used,   and   the   quality   of   the   product.   The   guidelines   published  by  the  British  Pharmacopeia  for  Calendula  can  be  found  in  Appendix  IV.  The  quality   control  specifications  completed  by  Mediherb  for  Calendula  tincture  are  presented  in  Appendix   V.   The   certificate   of   analysis   for   Calendula   1:2   tincture   batch   number   157038   (Table   1)   is   presented  in  Appendix  VI.        

33    

 

 

   

 

Plant   Phytolacca   decandra   Calendula   officinalis   Mahonia   aquifolium   Berberis   vulgaris   Lavandula   angustifolia   Echincea   purpurea   (60%)/   Echinacea   angustifolia   (40%)  

 

Drug   extract   ratio   1:5  (dry)  

Ethanol  (%)   Manufacturer  

Batch   number  

45  

6978/1  

Expiration   date   (m/y)   07/18  

1:2  (dry)  

90  

157038  

04/16  

1:2  (dry)  

25  

157202  

06/16  

1:2  (dry)  

45  

1:2  (fresh)  

45  

1:2  (dry)  

60  

Phyto   Pharmaceuticals,   UK   Mediherb,   Australia   Mediherb,   Australia   Rutland   Biodynamics,  UK   Rutland   Biodynamics,  UK     Mediherb,   Australia  

130656-­‐ 07/18   12/3   150716-­‐7/2   06/20   160305  

06/16  

Table  1.  The  drug  extract  ratio  (amount  of  herb  (g)  relative  to  extraction  solvent  (mL),  whether   the  extraction  used  fresh  or  dry  plant  material,  the  percentage  (%)  ethanol  used  as  an   extraction  solvent,  the  product  manufacturer  and  country  of  origin,  batch  number  and   expiration  date  (month/year).     A  total  of  5  mL  of  each  sample  was  placed  in  a  nitrogen  evaporator  TurboVap®  LV  produced  by   Caliper  Life  Sciences  at  60°C  for  2  hours.  Nitrogen  is  an  inert  gas  so  no  oxidative  changes  should   have  occurred  in  the  herbal  extracts.  The  samples  were  then  freeze  dried.  Five  days  later  the   dried  herbal  residues  were  dissolved  in  either  water  or  dimethyl  sulfoxide  (DMSO).     Phytolacca,   Mahonia,   Berberis,   Lavandula,   and   Echinacea   were   dissolved   in   1   mL   deionised   water.  Calendula  was  dissolved  in  2mL  water  and  2  mL  DMSO.  The  new  concentrations  of  the   equivalent  amount  of  dried  or  fresh  herb  (g)  per  mL  were  1  g/mL  for  Phytolacca,  0.625  g/mL  for   Calendula,  and  2.5  g/mL  for  the  other  four  plant  extracts.      

34    

 

 

   

 

 

Bacterial  Sensitivity  Testing   Staphylococcus  epidermidis  NCIMB  12721  and  Proprionibacterium  acnes  NCIC  737  were  tested   for  bacterial  sensitivity.  S.  epidermidis  and  P.  acnes  were  prepared  in  a  broth  with  a  turbidity  of   0.5  McFarlands  equivalent  to  1.5x10^8  CFU  (colony  forming  units)  per  mL.   Three  replicates  were  performed  to  test  the  bacterial  sensitivity  of  P.  acnes  and  S.  epidermidis   to   Phytolacca,   Calendula,   Mahonia,   Berberis,   Lavandula,   and   Echinacea,   a   negative   control   of   50%   water/   50%   DMSO,   and   a   positive   control   of   ampicillin   with   a   disk   potency   of   25   µg.   Large   plates   were   prepared   using   a   Muller-­‐Hinton   standardized   agar   medium   at   a   depth   of   4   mm.   To   perform  the  well-­‐diffusion  assay  seven  wells  were  made  in  each  plate  and  50  µL  of  each  sample   was  placed  in  a  single  well  in  the  agar  medium.  The  ampicillin  disk  was  placed  in  the  centre  of   the  plate  and  sensitivity  was  tested  using  the  Kirby-­‐Bauer  disk  diffusion  method.   P.   acnes   was   incubated   in   anaerobic   conditions   using   a   gas   pack   (Thermo   Scientific   brand   AnaeroGen™  2.5  L)  and  air  tight  container.  Both  P.  acnes  and  S.  epidermidis  were  incubated  at   37°C.   S.   epidermidis   was   incubated   for   24   hours   and   P.   acnes   was   incubated   for   92   hours   because  it  is  a  slower  growing  bacteria.     The  diameters  of  the  inhibition  zones  were  manually  measured  with  a  ruler  against  black  paper   to  improve  colony  visibility.     After   96   hours   the   zones   of   inhibitions   in   the   plates   containing   P.   acnes   overlapped   making   measurement   impossible.   The   experiment   was   repeated   with   small   plates   containing   a   single   well  or  disk.  In  the  second  experiment  only  two  replicates  were  completed.    

Minimum  Inhibitory  Concentration     Herbal  extract  Calendula  90%  ethanolic  extract  (drug  extract  ratio  1:2)  produced  by  Mediherb,   Australia,   batch   number   157038,   expiration   date   04/16   was   selected   for   further   testing.   A   sample  of  5  mL  of  Calendula  was  evaporated  using  the  nitrogen  evaporator  TurboVap®  at  25⁰C.   Following  nitrogen  evaporation  the  sample  was  freeze  dried.  

35    

 

 

   

 

 

After   6   days   the   evaporated   herbal   residue   was   dissolved   in   1mL   of   DMSO.   A   total   of   400   µL   of   herbal  extract  dissolved  in  DMSO  was  added  to  400µL  deionised  water.  The  new  concentration   of  the  equivalent  amount  of  dried  herb  (g)  per  mL  was  1.25  g/mL.     Five   two-­‐fold   serial   dilutions   were   made   from   the   original   concentration   of   1.25g/mL.   The   dilutions  were  made  in  50%  DMSO  and  50%  sterile  deionised  water.  The  dilutions  were  0.625   g/mL,  0.31  g/mL,  0.16  g/mL,  0.078  g/mL  and  0.039  g/mL.     The   original   concentration,   the   5   dilutions   and   a   50%   DMSO/   50%   water   control   were   each   added  to  a  well  in  a  single  large  plate.  Three  replicates  each  were  made  against  P.  acnes  and  S.   epidermidis.  The  plates  were  incubated  at  37⁰C,  S.  epidermidis  for  24  hours  and  P.  acnes  for  4   days.   After   the   incubation   period   the   diameter   of   the   inhibition   zones   were   manually   measured   with   a  ruler.        

Preparation  of  aqueous  extraction   Calendula   flower   heads   were   purchased   from   Neal’s   Yard,   (Covent   Garden,   London,   UK),   batch   number  9350.     A  total  of  5.09  g  of  raw  material  were  soaked  for  15  minutes  at  ambient  temperature  in  150  mL   deionised  water.  The  flower  heads  were  then  heated  to  boiling  (~100°C)  and  were  maintained   at  boiling  temperature  for  10  minutes.  The  water  and  flower  heads  were  agitated  frequently  to   ensure  adequate  mixing.     The  aqueous  extraction  was  filtered  through  No.3  Whatman  filter  papers  (thick,  medium  speed   paper  with  high  retention)  via  vacuum  filtration.     The   aqueous   extract   was   then   placed   in   a   rotary   evaporator   for   5   hours   to   concentrate   the   solution.  The  final  concentration  of  the  equivalent  weight  of  dried  herb  (g)  per  mL  of  water  was   0.625  g/mL.      

36    

 

 

   

 

 

Statistical  analysis     Standard  deviation  of  the  mean  was  used  to  assess  statistical  significance  of  values.  Means  and   standard   deviation   were   calculated   using   the   STANDEV   function   in   Microsoft   Excel   version   14.0.7165.5000.      

Results  and  Discussion    

Preparation  of  extracts     A  major  disadvantage  to  dissolving  the  tinctures  in  water  is  the  loss  of  constituents  that  are  not   soluble  in  water.  In  particular  the  dried  residue  of  Berberis  had  a  significant  amount  of  black   resinous   material   that   did   not   dissolve.   The   water   extract   of   Phytolacca   also   had   a   visible   precipitate.   The   advantage   of   this   method   was   to   not   inhibit   the   growth   of   the   bacteria   due   to   potential  antibacterial  properties  of  the  solvent  (e.g.  ethanol).    

               

37    

 

 

   

 

 

B  

A  

C  

D  

E  

F  

G  

H  

I  

Figure  12.     Bacterial  sensitivity  of  S.  epidermidis  (A)  and  P.  acnes  (B-­‐I)  to  Phytolacca  (1),  Calendula  (2),   Mahonia  (3),  Berberis  (4),  Lavandula  (5),  Echinacea  (6),  DMSO  (7)  and  ampicillin  (Amp.).   38    

 

 

   

 

 

Bacterial  Sensitivity      

InhibiUon  Diameter  (mm)  

60   50   40   30  

P.  acnes  

20  

S.  epidermidis  

10   0  

   Figure   13.   Zones   of   bacterial   inhibition   measured   by   total   diameter   (mm)   minus   the   well   diameter   (6   mm).   Means   plus   standard   deviations   of   the   mean   are   based   on   2   replicates   for   P.   acnes  and  3  replicates  for  S.  epidermidis.       Calendula,   Mahonia,   Berberis,   Lavandula   and   Echinacea   all   inhibited   P.   acnes.   Berberis   showed   the  greatest  inhibition  of  30±5.7  mm.  Mahonia,  Berberis,  Lavandula,  and  Echinacea  all  inhibited   S.  epidermidis  (Figure  12).  Again,  Berberis  showed  the  greatest  inhibition  with  a  value  of  13±1   mm  (Figure  13).  The  inhibition  diameters  presented  exclude  the  well  diameter  (6  mm),  which   would   have   falsely   affected   the   mean   and   standard   deviation   where   one   of   three   replicates   was  measured  as  zero.   Only   Calendula   inhibited   P.   acnes   showing   an   inhibitory   diameter   of   10±0   mm,   but   not   S.   epidermidis  suggesting  selective  inhibition  of  P.  acnes  over  S.  epidermidis  (Figure  13).  However,   it  should  be  noted  that  Calendula  had  the  lowest  concentration  equivalent  to  dried  herb,  0.625   g/mL   compared   with   2.5   g/mL   for   Berberis.   This   suggests   that   higher   concentrations   of   Calendula  could  show  larger  inhibitory  diameters.   The  negative  control  DMSO  showed  no  antibacterial  effect  on  either  P.  acnes  or  S.  epidermidis   (Figure  1)   indicating  that  the  DMSO  used  as  a  solvent  for  the  dried  Calendula  extract  did  not   affect  the  bacterial  inhibition  shown  by  Calendula.   39    

 

 

   

 

 

Ampicillin  showed  significantly  higher  inhibitory  diameters  than  all  the  plant  extracts,  55.5±0.7   mm   and   14.3±1.2   mm   for   P.   acnes   and   S.   epidermidis   respectively   (Figure   1).   The   inhibitory   diameter  for  S.  epidermidis  including  the  well  diameter  was  20±1.2  mm,  less  than  interpretive   standard  of  28  mm  for  Staphylococcus  spp.,  indicating  possible  resistance  (CLSI,  2012,  p74).     However,   it   should   be   noted   that   25   µg   of   the   single   compound   ampicillin   is   not   directly   comparable   to   plant   extracts   at   concentrations   equivalent   to   dried   plant   material.   For   Calendula   50   µg   at   a   concentration   of   0.625   g/mL   is   equivalent   to   31.3   mg   of   dried   herb.   Further,  the  amount  of  crude  dried  extract,  which  contains  a  range  of  phytochemicals  extracted   from   a   dried   herb,   is   variable   and   depends   on   the   extraction   method   (Nizynski   et   al.,   2015).   Efstratiou   et   al.   (2012)   found   that   the   amount   of   dried   extract   obtained   from   ethanolic   extraction   was   17.4   g/100   g   dried   petals   and   Fonesca   et   al.   (2010)   found   that   for   a   50%   hydroethanolic  extraction  of  the  dried  flowers  the  dry  weight  yield  was  14.9±3.2%.  From  this   data,  theoretically  the  amount  of  dried  extract  in  31.3  mg  dried  plant  material  could  range  from   5.45   mg   to   3.66mg   or   5400   µg   to   3700   µg.   Again   this   theoretical   yield   would   contain   hundreds   of  phytochemicals  rather  than  a  single  concentrated  compound.  Therefore,  it  is  only  possible  to   conclude   that   an   unknown   concentration   of   the   crude   extract   derived   from   31.3   mg   of   dried   Calendula   flowers   is   less   antibacterial   when   compared   to   25   µg   of   Ampicillin.   Whether   the   antibacterial  constituents  of  Calendula  are  less  antibacterial  than  ampicillin  remains  unknown.                  

40    

 

 

   

 

 

Minimum  inhibitory  concentration  

A    

B  

Figure   14.   Minimum   inhibitory   concentration   of   Calendula   ethanolic   extract   on   P.   acnes   (A).   Diluted   concentrations   are   1.25   g/mL   (1),   0.625   g/mL   (2),   0.31   g/mL   (3),   0.16   g/mL   (4),   0.078   g/mL   (5),   and   0.039  g/mL  (6).  Well  7  is  the  negative  control  DMSO.  The  same  extracts  showed  no  inhibitory  effects   towards  S.  epidermidis  (B).    

InhibiUon  Diameter  (mm)  

18   16   14   12   10   8   6   4   2   0   1.25  

0.625  

0.31  

0.16  

0.078  

0.039  

Calendula  Extract  DiluUons  (g/mL)  

  Figure   15.   Inhibition   diameters   for   serial   dilutions   of   Calendula   extract   applied   to   P.   acnes.   Concentration   of   extract   is   the   equivalent   dried   weight   of   Calendula   per   mL   of   distilled   water.   For   clarity   the   inhibition   diameter   is   the   total   diameter   (mm)   minus   the   well   diameter   (6   mm).   Means   and   standard  deviations  are  based  on  3  replicates.     41    

 

 

   

 

 

  Concentrations   of   Calendula   showing   two-­‐fold   serial   dilutions   demonstrated   a   linear   antimicrobial  effect  on  P.  acnes  (Figure  15).  The  Calendula  extract  did  not  inhibit  S.  epidermidis   growth.  DMSO  at  a  concentration  of  50%  also  did  not  inhibit  P.  acnes  indicating  that  it  did  not   influence  the  antimicrobial  effect  of  the  Calendula  extract  (Figure  14).  The  MIC  was  0.078  g/mL   equivalent  to  dried  herb  (Figure  15).   Mathur   and   Goyal   (2011)   showed   the   MIC   for   coagulase-­‐negative   Staphylococci   for   an   ethanolic  extract  of  Calendula  flowers  was  15.0  mg/mL.  This  suggests  that  considerably  higher   concentrations  equivalent  to  higher  quantities  of  crude  extract  might  inhibit  S.  epidermidis.  

  Aqueous  extraction  of  Calendula                   A  

B  

   

Figure   16.   Calendula  aqueous  extract,  at  0.034  g/mL  (1)  and  0.625  g/mL  (2)  equivalent  to  dried  herb   weight,   applied   to   agar   medium   seeded   with   either   P.   acnes   (A)   or   S.   epidermidis   (B).   Zones   of   inhibition  can  be  seen  on  the  plate  with  P.  acnes,  but  not  on  the  plate  with  S.  epidermidis.     A  concentration  of  0.625  g/mL  equivalent  to  dried  herb  was  obtained  from  aqueous  extraction.   Three   replicates   applied   to   cultures   of   P.   acnes   and   S.   epidermidis   showed   an   inhibitory   diameter  of  10.3±0.58  mm  for  P.  acnes  and  0  mm  for  S.  epidermidis  (Figure  16).  These  results   show   the   same   degree   of   bacterial   inhibition   for   an   aqueous   extract   as   compared   with   a  

42    

 

 

   

 

 

hydroethanolic  extract  (10±0  mm).  These  results  indicate  that  the  antibacterial  compounds  in   the  Calendula  extract  are  soluble  in  both  water  and  ethanol.     The  original  infusion  0.034  g/mL  equivalent  to  dried  herb  also  showed  some  bacterial  inhibition   with   an   inhibitory   diameter   of   3.3±0.58   (minus   the   6   mm   well).   The   ethanol   extract   at   a   concentration  of  0.039  g/mL  equivalent  to  dried  herb  did  not  show  any  inhibition.  This  could   suggest  that  there  are  some  differences  in  the  constituents  in  the  aqueous  extraction  that  are   responsible   for   the   bacterial   inhibition.   Another   possibility   is   that   the   antibacterial   activity   at   that  concentration  was  enhanced  due  to  the  presence  of  volatile  oils.  A  major  limitation  with   rotary  evaporation  is  the  potential  loss  of  active  constituents  such  as  volatile  oils  through  the   process  of  heating  and  removing  water  vapour,  as  volatile  oils  evaporate  at  lower  temperatures   than  water.  The  essential  oil  of  Calendula  has  been  shown  to  be  antifungal  (Gazim  et  al.,  2008).   However,   antibacterial   assays   on   the   essential   oil   have   not   been   done.   One   of   the   major   essential  oil  constituents  of  Calendula  flowers  α-­‐thujene  (Okoh  et  al.,  2008)  has  been  shown  to   be  antibacterial  as  one  of  the  main  constituents  in  an  essential  oil  mix  in  Juniperis  excelsa  (Sela   et  al.,  2015),  although  no  data  exists  as  to  the  antibacterial  properties  of  α-­‐thujene  alone.   Mathur  and  Goyal  (2011)  found  the  MIC  for  coagulase-­‐negative  Staphylococci  for  an  aqueous   extract   of   Calendula   flowers   to   be   17.5   mg/mL.   Again,   this   suggests   that   considerably   higher   concentrations  equivalent  to  higher  quantities  of  crude  extract  might  inhibit  S.  epidermidis.    

Commensal  bacteria     The  main  topical  antibiotics  used  in  acne  treatment  erythromycin  and  clindamycin  have  been   shown   to   be   antimicrobial   against   both   P.   acnes   and   S.   epidermidis   found   in   acne   lesions.   Further,   both   strains   but   especially   S.   epidermidis   can   become   resistant   following   long-­‐term   antibiotic   therapy   (Setsuko   et   al.,   2000).   The   current   study   has   demonstrated   that   in   vitro   Calendula  ethanolic  and  aqueous  extracts  have  the  potential  to  selectively  inhibit  P.  acnes  over   S.   epidermidis.   Theoretically   this   would   allow   the   skin   to   retain   the   anti-­‐inflammatory   and   antimicrobial  effects  of  S.  epidermidis  colonisation  (Christensen  and  Bruggeman,  2014;  Lai  et  al.,   2009).  

43    

 

 

   

 

 

Further,   theoretical   effects   of   commensal   bacteria   on   programming   of   innate   immunity   are   relevant   and   warrant   further   investigation.   The   lysate   from   the   non-­‐pathogenic   Gram-­‐negative   bacterium  Vitreoscilla  filiformis  was  found  to  alleviate  symptoms  of  atopic  dermatitis  possibly   through  a  reduction  in  S.  aureus  and  a  direct  immunomodulatory  effect  on  the  skin  (Gueniche   et  al.,  2008).  An  in  vivo  study  by  Volz  et  al.  (2014)  looked  at  the  potential  mechanism  for  the   reduction   of   inflammation   by   V.   filiformis   which   induced   a   tolerogenic   dendritic   cell   phenotype   characterised   by   anti-­‐inflammatory   IL-­‐10   production   and   the   induction   of   type   1   regulatory   T   cells.   The   effect   of   V.   filiformis   lysate   on   dendritic   cells   is   evocative   of   the   role   bacteria   play,   developed  through  evolutionary  processes,  in  programming  healthy  immune  responses.    

Bacterial  resistance     Bacterial  resistance  continues  to  be  a  growing  problem  worldwide.  As  bacterial  resistance  of  P.   acnes  and  S.  epidermidis  as  a  result  of  antibiotic  treatment  of  acne  is  on  the  increase  (Walsh  et   al.,  2016)  novel  approaches  to  acne  treatment  must  be  considered.  Alternative  therapies  such   as  herbal  extracts  provide  promising  avenues  of  research.  Although  this  study  did  not  identify  a   specific  antimicrobial  compound  in  Calendula,  it  is  important  to  look  at  the  broader  picture  of   phytochemical  extracts.   Proponents  of  phytotherapy  argue  that  phytochemicals  work  synergistically  to  enhance  efficacy   of   documented   effects.   Recent   research   into   the   berberine-­‐containing   plant   Hydrastis   canadensis   found   that   the   antibacterial   properties   of   berberine   were   enhanced   by   a   whole   plant   extract   of   the   aerial   plants.   Constituents   found   in   the   aerial   parts   induced   efflux   pump   inhibition  in  S.  aureus,  which  was  not  induced  by  berberine  or  other  known  alkaloids  canadine   and  hydrastine  (Ettefagh  et  al.,  2011).  This  research  takes  into  account  the  complexity  of  plant   extracts   and   their   mechanisms   with   the   promise   of   complex   synergistic   strategies   that   may   serve  as  effective  models  to  combat  and  reduce  the  incidence  of  antibiotic  resistance.         44    

 

 

   

 

 

Calendula     Written   historical   accounts   of   Calendula   used   as   a   medicinal   plant   can   be   found   in   the   writings   of   Pliny   and   Virgil   (Macht,   1955).   Historically   used   in   the   12th   century   for   impetigo   (bacterial   skin  infection)  by  Hildegarde  von  Bingen  (Dumenil  et  al.,  1980).  Written  references  to  Calendula   can  also  be  found  in  the  13th  and  14th  centuries  and  interpretation  of  these  writings  suggests   wound-­‐healing   capabilities   (Patrick   et   al.,   1996).   In   Ayurvedic   medicine   Calendula   has   traditionally  been  used  for  the  treatment  of  blepharitis,  eczema,  gastritis,  minor  burns,  warts,   sprains  and  wounds  (Mathur  and  Goyal,  2011).   Modern   actions   of   Calendula   include   vulnerary

21

,   anti-­‐inflammatory,   styptic

22

,   and  

antimicrobial   (Bone,   2003).   The   German   Commission   E   lists   actions   for   Calendula   as   wound   healing   and   anti-­‐inflammatory   (American   Botanical   Council,   2013).   Research   into   Calendula   plant  extracts  have  demonstrated  antimicrobial,  anti-­‐inflammatory,  would-­‐healing,  angiogenic,   antioxidant,   immunostimulant   and   antitumor   effects,   as   well   as   improvement   in   skin   parameters   (Agatonovic-­‐Kustrin   et   al.,   2015;   Efstratios   et   al.,   2012;   Parente   et   al.,   2012;   Akhtar   et  al.,  2011;  Fronza  et  al.,  2009;  Preethi  et  al.,  2008;  Ukiya  et  al.,  2006;  Varlijen  et  al.;  1989).  All   of   these   properties   have   a   potential   role   in   the   treatment   of   pathological   processes   of   acne   such   as   inflammation,   keratinocyte   hyperproliferation,   overgrowth   of   P.   acnes,   and   healing   following   the   rupture   of   an   acne   lesion.   Clinical   trials   supporting   wound-­‐healing   and   anti-­‐ inflammatory  properties  of  Calendula  topical  preparations  have  looked  at  reduced  severity  in   radiotherapy-­‐induced   dermatitis   and   oropharyngeal   mucositis,   and   diaper   dermatitis   as   well   perineal  healing  after  episiotomy23  (Kodian  and  Amber  2015;  Babee  et  al.,  2013;  Eghdampour   et  al.  2013;  Panahi  et  al.,  2011).  Only  one  clinical  trial  has  looked  at  antimicrobial  effects  with   regards   microbial   adherence   to   sutures   following   the   extraction   of   unerupted   maxillary   third   molars  (Faria  et  al.,  2010).    

                                                                                                            21

 Promotes  healing  of  wounds  when  applied  locally  (Bone,  2003).    Helps  to  stop  bleeding  when  applied  locally  (Bone,  2003).   23  Surgical  cutting  of  the  perineal  mucles  during  the  second  stage  of  labour  to  prevent  tearing  during  the  passage   of  the  foetus  through  the  vagina.     22

45    

 

 

   

 

 

Dosage     The  German  Commission  E  recommends  2-­‐4  mL  tincture24  per  day  and  1-­‐2g  of  flower  heads  in   150  mL  of  boiling  water  up  to  3  times  a  day.  For  topical  use  the  equivalent  of  2-­‐5  g  of  flower   heads   in   100g   of   ointment   can   be   used   (American   Botanical   Council,   2013).   Bone   (2011)   recommends  a  dosage  of  1.5-­‐4.5  mL  per  day  of  a  1:225  liquid  extract  from  flower  heads  based   on  the  recommendations  from  the  British  Herbal  Pharmacopoeia.       Constituents   More   than   150   chemicals   have   been   isolated   from   different   fractions   and   subfractions   of   Calendula   using   lipophilic,   water-­‐alcoholic,   and   supercritical   CO2   extractions.   The   chemical   groups   included:   minerals,   carbohydrates,   lipids,   tocopherols,   amino   acids,   phenolic   acids,   tannins,  coumarins,  flavonoids,  quinones,  steroids  and  sterols,  monoterpenes,  sesquiterpenes,   triterpenes,  and  resins.  Extracts  made  using  maceration  of  plant  material  and  percolation  with   ethanol  and  water  as  a  solvent  were  found  to  contain  compounds  that  were  polar  and  medium   polar   such   as   flavonoids,   coumarins,   carotenoids,   terpenoid   glycosides,   phenolic   acids,   and   tannins   (Martins   et   al.,   2014;   Andersen   et   al.,   2010;   Fonseca   et   al.,   2010;   Roopashree   et   al.,   2008).   More   detailed   information   regarding   Calendula   chemical   composition   can   be   found   in   Appendix  VII.   Carotenoids  have  been  extracted  from  dried  petals  (Kishimoto  et  al.,  2005;  Bako  et  al.,  2002).   Carotenoids   are   precursors   to   vitamin   A   and   retinoids   in   animals   and   humans.   They   are   known   to   be   antioxidant,   immune-­‐enhancing,   and   antimutagenic.   The   carotenoid   content   changes   when  fresh  Calendula  flowers  are  dried.  The  main  carotenoid  in  dried  petals  has  been  found  to   be   lutein   at   15-­‐25%.   In   alcoholic   tinctures   the   carotenoid   content   has   been   shown   to   decompose  (Bako  et  al.,  2002).   Major  components  of  Calendula  are  the  triterpenoid  esters  including  the  faradiol  esters:  lauryl,   myristoyl,   and   palmitoyl   (Hamburger   et   al.,   2003).   Diethyl   ether   extracts   found   the   highest                                                                                                               24

 Hydroethanolic  extract  with  a  ratio  of  dried  herb  (g)  to  ethanol  and  water  (mL)  being  equal  or  greater  than  1  to   3  (1:3).  This  means  that  3  mL  of  extract  is  equivalent  to  1  g  of  herb.   25  The  ratio  of  dried  herb  (g)  to  ethanol  and  water  (mL),  2  mL  of  extract  is  equivalent  to  1  g  of  dried  herb.  

46    

 

 

   

 

 

levels   of   triterpenoids   in   the   ligulate   flowers   (182   mg/g),   which   was   nearly   twofold   higher   than   those   found   in   the   flower   heads   (107.4   mg/g)   (Nizynski   et   al.,   2015).   Anti-­‐inflammatory   properties  have  been  attributed  to  the  triterpenoids  in  Calendula  (Ukiya  et  al.,  2006;  Neukirch   et  al.,  2005;  Della  Loggia,  1994).   Other   constituents   extracted   from   Calendula   with   associated   properties   include   flavonoids   as   antioxidants,   amino   acids   accelerating   wound   healing,   essential   oil   as   antifungal   and   antibacterial,   saponins   as   antitumour,   calendin   and   calendulin   as   anticancer   and   lymphocyte-­‐ stimulating,  and  polysaccharides  as  immunostimulant  (Muley  et  al.,  2009).  Calendulasaponins  A,   B,   C   and   D   and   ionone   glucosides   (officinosides   A   and   B)   have   been   found   to   have   hypoglycaemic,  gastric  emptying  inhibiting  and  gastroprotective  effects  (Marukami  et  al.,  2001).     Antimicrobial   The   ethanolic   and   methanolic   extracts   of   Calendula   dried   petals   showed   antifungal   activity   against  Candida  spp.,  Aspergillus  spp.  and  Exophala  dermatitidis  comparable  to  the  antifungal   agent  fluconazole  at  a  concentration  10x  greater  (Efstratios  et  al.,  2012).    These  findings  are  in   contrast  to  the  findings  of  Chakraborthy  (2008)  who  used  a  dried  leaf  extract  and  did  not  find   antifungal  activity.  Discrepancies  in  the  results  may  be  a  result  of  the  different  phytochemical   profiles   of   the   flowers   and   the   leaves;   for   example,   the   essential   oil   from   the   flowers   of   Calendula   has   been   shown   to   have   antifungal   activity   (Gazim   et   al.,   2008).   The   antifungal   properties  may  play  a  role  in  managing  Malassezia  spp.  overgrowth  in  acne  lesions.  However,   the  exact  role  of  Malassezia  spp.  remains  to  be  elucidated  (Bojar  and  Holland,  2004).   Antibacterial   activity   of   Calendula   extracts   has   been   demonstrated   for   a   range   of   pathogenic   bacteria   such   as   S.   aureus   and   Streptococci   bacteria   (Efstratiou   et   al.,   2012;   Bissa   and   Bohra,   2011;   Mathur   and   Goyal,   2011;   Parente   et   al.,   2011;   Roopashree   et   al.,   2008;   Modesto   et   al.   2000;   Dumenil   et   al.   1980).   However,   to   the   best   knowledge   of   the   researcher   no   previous   studies  have  investigated  the  antibacterial  properties  of  Calendula  extract  towards  P.  acnes  and   S.  epidermidis.  One  study  investigated  the  effects  of  the  triterpenoid  oleanolic  acid  against  S.   epidermidis  and  found  antibacterial  effects.  However,  it  should  be  noted  that  oleanolic  acid  is   found  naturally  occurring  in  the  roots  of  Calendula  (Szakiel  et  al.,  2008).     47    

 

 

   

 

 

Anti-­‐inflammatory   From   early   pathogenesis   to   exacerbation   of   existing   acne   lesions   inflammation   plays   a   major   role   in   acne   vulgaris.   Inflammatory   events   have   been   found   in   the   earliest   stages   of   acne   formation   (Jeremy   et   al.,   2003).   The   anti-­‐inflammatory   properties   of   Calendula   could   be   of   significant  benefit  to  the  treatment  of  acne.  However,  further  studies  using  in  vitro  and  in  vivo   acne  models  are  required  to  establish  this  link.     An   in   vivo   study   looked   at   acute   and   chronic   inflammation   models   in   mice.   The   Calendula   ethanolic   extract   produced   by   maceration   (a   common   extraction   process   used   by   herbalists)   was   administered   as   a   dried   residue   orally   at   ranges   of   100,   250   and   500   mg/kg.   Rat   paw   oedema   in   carrageenan-­‐induced   (acute)   and   formalin-­‐induced   (chronic)   inflammation   was   significantly   reduced.   In   vitro,   murine   lung   fibroblast   cytotoxicity   induced   by   the   macrophage   supernatant  of  lipopolysaccharide  (LPS)  treated  mice  was  significantly  reduced  when  mice  were   concomitantly   treated   with   Calendula   extract.   The   serum   of   LPS   and   Calendula   treated   mice   had  reduced  levels  of  the  inflammatory  cytokines  IL-­‐1β,  IL-­‐6  and  TNF-­‐α.  Similarly,  spleen  from   LPS   and   Calendula   treated   mice   showed   reduced   COX-­‐226  expression   as   determined   by   gel   electrophoresis   (Preethi   et   al.,   2008).   In   vivo   studies   cannot   be   extrapolated   to   human   studies;   however,  it  should  be  noted  that  doses  of  250  mg/kg  and  500  mg/kg  are  considerably  higher   than  what  are  recommended  internally  for  humans  (American  Botanical  Council,  2013).     An   in   vivo   study   in   rats   looked   at   oral   and   intracolonic   delivery   of   Calendula   hydroethanolic   extract  in  the  treatment  of  an  acetic  acid-­‐induced  ulcerative  colitis  model.  Complete  resolution   of   inflammatory   changes   was   seen   in   rats   treated   with   a   3000   mg/kg   oral   extract   and   a   20%   intracolonic  gel.  Levels  of  malondialdehyde  were  also  decreased  which  serves  as  a  marker  for   tissue   damage,   inflammation   and   lipid   peroxidation   (Tanideh   et   al.,   2016).     Antioxidant   Chronic  inflammation  increases  oxidative  stress  (Preethi  et  al.,  2008).  Further,  the  oxidation  of   lipids  found  in  sebum  can  trigger  the  production  of  inflammatory  mediators  (Walsh  et  al.,  2016).   In   this   way   the   antioxidant   properties   of   Calendula   could   play   a   role   in   acne   treatment   and   inflammation  reduction.  Again,  research  using  acne  models  is  required  to  confirm  this  link.                                                                                                               26

 Cyclooxygenase-­‐2,  enzyme  that  converts  arachidonic  acid  to  prostaglandin  E2.  A  proinflammatory  marker.    

48    

 

 

   

 

 

Calendula   extracts   produced   by   supercritical   CO2   extraction   and   Soxhlet   ethanolic   extraction   demonstrated  anti-­‐oxidant  activity.  Some  of  this  activity  may  have  been  due  to  the  presence  of   the  antioxidant  chamazulene  found  in  both  extracts  (Agatonovic-­‐Kustrin  et  al.,  2015).   Fonesca  et  al.  (2010)  looked  at  antioxidant  properties  of  a  50%  hydroethanolic  extract  in  vitro   and  in  vivo.  The  Calendula  extract  showed  antioxidant  activity  comparable  to  quercetin.  Using   glutathione   as   an   indication   of   UVB 27 -­‐induced   epidermal   oxidative   stress,   irradiated   mice   treated  with  150  –  300  mg/kg  of  Calendula  extract  showed  glutathione  levels  similar  to  those  of   untreated   mice.   Further,   Calendula   treated   irradiated   mice   showed   a   change   in   matrix   metalloproteinase  activity.  As  MMPs  are  involved  in  both  pro-­‐  and  anti-­‐inflammatory  processes   the   authors   suggest   that   this   change   may   be   reflective   of   the   potential   protective   effect   of   Calendula  extract  has  on  UV-­‐induced  skin  damage,  although  further  research  needs  to  be  done   to   confirm   this   idea.   In   a   similar   study,   rats   subjected   to   UVB   radiation   were   treated   with   a   cream  containing  4%  and  5%  Calendula  essential  oil.  Results  suggested  antioxidant  effects  with   decreased   levels   of   lipid   peroxidation   marker   enzymes   and   increased   levels   of   endogenous   antioxidants   such   as   glutathione   and   superoxide   dismutase   found   in   the   skin   (Mishra   et   al.,2012).  However,  the  results  are  not  directly  comparable  to  water  and  ethanol  extractions  as   the  levels  of  volatile  oils  in  herbal  teas  and  tinctures  would  be  considerably  lower.   Preethi   et   al.   (2006)   showed   that   an   ethanol   extraction   of   Calendula   flower   heads   had   free   radical  scavenging  activity  and  inhibited  lipid  peroxidation   in  vitro.  In  vivo  in   mice  doses  of  100   and   250   mg/kg   inhibited   the   generation   of   superoxide   by   macrophages   and   resulted   in   significant  increases  in  levels  of  catalase,  glutathione  reductase  and  glutathione.  Catalase  is  a   heme   protein   that   catalyses   the   decomposition   of   hydrogen   peroxide   to   water   and   oxygen,   thereby   protecting   the   cell   from   oxidative   damage.   Glutathione   reductase   is   involved   in   the   regeneration  of  glutathione,  a  non-­‐protein  antioxidant  involved  in  the  process  of  detoxification.   In   vitro   Calendula   propylene   glycol   extract   demonstrated   antioxidant   activity   in   polymorphonuclear  leukocytes  at  concentrations  as  low  as  0.20  µg/mL  (Braga  et  al.,  2009).    

                                                                                                            27

 Ultraviolet  B.  

49    

 

 

   

 

 

Wound  healing   Numerous  in  vitro  and  in  vivo  studies  have  looked  at  the  benefit  of  Calendula  in  wound  healing.   Demonstration   of   wound   healing   effects   has   included   increased   epithelisation   time   via   phagocytosis,   increased   granulation,   and   increased   metabolism   in   processes   related   to   tissue   regeneration  (Basch  et  al.,  2006).  Considering  that  the  formation  and  rupture  of  inflammatory   acne   lesions   as   well   severe   cystic   and   nodulocystic   acne   can   lead   to   significant   scarring,   any   treatment   that   supports   wound   healing   and   reduces   the   potential   for   scar   formation   would   be   of  benefit.  However,  further  research  in  acne  models  is  required  to  support  this  link.   One   study   used   a   scratch   wound   assay,   an   in   vitro   model   using   mouse   fibroblasts.   Proliferation   and   migration   of   fibroblasts   are   measured,   both   of   which   are   necessary   for   wound   granulation   and  re-­‐epithelisation  and  therefore  wound  healing.  Platelet  derived  growth  factor  (PDGF)  was   used  as  a  positive  control  as  it  has  been  shown  to  increase  the  formation  of  granulation  tissue   and   improve   the   rate   of   wound   healing.   Both   ethanolic   and   hexane   extracts   of   Calendula   flowers   demonstrated   increased   proliferation   and   migration   of   fibroblasts   similar   to   that   of   PDGF.  The  triterpenoid  faradiol  palmitate  was  shown  to  contribute  to  this  process  (Fronza  et  al.,   2009).   An   in   vivo   study   in   mice   fed   an   ethanolic   Calendula   extract   showed   improved   granuloma   formation   in   thermal   burns.   Hydroxy   proline,   which   acts   as   a   marker   for   extracellular   matrix,   levels  were  significantly  higher  in  extract  treated  granuloma  tissue  than  controls.  Acute  phase   proteins  haptoglobin  and  oromucoid  were  decreased  in  extract-­‐treated  mice.  Histopathological   analysis   showed   decreased   infiltration   of   lymphocytes   and   no   plasma   cells   or   polymorphs   compared   with   controls.   Mechanisms   put   forward   for   the   improved   granuloma   formations   were  increased  synthesis  of  collagen  and  decreased  catabolism  of  collagen  due  to  the  presence   of   flavonoids   that   can   create   artificial   cross-­‐linkages   between   collagen   molecules   (Chandran   and  Kuttan  2008).     An  80%  ethanolic  extract  of  Calendula  was  mixed  into  a  gel  at  5%  and  10%.  Applied  to  an  oral   mucositis   chemotherapy-­‐induced   model   in   hamsters;   the   Calendula   preparations   significantly   reduced   oral   mucositis   over   vehicle   control   and   untreated   control   (Tanideh   et   al.,   2013).   A   limitation  of  this  study  was  a  failure  to  precisely  quantify  the  Calendula  extract.  

50    

 

 

   

 

 

Ethanolic   extracts   of   Calendula   flowers   were   applied   to   a   cutaneous   wound   rat   model   and   macroscopic  observation  showed  faster  wound  healing  than  the  control  treated  with  distilled   water.  However,  changes  were  not  quantitatively  measured  and  significance  was  not  discussed.   Microscopic   evaluation   of   wounds   showed   significant   decreases   in   fibrin   and   hyperaemia   indicating   anti-­‐inflammatory   circulatory   alterations   in   the   Calendula   group.   Further   an   increase   in   collagen   indicating   fibroplasia   was   found   in   the   Calendula   group.   Immunohistochemical   evaluation   showed   increased   numbers   of   blood   vessels   in   the   dermis   of   rats   treated   with   Calendula  indicating  neovascularization  (Parente  et  al.,  2011).     In   vitro   treatment   of   a   wound-­‐healing   model   in   rats   using   a   lamellar   gel   emulsion   containing   Calendula   oil   suggested   this   method   of   application   was   superior   to   Calendula   oil   alone.   Results   demonstrated  superior  re-­‐epithelialization,  neovascularisation,  increased  collagen  indicative  of   fibroblast  proliferation,  and  modulation  of  the  inflammatory  response  compared  with  controls   (Okuma  et  al.,  2015).   An   Achilles   tendon   injury   model   in   rats   showed   that   after   7   days,   rats   treated   with   a   topical   Calendula   preparation   had   increases   in   collagen   and   non-­‐collagen   protein,   and   increased   changes  in  collagen  organisation  at  the  wound  site  (Aro  et  al.,  2015).   Calendula   tincture   stimulated   fibroblast   proliferation   and   migration   mediated   by   a   PI3K 28-­‐ dependent  pathway,  suggesting  a  mechanism  for  enhanced  wound  healing  (Dinda  et  al.,  2015).       Angiogenic   An   aqueous   extraction   of   Calendula   flowers   was   shown   to   be   highly   angiogenic   in   a   chick   chorioallantoic   membrane   (CAM)   assay,   which   serves   as   a   model   for   angiogenesis.   Increased   levels  of  hyaluronan  were  found  in  areas  of  increased  neovascularisation  suggesting  induction   by  Calendula  extract.  Hyaluronan  plays  a  role  in  the  wound  healing  process  through  influencing   such   processes   as   cellular   locomotion   and   proliferation.   The   authors   conclude   that   neovascularisation  via  induction  of  hyaluronan  is  a  possible  mechanism  for  the  wound  healing   properties  of  Calendula  (Patrick  et  al.,  1996).  Similar  findings  using  the  CAM  assay  were  found   using  an  ethanolic  extract  of  Calendula  flowers  (Parente  et  al.,  2012).                                                                                                               28

 Phosphoinositide  3-­‐kinase  

51    

 

 

   

 

 

Immunostimulating     Polysaccharides   were   shown   to   have   an   immunostimulating   effect   on   granulocytes,   which   demonstrated   increased   phagocytosis   in   vitro   (Varlijen   et   al.,   1989).   Local   application   of   Calendula,   which   enhances   lymphocyte   function,   could   play   a   role   in   wound-­‐healing   effects   observed   in   Calendula.   Further   studies   are   required   to   establish   a   link   as   well   as   determine   the   benefit  in  acne.     Skin  parameters   A  one-­‐sided  blind  study  of  21  participants  demonstrated  changes  in  skin  parameters  following   treatment  with  a  topical  water-­‐in-­‐oil  emulsion  containing  Calendula  extract.  Significant  changes   were   found   in   increased   skin   tightness   required   for   preventing   damage   and   increased   skin   hydration   required   for   normal   metabolism   (Akhtar   et   al.,   2011).   Improvements   in   skin   parameters   that   supports   normal   metabolism   could   help   to   prevent   abnormal   keratinisation   and  seborrhoeic  processes.  However,  further  studies  are  required  to  establish  this  link.       Antitumour   Early  work  looking  at  cytotoxic  and  antiproliferative  effects  in  cancer  cell  lines  could  suggest  a   possible   role   in   arresting   the   keratinocyte   hyperproliferation   characteristic   of   acne   pathogenesis.  However,  much  work  is  needed  to  confirm  this  hypothesis.  In  particular  research   with  acne  models  in  vitro  and  in  vivo.     Triterpene   glycosides   isolated   from   Calendula   flowers   demonstrated   cytotoxicity   in   vitro   against   cancer   cell   lines.   They   were   most   effective   against   colon   cancer,   leukaemia,   and   melanoma  cells  (Ukiya  et  al.,  2006).     Aqueous   laser-­‐activated   calendula   flower   extract   was   shown   in   vitro   to   inhibit   the   proliferation   of   a   range   of   human   and   murine   tumour   cells.   The   inhibition   ranged   from   70   -­‐   100%.   The   mechanism  was  identified  as  cell  cycle  arrest  between  G0  and  G1  phase  and  caspase-­‐3  induced   apoptosis.   The   same   extract   induced   proliferation   of   human   peripheral   blood   lymphocytes   and   natural  killer  cells  (Medina  et  al.,  2006).     52    

 

 

   

 

 

Case  studies   An  18-­‐year-­‐old  male  with  recurrent  cheilitis29  that  did  not  respond  to  standard  treatment  was   successfully   treated   with   a   10%   Calendula   ointment   without   recurrence   following   treatment   (Roveroni-­‐Favaretto  et  al.,  2009).  This  case  study  supports  the  use  of  Calendula  in  decreasing   inflammation  and  supporting  skin  healing.  Interesting  cheilitis  is  a  side  effect  of  oral  isotretinoin   (Zaenglein  et  al.,  2016,  Supplement  Table  XXIX)  suggesting  a  possible  role  in  the  treatment  of   adverse   effects.   However,   case   studies   remain   anecdotal   and   further   clinical   studies   are   required  to  determine  the  applicability  of  these  results  to  a  broader  population.     Clinical  trials   Several   clinical   trials   have   looked   at   the   effect   of   topical   Calendula   by   virtue   of   its   anti-­‐ inflammatory  and  antioxidant  properties  in  the  treatment  of  radiotherapy-­‐induced  dermatitis.   A  review  by  Kodian  and  Amber  (2015)  discuss  flaws  in  these  studies  such  as  a  lack  of  vehicle   control,   a   lack   of   measurement   of   the   level   of   ionising   radiation   via   dosimeter,   and   a   lack   of   taking  account  significant  factors  that  affect  radiotoxicity  to  the  skin  such  as  skin  type,  presence   of   skin   folds   and   area   irradiated.   They   found   it   difficult   to   compare   studies   that   have   looked   at   acute   radiation-­‐induced   dermatitis   because   the   reporting   outcomes   were   inconsistent,   in   particular  those  assessing  the  level  of  severity  of  toxic  skin  reactions.     A   well-­‐reported   single-­‐blind   study   by   Pommier   et   al.   (2004)   looked   at   254   breast   cancer   patients.   Taking   into   account   factors   such   as   skin   type   and   breast   size,   they   demonstrated   a   significant   decrease   in   the   incidence   of   acute   dermatitis   with   topical   Calendula   application.   However,   a   randomised   blinded   Swedish   study   that   looked   at   420   breast   cancer   patients   receiving  radiotherapy  also  did  not  find  a  significant  difference  between  the  group  receiving  a   proprietary   Calendula   cream   and   that   receiving   standard   cream.   The   study   took   into   account   BMI30  and   dose   of   radiotherapy.   However,   did   not   take   into   account   skin   type   (Sharp   et   al.,   2013).                                                                                                               29

 A  chronic  condition  producing  dry,  inflamed,  crusted  and  sometimes  fissured  lips.    BMI:  body  mass  index,  measures  height  to  weight  ratio  to  indicate  underweight,  normal  weight  and  overweight   patients.   30

53    

 

 

   

 

 

A  recent  Brazilian  double-­‐blind  controlled  trial  looked  at  acute  radiodermatitis  in  51  head  and   neck   cancer   patients.   Compared   with   an   essential   fatty   acid   ointment,   Calendula   ointment   significantly   reduced   the   severity   of   acute   radiodermatitis   (Schneider   et   al.,   2015).   The   study   failed   to   describe   the   details   of   the   Calendula   preparation,   there   is   also   a   question   of   how   genuinely  similar  the  two  preparations  were  with  regards  to  adequate  blinding.  Other  factors   like  skin  type  and  area  irradiated  were  not  taken  into  account.     A   randomized   controlled   trial   of   20   patients   with   head   and   neck   cancer   treated   with   radiotherapy   or   a   combination   of   chemotherapy   and   radiotherapy   were   treated   with   a   Calendula   mouth   gel   to   prevent   and   treat   radiotherapy-­‐induced   oropharyngeal   mucositis31.   Patients  were  treated  with  a  2%  Calendula  extract  (obtained  from  ethanol  extraction)  oral  gel   mouthwash   or   a   vehicle   control.   Over   8   weeks   the   Calendula   mouth   gel   scored   significantly   better   on   week   2,   3   and   6   on   the   Oral   Mucositis   Assessment   Scale   and   3   members   of   the   Calendula  group  did  not  get  any  mucositis.  Finally,  19.41  ±  4.34  mg/L  of  the  flavonoid  quercetin   were   measured   and   the   antioxidant   activity   of   the   Calendula   extract   was   found   to   be   comparable  to  the  known  antioxidant  gallic  acid.  The  authors  postulated  that  the  mechanism   by   which   Calendula   may   improve   mucositis   is   as   an   antioxidant   that   prevents   free   radical   damage   subsequent   to   radiotherapy-­‐induced   cell   death   and   injury   (Babee   et   al.,   2013).   This   was  a  well-­‐reported  study,  however,  the  small  sample  size  (20)  and  the  large  number  of  drop-­‐ outs/  excluded  participants  (9  in  total)  throughout  the  study,  strongly  limits  the  significance  of   the  results.     One   study   compared   the   use   of   proprietary   Calendula   ointment   (1.5%   extract)   and   Aloe   vera   cream  in  the  treatment  of  diaper  dermatitis  on  66  children  less  than  3  years  of  age.  The  study   found   a   significant   reduction   in   the   presence   of   diaper   dermatitis   in   the   Calendula   group   (Panahi   et   al.,   2011).   This   study   was   relatively   small   and   there   was   a   lack   of   vehicle   control,   which   is   a   considerable   setback   when   different   vehicles   are   used.   Ointment   and   creams   are   absorbed  differently  by  the  skin  and  likely  affect  skin  barrier  function  differently.  Of  lesser  note   the  type  of  Calendula  extract  was  not  specified  which  limits  the  reproducibility  of  the  study.    

                                                                                                            31

 Inflammation  of  the  oral  mucosa  that  results  in  atrophy,  redness,  swelling  and  ulceration  (Babee  et  al.,  2013).  

54    

 

 

   

 

 

Eghdampour   et   al.   (2013)   compared   Aloe   vera   ointment   and   Calendula   ointment   with   a   treatment-­‐as-­‐usual  control  in  perineal  healing  after  episiotomy  in  111  primiparous32  women  in   Iran.  Significant  improvements  in  redness,  oedema,  ecchymosis33,  and  discharge  were  seen  in   the  Aloe  vera  and  Calendula  groups  after  the  5th  day  of  treatment.  This  was  a  partially  blinded   study,   however,   significant   limitations   include   a   lack   of   vehicle   control   and   a   failure   to   describe   the   Aloe   vera   and   Calendula   ointments.   Further,   the   publication   contains   significant   grammatical  errors  that  limit  effective  communication.     A  Brazilian  trail  on  18  patients  following  surgical  extraction  of  unerupted  maxillary  third  molars   looked  at  the  antimicrobial  properties  of  mouthwashes  containing  Calendula  against  microbial   adherence  to  sutures.  The  Calendula  extract  trended  towards  microbial  inhibition  but  was  not   more   significant   than   the   positive   control   chlorhexidine   digluconate   (Faria   et   al.,   2010).   This   was   an   unblinded   study   with   limitations   in   sample   size   that   limit   the   significance   of   the   results.   Further,   antimicrobial   reductions   looked   at   global   CFU/mL   without   distinguishing   between   beneficial  and  pathogenic  bacteria.   These   studies   indicate   general   effectiveness   for   Calendula   as   an   anti-­‐inflammatory   and   wound-­‐ healing  agent.  Higher  quality  trials  are  needed  to  provide  further  evidence  to  this  effect.  With   regards   to   acne,   specific   trials   in   acne   patients   are   required   to   determine   the   potential   role   for   Calendula  in  acne  treatment.       Safety   The  Cosmetic  Ingredient  Review  Expert  Panel  regards  Calendula  as  safe  for  use  topically  when   used  at  recommended  concentrations  of  0.0001%  to  0.8%  for  flower  extract  and  0.02%  to  0.1%   for  flower  oil.  It  is  used  in  295  cosmetic  products  in  the  United  States  (Andersen  et  al.,  2010).   This  is  well  within  the  dosage  recommended  by  the  German  Commission  E  (American  Botanical   Council,  2013)  based  on  the  theoretical  yield  of  Calendula  flowers  discussed  previously  in  the   Bacterial  Sensitivity  section.  However,  it  is  of  note  that  no  adverse  reactions  were  found  in  34   children  treated  for  diaper  dermatitis  with  an  ointment  containing  1.5%  Calendula  extract  for   up  to  10  days  (Panahi  et  al.,  2011).                                                                                                               32

 Giving  birth  for  the  first  time.    Bruising.  

33

55    

 

 

   

 

 

The   threshold   for   toxicological   concern   (TTC)   is   a   risk   assessment   approach   used   for   regulatory   purposes   in   the   food   industry   that   has   recently   been   adapted   for   the   cosmetic   industry.   TTC   recommendations   depend   on   published   data   regarding   known   chemical   constituents   and   are   conservative   recommendations   that   are   one   to   three   orders   of   magnitude   below   the   daily-­‐ recommended  exposure  limit.  The  TTC  for  topical  application  of  Calendula  is  18  g  per  day  of  a   preparation   containing   0.1%   of   the   extract   assuming   an   80%   absorption   factor,   which   has   a   safety  factor  of  greater  than  20-­‐fold  (Re  et  al.,2009).   It   is   commonly   stated   that   Calendula   should   be   used   with   caution   in   people   who   have   allergies   or   hypersensitivity   to   the   Asteraceae   family   (Basch   et   al.,   2006).   However,   there   is   little   evidence  to  support  this  recommendation  (Leach,  2008).   Calendula   extract   was   found   to   be   non-­‐cytotoxic   in   vitro   on   lung   fibroblast   and   liver   cells   at   concentrations  less  than  15mg/mL  (Okuma  et  al.,  2015).  

Conclusion   The  results  indicate  that  Calendula  90%  hydroethanolic  and  aqueous  extracts  both  selectively   inhibit  P.  acnes  over  S.  epidermidis.  To  the  best  knowledge  of  the  author  this  is  the  first  time   antibacterial   properties   of   Calendula   extracts   have   been   tested   against   P.   acnes   or   S.   epidermidis.  These  results  suggest  that  Calendula  may  be  a  potential  topical  skin  prebiotic  for   the  treatment  of  acne.  Further,  anti-­‐inflammatory,  antioxidant,  and  wound  healing  properties   combined   with   a   long   tradition   of   topical   use   make   it   an   ideal   candidate   for   low   risk   acne   treatment.   Further   research   is   needed   to   determine   the   effectiveness   of   a   topical   prebiotic   strategy   in   the   treatment   of   acne,   as   well   as   specific   research   in   vitro,   in   vivo   and   in   clinical   trials   as   to   the   effectiveness   of   Calendula   in   treating   acne.   Additional   factors   including   different   strains   of   P.   acnes  and  S.  epidermidis  should  be  considered.      

56    

 

 

   

 

 

Bibliography     Adaszynska,   M.,   Swarcewicz,   M.,   Dzieciol,   M.   &   Dobrowolska,   A.   2013,   "Comparison   of   chemical   composition   and   antibacterial   activity   of   lavender   varieties   from   Poland",   Natural  product  research,  vol.  27,  no.  16,  pp.  1497-­‐501.   Agatonovic-­‐Kustrin,   S.,   Ortakand,   D.,   Morton,   D.   &   Yusof,   A.   2015,   "Rapid   evaluation   and   comparison   of   natural   products   and   antioxidant   activity   of   calendula,   feverfew,   and   German  chamomile  extracts",  Journal  of  Chromatography  A,  vol.  1385,  pp.  103-­‐110.   Akhtar,  N.,  Zaman,  S.,  Khan,  B.,  Amir,  M.  &  Ebrahimzadehf,  M.  2011,  "Calendula  extract:  effects   on  mechanical  parameters  of  human  skin",  Acta  Poloniae  Pharmaceutica,  vol.  68,  no.  5,   pp.  693-­‐701.   Ambros,  V.  2004,  "The  functions  of  animal  microRNAs",  Nature,  vol.  431,  pp.  350e-­‐355e.   American   Botanical   Council   2013,   Calendula   flower.   Available:   http://cms.herbalgram.org/commissione/Monographs/Monograph0043.html   [2016,   05/19].   Andersen,  F.,  Bergfeld,  W.,  Belsito,  D.,  Hill,  R.,  Klaassen,  C.,  Liebler,  D.,  Marks  Jr,  J.,  Shank,  R.,   Slaga,  T.  &  Snyder,  P.  2010,  "Final  Report  of  the  Cosmetic  Ingredient  Review  Expert  Panel   Amended   Safety   Assessment   of   Calendula   officinalis-­‐Derived   Cosmetic   Ingredients",   International  Journal  of  Toxicology,  vol.  29,  no.  4,  pp.  2215-­‐2435.   Anttila,  H.,  Reitamo,  S.  &  Saurat,  J.  1992,  "Interleukin  1  immunoreactivity  in  sebaceous  glands",   British  Journal  of  Dermatology,  vol.  127,  no.  6,  pp.  585-­‐588.   Arck,   P.,   Handjiski,   B.,   Hagen,   E.,   Pincus,   M.,   Buenahl,   C.,   Bienenstock,   J.   &   Paus,   R.   2010,   "Is   there  a  'gut-­‐brain-­‐skin  axis'?",  Experimental  Dermatology,  vol.  19,  pp.  401-­‐405.   Aro,  A.,  Perez,  M.O.,  Vieira,  C.P.,  Esquisatto,  M.A.,  Rodrigues,  R.A.,  Gomes,  L.  &  Pimental,  E.R.   2015,   "Effect   of   Calendula   officinalis   cream   on   achilles   tendon   healing",   Anatomical   Record,  vol.  298,  no.  2,  pp.  428-­‐435.   Asai,   Y.,   Baibergenova,   A.,   Dutil,   M.,   Humphrey,   S.,   Hull,   P.,   Lynde,   C.,   Poulin,   Y.,   Shear,   N.H.,   Tan,   J.K.,   Toole,   J.   &   Zip,   C.   2016,   "Management   of   acne:   Canadian   clinical   practice   guideline",  Canadian  Medical  Association  Journal,  vol.  188,  no.  2,  pp.  118-­‐126.   Azimi,   H.,   Fallah-­‐Tafti,   M.,   Khakshur,   A.   &   Abdollahi,   M.   2012,   "A   review   of   phytotherapy   of   acne  vulgaris:  Perspective  of  new  pharmacological  treatments",  Fitoterapia,  vol.  83,  pp.   1306-­‐1817.   Babee,  N.,  Moslemi,  D.,  Khalilpour,  M.,  Vejdani,  F.,  Moghadamnia,  Y.,  Bijani,  A.,  Baradaran,  M.,   Kazemi,  M.,  Khalilpour,  A.,  Pourami,  M.  &  Moghadamnia,  A.  2013,  "Antioxidant  capacity   of  Calendula  officinalis  flowers  extract  and  prevention  of  radation  induced  oropharyngeal   mucositis   in   patients   with   head   and   neck   cancers:   a   randomized   contraolled   clinical   study",  DARU  Journal  of  Pharmaceutical  Sciences,  [Online],  vol.  21,  no.  18.  Available  from:   57    

 

 

   

 

 

http://www.darujps.com/content/21/1/18.   Bako,   E.,   Deli,   J.   &   Gyula,   T.   2002,   "HPLC   study   on   the   carotenoid   composition   of   Calendula   products",  Journal  of  Biochemical  and  Biophysical  Methods,  vol.  53,  pp.  241-­‐250.   Basch,   E.,   Foppa,   I.,   Liebowitz,   R.,   Nelson,   J.,   Smith,   M.,   Sollars,   D.   &   Ulbricht,   C.   2004,   "Lavender  (Lavandula  angustifolia  Miller)",  Journal  of  Herbal  Pharmacotherapy,  vol.  4,  no.   2,  pp.  63-­‐78.   Basch,  E.,  Ulbricht,  C.,  Basch,  S.,  Dalton,  S.,  Ernst,  E.,  Foppa,  I.,  Szarpary,  P.,  Tiffany,  N.,  Orlando,   C.  &  Vora,  M.  2005,  "An  Evidence-­‐Based  Systematic  review  of  Echinacea  (E.  angustifolia   DC,   E.   pallida,   E.purpurea)   by   the   Natural   Standard   Reseach   Collaboration",   Journal   of   Herbal  Pharmacotherapy,  vol.  5,  no.  2,  pp.  57-­‐88.   Bassett,   I.B.,   Pannowitz,   D.L.   &   Barnetson,   R.S.   1990,   "A   comparative   study   of   tea-­‐tree   oil   versus  benzoylperoxide  in  the  treatment  of  acne",  The  Medical  Journal  of  Australia,  vol.   153,  no.  8,  pp.  455-­‐458.   Bastos,   M.,   Ceotto,   H.,   Coelho,   M.   &   Nascimento,   J.   2009,   "Staphylococcal   Antimicrobial   Peptides:   Relevant   Properties   and   Potential   Biotechnological   Applications",   Current   Pharmaceutical  Biotechnology,  vol.  10,  pp.  38-­‐61.   Beylot,   C.,   Auffret,   N.,   Poli,   F.,   Claudel,   J.-­‐.,   Leccia,   M.-­‐.,   Del   Giudice,   P.   &   Dreno,   B.   2013,   "Proprionibacterium   acnes:   an   update   on   its   role   in   the   pathogenesis   of   acne",   Journal   of   the  European  Academy  of  Dermatology  and  Venereology,  vol.  28,  pp.  271-­‐278.   Bissa,   S.   &   Bohra,   A.   2011,   "Antibacterial   potential   of   pot   marigold",   Journal   of   Microbiology   and  Antimicrobials,  vol.  3,  no.  3,  pp.  51-­‐54.   Bockmuhl,   D.,   Jassay,   C.,   Nieveler,   S.,   Scholtyssek,   R.,   Wadle,   A.   &   Waldmann-­‐Laue,   M.   2006,   "Prebiotic   Cosmetics:   An   Alternative   to   Antibacterial   Products",   IFSCC   Magazine,   vol.   9,   no.  3,  pp.  197-­‐200.   Boehm,   K.,   Yun,   J.,   Strohl,   K.   &   Elmets,   C.   1995,   "Messenger   RNAs   for   the   multifunctional   cytokines   interleukin-­‐1α,   interleukin-­‐1β   and   tumor   necrosis   factor-­‐α   are   present   in   adnexal  tissues  and  in  dermis  of  normal  human  skin",  Experimental  Dermatology,  vol.  4,   no.  6,  pp.  335-­‐341.   Bojar,  R.  &  Holland,  K.  2004,  "Acne  and  Proprionibacterium  acnes",  Clinics  in  Dermatology,  vol.   22,  pp.  375-­‐379.   Bone,   K.   2003,  A   clinical   guide   to   blending   liquid   herbs:   herbal   formulations   for   the   individual   patient,  Churchill  Livingstone,  St.  Louis.   Braga,   P.C.,   Dal   Sasso,   M.,   Culici,   M.,   Spallino,   A.,   Falchi,   M.,   Bertelli,   A.,   Morelli,   R.   &   Lo   Scalzo,   R.   83,   "Antioxidant   activity   of   Calendula   officinalis   extract:   inhibitory   effects   on   chemiluminescence   of   human   neutrophil   bursts   and   electron   paramagnetic   resonance   spectroscopy.",  Pharmacology,  vol.  6,  no.  348,  pp.  355.   58    

 

 

   

 

 

British   Pharmacopoeia   Commission   2016,   Calendula   Flower   [Homepage   of   London:TSO],   [Online].   Available:   https://www.pharmacopoeia.com/bp-­‐2016/herbal-­‐drugs/calendula-­‐ flower.html?date=2016-­‐02-­‐22  [1016,  02/22].   Burkhart,   C.G.   &   Burkhart,   C.N.   2007,   "Expanding   the   microcomedone   theory   and   acne   therapeutics:  Propionibacterium   acnes  biofilm   produces   biological   glue   that   holds   corneocytes  together  to  form  plug",  Journal  of  American  Academy  of  Dermatology,  vol.   57,  no.  4,  pp.  722-­‐724.   Caux,  C.,  Dezutter-­‐Dambuyant,  C.  &  Banchereau,  S.  1992,  "GM-­‐CSF  and  TNF-­‐alpha  cooperate  in   the  generation  of  dendritic  Langerhans  cells",  Nature,  vol.  360,  pp.  258-­‐261.   Cernakova,   M.   &   Kostalova,   D.   2002,   "Antimicrobial   activity   of   berberine-­‐a   constuent   of   Mahonia  aquifolium",  Folia  Microbiologica,  vol.  47,  no.  4,  pp.  375-­‐378.   Chakraborthy,   G.S.   2008,   "Antimicrobial   activity   of   the   leaf   extracts   of   Calendula   officinalis   (Linn.)",  Journal  of  Herbal  Medicine  Toxicology,  vol.  2,  no.  2,  pp.  65-­‐66.   Christensen,   G.J.   &   Bruggemann,   H.   2014,   "Bacterial   skin   commensals   and   their   role   as   host   guardians",  Beneficial  microbes,  vol.  5,  no.  2,  pp.  201-­‐215.   Christensen,  G.J.,  Scholz,  C.F.,  Enghild,  J.,  Rohde,  H.,  Kilian,  M.,  Thurmer,  A.,  Brzuszkiewicz,  E.,   Lomholt,  H.  &  Bruggemann,  H.  2016,  "Antagonism  between  Staphylococcus  epidermidis   and  Proprionibacterium  acnes  and  its  genomic  basis",  BioMed  Central  Genomics,  vol.  17,   no.  152,  pp.  1-­‐14.   CLSI   2012,   Performance   Standards   for   Antimicrobial   Susceptibility   Testing;   Twenty-­‐Second   Informational  Supplement,  Clinical  and  Laboratory  Standards  Institute,  Wayne,  PA.   Cogen,  A.,  Yamasaki,  K.,  Muto,  J.,  Sanchez,  K.,  Alexander,  L.,  Tanios,  J.,  Lai,  Y.,  Kim,  J.,  Nizet,  V.  &   Gallo,   R.   2010,   "Staphylococcus   epidermidis   Antimicrobial   delta-­‐Toxin   (Phenol-­‐Soluble   Modulin-­‐gamma)   Cooperates   with   Host   Antimicrobial   Peptides   to   Kill   Group   A   Streptococcus",  Plos  One,  [Online],  vol.  5,  no.  1,  pp.  e8557.   Collins,  M.K.,  Moreau,  J.F.,  Opel,  D.,  Swan,  J.,  Prevost,  N.,  Hastings,  M.,  Schwarz,  E.B.  &  Ferris,   L.K.   2014,   "Compliance   with   pregnancy   prevention   measures   during   isotretinoin   exposure",  Journal  of  the  American  Academy  of  Dermatology,  vol.  70,  no.  1,  pp.  55-­‐59.   Cove,  J.H.  &  Holland,  K.  1983,  "The  effect  of  benzoyl  perozide  on  cutaneous  micro-­‐organisms  in   vitro.",  Journal  of  Applied  Bacteriology,  vol.  54,  pp.  379-­‐382.   Cunliffe,   W.,   Holland,   D.,   Clark,   S.M.   &   Stables,   G.I.   2001,   "Comedogenesis:   some   new   aetiological,  clinical  and  therapeutic  strategies",  British  Journal  of  Dermatology,  vol.  142,   no.  6,  pp.  1084-­‐1091.   Dai,   W.S.,   LaBraico,   J.M.   &   Stern,   R.S.   1992,   "Epidemiology   of   isotretinoin   exposure   during   pregnancy",  Journal  of  American  Academy  of  Dermatology,  vol.  26,  pp.  599-­‐606.   Della   Loggia,   R.,   Tubaro,   A.,   Sosa,   S.,   Becker,   H.,   Saar,   S.,   &   Isaac,   O.   1994,   "The   role   of   59    

 

 

   

 

 

triterpenoids   in   the   topical   anti-­‐inflammatory   activity   of   Calendula   officinalis   flowers.",   Planta  Medica,  vol.  60,  no.  6,  pp.  516-­‐520.   Dessinioti,  C.,  Andreas,  M.  &  Katsambas,  M.  2010,  "The  role  of  Proprionibacerium  acnes  in  acne   pathogenesis:  facts  and  controversies",  Clinics  in  Dermatology,  vol.  28,  pp.  2-­‐7.   Dinda,   M.,   Dasgupta,   U.,   Singh,   N.,   Bhattacharyya,   D.   &   Karmakar,   P.   2015,   "PI3K-­‐mediated   proliferation  of  fibroblasts  by  Calendula  officinalis  tincture:  implication  in  wound  healing",   Phytotherapy  Research,  vol.  29,  no.  4,  pp.  607-­‐616.   Dumenil,   G.,   Chemli,   R.,   Balansard,   G.,   Guiraud,   H.   &   Lallemand,   M.   1980,   "Evaluation   of   antibacterial   properties   of   marigold   flowers   (Calendula   officinalis   L.)   and   mother   homeopathic   tinctures   of   C.   officinalis   and   C.   arvensis   L.",   Annales   Pharmaceutiques   Francaises,  vol.  38,  no.  6,  pp.  493-­‐499.   Efstratios,   E.,  Hussain,  A.,   Nigam,   P.,   Moore,   J.,  Ayub,   M.   &   Rao,   J.   2012,   "Antimicrobial   activity   of  Calendula  officinalis  petal  extracts  against  fungi,  as  well  as  Gram-­‐negative  and  Gram-­‐ positive   clinical   pathogens",   Complementary   Therapies   in   Clinical   Practice,   vol.   18,   pp.   173-­‐176.   Eghdampour,  F.,  Jahdie,  F.,  Kheyrkhah,  M.,  Taghizadeh,  M.,  Naghizadeh,  S.  &  Hagani,  H.  2013,   "The   impact   of   Aloe   vera   and   Calendula   on   perineal   healing   after   episiotomy   in   primiparous   women:   a   randomized   clinical   trial",   Journal   of   Caring   Sciences,   vol.   2,   no.   4,   pp.  279-­‐286.   Enshaieh,  S.,  Jooya,  A.,  Siadat,  A.H.  &  Iraji,  F.  2007,  "The  efficacy  of  5%  topical  tea  tree  oil  gel  in   mild   to   moderate   acne   vulgaris:   a   randomized,   double-­‐blind   placebo-­‐controlled   study",   Indian  Journal  of  Dermatology,  Venereology  and  Leprology,  vol.  73,  no.  1,  pp.  22-­‐25.   Ettefagh,   K.A.,   Burns,   J.T.,   Junio,   H.A.,   Kaatz,   G.W.   &   Cech,   N.B.   2011,   "Goldenseal   (Hydrastis   canadensis  L.)  extracts  synergistically  enhance  the  antibacterial  activity  of  berberine  via   efflux  pump  inhibition",  Planta  Medica,  vol.  77,  no.  8,  pp.  835-­‐840.   Faria,   R.,   Cardoso,   L.,   Akisue,   G.,   Pereira,   C.,   Junquiera,   J.,   Jorge,   A.   &   Santos   Junior,   P.   2011,   "Antimicrobial   activity   of   Calendula   officinalis,   Camellia   sinensis   and   chlorhexidine   against  the  adherence  of  microorganisms  to  sutures  after  extraction  of  unerupted  third   molars",  Journal  of  Applied  Oral  Science,  vol.  19,  no.  5,  pp.  476-­‐482.   Felter,   H.   &   Lloyd,   J.   1898,   "Phytolacca"   in   King's   American   Dispensatory   Ohio   Valley   Co.,   Cincinnatti.   Fitz-­‐Gibbon,  S.,  Tomida,  S.,  Chiu,  B.,  Nguyen,  L.,  Du,  C.,  Liu,  M.,  Elashoff,  D.,  Erfe,  M.,  Loncaric,   A.,   Kim,   J.,   Modlin,   R.,   Miller,   J.,   Sodergren,   E.,   Craft,   N.,   Weinstock,   G.   &   Li,   H.   2013,   "Propionibacterium   acnes  Strain   Populations   in   the   Human   Skin   Microbiome   Associated   with  Acne",  Journal  of  Investigative  Dermatology,  vol.  133,  no.  9,  pp.  2152-­‐2160.   Fonseca,   Y.,   Catini,   C.,   Vicentini,   T.,   Nomizo,   A.,   Gerlach,   R.   &   Fonseca,   M.   2010,   "Protective   effect   of   Calendula   officinalis   extract   against   UVB-­‐induced   oxidative   stress   in   skin:   evaluation   of   reduced   glutathione   levels   and   matrix   metalloproteinase   secretion",   60    

 

 

   

 

 

Journal  of  Ethnopharmacology,  vol.  127,  pp.  596-­‐601.   Fouladi,   R.F.   2012,   "Aqueous   extract   of   dried   fruit   of   Berberis   vulgaris   L.   in   acne   vulgaris   a   clinical  trial",  Journal  of  Dietary  Supplements,  vol.  9,  no.  4,  pp.  253-­‐261.   Fronza,  M.,  Heinzmann,  B.,  Hamburger,  M.,  Laufer,  S.  &  Merfort,  I.  2009,  "Determination  of  the   wound  healing  effect  of  Calendula  extracts  using  the  scratch  assay  with  3T3  fibroblasts",   Journal  of  Ethnopharmacology,  vol.  126,  pp.  463-­‐467.   Garner,  S.,  Eady,  A.,  Bennett,  C.,  Newton,  J.,  Thomas,  K.  &  Popescu,  C.  2012,  "Minocycline  for   acne  vulgaris:  efficacy  and  safety",  Cochrane  Database  Systemic  Reviews,  ,  no.  8.   Gazim,   Z.,   Rezende,   C.,   Fraga,   S.,   Svidzinski,   T.   &   Cortez,   D.   2008,   "Antifungal   activity   of   the   essential   oil   from   Calendula   officinalis   L.   (asteraceae)   growing   in   Brazil",   Brazilian   Journal   of  Microbiology,  vol.  38,  no.  1.   Gibson,   G.R.   &   Roberfroid,   M.B.   1995,   "Dietary   modulation   of   the   human   colonic   microbiota:   introducing  the  concept  of  prebiotics",  Journal  of  Nutrition,  vol.  125,  pp.  1401-­‐1412.   Gill,   S.,   Fouts,   D.,   Archer,   G.,   Mongodin,   F.,   DeBoy,   R.,   Ravel,   J.,   Paulsen,   I.,   Kolonay,   J.,   Brinkac,   L.,  Beanan,  M.,  Dodson,  R.,  Daugherty,  S.,  Madupu,  R.,  Angiuoli,  S.,  Durkin,  A.,  Haft,  D.,   Vamathevan,  J.,  Khouri,  H.,  Utterback,  T.,  Lee,  C.,  Dimitrov,  G.,  Jiang,  L.,  Qin,  H.,  Weidman,   J.,   Tran,   K.,   Kand,   K.,   Hance,   I.,   Nelson,   K.   &   Fraser,   C.   2005,   "Insights   on   Evolution   of   Virulence   and   Resistance   from   the   Complete    Genome   Analysis   of   an   Early   Methicillin-­‐ Resistant   Staphylococcus    aureus   Strain   and   a   Biofilm-­‐Producing   Methicillin-­‐Resistant    Staphylococcus   epidermidis   Strain†",   Journal   of   Bacteriology,   vol.   187,   no.   7,   pp.   2426-­‐ 2438.   Graham,   G.,   Farrer,   M.,   Cruse-­‐Sawyer,   K.,   Holland,   K.   &   Ingham,   E.   2004,   "Proinflammatory   cytokine   production   by   human   keratinocytes   stimulated   with  Propionibacterium   acnes  and  P.  acnes  GroEL",  British  Journal  of  Dermatology,  vol.  150,  no.  3,  pp.  421-­‐428.   Grice,  E.,  Kong,  H.,  Renaud,  G.,  Young,  A.,  NISC  Comparative  Sequencing  Program,  Bouffard,  G.,   Blakesley,  R.,  Wolfsberg,  T.,  Turner,  M.  &  Segre,  J.  2008,  "A  diversity  profile  of  the  human   skin  microbiota",  Genome  Research,  vol.  18,  pp.  1043-­‐1050.   Gueniche,  A.,  Knaudt,  B.,  Schuck,  E.,  Volz,  T.,  Bastien,  P.,  Martin,  R.,  Röcken,  M.,  Breton,  L.  &   Biedermann,   T.   2008,   "Effects   of   nonpathogenic   gram-­‐negative   bacterium   Vitreoscilla   filiformis  lysate  on  atopic  dermatitis:  a  prospective,  randomized,  double-­‐blind,  placebo-­‐ controlled  clinical  study",  British  Journal  of  Dermatology,  vol.  159,  no.  6,  pp.  1357-­‐1363.   Guy,   R.,   Green,   M.   &   Kealey,   T.   1996,   "Modeling   acne   in   vitro",   Journal   of   Investigative   Dermatology,  vol.  106,  pp.  176-­‐182.   Guy,   R.   &   Kealey,   T.   1998,   "The   effects   of   inflammatory   cytokines   on   the   isolated   human   sebaceous  infundibulum",  Journal  of  Investigative  Dermatology,  vol.  110,  pp.  410-­‐415.   Haba,  E.,  Bouhdid,  S.,  Torrego-­‐Solana,  N.,  Marques,  A.,  Espuny,  A.,  Garcia-­‐Celma,  M.  &  Manresa,   A.  2014,  "Rhamnolipids  as  emulsifying  agents  for  essential  oil  formulations:  antimicrobial   61    

 

 

   

 

 

effect   against   Candida   albicans   and   methicillin-­‐resistant   Staphylococcus   aureus",   Internation  journal  of  pharmaceutics,  vol.  476,  pp.  134-­‐141.   Halvorsen,   J.A.,   Stern,   R.S.,   Dalgard,   F.,   Thoresen,   M.,   Bjertness,   E.   &   Lien,   L.   2011,   "Suidical   ideation,   mental   health   problems,   and   social   impairment   are   increased   in   adolescents   with   acne:   a   population-­‐based   study",   Journal   of   Investigative   Dermatology,   vol.   131,   pp.   363-­‐370.   Hamburger,  M.,  Adler,  S.,  Baumann,  D.,  Forg,  A.  &  Weinreich,  B.  2003,  "Preparative  purification   of  the  major  anti-­‐inflammatory  triterpenoid  ester  from  Marigold  (Calendula  officinalis)",   Fitoterapia,  vol.  74,  pp.  328-­‐338.   Hanski,   I.,   Hertzen,   L.,   Fyhrquist,   N.,   Koskinen,   K.,   Torppa,   K.,   Laatikainen,   T.,   Karisola,   P.,   Auvinen,  P.,  Paulin,  L.,  Makela,  M.,  Vartiainen,  E.,  Kosunen,  T.,  Alenius,  H.  &  Haahtela,  T.   2012,   "Environmental   biodiversity,   human   microbiota,   and   allergy   are   interrelated",   PNAS,   [Online],   vol.   109,   no.   21.   Available   from:   http://www.pnas.org/cgi/doi/10.1073/pnas.1205624109.   Hassan,   S.,   Kjeldsen,   G.   &   Ericson-­‐Sollid,   J.   2004,   "Local   Variants   of   Staphylococcal   Cassette   Chromosome   mec   in    Sporadic   Methicillin-­‐Resistant   Staphylococcus   aureus   and    Methicillin-­‐Resistant   Coagulase-­‐Negative   Staphylococci:    Evidence   of   Horizontal   Gene   Transfer?",  Antimicrobial  Agents  and  Chemotherapy,  vol.  48,  no.  1,  pp.  285-­‐296.   Hegemann,  L.,  Toso,  S.M.,  Kitray,  K.  &  Webster,  G.  1994,  "Anti-­‐inflammatory  actions  of  benzoyl   peroxide:   effects   on   the   generation   of   reactive   oxygen   species   by   leucocytes   and   the   activity   of   protein   kinase   C   and   calmodulin",   British   Journal   of   Dermatology,   vol.   130,   pp.   569-­‐575.   Hernandez,  D.L.  2016,  "Letter  to  the  editor:  use  of  antibiotics,  gut  microbiota,  and  risk  of  type  2   diabetes:  epigenetics  regulation",  Journal  of  Clinical  Endocrinology  and  Metabolism,  vol.   101,  no.  5,  pp.  L62-­‐L63.   Heymann,  W.  2006,  "Toll-­‐like  receptors  in  acne  vulgaris",  Dialogues  in  Dermatology,  vol.  55,  pp.   691-­‐692.   Hoeffler,   U.   1977,   "Enzymatic   and   hemolytic   properties   of   Proprionibacterium   acnes   and   related  bacteria",  Journal  of  Clinical  Microbiology,  vol.  6,  no.  6,  pp.  555-­‐558.   Hoeffler,   U.,   Ko,   H.   &   Pulverer,   G.   1976,   "Antimicrobial   susceptibility   of   Proprionibacterium   acnes   and   related   microbial   species",   Antimicrobial   Agents   and   Chemotherapy,   vol.   10,   no.  3,  pp.  387-­‐394.   Huang,  Y.,  Yang,  C.,  Li,  T.,  Zouboulis,  C.  &  Hsu,  H.  2015,  "Cell-­‐free  extracts  of  Proprionibacterium   acnes   stimulate   cytokine   production   though   activation   of   p38   MAPK   and   Toll-­‐like   receptor  in  SZ95  sebocytes",  Life  Sciences,  vol.  139,  pp.  123-­‐131.   Ingham,   E.,   Holland,   K.,   Gowland,   G.   &   Cunliffe,   W.   1980,   "Purification   and   Partial   Characterization   of   an   Acid   Phosphatase  (EC   3.1.3.2)   Produced   by   Propionibacterium   acnes",  Journal  of  General  Microbiology,  vol.  118,  no.  59,  pp.  65.   62    

 

 

   

 

 

Ingram,  J.,  Grindlay,  D.  &  Williams,  H.  2010,  "Problems  in  the  reporting  of  acne  clinical  trials:  a   spot  check  from  the  2009  Annual  Evidence  Update  on  Acne  Vulgaris",  Trials,  [Online],  vol.   11,  no.  77,  pp.  08/02/16.   Ipci,  K.,  Altintoprak,  N.,  Muluk,  N.B.,  Senturk,  M.  &  Cinqi,  C.  2016,  "The  possible  mechanism  of   the  human  microbiome  in  allergic  disease",  European  Archives  of  Otorhinolaryngology,  ,   pp.  1-­‐10.   Jarrousse,   V.,   Castex-­‐Rizzi,   N.   &   Khammari,   A.   2007,   "Modulation   of   integrins   and   filaggrin   expression   by   Proprionibacterium   acnes   extracts   on   keratinocytes",   Archives   of   Dermatological  Research,  vol.  299,  no.  9,  pp.  441-­‐447.   Jeremy,  A.,  Holland,  D.,  Roberts,  S.,  Thomson,  K.  &  Cunliffe,  W.  2003,  "Inflammatory  events  are   involved  in  acne  lesion  initiation",  Journal  of  Investigative  Dermatology,  vol.  121,  no.  1,   pp.  20-­‐27.   Jugeau,   S.,   Tenaud,   I.,   Knol,   A.,   Jarrousse,   V.,   Quereux,   G.,   Khammari,   A.   &   Dreno,   B.   2005,   "Induction   of   toll-­‐like   receptors   by   Propionibacterium   acnes",   British   Journal   of   Dermatology,  vol.  153,  no.  6,  pp.  1105-­‐1113.   Jung,   G.W.,   Tse,   J.E.,   Guiha,   I.   &   Rao,   J.   2013,   "Prospective,   randomized,   open-­‐label   trial   comparing   the   safety,   efficacy,   and   tolerability   of   an   acne   treatment   regimen   with   and   without  a  probiotic  supplement  and  minocycline  in  subjects  with  mild  to  moderate  acne",   Journal  of  Cutaneous  Medicine  and  Surgery,  vol.  17,  no.  2,  pp.  114-­‐122.   Kang,  S.,  Li,  Z.,  Jia,  R.,  Song,  X.,  Li,  L.,  Chen,  Z.,  Peng,  L.,  Qu,  J.,  Hu,  Z.,  Lai,  X.,  Wang,  G.,  Liang,  X.,   He,   C.   &   Yin,   L.   2015,   "The   antibacterial   mechanism   of   berberine   against   Acintobacillus   pleuropneumoniae",  Natural  Product  Research,  vol.  29,  no.  23,  pp.  2203-­‐2206.   Kaplan,  G.,  Walsh,  G.,  Guido,  L.,  Meyn,  P.,  Burkhardt,  R.,  Abalos,  R.,  Barker,  J.,  Frindt,  P.,  Fajardo,   T.,   Celona,   R.   &   Cohn,   Z.   1992,   "Novel   Responses   of   Human   Skin   to   Intradermal      Recombinant   Granulocyte/Macrophage-­‐Colonystimulating    Factor:   Langerham   Cell   Recruitment,    Keratinocyte   Growth,   and   Enhanced   Wound   Healing",   Journal  of  Experimental  Medicine,  vol.  175,  pp.  1717-­‐1728.   Kim,  J.,  Ochoa,  M.,  Krutzik,  S.,  Takeuchi,  O.,  Uematsu,  S.,  Legaspi,  A.,  Brightbill,  H.,  Holland,  D.,   Cunliffe,   W.,   Akira,   S.,   Sieling,   P.,   Godowski,   P.   &   Modlin,   R.   2002,   "Activation   of   Toll-­‐Like   Receptor   2   in   Acne   Triggers   Inflammatory   Cytokine   Responses",   The   Journal   of   Immunology,  vol.  169,  pp.  1535-­‐1541.   Kimber,   I.,   Cumberbatch,   M.,   Dearman,   R.,   Bhushan,   M.   &   Griffiths,   C.   2002,   "Cytokines   and   chemokines   in   the   initiation   and   regulation   of   epidermal   Langerhans   cell   mobilization",   British  Journal  of  Dermatology,  vol.  142,  no.  3,  pp.  401-­‐412.   Kishimoto,   S.,   Takashi,   M.,   Sumitomo,   K.   &   Ohmiya,   A.   2005,   "Analysis   of   carotenoid   composition   in   petals   of   calendula   (Calendula   officinalis   L.)",   Bioscience,   Biotechnology   and  Biochemistry,  vol.  69,  no.  11,  pp.  2122-­‐2128.   Kodiyan,  J.  &  Amber,  K.  2015,  "A  review  of  the  use  of  topical  Calendula  in  the  prevention  and   63    

 

 

   

 

 

treatment  of  radiotherapy-­‐induced  skin  reactions",  Antioxidants,  vol.  4,  pp.  293-­‐303.   Koltun,  W.,  Lucky,  A.W.,  Thiboutot,  D.,  Niknian,  M.,  Sampson-­‐Landers,  C.,  Korner,  P.  &  Marr,  J.   2007,   "Efficacy   and   safety   of   3   mg   drospirenone/20   mcg   ethinylestradiol   oral   contraceptive   administered   in   24/4   regimen   in   the   treatment   of   acne   vulgaris:   a   randomized,   double-­‐blind,   placebo-­‐controlled   trial",   Contraception,   vol.   77,   no.   4,   pp.   249-­‐256.   Kong,  H.,  Oh,  J.,  Deming,  C.,  Conlan,  S.,  Grice,  E.,  Beatson,  M.,  Nomicos,  E.,  Polley,  E.,  Komarow,   H.,   NISC   Comparative   Sequence   Program,   Murray,   P.,   Turner,   M.   &   Segre,   L.   2012,   "Temporal  shifts  in  the  skin  microbiome  associated  with  disease  flares  and  treatment  in   children  with  atopic  dermatitis",  Genome  Research,  vol.  22,  pp.  850-­‐859.   Kontaxakis,   V.P.,   Skourides,   D.,   Ferentinos,   P.,   Havaki-­‐Kontaxaki,   B.J.   &   Papadimitriou,   G.N.   2009,  "Isotretinoin  and  psychopathology:  a  review",  Annals  of  General  Psychiatry,  vol.  8,   no.  2,  pp.  1-­‐8.   Kozitskaya,   S.,   Cho,   S.,   Dietrich,   K.,   Marre,   R.,   Naber,   K.   &   Ziebuhr,   W.   2004,   "The   Bacterial   Insertion   Sequence   Element   IS256   Occurs   Preferentially    in   Nosocomial   Staphylococcus   epidermidis   Isolates:   Association   with  Biofilm   Formation   and   Resistance   to   Aminoglycosides",  Infection  and  Immunity,  vol.  72,  no.  2,  pp.  1210-­‐1215.   Krutmann,  J.  2009,  "Pre-­‐  and  probiotics  for  human  skin",  Journal  of  Dermatological  Science,  vol.   54,  pp.  1-­‐5.   Kuhlman,   D.S.   &   Callen,   J.P.   1986,   "A   comparison   of   clindamycin   phosphate   1   percent   topical   lotion  and  placebo  in  the  treatment  of  acne  vulgaris",  Cutis,  vol.  38,  pp.  203-­‐206.   Lai,  Y.,  Cogen,  A.,  Radek,  K.,  Jeong  Park,  H.,  Macleod,  D.,  Anke,  L.,  Ryan,  A.,  Nardo,  A.  &  Gallo,  R.   2010,   "Activation   of   TLR2   by   a   Small   Molecule   Produced   by   Staphylococcus   epidermidis  Increases  Antimicrobial  Defense  against  Bacterial  Skin  Infections",  Journal  of   Investigative  Dermatology,  vol.  130,  no.  9,  pp.  2211-­‐2221.   Lai,  Y.,  Li,  D.,  Muehleisen,  B.,  Radek,  K.,  Jeong  Park,  H.,  Zhiheng,  L.,  Lei,  H.,  Quan,  Y.,  Zhang,  T.,   Wu,   Y.,   Kotol,   P.,   Morizane,   S.,   Hata,   T.,   Iwatsuki,   K.,   Tang,   C.   &   Gallo,   R.   2012,   "The   Antimicrobial   Protein   REG3A   Regulates   Keratinocyte   Proliferation   and   Differentiation   after  Skin  Injury",  Immunity,  vol.  37,  no.  27,  pp.  74-­‐84.   Lai,  Y.,  Nardo,  A.,  Nakatsuji,  T.,  Leichtle,  A.,  Yang,  Y.,  Cogen,  A.,  Wu,  Z.,  Hooper,  L.,  Schmidt,  R.,   Aulock,   S.,   Radek,   K.,   Huang,   C.,   Ryan,   A.   &   Gallo,   R.   2009,   "Commensal   bacteria   regulate   Toll-­‐like  receptor  3-­‐dependent  inflammation  after  skin  injury",  Nature  Medicine,  vol.  15,   no.  12,  pp.  1377-­‐1383.   Leach,   M.   2008,   "Calendula   officinalis   and   wound   healing:   a   systematic   review",   Wounds,   [Online],   vol.   20,   no.   8.   Available   from:   http://www.woundsresearch.com/article/9064#top.   Levy,  R.M.,  Huang,  E.Y.,  Roling,  D.,  Leyden,  J.  &  Margolis,  D.J.  2003,  "Effect  of  antibiotics  on  the   oropharyngeal  flora  in  patients  with  acne",  Journal  of  the  American  Medical  Association   64    

 

 

   

 

 

Dermatology,  vol.  139,  no.  4,  pp.  467-­‐471.   Leyden,  J.,  Wortzman,  M.  &  Baldwin,  E.K.  2008,  "Antibiotic-­‐resistant  Proprionibacterium  acnes   suppressed  by  a  benzoyl  peroxide  cleanser  6%",  Cutis,  vol.  8,  pp.  417-­‐421.   Li,   D.,   Lei,   H.,   Li,   Z.,   Wang,   Y.   &   Lai,   Y.   2013,   "A   Novel   Lipopeptide   from   Skin   Commensal   Activates   TLR2/CD36-­‐p38   MAPK   Signaling   to   Increase   Antibacterial   Defense   against   Bacterial  Infection",  Plos  One,  vol.  8,  no.  3,  pp.  e58288.   Lucky,  A.W.,  Koltun,  W.,  Thiboutot,  D.,  Niknian,  M.,  Sampson-­‐Landers,  C.,  Korner,  P.  &  Marr,  J.   2008,   "A   combined   oral   contraceptive   containing   3-­‐mg   drospirenone/10-­‐microg   ethinyl   estradiol   in   the   treatment   of   acne   vulgaris:   a   randomized,   double-­‐blind   placebo-­‐ controlled   study   evaluating   lesion   counts   and   participant   self-­‐assessment",   Cutis,   vol.   82,   no.  2,  pp.  143-­‐150.   Lv,   Z.,   Peng,   G.,   Liu,   W.,   Xu,   H.   &   Su,   J.   2015,   "Berberine   blocks   the   relapse   of   Clostridium   difficile   infection   in   C57BL/6   mice   after   standard   vancomycin   treatment",   Antimicrobial   Agents  and  Chemotherapy,  vol.  56,  no.  7,  pp.  3726-­‐3735.   Maloney,   M.J.,   Dietze,   P.J.,   Watson,   D.,   Niknian,   M.,   Lee-­‐Rugh,   S.,   Sampson-­‐Landers,   C.   &   Korner,   P.   2009,   "A   randomized   controlled   trial   of   a   low-­‐dose   combined   oral   contraceptive   containing   3   mg   drospirenone   plus   20   micog   ethinylestradiol   in   the   treatment   of   acne   vulgaris:   lesion   counts,   investigator   rations   and   subject   self-­‐ assessment",  Journal  of  Drugs  and  Dermatology,  vol.  8,  no.  9,  pp.  837-­‐844.   Maloney,   M.J.,   Dietze,   P.J.,   Watson,   D.,   Niknian,   M.,   Lee-­‐Rugh,   S.,   Sampson-­‐Landers,   C.   &   Korner,   P.   2008,   "Treatment   of   acne   using   a   3-­‐milligram   drospirenone/20-­‐microgram   ethinyl   estradiol   oral   contraceptive   administered   in   a   24/4   regimen:   a   randomized   controlled  trial",  Obstetrics  and  Gynecology,  vol.  112,  no.  4,  pp.  773-­‐781.   Mankowska-­‐Wierzbicka,   D.,   Karczewski,   J.   &   Dobrowolska-­‐Zachwieja,   Z.A.   2015,   "The   microbiome   and   dermatological   diseases",   Postepy   Hid   Med   Dosw   (online),   vol.   69,   no.   978,  pp.  985.   Margolis,  D.J.,  Bowe,  W.P.,  Hoffstad,  O.  &  Berlin,  J.A.  2005,  "Antibiotic  treatment  of  acne  may   be   associated   with   upper   respiratory   tract   infections",   Archives   of   Dermatology,   vol.   141,   pp.  1132-­‐1136.   Martins,   F.,   Conceicao,   E.,   Bandeira,   E.,   Silva,   J.   &   Costa,   R.   2014,   "The   effects   of   extraction   method   on   recovery   rutin   from   Calendula   officinalis   L.   (Asteraceae)",   Pharmacognosy   Magazine,  vol.  10,  no.  3,  pp.  S569-­‐S573.   Marukami,  T.,  Kishi,  A.  &  Yoshikawa,  M.  2001,  "Medicinal  flowers.  IV.  Marigold.  (2):  Structures   of   new   ionone   and   sesquiterpene   glycosides   from   Egyption   Calendula   officinalis",   Chemistry  Pharmaceutical  Bulletin,  vol.  49,  no.  8,  pp.  974-­‐978.   Mathur,   R.   &   Goyal,   M.   2011,   "Antimicrobial   and   phytochemical   estimation   of   Calendula   officinalis   against   human   pathogenic   microorganisms",   International   Journal   of   Innovations  in  Bio-­‐Sciences,  vol.  1,  pp.  1-­‐10.   65    

 

 

   

 

 

Medina,  E.J.,  Lora,  A.G.,  Paco,  L.,  Algarra,  I.,  Collado,  A.  &  Garrido,  F.  2006,  "A  new  extract  of   the  plant  Calendula  officinalis  produces  dual  in  vitro  effect:  cytotoxic  antitumour  activity   and  lymphocyte  activiation",  BioMed  Central  Cancer,  vol.  6,  pp.  119-­‐132.   Mills,  O.M.,  Thornsberry,  C.,  Cardin,  C.W.,  Smiles,  K.A.  &  Leyden,  J.  2002,  "Bacterial  resistance   and   therapeutic   outcome   following   three   months   of   topical   acne   therapy   with   2%   erythromycin  gel  versus  its  vehicle",  Acta  Dermato-­‐Venereologica,  vol.  82,  pp.  260-­‐265.   Misery,  L.  2011,  "Consequences  of  psychological  distress  in  adolescents  with  acne",  Journal  of   Investigative  Dermatology,  vol.  131,  pp.  290-­‐291.   Mishra,  A.K.,  Mishra,  A.,  Anurag,  V.  &  Chattopadhyay,  P.  2012,  "Effects  of  calendula  essential   oil-­‐based   cream   on   biochemical   parameters   of   skin   of   albino   rats   against   ultraviolet   B   radiation",  Scienta  Pharmaceutica,  vol.  80,  pp.  669-­‐683.   Modesto,   A.,   Lima,   K.   &   de   Uzeda,   M.   2000,   "Effects   of   three   different   infant   dentifrices   on   biofilms   and   oral   microorganisms",   The   Journal   of   Clinical   Pediatric   Dentistry,   vol.   24,   no.   3,  pp.  237-­‐243.   Muley,   B.P.,   Khadabadi,   S.S.   &   Banarase,   N.B.   2009,   "Phytochemical   consistuents   and   pharmcological   activities   of   Calendula   officinalis   Linn   (Asteraceae):   a   review",   Tropical   Journal  of  Pharmaceutical  Research,  vol.  8,  no.  5,  pp.  455-­‐465.   Nagy,   I.,   Pivarcsi,   A.,   Koreck,   A.,   Szell,   M.,   Urban,   E.   &   Kemeny,   L.   2005,   "Distinct   Strains   of   Propionibacterium   acnes   Induce   Selective    Human   b-­‐Defensin-­‐2   and   Interleukin-­‐8   Expression  in  Human    Keratinocytes  Through  Toll-­‐Like  Receptors",  Journal  of  Investigative   Dermatology,  vol.  124,  pp.  931-­‐938.   Neukirch,   H.,   D'Ambrosio,   M.,   Sosa,   S.,   Altinier,   G.,   Della   Loggia,   R.   &   Guerriero,   A.   2005,   "Improved   anti-­‐inflammatory   activity   of   three   new   terpenoids   derived,   by   systematic   chemical   modifications,   from   the   abundant   triterpenes   of   the   flowery   plant   Calendula   officinalis.",  Chemical  Biodiversity,  vol.  2,  no.  5,  pp.  657-­‐671.   Nishijima,  S.,  Kurokawa,  I.,  Katoh,  H.  &  Watanabe,  K.  2000,  "The  Bacteriology  of  Acne  Vulgaris   and   Antimicrobial   Susceptibility   of   Propionibacterium   acnes  and  Staphylococcus   epidermidis  Isolated  from  Acne  Lesions",  The  Journal  of  Dermatology,  vol.  27,  no.  5,  pp.   318-­‐323.   Nishjima,  S.,  Kurokawa,  I.,  Katoh,  N.  &  Watanabe,  K.  2000,  "The  Bacteriology  of  Acne  Vulgaris   and   Antimicrobial   Susceptibility   of   Propionibacterium   acnes  and  Staphylococcus   epidermidis  Isolated  from  Acne  Lesions",  The  Journal  of  Dermatology,  vol.  27,  no.  5,  pp.   318-­‐323.   Nizynski,  B.,  Alsoufi,  A.,  Paczkowski,  C.,  Dlugosz,  M.  &  Szakiel,  A.  2015,  "The  content  of  free  and   esterified   triterpenoids   of   the   native   marigold   (Calendula   officinalis)   plant   and   its   modifications  in  in  vitro  cultures",  Phytochemistry  Letters,  vol.  11,  pp.  410-­‐417.   Okoh,  O.,  Sadimenko,  A.,  Asekun,  O.  &  Afolayan,  A.  2008,  "The  effects  of  drying  on  the  chemical   components  of  essential  oils  of  Calendula  officinalis  L.",  African  Journal  of  Biotechnology,   66    

 

 

   

 

 

vol.  7,  no.  10,  pp.  1500-­‐1502.   Okuma,  C.,  Andrade,  T.,  Caetano,  G.,  Finci,  L.,  Maciel,  N.,  Topan,  J.,  Cefali,  L.,  Polizello,  A.,  Carlo,   T.,  Rogerio,  A.,  Spadero,  A.,  Isaac,  V.,  Frade,  V.  &  Rocha-­‐Filho,  P.  2015,  "Development  of   lamellar   gel   phase   emulsion   containing   marigold   oil   (Calendula   officinalis)   a   potential   modern  wound  dressing",  European  Journal  of  Pharmaceutical  Sciences,  vol.  71,  no.  62,   pp.  72.   Ong,  P.Y.,  Ohtake,  T.,  Brandt,  C.,  Strickland,  I.,  Boguniewicz,  M.,  Ganz,  T.,  Gallo,  R.  &  Leung,  D.Y.   2002,  "Endogenous  antimicrobial  peptides  and  skin  infections  in  atopic  dermatitis",  New   England  Journal  of  Medicine,  vol.  347,  pp.  1151-­‐1160.   Panahi,   Y.,   Sharif,   M.,   Sharif,   A.,   Beiraghdar,   F.,   Zahiri,   Z.,   Amirchoopani,   G.,   Marzony,   E.   &   Sahebkar,  A.  2012,  "A  randomised  comparatice  trial  on  the  therapeutic  efficacy  of  topical   Aloe  vera  and  Calendula  officinalis  on  diaper  dermatitis  in  children",  The  Scientific  World   Journal,  ,  pp.  5.   Parente,   L.,   Junior,   R.,   Tresvenzol,   L.,   Vinaud,   M.,   de   Paula,   J.   &   Paulo,   N.   2012,   "Would   healing   and   anti-­‐inflammatory   effect   in   animal   models   of   Calendula   officinalis   L.   growing   in   Brazil",  Evidence-­‐Based  Complementary  and  Alternative  Medicine,  ,  pp.  1-­‐7.   Patra,  J.K.,  Kim,  E.S.,  Oh,  K.,  Kim,  H.J.  &  Kim,  Y.  2014,  "Antibacterial  effect  of  crude  extract  and   metabolites   of   Phytolacca   americana   on   pathogens   responsible   for   periodontal   inflammatory   diseases   and   dental   caries",   BMC   Completmentary   and   Alternative   Medicine,  vol.  14,  pp.  343.   Patrick,  K.,  Kumar,  S.,  Edwardson,  P.  &  Hutchinson,  J.  1996,  "Induction  of  vascularisation  by  an   aqueous   extract   of   the   flowers   of   Calendula   officinalis   L.   the   European   marigold",   Phytomedicine,  vol.  3,  no.  1,  pp.  11-­‐18.   Peng,  L.,  Kang,  S.,  Yin,  S.,  Jia,  R.,  Song,  X.,  Li,  L.,  Li,  Z.,  Liang,  X.,  Li,  L.,  He,  C.,  Ye,  G.,  Yin,  L.,  Shi,  F.,   Lu,   C.   &   Jing,   B.   2015,   "Antibacterial   activity   and   mechanism   of   berberine   against   Streptococcus   agalactiae",   International   Journal   of   Clinical   and   Experimental   Pathology,   vol.  8,  no.  5,  pp.  5217-­‐5223.   Plewig,   G.,   Cunliffe,   W.,   Binder,   N.   &   Hoschen,   K.   2009,   "Efficacy   of   an   oral   contraceptive   containing  EE  0.03  mg  and  CMA  2  mg  (Belara)  in  moderate  acne  resolution:  a  randomized,   double-­‐blind,  placebo-­‐controlled  phase  III  trial",  Contraception,  vol.  80,  no.  1,  pp.  25-­‐33.   Pommier,   P.,   Gomez,   F.,   Sunyach,   M.P.,   D'Hombres,   A.,   Carrie,   C.   &   Montbarbon,   X.   2004,   "Phase   III   randomized   trial   of   Calendula   officinalis   compared   with   trolamine   for   the   prevention   of   acute   dermatitis   during   irradiation   for   breast   cancer",   Journal   of   clinical   oncology  :  official  journal  of  the  American  Society  of  Clinical  Oncology,  vol.  22,  no.  8,  pp.   1447-­‐1453.   Preethi,   K.C.   &   Kuttan,   R.   2008,   "Effect   of   Calendula   officinalis   flower   extract   on   acute   phase   proteins,   antioxidant   defense   mechanims   and   granuloma   formation   during   thermal   burns",  Journal  of  Clinical  Biochemistry  and  Nutrition,  vol.  43,  pp.  58-­‐64.   67    

 

 

   

 

 

Preethi,   K.C.,   Kuttan,   G.   &   Kuttan,   R.   2008,   "Anti-­‐inflammatory   activity   of   flower   extract   of   Calendula   officinalis   Linn.   and   its   possible   mechanism   of   action",   Indian   Journal   of   Experimental  Biology,  vol.  47,  pp.  113-­‐120.   Preethi,   K.C.,   Kuttan,   G.   &   Kuttan,   R.   2006,   "Antioxidant   potential   of   an   extract   of   Calendula   officinalis.  flowers  in  Vitro.  and  in  vivo.",  Pharmaceutical  Biology,  vol.  44,  no.  9,  pp.  691-­‐ 697.   Puhvel,   S.   &   Reisner,   R.   1972,   "The   production   of   hyaluronidase   (hyaluronate   lyase)   by   Corynebacterium  acnes",  Journal  of  Investigative  Dermatology,  vol.  58,  pp.  66-­‐70.   Puhvel,   S.   &   Sakamoto,   M.   1980,   "Cytotaxin   Production   by   Comedonal   Bacteria   (Propionibacterium   acnes,  Propionibacterium   granulosum   and   Staphylococcus   epidermidis)",  Journal  of  Investigative  Dermatology,  vol.  74,  no.  36,  pp.  39.   Rackova,   L.,   Majekova,   M.,   Kostalova,   D.   &   Stefek,   M.   2004,   "Antiradical   and   antioxidant   activities  of  alkaloids  isolated  from  Mahonia  aquifolium.  Structural  aspects",  Bioorganic   and  Medicinal  Chemistry,  vol.  12,  pp.  4709-­‐4715.   Re,   T.,   Mooney,   D.,   Antignac,   E.,   Dufour,   E.,   Bark,   I.,   Srinivasan,   V.   &   Nohynek,   G.   2009,   "Application  of  the  threshold  of  toxicological  concern  approach  for  the  safety  evaluation   of   calendula   flower   (Calendula   officinalis)   petals   and   extacts   used   in   cosmetic   and   personal  care  products",  Food  and  Chemical  Toxicology,  vol.  47,  pp.  1246-­‐1254.   Roller,  S.,  Ernest,  N.  &  Buckle,  J.  2009,  "The  antimicrobial  acitivty  of  high-­‐necrodane  and  other   lavender   oils   in   methicillin-­‐sensitive   and   -­‐resistant   Staphylococcus   aureus   (MSSA   and   MRSA)",  Journal  of  Alternative  and  Complementary  Medicine,  vol.  15,  no.  3,  pp.  275-­‐279.   Roopashree,   T.,   Dang,   R.,   Shobha   Rani,   R.   &   Narendra,   C.   2008,   "Antibacterial   activity   of   antipsoriatic   herbs:   Cassis   tora,   Momordica   charantia   and   Calendula   officinalis",   International  Journal  of  Applied  Research  in  Natural  Products,  vol.  1,  no.  3,  pp.  20-­‐28.   Roth,  R.  &  James,  W.  1988,  "Microbial  Ecology  of  the  Skin",  Annual  Reviews  in  Microbiology,  vol.   42,  pp.  441-­‐464.   Roveroni-­‐Favaretto,  L.,  Lodi,  K.  &  Almeida,  J.  2009,  "Topical  Calendula  officinalis  L.  successfully   treated  exfoliative  cheilitis:  a  case  report",  Cases  Journal,  vol.  2,  pp.  9077.   Sagransky,  M.,  Yentzer,  B.  &  Feldman,  R.  2009,  "Benzoyl  peroxide:  a  review  of  its  current  use  in   the   treatment   of   acne   vulgaris",   Expert   Opinion   on   Pharmacotherapy,   vol.   10,   no.   15,   pp.   2555-­‐2562.   Sardana,   K.   &   Garg,   V.K.   2010,   "An   observational   study   of   methionine-­‐bound   zinc   with   antioxidants  for  mild  to  moderate  acne  vulgaris",  Dermatologic  Therapy,  vol.  23,  no.  4,  pp.   411-­‐418.   Schaller,  M.,  Loewenstein,  M.,  Borelli,  C.,  Jacob,  K.,  Vogeser,  M.,  Burgdorf,  W.  &  Plewig,  G.  2005,   "Induction   of   chemoattractive   proinflammatory   cytokine   response   after   stimulation   of   keratinocytes   with   Proprionibacterium   acnes   and   coproporphyrin   III",   British   Journal   of   68    

 

 

   

 

 

Dermatology,  vol.  153,  no.  1,  pp.  66-­‐71.   Schneider,  F.,  Danski,  M.  &  Vayego,  S.  2015,  "Usage  of  Calendula  officinalis  in  the  prevention   and   treatment   of   radiodermatitis:   a   randomized   double-­‐blind   controlled   clinical   trial",   Journal  of  School  of  Nursing  USP,  vol.  49,  pp.  220-­‐226.   Scott,  D.,  Cunliffe,  W.  &  Gowland,  G.  1979,  "Activation  of  complement—a  mechanism  for  the   inflammation  in  acne",  British  Journal  of  Dermatology,  vol.  101,  no.  3,  pp.  315-­‐320.   Sela,   F.,   Karapandzova,   M.,   Stefkov,   G.,   Cvetkovikj,   I.   &   Kulevanova,   S.   2015,   "Chemical   composition   and   antimicrobial   activity   of   essential   oils   of   Juniperis   excelsa   Bieb.   (Cupressaceae)  grown  in  R.  Macedonia",  Pharmacognosy  Research,  vol.  7,  no.  1,  pp.  74-­‐ 80.   Shalita,   A.R.   1981,   "Treatment   of   mild   and   moderate   acne   vulgaris   with   salicyclic   acid   in   an   alcohol-­‐detergent  vehicle",  Cutis,  vol.  28,  no.  5,  pp.  556-­‐561.   Sharma,  M.,  Schoop,  R.,  Suter,  A.  &  Hudson,  J.  2011,  "The  potential  use  of  Echinacea  in  Acne:   Control  of  Proprionibacterium  acnes  growth  and  inflammation",  Phytotherapy  Research,   vol.  25,  pp.  517-­‐521.   Sharp,  L.,  Finnila,  K.,  Johansson,  H.,  Abrahamsson,  M.,  Hatschek,  T.  &  Bergenmar,  M.  2013,  "No   differences   between   Calendula   cream   and   aqueous   cream   in   the   prevention   of   acute   radiation   skin   reactions   -­‐   results   from   a   randomised   blinded   trial",   European   Journal   of   Oncology  Nursing,  vol.  17,  pp.  429-­‐435.   Shibata,   M.,   Katsuyama,   M.,   Onodera,   T.,   Ehama,   R.,   Hosoi,   J.   &   Tagami,   H.   2009,   "Glucocorticoids   enhance   toll-­‐like   receptor   2   expression   in   human   keratinocytes   stimulated   with   Proprionibacterium   acnes   or   proinflammatory   cytokines",   Journal   of   Investigative  Dermatology,  vol.  129,  pp.  375-­‐382.   Sienkiewicz,   M.,   Lysakowska,   M.,   Ciecwierz,   J.,   Denys,   P.   &   Kowalcyz,   E.   2011,   "Antibacterial   acitivty  of  thyme  and  lavender  essential  oils",  Medical  Chemistry,  vol.  7,  no.  6,  pp.  674-­‐89.   Skabytska,   Y.   &   Biedermann,   T.   2016,   "Staphylococcus   epidermidis   sets   things   right   again",   Journal  of  Investigative  Dermatology,  vol.  136,  pp.  559-­‐556.   Slobodnikova,  L.,  Kostalova,  D.,  Labudova,  D.,  Kotulova,  D.  &  Kettmann,  V.  2004,  "Antimicrobial   activity   of   Mahonia   aquifolium   crude   extract   and   its   major   isolated   alkaloids",   Phytotherapy  Research,  vol.  18,  pp.  674-­‐676.   Sokovic,  M.,  Glamoclija,  J.,  Marin,  P.,  Brkic,  D.  &  van  Griensven,  L.  2010,  "Antibacterial  effects  of   the   essential   oils   of   commonly   consumed   medicinal   herbs   using   an   in   vitro   model",   Molecules,  vol.  15,  no.  11,  pp.  7532-­‐46.   Sugisaki,   H.,   Yamanaka,   K.,   Kakeda,   H.,   Kitagawa,   H.,   Tanaka,   K.,   Watanabe,   K.,   Gabazza,   E.,   Kurokawa,   I.   &   Mizutani,   H.   2009,   "Increased   interferon-­‐γ,   interleukin-­‐12p40   and   IL-­‐8   production  in  Propionibacterium  acnes-­‐treated  peripheral  blood  mononuclear  cells  from   patient   with   acne   vulgaris:   Host   response   but   not   bacterial   species   is   the   determinant   69    

 

 

   

 

 

factor  of  the  disease",  Journal  of  Dermatological  Science,  vol.  55,  no.  1,  pp.  47-­‐52.   Szakiel,  A.,  Ruszkowski,  D.,  Grudniak,  A.,  Kurek,  A.,  Wolska,  K.,  Doligalska,  M.  &  Janiszowska,  W.   2008,  "Antibacterial  and  antiparasitic  activity  of  oleanolic  acid  and  its  glycosides  isolated   from  marigold  (Calendula  officinalis)",  Planta  Medica,  vol.  74,  no.  1709,  pp.  1715.   Tadeg,  H.,  Mohammed,  E.,  Asres,  K.  &  Gebre-­‐Mariam,  T.  2005,  "Antimicrobial  activities  of  some   selected  traditional  Ethiopian  medicinal  plants  used  in  the  treatment  of  skin  disorders",   Journal  of  Ethnopharmacology,  vol.  100,  pp.  168-­‐175.   Tan,  J.K.,  Jones,  E.,  Allen,  E.,  Pripotnev,  S.,  Raza,  A.  &  Wolfe,  B.  2013,  "Evaluation  of  essential   clinical   components   and   features   of   current   acne   global   grading   scales",   Journal   of   American  Academy  of  Dermatology,  vol.  69,  no.  5,  pp.  754-­‐761.   Tan,  J.K.,  Tang,  J.,  Fung,  K.,  Gupta,  A.K.,  Thomas,  R.,  Sapra,  S.,  Lynde,  C.,  Poulin,  Y.,  Gulliver,  W.   &  Sebaldt,  R.  2007,  "Development  and  validation  of  a  comprehensive  acne  severity  scale",   Journal  of  Cutaneous  Medicine  and  Surgery,  vol.  11,  no.  6,  pp.  211-­‐216.   Tanideh,  N.,  Jamishidzadeh,  A.,  Sepehrimanesh,  M.,  Hosseinzadeh,  M.,  Koohi-­‐Hoseeinabadi,  O.,   Najabi,  A.,  Raam,  M.,  Daneshi,  S.  &  Yousefabad,  S.  2016,  "Healing  acceleration  of  acetic   acid-­‐induced  colitis  by  marigold  (Calendula  officinalis)  in  male  rats",  The  Saudi  Journal  of   Gastroenterology,  vol.  22,  no.  1,  pp.  50-­‐56.   Tanideh,   N.,   Tavakoli,   P.,   Saghiri,   M.A.,   Garcia-­‐Godoy,   F.,   Amanat,   D.,   Tadbir,   A.A.,   Samani,   S.   &   Tamadon,   A.   2013,   "Healing   acceleration   in   hamsters   of   oral   mucositis   induced   by   5-­‐ fluorouracil  with  topical  Calendula  officinalis",  Oral  Medicine,  vol.  115,  no.  3,  pp.  332-­‐338.   Taye,   B.,   Giday,   M.,   Animut,   A.   &   Seid,   J.   2011,   "Antibacterial   activities   of   selected   medicinal   plants   in   traditional   treatment   of   human   wounds   in   Ethiopia",   Asian   Pacific   Journal   of   Tropical  Biomedicine,  vol.  1,  no.  5,  pp.  370-­‐375.   Thiboutot,  D.,  Zaenglein,  A.,  Weiss,  J.,  Webster,  G.,  Calvarese,  B.,  &  Chen,  D.  2008,  "An  aqueous   gel  fixed  combination  of  clindamycin  phosphate  1.2%  and  benzoyl  peroxide  2.5%  for  the   once-­‐daily   treatment   of   moderate   to   severe   acne   vulgaris:   assessment   of   efficacy   and   safety  in  2813  patients",  Journal  of  American  Academy  of  Dermatology,  vol.  59,  pp.  792-­‐ 800.   Turta,  O.,  &  Rautava,  S.  2016,  "Antibiotics,  obesity  and  the  link  to  microbes  -­‐  what  are  we  doing   to  our  children?",  BMC  Medicine,  vol.  14,  no.  1,  pp.  57.   Ukiya,   M.,   Akihisa,   T.,   Yasukawa,   K.,   Tokuda,   H.,   Suzuki,   T.   &   Kimura,   Y.   2006,   "Anti-­‐ Inflammatory,   Anti-­‐Tumor-­‐Promoting,   and   Cytotoxic   Activities   of   Constituents   of   Marigold   (Calendula  officinalis)   Flowers",   Journal   of   Natural   Products,   vol.   69,   no.   12,   pp.   1692-­‐1696.   Ukiya,   M.,   Akihisa,   T.,   Yasukawa,   K.,   Tokuda,   H.,   Suzuki,   T.   &   Surugadai,   K.   2006,   "Anti-­‐ inflammatory,   anti-­‐tumour-­‐promoting,   and   cytotoxic   activities   of   constituents   of   marigold",  Journal  of  Natural  Products,  vol.  69,  no.  12,  pp.  1692-­‐1696.   70    

 

 

   

 

 

Uzun,   E.,   Sariyar,   G.,   Adsersen,   A.,   Karakoc,   B.,   Otuk,   G.,   Oktayoglu,   E.   &   Pirildar,   S.   2004,   "Traditional  medicine  in  Sakarya  province  (Turkey)  and  antimicrobial  activities  of  selected   species",  Journal  of  Ethnopharmacology,  vol.  95,  pp.  287-­‐296.   Varljen,   J.   &   Andras,L.,   Wagner,H.   1989,   "Structural   analysis   of   a   rhamnoarabinogalactan   and   arabinogalactans   with   immuno-­‐stimulating   activity   from   Calendula   officinalis",   Phytochemistry,  vol.  28,  no.  9,  pp.  2379-­‐2383.   Volz,  T.,  Skabytska,  Y.,  Guenova,  E.,  Chen,  K.,  Frick,  J.,  Kirschning,  C.,  Kaesler,  S.,  Rocken,  M.  &   Biedermann,  T.  2014,  "Nonpathogenic  bacteria  alleviating  atopic  dermatitis  inflammation   induce   IL-­‐10-­‐producing   dendritic   cells   and   regulatory   Tr1   cells",   Journal   of   Investigative   Dermatology,  vol.  134,  pp.  96-­‐104.   Vowels,   B.,   Yang,   S.   &   Leyden,   J.   1995,   "Induction   of   proinflammatory   cytokines   by   a   soluble   factor   of   Proprionibacterium   acnes:   implications   for   chronic   inflammatory   acne",   Infection  and  Immunity,  vol.  63,  no.  8,  pp.  3158-­‐3165.   Walsh,  T.,  Efthimiou,  J.  &  Dreno,  B.  2016,  "Systematic  review  of  antibiotic  resistance  in  acne:  an   increasing  topical  and  oral  threat",  Lancet  Infectious  Disease,  vol.  16,  pp.  e22-­‐32.   Wang,   Y.,   Kuo,   S.,   Shu,   M.,   Yu,   J.,   Huang,   S.,   Dai,   A.,   Two,   A.,   Gallo,   R.   &   Huang,   C.   2014,   "Staphylococcus   epidermidis   in   the   human   skin   microbiome   mediates   fermentation   to   inhibit   the   growth   of   Proprionibacterium   acnes:   implications   of   probiotics   in   acne   vulgaris",  Applied  Microbiology  and  Biotechnology,  vol.  98,  no.  1,  pp.  411-­‐424.   Wang,  X.,  Yao,  X.,  Zhu,  Z.,  Tang,  T.,  Dai,  K.,  Sadovskaya,  I.,  Flahaut,  S.  &  Jabbouri,  S.  2009,  "Effect   of   berberine   on   Staphylococcus   epidermidis   biofilm   formation",   International   Journal   of   Antimicrobial  Agents,  vol.  34,  pp.  60-­‐66.   Webster,   G.   &   Leyden,   J.   1980,   "Characterization   of   serum-­‐independent   polymorphonuclear   leukocyte  chemotactic  factors  produced  byPropionibacterium  acnes",  Inflammation,  vol.   4,  no.  3,  pp.  261.   Webster,   G.,   Leyden,   J.   &   Nilsson,   W.   1979,   "Complement   activation   in   acne   vulgaris:   consumption  of  complement  by  comedones",  Infection  and  Immunity,  vol.  26,  no.  1,  pp.   183-­‐186.   Webster,   G.,   Leyden,   J.,   Tsai,   C.,   Baehni,   P.   &   McArthur,   W.   1980,   "Polymorphonuclear   leukocyte   lysosomal   release   in   response   to   Proprionibacterium   acnes   in   Vitro   and   its   enhancement   by   sera   from   inflammatory   acne   patients",   Journal   of   Investigative   Dermatology,  vol.  74,  pp.  398-­‐401.   Weidenmaier,   C.,   Kokai-­‐Kun,   J.F.,   Kristian,   S.A.,   Chanturiya,   T.,   Kalcacher,   H.,   Gross,   M.,   Nicholson,   G.,   Neumeister,   B.,   Mond,   J.J.   &   Peschel,   A.   2004,   "Role   of   teichoic   acids   in   Staphylococcus   aureus   nasal   colonization,   a   majot   risk   factor   in   nosocomial   infections",   Nature  Medicine,  vol.  10,  pp.  243-­‐245.   Wielders,  C.,  Vriens,  M.,  Brisse,  S.,  de  Graaf-­‐Miltenburg,  L.,  Troelstra,  A.,  Fleer,  A.,  Schmitz,  F.,   Verhoef,  J.  &  Fluit,  A.  2001,  "Evidence  for  in-­‐vivo  transfer  of  mecA  DNA  between  strains   71    

 

 

   

 

 

of    Staphylococcus  aureus",  The  Lancet,  vol.  357,  no.  9729,  pp.  1674-­‐1675.   Wiesenauer,   M.   &   Ludtke,   R.   1996,   "Mahonia   aquifolium   in   patients   with   psoriasis   vulgaris   -­‐   an   intraindividual  study",  Phytomedicine,  vol.  3,  no.  3,  pp.  231-­‐235.   Williams,  H.,  Dellavalle,  R.  &  Garner,  S.  2012,  "Acne  Vulgaris",  The  Lancet,  vol.  379,  no.  361,  pp.   372.   Xia,   X.,   Li,   Z.,   Liu,   K.,   Wu,   Y.,   Jang,   D.   &   Lai,   Y.   2016,   "Staphylococcal   LTA-­‐induced   miR-­‐143   inhibits   Proprionibacterium   acnes-­‐mediated   inflammatory   response   in   skin",   Journal   of   Investigative  Dermatology,  vol.  136,  pp.  621-­‐630.   Yu,   H.H.,   Kim,   K.J.,   Cha,   J.D.,   Kim,   H.K.,   Lee,   Y.E.,   Choi,   N.Y.   &   You,   Y.-­‐.   2005,   "Antimicrobial   activity   of   berberine   alone   and   in   combination   with   ampicillin   or   oxacillin   against  methicillin-­‐resistant  Staphylococcus  aureus",  Journal  of  Medicinal  Food,  vol.  8,  no.   4,  pp.  454-­‐461.   Zaenglein,  A.,  Pathy,  A.,  Schlosser,  B.,  Alikhan,  A.,  Baldwin,  H.,  Berson,  D.,  Bowe,  W.,  Graber,  E.,   Harper,  J.,  Kang,  S.,  Keri,  J.,  Leyden,  J.,  Reynolds,  R.,  Silverberg,  N.,  Gold,  L.,  Tellefson,  M.,   Weiss,   J.,   Dolan,   N.,   Sagan,   A.,   Stern,   M.,   Boyer,   K.   &   Bhushan,   R.   2016,   "Guidelines   of   care   for   the   management   of   acne   vulgaris",   Journal   of   the   American   Academy   of   Dermatology,  .   Zarei,   A.,   Changizi-­‐Ashtiyani,   S.,   Taheri,   S.   &   Ramezani,   M.   2015,   "A   quick   overview   on   some   aspects   of   endocrinological   and   therapeutic   effects   of   Berberis   vulgaris   L.",   Avicenna   Journal  of  Phytomedicine,  vol.  5,  no.  6,  pp.  485-­‐497.   Ziebuhr,  W.,  Hennig,  S.,  Echart,  M.,  Kranzler,  H.,  Batzilla,  C.  &  Kozitskaya,  S.  2006,  "Nosocomial   infections   by   Staphylococcus   epidermidis:   how   a   commensal   bacterium   turns   into   a   pathogen",  International  Journal  of  Antimicrobial  Agents,  vol.  28S,  pp.  S14-­‐S20.                    

72    

 

 

   

 

 

Appendix  I     Side  effects  associated  with  tetracycline  antibiotics  prescribed  as  adjunctive  treatment  in   moderate  to  severe  acne,  modified  from  Zaenglein  et  al.,  2016,  Supplement  Tables  XIV,  XV  &   XVI.   Tetracycline  antibiotic   Tetracycline  

Minocycline  

Adverse  effects  and  toxicities   Gastrointestinal:  anorexia,  nausea,  epigastric  distress,  vomiting,   diarrhoea,  glossitis,  black  hairy  tongue,  dysphagia,   enterocolitis,  inflammatory  lesions  with  candida   overgrowth  in  the  anogenital  region,  oesophagitis,  or   oesophagitis,  oesophageal  ulceration   Teeth:  permanent  discoloration  during  tooth  development,   enamel  hypoplasia   Skin:  maculopapular  and  erythematous  rashes,  exfoliative   dermatitis,  oncholysis,  nail  discoloration,  photosensitivity   Renal:  dose-­‐related  rise  in  blood  urea  nitrogen   Liver:  hepatotoxicity  and  liver  failure   Hypersensitivity  reactions:  urticarial,  angioneurotic  oedema,   anaphylaxis,  anaphylactoid  sickness-­‐like  reactions  such  as   fever,  rash  or  arthralgia   Blood:  haemolytic  anaemia,  thrombocytopaenia,   thrombocytopenic  purpurea,  neutropaenia,  eosinophilia   Other:  bulging  fontanels  in  infants,  raised  intracranial  pressure   General:  fever,  discoloration  of  secretions   Gastrointestinal:  anorexia,  nausea,  vomiting,  diarrhoea,   dyspepsia,  stomatitis,  glossitis,  dysphagia,  enertocolitis,   pseudomembranous  colitis,  pancreatitis,  inflammatory   lesions  with  moilial  overgrowth  in  the  oral  and  anogenital   regions,  oesophagitis,  and  oesophageal  ulcerations   Genitourinary:  vulvovaginitis   Hepatic  toxicityL  hyperbilirubinaemia,  hepatic  chelstatis,   increases  in  liver  enzymes,  fatal  hepatic  failure,  jaundice,   hepatitis  including  autoimmune,  liver  failure   Skin:  alopecia,  erythema  nodosum,  hyperpigmentation  of  nails,   pruritis,  toxic  epidermal  necrolysis,  vasculitis,   maculopapular  and  erythematous  rashes,  exfoliative   dermatitis,  fixed  drug  eruptions,  lesions  occurring  in  the   glans  penis  have  causes  balanitis,  erythema  multiforme,   Stevens-­‐Johnson  syndrome,  photosensitivity,   pigmentation  of  the  skin  and  mucous  membranes   Respiratory:  cough,  dyspnoea,  bronchospasm,  exacerbation  of   asthma  or  pneumonitis   Renal:  interstitial  nephritis,  dose-­‐related  rise  in  blood  urea   nitrogen,  reversible  acute  renal  failure   Musculoskeletal:  arthralgia,  arthritis,  bone  discoloration,   myalgia,  joint  stiffness  and  joint  swelling   73  

 

 

 

   

 

Doxycycline  

 

Hypersensitivity  reactions:  urticarial,  angioneurotic  oedema,   polyarthralgia,  anaphylaxis/anphylactoid  reactions   including  shock  and  death,  anaphylactoid  purpurea,   myocarditis,  pericarditis,  exacerbation  of  systemic  lupus   erythmatosus  and  pulmonary  infiltrates  of  eosinophilia,   transient  lupus-­‐like  syndrome,  and  serum  sickness-­‐like   reactions   Blood:  agranulocytosis,  haemolytic  anaemia,   thrombocytopaenia,  leukopaenia,  neutropaenia,   pantcytopaenia,  eosinophilia   Central  nervous  system:  convulsions,  dizziness,  hypoaesthesia,   paraesthesia,  sedation,  vertigo,  bulging  fontanels  in  infants   and  benign  intracranial  hypertension  (pseudotumor   cerebri)  in  adults,  headache   Oral/  Teeth:  enamel  hypoplasia,  tooth  discoloration,  oral  cavity   (including  tongue  lip  and  gum)  discoloration   Other:  thyroid  cancer,  abnormal  thyroid  function,  tinnitus,   decreased  hearing   Gastrointestinal:  anorexia,  nausea,  vomiting,  diarrhoea,   glossitis,  dysphagia,  enterocolitis,  inflammatory  lesions   with  monilial  overgrowth  in  the  anogenital  region,   hepatotoxicity,  oesophagitis,  oesophageal  ulcerations   Skin:  toxic  epidermal  necrolysis,  Stevens-­‐Johnson  syndrome,   erythema  multiforme,  maculopapular  and  erythematous   rashes,  exfoliative  dermatitis,  photosensitivity   Renal:  dose-­‐related  rise  in  blood  urea   Hypersensitivity  reactions:  urticaria,  angioneurotic  oedema,   anaphylaxis,  anaphylactoid  purpura,  serum  sickness,   pericarditis,  exacerbation  of  systemic  lupus  erythematosus   Blood:  haemolytic  anaemia,  thrombocytopaenia,  neutropaenia,   eosinophilia   Other:  bulging  fontanels  in  infants,  raised  intracranial  pressure  

             

74    

 

 

   

 

 

Appendix  II     Contraindication  and  side  effect  profiles  for  combined  oral  contraceptives  (COCs)  containing   oestrogen  (ethinyl  estradiol)  and  a  progestin,  adapted  from  Zaenglein  et  al.,  2016,  Supplement   Tables  XXIII,  XIV,  XXV,  &  XXVI.                               COC   Ethinyl   estradiol/   norgestimate  

Contraindications   Blood  pressure:  systolic  >  160   mmHg,  diastolic  >  100   mmHg   Carcinoma  of  the  breast  or   endometrium   Circulatory:  cerebral  vascular   disease,  coronary  artery   disease,  deep  vein   thrombosis,   thromboembolic  disorders,   valvular  heart  disease  with   complications,  diabetes  with   vascular  involvement   Surgery  with  prolonged   immobilization     Hepatic:  cholestatic  jaundice   or  pregnancy,  iatrogenic   jaundice,  hepatic  adenoma,   hepatic  carcinoma,   hepatocellular  disease  with   abnormal  liver  function   Hypersensitivity   Genital  bleeding   (undiagnosed)   Ethinyl   Anaphylactic  reaction  or   estradiol/   angioedema   norethindrone   Circulatory:  arterial   acetate/   thromboembolic  disease   ferrous   (stroke  or  myocardial   fumarate   infarction),  cerebral   vascular  disease,  coronary   artery  disease,  deep  vein   thrombosis,   thromboembolic  disease,   pulmonary  embolism   Carcinoma  of  the  breast  or   endometrium   Hepatic:  cholestatic  jaundice   of  pregnancy,  jaundice  with   previous  pill  use,  hepatic  

Adverse  effects  and  toxicities   Cardiovascular:  oedema,  varicose  vein   aggravation   Central  nervous  system:  depression,   migraine,  mood  changes   Skin:  cholasma,  melasma,  erythema   nodosum   Endocrine:  amenorrhoea,  breakthrough   bleeding,  breast  pain  or  tenderness,   fluid  retention,  infertility   Gastrointestinal:  abdominal  bleeding,   abdominal  cramps,  appetite  changes,   nausea,  weight  changes,  vomiting   Genitourinary:  cervical  ectropion,   cervical  secretion,  vaginal  candidiasis,   vaginitis   Blood:  decreased  folate,  porphyria   exacerbation   Hepatic:  cholestatic  jaundice   Other:  anaphylaxis,  lupus  exacerbation      

Central  nervous  system:  headache,   depression,  nervousness,  mood   disorder   Endocrine:  breast  pain,  irregular   menstruation,  menorrhagia,  weight   changes   Genitourinary:  urinary  tract  infections,   vaginitis,  abnormal  uterine  bleeding   Gastrointestinal:  abdominal  pain,  nausea,   vomiting,  diarrhoea,  dyspepsia   Infection:  viral  infection   Respiratory:  sinusitis      

75    

 

 

   

 

adenoma,  hepatic   carcinoma,  hepatic  disease   Undiagnosed  genital  bleeding   Pregnancy   Ethinyl   Renal  dysfunction   estradiol/   Adrenal  insufficiency   drospirenone   Hypertension,  uncontrolled   Circulatory:  cerebrovascular   disease,  coronary  artery   disease,  deep  vein   thrombosis,  pulmonary   embolism,   hypercoagulopathies,   thrombogenic  valvular   disease,  thrombogenic   rhythm  disease   Breast  cancer  or  other   oestrogen-­‐  or  progestin-­‐ sensitive  cancer   Headaches  with  focal   neurologic  symptoms,   migraines  if  ≥  35  years   Pregnancy   Smoking  if  ≥  35  years   Undiagnosed  uterine  bleeding   Hepatic  dysfunction,  hepatic   tumours  benign  or   malignant   Ethinyl   Adrenal  insufficiency   estradiol/   Breast  cancer  or  other   drospirenone/   oestrogen-­‐  or  progestin-­‐ levomefolate   sensitive  cancer   Circulatory:  cerebrovascular   disease,  coronary  artery   disease,  deep  vein   thrombosis,  pulmonary   embolism,   hypercoagulopathies,   thrombogenic  valvular   disease,  thrombogenic   rhythm  disease  of  the  heart   Diabetes  with  vascular  disease   Headaches  with  focal   neurologic  symptoms,   migraines  if  ≥  35  years   Hepatic:  tumours  benign  or   malignant,  hepatic  disease  

 

Cardiovascular:  oedema,  varicose  vein   aggravation,  increased  risk  of  arterial   thromboembolism,  cerebral   thrombosis,  hypertension,  myocardial   infarction   Gastrointestinal:  abdominal  bloating,   abdominal  cramps,  nausea,  weight   changes,  vomiting   Central  nervous  system:  depression,   migraine   Skin:  melasma,  allergic  rash   Endocrine:  amenorrhoea,  breakthrough   bleeding,  breast  changes,  infertility,   carbohydrate  tolerance  decreased,   spotting   Genitourinary:  cervical  ectropion,  cervical   secretion,  vaginal  candidiasis   Blood:  decreased  folate,  porphyria   exacerbation   Hepatic:  cholestatic  jaundice   Ocular:  contact  lens  intolerance,  corneal   curvature  changes   Other:  anaphylaxis,  systemic  lupus   erythematosus  exacerbation   Endocrine:  weight  increase,   hyperkalaemia,  impaired  glucose   tolerance   Cardiovascular:  arterial   thromboembolism,  deep  vein   thrombosis,  hypertension,  myocardial   infarction   Gastrointestinal:  abdominal  pain,  nausea,   vomiting,  gallbladder  disorder,   pancreatitis   Hepatic:  cholasma,  cholestasis,  neoplasm   of  liver   Neurologic:  headache,  haemorrhagic   cerebral  infarction,  migraine,   thrombotic  stroke   Blood:  thromboembolic  disorder,   porphyria  exacerbation   Psychiatric:  depression,  irritability,  labile   affect  (episodes  on  uncontrollable   76  

 

 

 

   

 

 

Uncontrolled  hypertension   crying)   Pregnancy   Reproductive:  break  through  bleeding,   Renal  impairment   breast  tenderness,  disorder  of   Smoking  if  ≥  35  years   menstruation,  reduced  libido,  cervical   Undiagnosed  uterine  bleeding   dysplasia   Immunologic:  anaphylaxis   Eyes:  thrombosis  of  retinal  vein   Respiratory:  pulmonary  embolism                                          

77    

 

 

   

 

 

Appendix  III                                 Side  effects  of  isotretinoin,  adapted  from  Zaenglein  et  al.,  2016,  Supplement  Table  XXIX.   Adverse  effects  and  Toxicities   Cardiovascular:  chest  pain,  oedema,  flushing,  palpitation,  stroke,  syncope,  thrombosis   Central  nervous  system:  aggressive/violent  behaviour,  depression,  emotional  instability,   fatigue,  headache,  psychosis,  suicidal  ideation/attempts,  stroke,  pseudotumour  cerebri,   seizure   Skin:  alopecia,  cheilitis,  cutaneous  allergic  reaction,  dry  nose,  dry  skin,  eruptive  xanthomas,   nail  dystrophy,  photosensitivity   Endocrine:  abnormal  menses,  elevated  glucose,  increased  cholesterol,  hyperuricaemia,   elevated  triglycerides   Gastrointestinal:  bleeding  and  inflammation  of  gums,  colitis,  oesophagitis,  inflammatory   bowel  disease,  nausea,  pancreatitis   Blood:  agranulocytosis,  anaemia,  neutropaenia,  pyogenic  granuloma,  thrombocytopaenia   Hepatic:  raised  liver  enzymes  (AST  and  ALT),  hepatitis,  raised  lactate  dehydrogenase   Musculoskeletal:  arthralgia,  arthritis,  back  pain,  hypertrophy  of  bone,  increased  creatinine   kinase,  rhabdomyolysis   Ocular:  dry  eyes,  optic  neuritis   Otic:  hearing  loss   Respiratory:  bronchospasms,  epitaxis        

78    

 

 

   

 

 

Appendix  IV  

 

79    

 

 

   

 

 

   

80    

 

 

   

 

 

Appendix  V     The  Mediherb  quality  control  specifications  for  Calendula  tincture.  

Proprietary  Information  Removed    

  81    

 

 

   

 

 

Proprietary  Information  Removed    

 

82    

 

 

   

 

 

Proprietary  Information  Removed    

 

83    

 

 

   

 

 

Proprietary  Information  Removed    

 

84    

 

 

   

 

 

Proprietary  Information  Removed    

 

85    

 

 

   

 

 

Proprietary  Information  Removed    

 

86    

 

 

   

 

 

Proprietary  Information  Removed    

 

87    

 

 

   

 

 

Proprietary  Information  Removed    

 

88    

 

 

   

 

 

Proprietary  Information  Removed    

      89    

 

 

   

 

 

Appendix  VI     The  certificate  of  analysis  for  Calendula  tincture  used  in  this  study.  

90    

 

 

   

 

 

Appendix  VII     Table  showing  a  summary  of  the  chemical  composition  of  Calendula  from  the  literature   adapted  from  Re  et  al.  (2009).   Component class

Main fraction and % concentration

Sub-fraction Potassium (≈6.0%) Sodium (≈1.7%

Mineral matter

Major elements as salts

Magnesium (≈0.9%) Calcium (≈0.5%) Iron (0.15%) Arabinogalactan PSII 25 kDa (arabinose, galactose)

Carbohydrates

Arabinogalactan PSIII 35 kDa (arabinose, galactose)

12–25%, dry matter

Mucilage (1.5%): rhamnoarabingalactan PSI 15 kDa (arabinose, galactose, rhamnose) 9-Hydroxy-trans-10,cis-12octadecadienic-acid Capric acid Caprylic acid Dimorphecolic acid Lauric acid Fatty acids mainly as esters (5%, dry matter)

Linoleic acid Linolenic acid Myristic acid Palmitic acid Palmitoleic acid Pentadecanoic acid

Lipids

Stearic acid Calendic acid C32H62 Dotriacontane Hentriacontane Hydrocarbon/paraffin/waxes (0.015%, fresh petals)

Heptacosane Hexacosane Nonacosane Octacosane Tetratriacontane Tritriacontane Lignin

Phenolic compounds

Phenolic acids in free and esterified forms (0.1%, dry matter)

Caffeic acid Chlorogenic acid Coumaric acid

91    

 

 

   

 

Component class

Main fraction and % concentration

  Sub-fraction Ferulic acid Gentisic acid trans-O-Coumaric acid O-Hydroxyphenylacetic acid 4-Coumaric acid 4-Hydroxy benzoic acid Protocatechuic acid Quinic acid Salicylic acid (traces) Sinapinic acid Syringic acid Vanillic acid Veratric acid Astragalin Hyperoside Calendoflaside Calendo flavo side Calendo flavobio side Isoquercitrin Isorhamnetin Isorhamnetin-3-neohesperidoside Isorhamnetin-3-O-(2″,6″-dirhamnosyl)glucoside Isorhamnetin-3-O-(2″-rhamnosyl)glucoside Isorhamnetin-3-O-glucoside Isorhamnetin-3-rhamnosyl-(1,2)rhamnoside

Flavanoids (