Nimonic alloy 80A. 2.0 Ti. 8.19. 12.7. 460. 11.2. 117. 1.5 Al. 30 Cr. Nimonic alloy 81. 1.8 Ti. 8.06. 11.1. 461. 10.9. 127. 1.0 Al. 20 Cr. 1.4 Al. Nimonic alloy 90.
14
General physical properties
14.1 The physical properties of pure metals Many physical properties depend on the purity and physical state (annealed, hard drawn, cast, etc.) of the metal. The data in Tables 14.1 and 14.2 refer to metals in the highest state of purity available, and are sufficiently accurate for most purposes. The reader should, however, consult the references before accepting the values quoted as applying to a particular sample.
Table 14.1 THE PHYSICAL PROPERTIES OF PURE METALS AT NORMAL TEMPERATURES
Metal
Melting point (0C) [i]
Thermal Boiling Density conductivity 3 point (g/cm ) (W/m K) at (°C) [i] ^ 2 5 0 C [i]* 25°C [ii]
Mean specific Resistivity (10~8 Qm) heat at T (0C) [iv] (J/kg K) at 250C [iii] T( 0 C) Resistivity
Temp, coeff. of resistivity Coeff. of (10" 3 K" 1 ) expansion (MOO0C at 25°C[\\
Aluminium Antimony Arsenic Barium Beryllium
660.323(*) 630.63(*) {817}* 727 1287
2 519 1587 616* 1897 2 471
2.70 6.68 5.727* 3.62 1.85
247 25.9 — 18.4 210
897 207 329 204 1825
20 0 20 0 20
2.654 8 39.0 33.3 6000 4 (aa)
4.5 5.1 — — 9.0
23.1 11.0 5.6 20.6 11.3
Bismuth Cadmium Caesium Calcium Cerium
271.40 321.069 (*) 28.44 842 798
1564 767 671 1484 3 433
9.79 8.69 1.93 1.54 6.77
8.2 97.5 18.42 196 11.3
122 232 242 647 192
0 0 20 0 25
106.8 6.83 20 3.91 75
4.6 4.3 4.8 4.57 8.7
13.4 30.8 97 22.3 6.3
Chromium Cobalt Copper Dysprosium Erbium
1907 1495 (*) 1084.62 (*) 1412 1529
2671 2927 2 562 2 567 2 868
7.15 8.86 8.96 8.55 9.07
67 69.04 398 10.7 14.5
449 421 385 170 168
0 20 20 25 25
12.9 6.24 1.673 57 107
2.14 6.6 4.3 1.19 2.01
4.9 13.0 16.5 9.9 12.2
Gadolinium Gallium Germanium Gold Hafnium
1313 29.7646 (*) 937 1064.18 (*) 2 233
3273 2204 2 830 2 856 4 603
7.90 5.91 5.32 19.3 13.3
10.5 33.49 58.6 317.9 23
236 371 320 129 144
25
20 25
140.5 174 (bb) 46 (cc) 2.35 35.1
0.9/1.76 — — 4.0 4.4
9.4(100°C) 18 5.75 14.2 5.9
Holmium Indium Iridium Iron Lanthanum
1474 2 700 156.5985 (*) 2072 2446 (*) 4428 1538 2861 918 3464
8.80 7.31 22.5 7.87 6.15
16.2 83.7 147 80.4 13.4
165 233 131 449 195
25 20 20 20 0 to 26
87 8.37 5.3 9.71 57
1.71 5.2 4.5 6.5 2.18
11.2 32.1 6.4 11.8 12.1
Lead Lithium Lutetium Magnesium Manganese
327.462 180.5 1663 650 1246
11.3 0.534 9.84 1.74 7.3
33.6 44.0 16.4 155 7.79
129 3 582 154 1023 479
20 0 25 20 20
20.648 8.55 79 4.45 185 (a)
4.2 4.35 — 4.25 —
28.9 46 9.9 24.8 21.7
1749 1342 3 402 1090 2 061
(continued)
Table 14.1
THE PHYSICAL PROPERTIES OF PURE METALS AT NORMAL TEMPERATURES—continued Mean specific Resistivity (10~8 £2m) heat at T (0C) [iv] (J/kg K) at 250C [iii] T( 0 C) Resistivity
Metal
Melting point (0C) [i]
Boiling point (0C) [i]
Density (g/cm3) a/25°C[i]*
Thermal conductivity (W/m K) at 25°C [ii]
Mercury Molybdenum Neodymium Nickel Niobium
-38.83 2 623 1021 1455 O 2477
356.73 4 639 3074 2913 4 744
13.533 6 10.2 7.01 8.90 8.57
8.21 142 16.5 82.9 52.3
140 251 190 444 265
50 0 25 20 0
98.4 5.3 64 6.84 12.5
1.0 4.35 1.64 6.8 2.6
60.4 4.8 9.6 13.4 7.3
Osmium Palladium Platinum Plutonium Polonium
3 033 1554.9 1768.4 640 254
5 012 2963 3 825 3 228 962
22.59 12.0 21.5 19.7 9.20
— 70 71.1 6.5 —
130 246 133 142* —
20 20 20 107 —
9.5 10.8 10.6 141.4 —
4.1 4.2 3.92 — —
5.1 11.8 8.8 46.7 23.5
Potassium Praeseodymium Radium Rhenium Rhodium
63.38 931 700 3 186 1964
759 3 520 — 5 596 3 695
0.89 6.77 5 20.8 12.4
108.3 12.5 — 71.2 150
757 193 — 137 243
0 25 — 20 20
6.15 68 — 19.3 4.51
5.7 1.71 — 4.5 4.4
83.3 6.7 — 6.2 8.2
Rubidium Ruthenium Samarium Scandium Selenium
39.30 2334 1074 1541 220.5
688 4150 1794 2 836 685
1.53 12.1 7.52 2.99 4.79
58.3 — 13.3 15.8 2.48
363 238 197 568 321
20 0 25 22 0
12.5 7.6 88 61 (ave) 12
4.8 4.1 1.48 — —
9 6.4 12.7 10.2 37
Silicon Silver Sodium Strontium Tantalum
1412 961.78 (*) 97.72 777 3 017
3 270 2162 883 1382 5 458
2.34 10.5 0.97 2.64 16.4
156 428 131.4 — 54.4
705 235 1228 301 140
0 20 0 20 25
10 1.59 4.2 23 12.45
— 4.1 5.5 — 3.5
7.6 18.9 71 22.5 6.3
Terbium Tellurium
1356 450
3230 988
8.23 6.24
11.1 5.98-6.02
182 202
20 23
11600 — 4.36 x 107 —
Thallium Thorium Thulium
304 1750 1545
1473 4 788 1950
11.8 11.7 9.32
47 77 16.9
129 113 160
0 0 25
18 13 79
5.2 4.0 1.95
Tin Titanium Tungsten Uranium Vanadium
231.928 (*) 2 602 1668 3287 3 422 5 555 1135 4131 1910 3407
7.26 4.51 19.3 19.1 6.0
62.8 11.4 160 27.6 31.0
228 523 132 116 489
0 20 27 — 20
11 (dd) 42 5.65 30 (ee) 24.8-26
4.6 3.8 4.8 3.4 3.9
22.0 8.6 4.5 13.9 8.4
Ytterbium Yttrium
819 1522
1196 3 345
6.90 4.47
38.5 17.2
155 298
1.30 2.71
26.3 10.6
Zinc Zirconium
419.527 (*) 907 1855 4409
7.14 6.52
113 21.1
388 278
25 29 from 57 (ff) 20-250 20 5.916 — 40
4.2 4.4
30.2 5.7
(*) Defined fixed point of ITS-90—see Ch. 16 {} Rare earths and rare metals * Densities of higher allotropes not at 200C
(aa) annealed, commercial purity (bb) for a-axis; 8.1 for b-axis and 54.3 for c-axis (cc) Ohm cm for intrinsic germanium at 300 K
Temp, coeff. of resistivity Coeff. of (1O - 3 K" 1 ) expansion 0-1000C at 25°C[\]
10.3 f 1.7 ||c axis |27.5±caxis 29.9 11.0 13.3
(dd) for white tin (ee) Crystallographic average (ff) for poly crystalline material
[i] Reprinted with permission from Handbook of Chemistry and Physics 82nd Edition (12-219). Copyright CRC Press, Boca Raton, Florida [ii] Ref. 47 [iii] Reprinted with permission from Handbook of Chemistry and Physics 82nd Edition (4-133). Copyright CRC Press, Boca Raton, Florida [iv]Ref.49
Table 14.2
Metal Aluminium
THE PHYSICAL PROPERTIES OF PURE METALS AT ELEVATED TEMPERATURES1"
Temperature t°C
Coefficient of expansion 20-t° C 10" 6 K- 1
Resistivity att°C |X^ cm
20 27 100 127 200 227 300 327 400 427
— — 23.9 — 24.3 — 25.3 — 26.49 —
Antimony
20 100 500
— 8.4-11.0 9.7-11.6
Beryllium
20 27 100 127 200 227 300 327 427 500 527 627 700
— — 12 — 13 — 14.5 — — 16 — — 17
9.9 — 13.2 16.5 — 20.0 23.7 —
Bismuth
20 100 250
— 13.4 —
117 156 260
Cadmium
0 20 27 100 127 227 300
— — — 31.8 — — (38)
— — — — — —
97.5 84 96.8 87.9 94.7 92 104.7
20 27 100 127 327 400 527 700 727
— — 6.6 — — 8.4 — 9.4 —
13.2 12.7 18(152°C) 15.8 24.7 31(4070C) 34.6 47(652°C) —
— 93.7 — 90.9 80.7 — 71.3 — 65.4
20 100 200 300 400 600 800 1000 1200
— 12.3 13.1 13.6 14.0 — — — —
Chromium
Cobalt
2.67 2.733 3.55 3.87 4.78 4.99 6.99 6.13 7.30 8.70
Thermal conductivity att°C Wm-1K-1
40.1 59 154 3.3 3.76 — 6.76 —
6.8
5.86 9.30 13.88 19.78 26.56 40.2 58.6 77.4 91.9
— 237 — 240 — 236 — 231 — 218
Specific heat att°C Jkg" 1 KT1 900 938 — 984 — 1030 — 1076 — 205 214 239 1976 — 2081 — (2 215) — (2 353) — — (2 621) — — (2 889)
8.0 7.5 7.5
— — — — — — — — —
7,8,9,50
—
18.0 16.7 19.7 180 — 152 — 130.2 — 117.7 — — 103.0 — — 85.8
References*
121 130 147 —
7,10,6
11,50
7,12
7,13,14,50,51 230
— 239 — — 260 444
7,15,16,50
— 490 — — 582 — 649 — 434 453 478 502 527 575 716 800 883
42,45
(continued)
Table 14.2
THE PHYSICAL PROPERTIES OF PURE METALS AT ELEVATED TEMPERATURES+-CO^mWeJ
Temperature t°C
Coefficient of expansion 20-/0C 1(T6KT1
20 27 100 127 200 227 427 500 827 1000
— — 17.1 — 17.2 — — 18.3 — 20.3
— — —
394 401 394 393 389 386 366 341(5380C) 339 244(10370C)
20 27 100 127 500 527 900 927
— — 14.2 — 15.2 — 16.7 —
2.2 2.271 2.8 3.107 6.8 6.81 11.8 —
293 317 293 311 — 284 — 255
126 — 130 — 142 — 151 —
7,50
Hafnium
20 27 100 127 200 227 327 400 1000 1400 1800
— — — — — — — 6.3 6.1 6.0 5.9
35.5 34.0 46.5 48.1 60.3 63.1 78.5 84.4 — — —
(22.2) — 22.0 — 21.5 — — 20.7 — — —
144 — 148 — 152 — — 160 185 — —
43,44,48,50
Iridium
20 100 500 1000
— 6.8 7.2 7.8
5.1 6.8 15.1 —
148(00C) 143 — —
Iron
20 27 100 127 200 227 327 400 527 600 727 800
— — 12.2 — 12.9 — — 13.8 — 14.5 — 14.6
10.1 9.98 14.7 16.1 22.6 23.7 32.9 43.1 57.1 69.8 — 105.5
73.3 80.2 68.2 69.5 61.5 61.3 54.7 48.6 43.3 38.9 32.3 29.7
444 — 477 — 523 — — 611 — 699 — 791
7,20,50
Lead
20 27 100 127 200 227 300 327
— — 29.1 — 30.0 — 31.3 —
20.6 21.3 27.0 29.6 36.0 38.3 50 —
34.8 35.3 33.5 34.0 31.4 32.8 29.7 31.4
130 — 134 — 134 — 138 —
7,6,11,50
Metal Copper
Gold
Resistivity att°C \xQ cm — 1.725 — 2.402 — 3.090 5.262
Thermal conductivity att°C Wm-1K"1
Specific heat att°C Jkg" 1 KT1 385 — 389 — 402 — — (427) — (473)
7,17,16,18,50
130 134 142 159
References*
19
(continued)
Table 14.2
Metal Magnesium
Molybdenum
Nickel
Niobium
Palladium
THE PHYSICAL PROPERTIES OF PURE METALS AT ELEVATED TEMVERATURE&—continued Coefficient of expansion Temperature 20~t°C t°C 10^ 6 K- 1
Resistivity att°C | l ^ cm
Thermal conductivity att°C Wm-1K"1
Specific heat att°C J kg" 1 K" 1
— — 26.1 — 27.0 — — 28.9 — —
4.2 4.51 5.6 6.19 7.2 7.86 9.52 12.1 11.2 12.8
167 156 167 153 163 151 149 130 — 146(extp)
1022 — 1063 — 1110 — — 1 197 — —
7,50
— —
142 138 138 134 121 118 105 105 94.6 84 88 —
247 — 260 — 285 — — 310 — 339 (mean) — —
7,21,22,23,50,51
— —
5.7 5.52 7.6 8.02 17.6 18.4 — 31 — 46 — 77
— — 13.3 — 13.9 — 14.4 — 14.8 — 15.2 — — 16.3 —
6.9 7.20 10.3 11.8 15.8 17.7 22.5 25.5 30.6 32.1 34.2 35.5 — 45.5 —
88 90.7 82.9 80.2 73.3 72.2 63.6 65.6 59.5 — 62.0 67.6 71.8 — 76.2
435 — 477 — 528 — 578 — 519 — 535 — — 595 —
24,50
0 20 27 200 227 400 527 600 727 800 927 1000
— — —
15.2 14.6 — 25.0 — 36.6 — 48.1 — 59.7 — 71.3
53.3 — 53.7 — 56.7 — 61.3 — 64.4 — 67.5 —
— 268 — 271 — 284 — 292 — 301 — 310
20 100 500 1000
— 11.1 12.4 13.6
10.8 13.8 27.5 40
75 74 — —
20 27 100 127 200 227 327 400 427 527 20 27 100 127 500 527 927 1000 1327 1500 1727 2 500 20 27 100 127 200 227 300 327 400 427 500 527 727 900 927
5.2 — 5.7 — — 5.75 — 6.51
7.19 — 7.39 — 7.56 — 7.72 — 7.88
243 247 268 297
References*
42,45,50,51
19
(continued)
Table 14.2 THE PHYSICAL PROPERTIES OF PURE METALS AT ELEVATED TEMPERATURES1"— continued
Metal Platinum
Plutonium
Rhenium
Temperature t°C 20 27 100 127 500 527 927 1000 1 127 1500 1527 20 a -> a 100 a -> a 200 a - ^ £ 30Oa^y 400 a - + S 500 a - > e
Silver
Tantalum
Resistivity att°C \lQ cm
Thermal conductivity att°C Wm-1K-1
Specific heat att°C Jkg" 1 K" 1
72 71.6 72 71.8 — 75.6 82.6 67 87.1 63 96.1
134 — 134 — 147 — — 159 — 176 —
7,19,23,25,50
9.6 — — 10.2 — 11.31 —
10.58 10.8 13.6 14.6 27.9 28.7 — 43.1 — 55.4 —
47 203 173 181 109 101
145.8 141.6 107.8 107.4 100.7 110.6
(8.4) — — — — —
131 138 145 153 154 144
42,45
134
26,16,27
— — 9.1 —
20
J 12.4 ||-axis
18.71
100
{ 4.7±-axis
25 J
2 500 Rhodium
Coefficient of expansion 20-t°C 10-6K-1
20 100 500 1000 20 27 100 127 500 527 900 927 20 27 100 127 500 527 627 1500 1527 2 327 2 500 2 727
7.29(2 0000C)
4Q
4b
References*
138
132
—
209(2 5270C)
4.7 6.2 14.6 —
149 147 — —
243 255 289 331
19
— — 19.6 — 20.6 — 22.4 —
16.3 1.629 2.1 2.241 4.7 4.91 7.6 —
419 429 419 425 (377) 396 — 361 (extp)
234 — 222 — (230) — (243) —
7,28
— —
57 57.5 54 57.8 — 59.4 59.8 — 63.4 65.8 — 66.5
138 — 142 — 151 — — 167 — — 234(2 727°C) —
7,29,30,31,32
— — — — — — —
13.5 13.5 17.2 18.2 35 35.9 40.1 71 — — 102 —
46 45
134 138 142
33,6
— 65 66.6 63 62.2 60 59.6
— 222 — 239 — 260 —
— 8.5 9.8 10.8
6.5 — 6.6
Thallium
20 100 200
— 30 —
16.6 — _ 4
Tin
0 20 27 100 127 200 227
— — — 23.8 — 24.2 —
11.5 12.6 — 15.8 — 23.0 —
5
7,34
(continued)
Table 14.2
Metal Titanium
Tungsten
THE PHYSICAL PROPERTIES OF PURE METALS AT ELEVATED TEMPERATURES1"— continued
Coefficient of expansion 20-t°C KT 6 KT 1
Resistivity att°C |X^ cm
Thermal conductivity att°C Wm-1K-1
Specific heat at t°C Jkg" 1 K" 1
0 20 27 100 127 200 227 327 400 527 600 800 927
— — — 8.8 — 9.1 — — 9.4 — 9.7 9.9 —
39 54 — 70 — 88 — — 119 — 152 165 —
— 16 21.9 15 20.4 15 19.7 19.4 14 19.7 13 (13) 22.2
— 519 — 540 — 569 — — 619 — 636 682 —
20 27 100 127 500 527 927 1000 1727 2 000 3 000
— — 4.5 — 4.6 — — 4.6 — 5.4 6.6
5.4 5.44 7.3 7.83 18 18.6 — 33 — 65 100
167 174 159 159 121 125 112 111 98 93 —
134 — 138 — 142 — — 151 — — —
37,33,38
— — — —
30 59 55.5 54
27 38 40 42.3
116 186 176 160
Expansion anisotropic 42,45
— — 8.3 — 9.6 — — — 10.4
24.8 20.2 31.5 28.0 — 53.1 58.7 — —
— — 31 — 36.8 — — 35.2 —
492 — 505 — 570 — — 603 636
42,45
113 — 109 — 105 — 101 — 96
389 — 402 — 414 — 431 — 444
39,13,40,41,6
Temperature t°C
Uranium
20 a 600 a 700 £ SOOy
Vanadium
20 27 100 127 500 527 627 700 900
Zinc
20 27 100 127 200 227 300 327 400
— — 31 — 33 — 34 — —
5.96 6.06 7.8 8.37 11.0 10.82 13.0 13.49 16.5
References* 35,36
* Items from the CRC Materials Science and Engineering Handbook, 3rd Edition, are reprinted with permission. Copyright CRC Press, Boca Raton, Florida. ^ Data in this table are from multiple sources and may not be fully consistent.
REFERENCESTOTABLES 14.1 AND 14.2 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.
W. Slough, Private Communication, Chemical Standards Division, NPL, 1972. M. J. Swan, Private Communication, Electrical Science Division, NPL, 1972. G. W. C. Kaye and T. H. Laby, 'Tables of Physical and Chemical Constants', Longmans, London, 1966. 'Thermophysical Properties of Matter', TPRC Data Series, Volume 4. R. J. Corrnecini and J. Gniewek, Nat. Bureau of Stds. Monograph; 1960. 'Thermophysical Properties of Matter', TPRC Series Volume 1; 1970. US Bur. Stds. Circular C447, 'Mechanical Properties of Metals and Alloys', Washington, 1952. R. Hase, R. Heierberg and W. Walkenborst,,4/M/mmw/w, 1940, 22, 631. T. G. Peason and H. W. L. Phillips, Met. Rev., 1957, 2, 305. H. Tsutsumi, ScL Rep. Tohoku Univ. (1), 1918, 7, 100. R. W. Powell, Phil. Mag., 1953, 44, 657. E. F. NorthrupandV.A. Suydam, J. Franklin Inst., 1913,175, 160. Saldau, Z Metallogr., 1915, 7, 5. S. Grabe and E. J. Evans, Phil. Mag., 1935, 19, 773. R. W. Powell and R. P. Tye, J. Inst. Metals, 1957, 85, 185. C. F. Lucks and H. W. Deem, ASTM Special Tech. Pubn., 1958, No. 227. C. S. Smith and E. W. Palmer, Trans. AIMME, 1935, 117, 225. C. J. Meechan and R. R. Eggleston, Acta Met., 1954, 2, 680. R. F. Vines, 'The Platinum Metals and their Alloys', New York, 1941. BISRA, 'Physical Constants of Some Commercial Steels at Elevated Temperatures', London, 1953. C. Zwikker, Physica, 1927, 7, 73. E. P. Mikol, US Atomic Energy Comm. Publ. ORNL-1131, 1952. O. H. Kirkorian, UCRL-6132, TID-4500, Sept. 1960, USA. Mond Nichel Co. Ltd., Nickel Bull, 1951, 24, 1. K. S. Krishnan and S. C. Jain, Br. J. Appl. Phys., 1954, 5, 426. C. Agte, H. Alterthum et ai, Z. Anorg. Chem., 1931, 196, 129. R. E. Taylor and R. A. Finch, US Atomic Energy Com. Rep., 1961 NAA-SR-6034. US Bur. Min. Circular C412, 'Silver, its Properties and Industrial Uses', Washington, 1936. L. Malter and D. B. Langmuir, Phys. Rev., 1939, 55, 743. M. Cox, Phys. Rev., 1943, 64, 241. I. B. Fieldhouse^tf/., WADCTech. Rep. 55-495, 1956. N. S. Rasor and J. D. McClelland, WADC Tech. Rep. 5 6 ^ 0 0 , 1957. A. E. van Arkel, 'Reine Metalle', Berlin, 1939. Int. Tin R. and D. Council. Tech. Publ. B l , 1937. E. S. Greiner and W. C. Ellis, Metals Tech., Sept., 1948. L. Silverman, J. Metals, N.Y., 1953, May, p. 631. C. J. Smithells, 'Tungsten', London, 1952. V S. Gurnenyuk and V V Lebeden, Fizica Metall, 1961, 11, 29. F. L. Uffelmann, Phil. Mag. (7), 1930,10, 633. Lees, Phil. Trans. R. Soc, 1908, A208, 432. Dewar and Fleming, Phil. Mag, 1893, 36, 271. C. A. Hampel, 'Rare Metals Handbook', Chapman & Hall, London, 1961. H. K. Adenstedt, Trans. A.S.M., 1952, 44, 949. R. P. Cox etal, Ind. Eng. Chem., 1958, 50, 141. Thermochemical Data Section. Met. Ref. Book. R. W Powell, R. P. Tye and M. J. Woodman, J. Less Common Metals, 1967,12, 1. CRC Handbook of Chemistry and Physics, 82nd edition, p. 12-219. ASM Metals Handbook, p. 115. CRC Handbook of Chemistry and Physics, 82nd edition, p. 4-133. ASM Metals Reference Book, p. 143. CRC Handbook of Chemistry and Physics, 82nd edition, p. 12-45, 12-221. CRC Materials Science and Engineering Handbook, 3rd edition, p. 384-389.
14.2
The thermophysical properties of liquid metals*
Accurate and reliable information on the thermophysical properties of molten metals becomes increasingly significant as new casting techniques are developed and advancement is made in numerical modelling of these processes. To obtain precise thermophysical data for molten metals and alloys, it is necessary to know the special features of different techniques and to utilise the most suitable one for the specimen of interest. 14.2.1 Density and thermal expansion coefficient Knowledge of the density of liquid metals is crucial in most theories related to the liquid state and for the simulation of the contraction that occurs during solidification. There are several methods for measuring the density of high-melting liquid metals: balanced columns, pycnometer, immersedsinker, maximum-bubble, etc. However, the application of all these techniques is limited due to reaction between liquid metal sample and the apparatus. Therefore, an electromagnetic levitation technique can be considered as a good alternative for density measurements in molten metals. The density (p) of the specimen can, of course, be determined as m P=
V'
where m and V are the mass and the volume of the specimen, respectively. Assuming a spherical shape for the specimen, the volume can be determined from the radius of the droplet. Repeating the density measurements at different temperatures, the thermal expansion coefficient ({$) can be simulated as H
V dT
The determination of the thermal expansion coefficient of the materials requires the measurement of the linear size of the specimen as a function of the temperature. It is experimentally found that the variation of the density of most liquid metals and alloys with temperature (T) is well represented by a linear equation dp P = Pm + -£(T - Tm), Ol
where pm is the density of the liquid metal or alloy at its melting point Tm. However, for certain metals (aluminium, gallium, antimony) this relationship is not linear. Table 14.3a presents density data available for liquid metals at their melting point and their temperature dependence (dp/dt) from [1,2]. 14.2.2 Surface tension The surface tension is determined by the microscopic structure of the liquid near the surface. At a liquid-vapour interface the density changes severely from a high value in the liquid state to a very low value in the gas phase. Therefore, surface atoms experience an attraction toward the liquid phase, which is the cause of the surface tension. Due to its energetic and entropic origin, it is necessary to calculate the free energy of the system in order to determine the surface tension. Thus the surface tension is determined, as the additional free energy required to generate a unit surface area separating the liquid from its vapour phase. There are many techniques for surface tension measurements: sessile drop, pendant drop, maximum bubble pressure, maximum pressure in a drop, detachment or maximum pull, capillary-rise, drop weight, and oscillating drop methods. The sessile-drop technique has been widely used due to its many advantages. The sessile drop method utilises a molten drop resting on a horizontal ceramic substrate, and allows measurements over a wide range of temperatures. However, the surface tension data is affected by contaminants. To avoid the contamination effects the surface tension of a liquid droplet can be measured by exciting surface oscillations. The frequency of the oscillations is related to the surface tension. * For the physical properties of molten salts, see Chapter 9.
Table 14.3a THE THERMOPHYSICAL PROPERTIES OF LIQUID METALS Density, surface tension and viscosity Density
Surface tension Viscosity
Metal
Temp. Tm K
pm 103kg m~3
-(Bp/dT) 1 0 - 1 kg m~3 KT1
Ym mNra" 1
-(dy/dT) niN m^KT1
Y]mp mNsm" 2
T)O mNsm" 2
E kJmor1
Ag Al As Au B
1233.7 933 1090 1336 2 350
9.33 2.385 5.22 17.36 2.08
9.1 3.5 5.4 15 —
966 914 — 1169 1060
0.19 0.35 — 0.25 —
3.88 1.30 — 5.0 —
0.453 2 0.1492 — 1.132 —
22.2 16.5 — 15.9 —
Ba Be Bi Ca Cd
1000 1556 544 1138 594
3.321 1.690 10.05 1.365 8.01
2.7 1.2 11.8 2.2 12.2
277 1390 378 361 570
0.08 0.29 0.07 0.10 0.26
— — 1.8 1.22 2.28
— — 0.445 8 0.065 1 0.3001
— — 6.45 27.2 10.9
Ce Co Cr Cs Cu
1077 1766 2 148 301.6 1356
6.685 7.76 6.29 1.84 8.000
2.3 10.9 7.2 5.7 8.0
740 1873 1700 70 1303
0.33 0.49 0.32 0.06 0.23
2.88 4.18 — 0.68 4.0
— 0.2550 — 0.1022 0.3009
— 44.4 — 4.81 30.5
Fe Fr Ga Gd Ge
1809 291 302.8 1585 1207
7.03 2.35 6.10 7.14 5.49
8.8 7.92 5.6 — 4.9
1872 62 718 810 621
0.49 0.044 0.10 0.16 0.26
5.5 0.765 2.04 — 0.73
0.3699 — 0.435 9 — —
41.4 — 4.00 — —
Hf Hg
11.1 13.691 13.595 13.546 13.352 7.03 20.0 0.827
— 2.436
1630 498
0.21 0.20
— 2.10
In Ir K
2216 234.13 273 293 373 429.6 2 716 336.5
— 2.51 _ _ _ 6.65 — 5.02
La Li Mg Mn Mo
1203 453.5 924 1514 2 880
Na Nb Nd Ni Os
6.8 — 2.4
556 2250 115
0.09 0.31 0.08
1.89 — 0.51
— 0.5565 _ _ _ 0.302 0 — 0.1340
5.955 0.518 1.590 5.76 9.34
2.4 1.0 2.6 9.2 —
720 398 559 1090 2 250
0.32 0.14 0.35 0.2 0.31
2.45 0.57 1.25 — —
— 0.145 6 0.024 5 — —
— 5.56 30.5 — —
369.5 2 741 1297 1727 3 000
0.927 7.83 6.688 7.905 20.1
2.35 — 5.3 11.9 —
191 1900 689 1778 2 500
0.10 0.24 0.09 0.38 0.33
0.68 — — 4.90 —
0.152 5 — — 0.1663 —
5.24 — — 50.2 —
P Pb Pd Pr Pt
317 600 1825 1208 2042
— 10.678 10.49 6.611 18.91
— 13.2 12.3 2.5 28.8
52 458 1500 — 1800
— 0.13 0.22 — 0.17
1.71 2.65 — 2.80 —
— 0.463 6 — — —
— 8.61 — — —
Pu Rb Re Rh Ru
913 311.9 3 431 2 239 2 700
16.65 1.48 18.8 10.8 10.9
14.1 4.5 — — —
550 86 2 700 2 000 2250
0.10 0.06 0.34 0.30 0.31
6.0 0.67 — — —
1.089 0.0940 — — —
5.59 5.15 — — —
S Sb Se Si Sn
392 903.5 490 1683 505
61 367 106 865 560
0.07 0.05 0.1 0.13 0.09
12 1.22 24.8 0.94 1.85
— 0.0812 — — 0.538 2
— 22.0 — — —
Sr Ta Te Th Ti
1043 3 250 724 1964 1958
303 2150 180 978 1650
0.10 0.25 0.06 0.14 0.26
_ — 2.14 — 5.2
_ — — — —
_ — — — —
1.819 6.483 4.00 2.53 6.98 2.37 15.0 5.80 10.5 4.13
_ _ _
8.00 8.2 11.7 3.5 6.1 2.6 — 7.3 — 2.3
_ _ _
_ _ _
_ _ _
(continued)
Table 14.3a
THE THERMOPHYSICAL PROPERTIES OF LIQUID METALS—continued
Density
Surface tension Viscosity
Temp.
pm
Tm
3
-(dp/BT) 1
-(dy/dT)
10 kg
1(T kg
Metal
K
m~ 3
Hi- 3 KT 1
niNni" 1
ym
In- 1 K- 1
mN
mNsm- 2
r]mp
mNsm- 2
Tl U V W Yb Zn Zr
575 1406 2185 3 650 1097 692 2123
11.35 17.27 5.36 17.6 — 6.575 5.8
13.0 10.3 3.2 — — 9.8 —
464 1550 1950 2 500 — 782 1480
0.08 0.14 0.31 0.29 — 0.17 0.20
2.64 6.5 — — 1.07 3.85 8.0
0.298 3 0.484 8 — — — 0.413 1 —
m
E
kJmor1 10.5 30.4 — — — 12.7 —
The temperature dependence of surface tension is related to the surface entropy and the surface excesses. Therefore, the changes in the structure of the liquid specimen with temperature are reflected in the temperature coefficients of the surface tension. The variation of the surface tension with the temperature for most liquid metals can be expressed by a linear relationship yT =
ym--^(T-Tm\
where yr and ym are the surface tensions at temperature T and at the melting point Tm, respectively. Experimental values of surface tension for liquid metals at their melting points, and their temperature coefficients of surface tension are presented in Table 14.3b. The data are taken from Allen. 2 14.2.3 Viscosity Viscosity is one of the most important transport properties of molten metals. It is related to the internal friction within the liquid and provides some information about the structure of the material. The most crucial hydrodynamic criteria such as the Reynolds number, the Rayleigh number, the Hartmann number, and the Marangoni number contain viscosity. The existing methods for measuring viscosities of liquids are restricted for liquid metals and alloys due to their low viscosities, high melting points, and chemical reactivity. The capillary, oscillating-vessel, rotational, and oscillating plate methods are most suitable techniques for determination of the viscosity of liquid metals and alloys. The viscosity T] relates the shear stress x to the shear rate y T = T)J/.
By analogy to the Wiedemann-Franz-Lorenz law and the Stokes-Einstein relation, there is the following relationship between viscosity and surface tension y _ 15 F^T rj ~ 16 V m ' where /c# is the Boltzmann's constant and m is the atomic mass. Since the viscosity measurements are not so responsive to convection as diffusion measurements, the diffusivity D may be estimated from the viscosity data using Stokes-Einstein theory 6nRr]
For most liquid metals and alloys the variation of viscosity with temperature may be determined as
*=m exp GI)' where 770 and E are constants, and are given in the Table 14.3a for liquid metals,4'5 and R is the gas constant, 8.3144 JK" 1 mol"1.
Table 14.3b
THE THERMOPHYSICAL PROPERTIES OF LIQUID METALS
Heat capacity, thermal conductivity and electrical resistivity Temperature K
Heat capacity Jg-1K"1
Thermal conductivity Wm-1K"1
Electrical resistivity \iQm
Ag
1233.7 1273 1373 1473 1573 1673
0.283 0.283 0.283 0.283 0.283 —
174.8 176.5 180.8 185.1 189.3 193.5
0.172 5 0.176 0 0.184 5 0.193 5 0.202 3 0.2111
Al
933 973 1073 1173 1273
1.08 1.08 1.08 1.08 —
94.05 95.37 98.71 102.05 105.35
0.242 5 0.248 3 0.263 0 0.277 7 0.292 4
As
1090
—
—
2.10
Au
1336 1373 1473 1573 1673
0.149 0.149 0.149 0.149 0.149
104.44 105.44 108.15 110.84 113.53
0.312 5 0.318 0 0.3315 0.348 1 0.363 1
B
2350
2.91
—
2.10
Ba
1000
0.228
—
1.33
Be
1556
3.48
—
0.45
Bi
544 573 673 773 873 973
Ca
1 138
0.775
Cd
594 673 773 873
0.264 0.264 0.264 0.264
Ce
1077 1273 1473
0.25 0.25 0.25
Co
1766
0.59
—
1.02
Cr
2176
0.78
—
0.316
Cs
301.6 373 473 673 873 1073 1873
0.28 0.265 0.240 0.21 0.22 0.25 —
19.7 20.2 20.8 20.2 18.3 16.1 4.0
0.370 0.450 0.565 0.810 1.125 1.570 —
Cu
1356 1373 1473 1673 1873
0.495 0.495 0.495 0.495 0.495
165.6 166.1 170.1 176.3 180.4
0.200 0.202 0.212 0.233 0.253
Fe
1809
0.795
—
1.386
Fr
291 973
0.142 0.134
— —
0.87 —
Ga
302.8 373 473 573
0.398 0.398 0.398 0.398
Metal
0.146 0.143 0.147 5 0.1375 0.133 6 —
17.1 15.5 15.5 15.5 15.5 15.5 — 42 47 54 61 — — —
25.5 30.0 35.0 39.2
1.290 — — — — — 0.250 0.337 0.343 0 0.3510 0.360 7 1.268 1.294 1.310
0.26 0.27 0.28 0.30
Gd
1623
0.213
—
0.278
Ge
1207 1273
0.404 0.404
— —
0.672 0.727
Hf
2500
—
—
2.18 {continued)
Table 14.3b THE THERMOPHYSICAL PROPERTIES OF LIQUID METALS—continued Temperature K
Heat capacity J g " 1 K" 1
Thermal conductivity Wm-1K-1
Electrical resistivity [LQm
Hg
234.13 273 293 373 773 1273 1733
0.142 0.142 0.139 0.137 0.137 — —
6.78 7.61 8.03 9.47 12.67 8.86 -0.000 4
0.905 0.940 0.957 1.033 1.600 3.77 -1000
Ho
1773
Metal
0.203
—
1.93
In
429.6 473 673 873
0.259 0.259 0.259 0.259
42 — — —
0.323 0 0.333 9 0.4361 0.513 1
K
336.5 373 473 773 1273 1773
0.820 0.810 0.790 0.761 0.838 —
La
1203 1273 1373 1473
0.057 5 0.057 5 0.057 5 0.057 5
Li
453.5 473 673 873 1073 1273 1873
4.370 4.357 4.215 4.165 4.148 4.147 4.36
Mg
923 973 1073 1273
1.36 1.36 1.36 1.36
53.0 51.7 47.7 37.8 24.4 15.5
0.136 5 0.154 0.215 0.444 0.110
21.0 — — —
1.38 1.43 1.50 1.56
46.4 47.2 53.8 57.5 58.6 58.4 52.0
0.240 — — — — — —
78 81 88 100
0.274 0.277 0.282 —
Mn
397
0.838
—
0.40
Mo
2 880
0.57
—
0.605
Na
370 373 473 673 873 1073 1273 1473
1.386 1.385 1.340 1.278 1.255 1.270 1.316 1.405
89.7 89.6 82.5 71.6 62.4 53.7 45.8 38.8
0.0964 0.099 0.134 0.224 0.326 0.469 — —
Nb
2 741
—
—
1.05
Nd
1297
0.232
—
1.26
Ni
1727
P Pb
317 600 673 773 873 1073 1273
0.620
—
0.850
—
—
2.70
0.152 0.144 0.137 0.135 — —
15.4 16.6 18.2 19.9 — —
0.948 5 0.986 3 1.0344 1.082 5 1.169 1.263 3.98
Po
527
—
—
Pr
1208
0.238
—
1.38
Pt
2 043
0.178
—
0.73
—
—
1.33
0.136
—
1.71
Pu
913
Ra
1233
Rb
311.8 373 473
0.398 0.383 0.364
33.4 33.4 31.6
0.228 3 0.273 0 0.3665 (continued)
Table 14.3b
THE THERMOPHYSICAL PROPERTIES OF LIQUID METALS—continued Temperature K
Heat capacity J g " 1 K" 1
Thermal conductivity Wm-1K"1
Electrical resistivity ixftm
773 1273 1773
0.348 0.378 —
26.1 17.0 8.0
0.689 0 1.71 5.32
Re
3 431
—
—
1.45
Ru
2 700
—
—
0.84
Metal
S
392
0.984
—
>10 1 0
Sb
Sc
903.5 973 1073 1273 1812
0.258 0.258 0.258 0.258 0.745
21.8 21.3 20.9 — —
1.135 1.154 1.181 1.235 1.31
Se
490
0.445
0.3
MO6
Si
1683 1773 1873
1.04 1.04 1.04
— — —
Sm
1345
0.223
—
1.90
Sn
505 573 673 773 1273
0.250 0.242 0.241 0.24 0.26
30.0 31.4 33.4 35.4 —
0.4720 0.490 6 0.5171 0.543 5 0.670 0.58
0.75 0.82 0.86
Sr
1043
0.354
—
Ta
3 269
—
—
1.18
Tb
1638
—
—
2.44
Te
723 773 873 1073 1273
0.295 0.295 0.295 0.295 0.295
2.5 3.0 4.1 6.2 —
5.50 4.80 4.30 3.9 3.8
Ti
1958
0.700
—
1.72
Tl
576 673 773
0.149 0.149 0.149
24.6 — —
0.731 0.759 0.788
Tm
1873
—
—
1.88
U
1406 1473 1573
0.161 0.161 0.161
— — —
0.636 0.653 0.678
V
2 185
0.780
—
0.71
W
3 650
—
—
1.27
Y
1803
0.377
—
1.04
Yb
1097
—
—
1.64
Zn
692.5 773 873 1073 2 123
0.481 0.481 0.481 0.481 0.367
49.5 54.1 59.9 60.7 —
0.374 0.368 0.363 0.367 1.53
Zr
14.2.4 Heat capacity Heat capacity (C) is one of the most essential thermodynamic properties of metals. A knowledge of the heat capacity and its temperature dependence allows prediction of the enthalpy and entropy of a material. It is determined as
c-
Sq
where 8q is an infinitesimal heat quantity added to (or withdrawn from) the matter and dT is the resulting infinitesimal temperature change. The specific heat is traditionally measured by adiabatic calorimetry techniques. The calorimeter is isolated from the environment, and requires long relaxation times. Heat capacities determined at constant volume or at constant pressure are of most general importance. Table 14.3b lists values of constant-pressure heat capacity for liquid elements at different temperatures.6"8 14.2.5 Electrical resistivity Information on the electrical resistivity of molten metals and alloys is especially important in many metallurgical processes such as electroslug remelting, electromagnetic stirring in continuous casting, electrolysis, and induction melting in foundries. Due to the disordered arrangement of ions in the liquid state, molten metals and alloys exhibit higher (~1.5-2.3 times) electrical resistivity than those in the solid state. However, relatively few studies have been reported on the electrical resistivity of molten metals and alloys, particularly at elevated temperatures, since the measurements are extremely difficult. The methods of electrical resistivity measurements can be categorised into three groups: direct resistance measurements using contact probes, contactless inductive measurements, and noncontact containerless measurement techniques. The technique of choice for solid materials is the direct resistance four-probe method, which is based upon application of Ohm's law. Although this direct method can be applied to low melting point, non-reactive liquid materials, reactions between the probes and the molten sample preclude using the four-probe method with high-melting point materials. Also, this technique is limited to materials with very narrow freezing ranges. Inductive techniques for measuring electrical resistivity are contactless and thus prevent chemical reactions between molten samples and contacting probes as in the direct method. There are two different types of contactless methods. The rotating field method is usually based on the phenomenon that when a metal sample rotates in a magnetic field (or the magnetic field rotates around a stationary sample), circulating eddy currents are induced in the sample, which generate an opposing torque proportional to the electrical conductivity of the sample.9' In liquid metals and alloys the applied magnetic field also causes significant rotation of the liquid in the crucible, which decreases the angular velocity between the field and the sample. In both direct resistance and contactless inductive techniques chemically reactive components contained in the crucible may easily contaminate the molten sample, altering its electrical properties. The container may provide heterogeneous nucleants that generate early solid-phase nucleation. Electromagnetic levitation is another technique for containerless measurements of electrical conductivity in liquid metals.11 It combines the containerless positioning method of electromagnetic levitation with the contactless technique of inductive electrical conductivity measurement. The electrical resistivity pe of liquid metals (except Cd, Zn, Hg, Te and Se) increases linearly with increasing temperature pe = aT + b,
where a and b are temperature coefficients of the resistivity, and are determined experimentally. The electrical resistivities of most liquid metallic elements at different temperatures are shown in Table 14.3b.6"8 14.2.6 Thermal conductivity Accurate measurement of thermal conductivity of liquid metals and alloys is usually more difficult than the measurement of electrical conductivity and thermal diffusivity. The source of difficulty is mainly related to problems with making accurate heat flow measurements. Also there is possibility
of some flows in the liquid sample. Thermal conductivity is directly related to the change in the atomic vibrational frequency. For a number of non-metallic substances it is found that
4 = =2.4 xlO-3, VM where X is the thermal conductivity, M is the molecular weight. Since free electrons are responsible for the electrical and thermal conductivities of conductors in both solid and liquid states, many researchers use the Wiedemann-Franz-Lorenz law to relate the thermal conductivity to the electrical resistivity:
T
3e2
where K is the Boltzmann constant, e is the electron charge. The constant 7T2K2
L0 = — T2 = 2.45 x 1(T8 WQK-2, 3e is the Lorenz number. The validity of this relationship was confirmed experimentally with high accuracy by many researchers. The thermal conductivity values of various liquid metals at different temperatures are given in Table 14.3b.6"8 REFERENCES FOR SECTION 14.2 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
D. J. Steinberg, Metall. Trans., 1974, 5, 1341. T. Iida and R. I. L. Guthrie, 'The Physical Properties of Liquid Metals', Clarendon Press, Oxford, UK, 1988. B. C. Allen, 'Liquid Metals' (ed. S. Z. Beer), Marcel Dekker, New York, NY, 1972, 162-212. R. T. Beyer and E. M. Ring, 'Liquid Metals' (ed. S. Z. Beer), Marcel Dekker, New York, NY, 1972, p. 450. L. J. Wittenberg and D. Ofte, Techniques of Metals Research, 1970, 4, 193. A. V Grosse, Revue Hautes Temp. & Refrac, 1966, 3, 115. D. R. Stull and G. C. Sinke, 'Thermodynamic Properties of the Elements', Amer. Chem. Soc, 1956. R. Hultgren et al, 'Selected Values of Thermodynamic Properties', Wiley, 1963. S. I. Bakhtiyarov and R. A. Overfelt, J. Materials Science, 1999, 34, 945-949. S. I. Bakhtiyarov and R. A. Overfelt, ,4cta Materialia, 1999, 47, 4311-4319. S.I. Bakhtiyarov and R. A. Overfelt, Annals of New York Academy of Sciences, New York, NY, 2002.
14.3 The physical properties of aluminium and aluminium alloys Table 14.4a THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES Sand cast
Material Al Al-Cu
Al-Mg
Al-Si Al-Si-Cu
Nominal composition % Al Al Cu Cu Cu Mg Mg Mg Si Si Si Cu Si Cu
99.5 99.0 4.5 8 12 3.75 5 10 5 11.5 10 1.5 4.5 3
Density g cm" 3
Coefficient of expansion 20-100 0 C 10~6 KT1
Thermal conductivity 1000C Wm" 1 KT1
Resistivity [iQ m
Modulus of elasticity MPa x 103
2.70 2.70 2.75 2.83 2.93 2.66 2.65 2.57 2.67 2.65 2.74
24.0 24.0 22.5 22.5 22.5 22.0 23.0 25.0 21.0 20.0 20.0
218 209 180 138 130 134 130 88 159 142 100
3.0 3.1 3.6 4.7 4.9 5.1 5.6 8.6 4.1 4.6 6.6
69 — 71 — — — — 71 71 — 71
2.76
21.0
134
4.9
71
(continued)
Table 14.4a THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES—continued Sand cast Nominal composition %
Material Al-Si-Cu-Mg*
Al-Cu-Mg-Ni (Y alloy) Al-Cu-Fe-Mg
Al-Si-Cu-Mg-Ni (Lo-Ex)
Si Cu Mg Cu Mg Ni
17 4.5 0.5 4 1.5 2
Cu Fe Mg Si Cu Mg Ni Si Cu Mg Ni
10 1.25 0.25 12 1 1 2 23 1 1 1
Density g crrT 3
Coefficient of expansion 20-100 0 C 10~ 6 K " l
Thermal conductivity 1000C Wm" 1 K " 1
Resistivity \xQm
Modulus of elasticity MPa x 103
2.73
18.0
134
8.6
88
2.78
22.5
126
5.2
71
2.88
22.0
138
4.7
71
2.71
19.0
121
5.3
71
2.65
16.5
107
—
88
* Die cast. Table 14.4b
THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES Wrought
Specification
Nominal composition %
Condition*
1199
Al
Sheet
1080A
1050A
1200
Al
Al
Al
99.992
99.8
Extruded Sheet
99.5
Extruded Sheet
99
Extruded Sheet
Density gem" 3
Coefficient of expansion 20-1000C lO^K"1
Hill H18
2.70
23.5
Hill H18
2.70
23.5
Hill H18
2.71
23.5
Hill H18
2.71
23.5
T4 T6
2.8 2.8
22 22
239 234 239 234 230 230 230 230 226 226 226 226 142 159
T3 T6
2.77 2.77
23 23
151
5.7 5.7
73 73
T8
2.59
23.6
88.2
9.59
76
T8
2.58
23.9
84
9.59
75
Hill H12 H14 H16 H18
2.74
23.0
180
3.9
0.003 0
69
151
4.8
0.002 4
—
Extruded 2014A
2024 2090
2091
3103
Cu Mg Si Mn Cu Mg Mn Cu Li Zr Cu Li Mg Zr Mn
4.4 0.7 0.8 0.75 4.5 1.5 0.6 2.7 2.3 0.12 2.1 2.0 1.50 0.1 1.25
Sheet
Extruded
Thermal conductivity 1000C Wm- 1 K" 1
Resistivity ^ficm' 2.68 2.70 2.68 2.74 2.76 2.79 2.80 2.82 2.85 2.87 2.89 2.86 5.3 4.5
Temp. coeff of resistance 20-100°C 0.0042 0.004 2 0.004 2 0.0042 0.0042 0.0041 0.0041 0.004 1 0.004 1 0.004 0 0.004 0 0.004 0
Modulus of elasticity MPa xlO 3 69 69 69 69 69 69 69 69 69 69 69 69 74
(continued)
Table 14.4b THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES—continued Wrought
Specification 5083
5251
5154A
5454
Al-Li Al-Mg-Li Al-Li-Mg 6061
6063 6063A
6082
6082 6463 Al-Cu-Mg-Si (Duralumin)
Al-Cu-Mg-Ni (Y alloy) Al-Si-Cu-Mg (Lo-Ex)
Al-Zn-Mg
7075
8090
Nominal composition % Mg Mn Cr Mg Mn
4.5 0.7 0.15 2.0 0.3
Mg 3.5
Mg Mn Cr Li Mg Li Li Mg Mg Si Cu Cr Mg Si Mg Si
2.7 0.75 0.12 2.0 3.0 2.0 3.0 2.0 1.0 0.6 0.2 0.25 0.5 0.5 0.5 0.5
Mg Si Mn Mg Si Mg Si Cu Mg Si Mn Cu Mg Si Mn Cu Mg Ni Si Cu Mg Ni Zn Cu Mn Mg Zn Mg Cu Cr Li Cu Mg Zr
1.0 1.0 0.7 1.0 1.0 0.65 0.4 4.0 0.6 0.4 0.6 4.5 0.5 0.75 0.75 4.0 1.5 2.0 12.0 1.0 1.0 1.0 10.0 1.0 0.7 0.4 5.7 2.6 1.6 0.25 2.5 1.3 0.95 0.1
Condition* Sheet
Sheet
Extruded Sheet
Hill H12 H14 Hill H13 H16
Density gem" 3
Coefficient Thermal Temp. of expansion conductivity coeff. of 0 0 20-100 C 100 C Resistivity resistance 1 1 1 IO^K" Wm" K" [iQ cm 20-1000C
Modulus of elasticity MPa x l O 3
2.67
24.5
109
6.1
0.0019
71
2.69
24
155
4.7
0.002 5
70
2.67
23.5
4.9 5.3 5.4 5.7 5.1
0.002 3 0.002 1 0.002 1 0.0019
— 70 — — 70
2.68
24
Sheet Sheet
Hill H22 H24 T6 T6
147 142 138 134 147
2.56 2.52
— —
— —
— —
— —
77 79
Sheet
T6
2.46
—
—
—
—
84
Bar
Hill T4 T6
2.7 2.7 2.7
23.6 23.6 23.6
180 154 167
2.70
23.0
2.7
2.7 2.7
24 24 24 23 23
193 201 197 209 201 172 184
3.5 3.3 3.5 3.2 3.3 4.1 3.7
2.69 2.71 2.71 2.80
23.0 23.4 23.4 22.5
188 193 209 201 147
3.6 3.4 3.1 3.3 5.0
0.003 3 0.003 5
0.002 3
69 — 69 69 73
Extruded Sheet
Hill H14
Extruded
T4 T6 Bar T4 T5 T6 Bar/Extruded T4 T6 Sheet Bar Sheet
T4 T6 T5 T6 T6
68.9 68.9 68.9 0.003 3 0.003 5
0.003 1 0.003 1
71 — 69 69 69 69 69
Sheet
T4 T6
2.81
22.5
147 159
5.2 4.5
0.002 2 0.002 6
73 —
Forgings
T6
2.78
22.5
151
4.9
0.002 3
72
Forgings
T6
2.66
19.5
151
4.9
0.002 3
79
2.91
23.5
151
4.9
0.002 3
—
2.80
23.5
130
5.7
0.002 0
72
2.55
21.4
Forgings
Extrusion
Plate
T6
93.5
9.59
77
(continued)
Table 14.4b THE PHYSICAL PROPERTIES OF ALUMINIUM AND ALUMINIUM ALLOYS AT NORMAL TEMPERATURES—continued Wrought
Specification Al-Cu-Mg-Si (Duralumin)
Al-Cu-Mg-Ni (Y alloy) Al-Si-Cu-Mg (Lo-Ex)
Al-Zn-Mg
7075
8090
Nominal composition % Cu Mg Si Mn Cu Mg Si Mn Cu Mg Ni Si Cu Mg Ni Zn Cu Mn Mg Zn Mg Cu Cr Li Cu Mg Zr
4.0 0.6 0.4 0.6 4.5 0.5 0.75 0.75 4.0 1.5 2.0 12.0 1.0 1.0 1.0 10.0 1.0 0.7 0.4 5.7 2.6 1.6 0.25 2.5 1.3 0.95 0.1
Condition*
Density gem" 3
Coefficient of expansion 20-1000C 10~ 6 K- ]
Thermal conductivity 1000C Wm- 1 K" 1
Resistivity [iQ cm
Temp. coeff. of resistance 20-1000C
Modulus of elasticity MPa x l O 3
Sheet
TF
2.80
22.5
147
5.0
0.002 3
73
Sheet
TB TF
2.81
22.5
147 159
5.2 4.5
0.002 2 0.002 6
73 —
Forgings
TF
2.78
22.5
151
4.9
0.002 3
72
Forgings
TF
2.66
19.5
151
4.9
0.0023
79
2.91
23.5
151
4.9
0.002 3
—
2.80
23.5
130
5.7
0.002 0
72
2.55
21.4
Forgings
Extrusion
TF
Plate
* O = Annealed. H l I l = Annealed. H12,22 = Quarter hard.
93.5
H14,24 = Half hard. H16,26 = Three-quarters hard. H18,28 = Hard.
9.59
77
T4 = Solution treated and naturally aged. T6 = Solution treated and artificially aged. See also pp. 22-1 and 22-2.
14.4 The physical properties of copper and copper alloys Table 14.5 THE PHYSICAL PROPERTIES OF COPPER AND COPPER ALLOYS AT NORMAL TEMPERATURES
Composition %
Melting point of Density liquidus g e m - 3 0C
Coefficient Electrical of expansion conductivity Thermal 0 25-300 C 2O0C conductivity IO^K"1 %IACS* Wm-1K-' Refs.
Oxygen-free high conductivity copper
Cu 99.99+
8.94
1083
17.7
101.5
399
Tough pitch HC copper
O2
8.92
1083
17.7
101.5
397
2,3,4
Phosphorus-deoxidised non-arsenical copper
P 0.005-0.012 P 0.013-0.050
8.94 8.94
1083 1083
17.7 17.7
341-395 298-372
5 5
Deoxidised arsenical copper
P As
0.03 0.35
Silver bearing copper
O2 Ag
0.02 0.05
Material
0.03
85-96 70-90
1
45
(continued)
Table 14.5 THE PHYSICAL PROPERTIES OF COPPER AND COPPER ALLOYS AT NORMAL TEMPERATURES—continued
Material
Composition %
Density gem"3
Melting point of liquidus 0 C
Coefficient of expansion 25-300 0 C IO^K"1
Tellurium copper
Cu
99.5
^94
{Qg2
^
Chromium copper
£u
99 4
"
8.89
1081
17
Beryllium copper
Be Co
1.85 0.25
*• ^
UUU
'
8.94
1080
8.92 8 85
7
2
17^ 23(2)
84 105
'
17
85
376
6
10.75
17
95
373
5
1065
18>1
Sulphur copper
£u
99>
Cap copper
^
^
Gilding metals CuZnIO
Cu Zn
90 10
CuZnl5
^n
15
8 75
-
1020
18 7
CuZn20
^n
20
8>65
100
CuZn30
Zn
30
8 55
Br
3g2
6
99 2
-
Refs.
167
^
^
9g
Thermal conductivity Wm" 1 K" 1
^
Cadmium copper
'
Electrical conductivity 2O0C %IACS*
56
234
5
37
159
5
19>1
32
138
5
965
19 9
28
121
5
940
20 2
27
121
5
20 5
26
125
5
44
'
°
"
'
CuZn33
^n
33
8 50
CuZn37
^n
37
8 45
920
CuZn40
^ 40 76 22 2
8.40
900
20.8
28
126
5
Aluminium brass CuZn22A12
^u Zn Cu Zn Al
8.35
1010
18.5
23
101
5
Naval brass CuZn36Sn
Cu Zn Sn
62 37 1
8.40
915
21.2
26
117
5
Free cutting brass CuZn39Pb3
Cu Zn Pb
58 39 3
850
900
20.9
26
109
3,5
Cu Zn Pb
58 40 2
8.45
910
20.9
26
109
3,5
20-25
Hot stamping brass CuZn40Pb2
High tensile brass Nickel silver
10%
12%
15%
Cu 54-62 Others 7 max. Zinc—balance Cu Ni Zn Cu Ni Zn Cu Ni Zn
62 10 28 62 12 26 62 15 23
-
-
-
-
8.3-8.4
990 approx.
21 approx.
88-109
5
8.60
1010
16.4
8.31
37
8,9
8.64
1025
16.2
7.71
30
8,9
8.69
1060
16.2
7.01
27
8,9
(continued)
Table 14.5 THE PHYSICAL PROPERTIES OF COPPER AND COPPER ALLOYS AT NORMAL TEMPERATURES—continued
Composition %
Material 18%
25%
Ph
Cu Ni Zn Cu Ni Zn
62 18 20 62 25 13
Density gem"3
Melting point of liquidus 0 C
Coefficient of expansion 25-300 0 C 10-6Kr1
8.72
1100
16.0
8.82
1160
17.0
Thermal conductivity Wm-1K-1
Refs.
6.3
28
8,9
5.1
21
8,9
C?S h n3p brOnZe
Pn
0 12
8 85
1070
CuSn5P
pn
^09
8.85
1060
18.0
16.8
75
5,10
CuSn7P
p"
Q12
8.80
1050
18.5
14.0
67
5,10
CuSn8P
pn
8
8.80
1040
18.0
14.0
63
10
Copper-nickel CuNi5Fe
Ni Fe Mn Ni Fe Mn Ni Fe Mn
8.94
1121
17.5
12.5
67
11
8.94
1150
17.1
8.0
42
11
8.90
1238
16.6
4.5
21
11
8.52
1028
18.0
8.1
50
5
R1S
, ^ ,
l s n
7.8
1045
17.0
14.0
7.57
1060
17.0
13
CuNiIOFeMn
CuNi30FeMn
Silicon bronze
^
Aluminium bronze CuA15
Cu Al Cu Al Fe Al Fe Mn Ni
CuA18Fe
CuA110Fe5Ni5
n
0 5
5.5 1.2 0.5 10.5 1.5 0.75 31.0 1.0 1.0 j 95 5 9 8 2 9.5 4.0 1.0 5.0
'
18 8
Electrical conductivity 200C %IACS*
-
18 8
-
177
85
5 10
'
ss
9
0
5
62
5
* The International Annealed Copper Standard is material of which the resistance of a wire 1 metre in length and weighing 1 gram is 0.153 28 ohm at 200C. 100% IACS at 200C = 58.00 MS m"1. (1) Solution heat treated. (2) Fully heat treated (to maximum hardness).
REFERENCESTOTABLE 14.5 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.
OFHC® Copper—Technical Information, Americal Metal Climax Inc., 1969. R. A. Wilkins and E. S. Bunn, 'Copper and Copper Base Alloys', New York, 1943. C. S. Smith, Trans. AIMME, 1930, 89, 84. C. S. Smith, Trans. AIMME, 1931, 93, 176. Copper Development Association, Copper and Copper Alloy Data Sheets, 1968. Copper Development Association, High Conductivity Copper Alloys, 1968. Copper Development Association, Beryllium Copper, 1962. M. Cook, J. Inst. Metals, 1936, 58, 151. International Nickel Limited, Nickel Silver Engineering Properties, 1970. M. Cook and W. G. Tallis, J. Inst. Metals, 1941, 67, 49. International Nickel Limited, Cupronickel Engineering Properties, 1970.
14.5 The physical properties of magnesium and magnesium alloys
Material Pure Mag Mg-Mn Mg-Al Mg-Al-Zn
Mg-Zn-Mn Mg-Zn-Zr
Nominal composition* % Mg (MN70)Mn (AM503)Mn AL80A1 Be (AZ31)A1 Zn (A8)A1 Zn (AZ91)A1 Zn (AZM)Al Zn (AZ855)A1 Zn (ZM21)Zn Mn (ZWl)Zn Zr (ZW3)Zn Zr (Z5Z)Zn Zr (ZW6)Zn Zr
99.97 0.75 approx. 1.5 0.75 approx. 0.005 3 1 8 0.5 9.5 0.5 6 1 8 0.5 2 1 1.3 0.6 3 0.6 4.5 0.7 5.5 0.6
Condition
Density at 2O0C gem"3
Tl Tl Tl Tl
Melting point 0 C
Coeff. of thermal expansion 20-2000C 10-6
Thermal conductivity
K -i
Electrical resistivity \xQ cm
Specific heat 20-2000C J kg-1 K-1
Weldability by argon arc process^
Relative damping capacity^
Sol.
Liq.
1.74 1.75 1.76 1.75
650 650 650 630
651 651 640
27.0 26.9 26.9 26.5
167 146 142 117
3.9 5 5.0 6
1050 1050 1050 1050
A A A A
Tl
1.78
575
630
26.0
(84)
10.0
1050
A
AC AC T4 AC AC T4 AC T6 Tl
1.81 1.81 1.83 1.83 1.83 1.80
475*
600
84 84 84 84 84 79
13.4
A
C
A
C
14.3
1000 1000 1000 1000 1000 14 000
Tl
1.80
79
14.3
1000
A
Tl
1.78
Tl
1.80
625
645
27.0
134
5.3
1000
A
Tl
1.80
600
635
27.0
125
5.5
960
C
AC T6
1.81
560
640
27.3
113
6.6
960
C
T5
1.83
530
630
26.0
117
6.0
1050
C
470*
595
510
610
27.2 27.2 27.0 27.0 27.0 27.3
475*
600
27.2
14.1
C
A
A
27.0
A
Mg-Y-RE-Zr
Mg-RE-Zn-Zr
Mg-Th-Zn-Zr**
Mg-Ag-RE-Zr
(WE43)Y RE(A) Zr (WE54)Y RE(A) Zr (ZREl)RE ZN Zr (RZ5)Zn RE Zr (ZE63)Zn RE Zr (ZTY)Th Zn Zr (ZTl)Th Zn Zr (TZ6)Zn Th Zr (QE22)Ag RE(D) Zr (EQ21)RE(D) Ag Cu Zr
4.0 3.4 0.6 5.1 3.0 0.6 2.7 2.2 0.7 4.0 1.2 0.7 6 2.5 0.7 0.8 0.5 0.6 3.0 2.2 0.7 5.5 1.8 0.7 2.5 2.0 0.6 2.2 1.5 0.07 0.7
AC T6
1.84
550
640
26.7
51
14.8
966
A
AC T6
1.85
550
640
24.6
52
17.3
960
A
AC T5
1.80
545
640
26.8
100
7.3
1050
A
AC T5
1.84
510
640
27.1
113
6.8
960
B
AC T6
1.87
515
630
27.0
109
5.6
960
A
Tl
1.76
600
645
26.4
121
6.3
960
A
AC T5
1.83
550
647
26.7
105
7.2
960
A
AC T5
1.87
500
630
27.6
113
6.6
960
B
AC T6
1.82
550
640
26.7
113
6.85
1000
A
AC T6
1.81
540
640
26.6
113
6.85
1000
A
B
(B)
(continued)
Material Mg-Zn-Cu-Mn
MG-Ag-RE-** Th-Zr
Mg-Zr
Nominal composition^ % (ZC63)Zn Cu Mn (ZC71)Zn Cu Mn
6.0 2.7 0.5 6.5 1.3 0.8
(QH21)Ag RE(D) Th Zr (ZA)Zr
2.5 1.0 1.0 0.7 0.6
AC Sand cast. T4 Solution heat treated. T5 Precipitation heat treated. T6 Fully heat treated. ^ Mg-Al type alloys normally contain 0.2-0.4% Mn to improve corrosion resistance. ** Thorium containing alloys are being replaced by alternative Mg alloys.
Condition
Density at 200C gem"3
AC T6
Melting point 0 C
Coeff. of thermal expansion 20-2000C
Thermal conductivity
Electrical resistivity [iQ, cm
Weldability by argon arc process*
Sol.
Liq.
10-6
1.87
465
600
26.0
122
5.4
962
B
T6
1.87
465
600
26.0
122
5.4
62
B
AC T6
1.82
540
640
26.7
113
6.85
1005
A
AC
1.75
650
651
27.0
(146)
(4.5)
1050
A
Tl Extruded, rolled or forged. RE Cerium mischmetal containing approx. 50% Ce. * Non-equilibrium solidus 4200C. () Estimated value. RE(D) Mischmetal enriched in neodynium. RE(A) Neodynium + Heavy Rare Earths.
K -i
Specific heat 20-2000C Jkg" 1 K-1
+ Weldability rating: A Fully weldable. B Weldable. C Not recommended where fusion welding is involved.
Relative damping capacity^
A
§ Damping capacity rating: A Outstanding. B Equivalent to cast iron. C Inferior to cast iron but better than Al-base cast alloys.
14.6 The physical properties of nickel and nickel alloys Table 14.7 THE PHYSICAL PROPERTIES OF WROUGHT NICKEL AND SOME HIGH NICKEL ALLOYS AT ROOM TEMPERATURE
Coefficient
of Alloy*
Nominal composition %
Density gem" 3
expansion 20-100 0 C IO^K"1
Specific heat Jkg" 1 K" 1
Thermal conductivity Wm-1K"1
Nickel
99.4
Ni
8.89
13.3
456
74.9
9.5
Nickel 205
99.6
Ni
8.89
13.3
456
75.0
9.5
30 1.5 1.0 31.0 0.7 Rem.
Cu Fe Mn Ni Fe Cu
8.83
13.9
423
21.7
51.0
8.91
15.5
380
29.4
41.2
Monel alloy K-500
29 2.8 0.5
Cu Al Ti
8.46
13.7
419
17.4
61.4
Cupro-nickel
55
Cu
8.88
14.9
421
19.5
Inconelt alloy 600
16 6
Cr Fe
8.42
13.3
460
14.8
103
60.5 23.0 1.4 15.1
Ni Cr Al Fe
8.11
13.75
448
11.2
119
55.7 21.5 12.5 9.0 1.2 0.1
Ni Cr Co Mo Al C
8.36
11.6
419
13.6
122
Inconel alloy 625
22 4 9
Cr Nb Mo
8.44
12.8
410
9.8
129
Inconel 718
52.5 19.0 18.8 5.2 3.1 0.9 0.5
Ni Cr Fe Nb Mo Ti Al
8.19
13
435
11.4
125
Inconel alloy X-750
15 7 2.5
Cr Fe Ti
825
12.6
425
12.0
122
78.0 20.0 1.0 0.6
Ni Cr Fe Y203
8.3
12.2
14.26
107.5
35.5 44.8 18.5 1.2
Ni Fe Cr Si
8.08
14.9
460
12.4
101.7
35.0 38.4 20.0 3.5 2.5 0.6
Ni Fe Cr Cu Mo Nb
8.05
14.7
500
12.3
108
Monelj alloy 400
Monel450
Inconel601
Inconel617
Inconel MA 754
INCO 330
INCO 020
0.3 0.3
Ti Al
0.6 Al 0.8 Nb
Electrical resistivity \iQ cm
52.0
{continued)
Table 14.7 THE PHYSICAL PROPERTIES OF WROUGHT NICKEL AND SOME HIGH NICKEL ALLOYS AT ROOM TEMPERATURE—continued
Alloy*
Nominal composition % 49.0 22.5 19.5 7.0 2.0 59.0 16.0 15.5 5.5 4.0 48.3 22.0 18.5 9.0 1.5 0.6 0.1 45 21 0.4 32 21 3 40 18 2
Ni Cr Fe Mo Cu Ni Mo Cr Fe W Ni Cr Fe Mo Co W C Fe Cr Ti Fe Cr Mo Fe Cr Si
Ni Span1" alloy C-902 47 5.5 2.5 HastelloyB2 28 HastelloyC4 16
Fe Cr Ti Mo Mo
9 21 18 20 ^
Mo Cr Fe Cr
20 2.0 1.5 30 1.8 1.0 20 17 2.4 15 20 5 14 13 3
Cr Ti Al Cr Ti Al Cr Co Ti Cr Co Mo Cr Co Mo
INCO G-3
INCOC-276 INCO-HX
Incoloyt alloy 800 Incoloy alloy 800 H* Incoloy alloy 825 Incoloy alloy DS
Hastelloy alloy X N m W alloy 75 Nimonic alloy 80A Nimonic alloy 81 Nimonic alloy 90 Nimonic alloy 105 Nimonic alloy 115
Coefficient of expansion Specific Thermal Electrical Density 20—1000C heat conductivity resistivity gem" 3 10" 6 KT 1 J kg" 1 KT1 W m - 1 K - 1 ^cm
0.4
2 1.0
8.3
12.2
14.26
107.5
8.89
12.2
427
9.8
122.9
8.23
13.3
461
11.6
116
7.95
142.0
460
11.5
93
Cu Ti 814
14.0
441
11.1
113
7.91
14.2
450
12.0
108
8.10
7.6
502
12.1
101
9.22
10.3 ^
373 ^
11.1 ^
137
%M
8.23
13.8
485
9.1
118
^37
UQ
^
UJ
8.19
12.7
460
11.2
117
8.06
11.1
461
10.9
127
8.18
12.7
445
11.5
114
Al
0.5 Al
1.4
U5
m
Al
5 1.2
Al Ti
8.01
12.2
419
10.9
131
5 4
Al Ti
7.85
12.0
444
10.6
139 (continued)
Table 14.7 THE PHYSICAL PROPERTIES OF WROUGHT NICKEL AND SOME HIGH NICKEL ALLOYS AT ROOM TEMPERATURE—continued
Coefficient of Alloy*
Nominal composition %
Nimonic alloy 263
20 20 6
Cr Co Mo
2 0.5
Ti Al
13 35 6
Cr Fe Mo
3
Ti
Nimonic alloy 901
Nimonic alloy PE16
16 32 3
Cr Fe Mo
1.0 1.0
Nimonic PK33
18.0 14.0 7.0 2.25 2.1
Cr Co Mo Ti Al
54.8 15.0 17.0 5.3 4.0 3.5
Ni Cr Co Mo Al Ti
55.4 19.0 11.0 11.0 1.5 3.1
Ni Cr Co Mo Al Ti
61.5 14.0 8.0 3.5 3.5 3.5 2.5
Ni Cr Co Mo Nb Al Ti
53.7 18.0 18.5 4.0 2.9 2.9
Ni Cr Co Mo Al Ti
55.5 15.0 17.0 5.0 4.0 3.5
Ni Cr Co Mo Al Ti
58.7 19.5 13.5 4.3 1.3 3.0
Ni Cr Co Mo Al Ti
Astroloy
Rene 41
Rene 95
Udimet500
Udimet700
Waspaloy
Ti Al
Density gem-3
expansion 20-100 0 C 10"6K-1
Specific heat J k g " 1 KT 1
Thermal conductivity Wm-1K"1
Electrical resistivity [iQ cm
8.36
11.1
461
11.7
115
8.16
13.5
419
—
—
8.02
11.3
544
11.7
110
8.21
12.1
419
11.3
126
9
130.8
7.91
8.25
8.7
8.02
11.1
7.91
19.6
8.19
10.7
120.3
124
* Where trade marks apply to the name of an alloy there may be materials of similar composition available from other producers who or may not use the same suffix along with their own trade names. The suffix alone e.g. Alloy 800 is sometimes used as a descriptive term for the type of alloy but trade marks can be used only by the registered user of the mark. ^ Registered Trade Mark. + A variant on alloy 800 having controlled carbon and heat treatment to give significantly improved creep-rupture strength.
14.7 The physical properties of titanium and titanium alloys Table 14.8
PHYSICAL PROPERTIES OF TITANIUM AND TITANIUM ALLOYS AT NORMAL TEMPERATURES
Material IMI designation
Nominal composition %
CP Titanium
Commercially pure Cu 2.5 Pd 0.2 Al 2.0 Mn 2.0 Al 5.0 Sn 2.5 Al 6.0 V 4.0 Al 4.0 Mo 4.0 Sn 2.0 Si 0.5 Al 4.0 Mo 4.0 Sn 4.0 Si 0.5 Sn 11.0 Zr 5.0 Al 2.25 Mo 1.0 Si 0.2 Sn 11.0 Mo 4.0 Al 2.25 Si 0.2 Al 6.0 Zr 5.0 Mo 0.5 Si 0.25 Al 5.5 Sn 3.5 Zr 3.0 Nb 1.0 Mo 0.3 Si 0.3 Al 5.8 Sn 4.0 Zr 3.5 Nb 0.7 Mo 0.5 Si 0.35 C 0.06
IMI230 IMI260/261 IMI315 IMI317 IMI318 IMI550
IMI551
IMI679
IMI680
IMI685
IMI829
IMI834
Temp. coefficient of resistivity 20-100 0 C ^cmK"1
Specific heat 5O0C J kg" 1 K" 1
Magnetic suscept. 10~6 cgs units g" 1
48.2
0.002 2
528
+3.4
70 48.2 101.5
0.002 6 0.0022 0.0003
— 528 460
— — +4.1
6.3
163
0.0006
470
+3.2
8.0
5.8
168
0.0004
610
+3.3
4.60
8.8
7.9
159
0.0004
—
—
4.62
8.4
5.7
170
0.0003
400
+3.1
4.84
8.0
7.1
163
0.0004
—
—
4.86
8.9
7.5
165
0.0003
—
—
4.45
9.8
4.8
167
0.0004
—
—
4.53
9.45
7.8
—
—
530
—
4.55
10.6
_
_
Density gem" 3
Coefficient of expansion 20-100 0 C IO^K"1
Thermal conductivity 20-100 0 C Wm-1K"1
4.51
7.6
16
4.56 4.52 4.51
9.0 7.6 6.7
13 16 8.4
4.46
7.9
4.42
_
Resistivity 2O0C \ito cm
_
_
14.8
The physical properties of zinc and zinc alloys
Table 14.9 PHYSICAL PROPERTIES OF ZINC AND ZINC ALLOYS
Thermal conductivity Wm" 1 KT1
Electrical conductivity % IACS 2O0C
Melting point {liquids) Condition 0 C
Nominal composition
Density gem" 3
Coefficient of expansion ICT 6 K- 1
Zn Polycrystalline
99.993% Zn
7.13 (25° C)
39.7 (20-2500C)
113
28.27
Cast
419.46
ZnAlMg BS1004A
4% Al 0.04% Mg 6.7
27 (20-1000C)
113
27
Pressure die cast
387
ZnAlCuMg BS1004B
4% Al 1% Cu 0.04% Mg
6.7
27 (20-1000C)
109
26
Pressure die cast
388
ZnAlCuMg ILZRO 12 (ZA12) ZA27
ll%All%Cu 0.02% Mg
6.0
28 (20-1000C)
115
28.3
Chill cast
432
5.0
26 (20-1000C)
123
29.7
Material
14.9
27% Al 2.3% Cu 0.015% Mg
Chill cast
487
The physical properties of zirconium alloys
Table 14.10 PHYSICAL PROPERTIES OF ZIRCONIUM ALLOY Coefficient of expansion 20—1000C 10~6
Electrical resistivity \iQ cm
Composition %
Density gem" 3
Thermal cond. at 25 0 C Wm-1K"1
Zirconium 10
Commercially pure
6.50
21.1
5.04
—
Zirconium 30
Cu 0.55 Mo 0.55
6.55
25.3
5.93
—
ZircalloyII
Sn 1.5 Fe 0.12 Cr 0.10 Ni 0.05
6.55
12.3
5.67
—
Zr 702
Commercially pure with up to 4.5 Hf
6.51
22
5.89
39.7
Zr 704
Cr+Fe 0.2-0.4 Sn 1-2
6.57
—
—
—
Zr 705
Nb 2.5 O2 0.18
6.64
17.1
6.3
55
Zr 706
Nb 2.5 O2 0.16
6.64
17.1
6.3
55
Alloy
See also Table 26.36 page 26-52.
14.10
The physical properties of pure tin
Melting point Boiling point Vapour pressure at
727°C 1127°C 1527°C Volume change of freezing Expansion on melting Phase transformation
a^ P
231.9 0 C 2 27O0C 7.4x 10~6 mmHg 4.4x 1(T 2 mmHg 5.6 mmHg 2.7% 2.3% 13.20C
Density at 200C Specific heat at 200C Latent heat of fusion Latent heat of evaporation Linear expansion coefficient at 0-1000C Thermal conductivity at 0-100°C Electrical conductivity at 200C Electrical resistivity at 200C Temperature coefficient of electrical resistivity at 0-100°C Thermal EMF against platinum cold junction at 00C hot junction at 1000C Superconductivity, critical temperature (Tc) Viscosity Surface tension Gas solubility in liquid tin: Oxygen at 536°C Oxygen at 75O0C Hydrogen at 1 0000C Hydrogen at 1 3000C Nitrogen
7.28 g/cm3 222 J kg"1 Kr 1 59.6 kJ kg" l 2 497 J kg" l 23.5x 10~6 K"1 66.8 Wm"1 Kr 1 15.6 IACS 12.6 [iQ cm 0.004 6 Kr 1 +0.42 mV 3.722 K 0.013 82 poise at 351°C 0.01148 poise at 493°C 548 mN m~l at 2600C 52911Mm-1 at 5000C 0.000 18% 0.004 9% 0.04% 0.36% Very low
14.11 The physical properties of steels Table 14.11
PHYSICAL PROPERTIES OF STEELS Thermal properties {see Notes)
Material and condition Composition %
Temperature C
0
Specific gravity gcm~3
Specific heat J kg" * K- 1
Coefficient of thermal expansion 10- 6 K" 1
Thermal conductivity Wm- 1 K" 1
Electrical resistivity \iQ cm
Carbon steels C Mn
0.06} 0.4 J
Annealed
C Mn
0.081 0.31 J
Annealed
C Mn
0.23} En 3 0.6 J060A22
Annealed
RT 100 200 400 600 800 1000
7.87
— 48.2 520 595 754 875 —
— 12.62 13.08 13.83 14.65 14.72 13.79
65.3 60.3 54.9 45.2 36.4 28.5 27.6
12.0 17.8 25.2 44.8 72.5 107.3 116.0
RT 100 200 400 600 800 1000
7.86
— 482 523 595 741 960 —
— 12.19 12.99 13.91 14.68 14.79 13.49
59.5 57.8 53.2 45.6 36.8 28.5 27.6
13.2 19.0 26.3 45.8 73.4 108.1 116.5
RT 100 200 400 600 800 1000
7.86
— 486 520 599 749 950 —
— 12.18 12.66 13.47 14.41 12.64 13.37
51.9 51.1 49.0 42.7 35.6 26.0 27.2
15.9 21.9 29.2 48.7 75.8 109.4 116.7 (continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties (see Notes)
Material and condition Composition % C Mn
0.42} En 8 0.64J060A42
Annealed
C Mn
0.80} 0.32 J
Annealed
C Mn
1.22} 0.35]
Annealed
C Mn
0.23} En 14 1.51J150M19
Annealed
C Mn Ni
0.131 0.61 [ 0.12]
Annealed
Temperature 0 C
Specific gravity gem" 3
Specific heat J kg" 1 KT1
Coefficient of thermal expansion 1(T 6 KT 1
Thermal conductivity Wm-1K"1
Electrical resistivity \iQ cm
RT 100 200 400 600 800 1000
7.85
— 486 515 586 708 624 —
— 11.21 12.14 13.58 14.58 11.84 13.59
51.9 50.7 48.2 41.9 33.9 24.7 26.8
16.0 22.1 29.6 49.3 76.6 111.1 122.6
RT 100 200 400 600 800 1000
7.85
— 490 532 607 712 616 —
— 11.11 11.72 13.15 14.16 13.83 15.72
47.8 48.2 45.2 38.1 32.7 24.3 26.8
17.0 23.2 30.8 50.5 77.2 112.9 119.1
RT 100 200 400 600 800 1000
7.83
— 486 540 599 699 649 —
— 10.6 11.25 12.88 14.16 14.33 16.84
45.2 44.8 43.5 38.5 33.5 23.9 26.0
18.4 25.2 33.3 54.0 80.2 115.2 122.6
RT 100 200 400 600 800 1000
7.85
— 477 511 590 741 821 —
— 11.89 12.68 13.87 14.72 12.11 13.67
46.1 46.1 44.8 39.8 34.3 26.4 27.2
19.7 25.9 33.3 52.3 78.6 110.3 117.4
0 100 200 400 600 800 1000
7.84
435 494 528 599 754 833 657
16.3 22.6 29.6 48.2 74.2 110.0 119.4
Low alloy steels C 0.40] 1 0 / M . Mn 0.67 I i / 0 1 T Ni 0.80] Hardened 85O0C OQ Tempered 6000C (1 h) OQ
RT 100 200 400 600
7.85
*— 486 507 544 586
— 11.90 12.55 13.75 14.45
— 49.4 46.9 40.6 34.8
21.9 26.4 33.4 52.0 77.5
C 0.37] Mn-Mo Mn 1.56 V En 16 Mo 0.26J 605A37 Hardened 845°C OQ Tempered 6000C (1 h)
RT 100 200 400 600
7.85
*— 456 477 532 599
— 12.45 13.20 14.15 14.80
— 48.2 45.6 39.4 33.9
25.4 30.6 39.1 60.0 88.5
C 0.37] Mn-Mo Mn 1.481 En 17 Mo 0.43J608M38 Hardened 8500C OQ Tempered 62O0C (Ih) OQ
RT 100 200 400 600
7.85
*— 482 494 519 595
— 12.45 13.00 13.90 14.75
— 45.6 44.0 39.4 33.9
22.5 27.2 34.3 52.5 77.5 (continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties (see Notes)
Material and condition Composition % C 0.32] l%Cr Mn 0.69 [ En 18B Cr 1.09J 530A32 Annealed
Temperature 0 C
Specific gravity gem" 3
Specific heat Jkg^ 1 K- 1
Coefficient of thermal expansion 10" 6 K- 1
Thermal conductivity Wm-1K-1
Electrical resistivity [iQ cm
RT 100 200 400 600 800 1000
7.84
— 494 523 595 741 934 —
— 12.16 12.83 13.72 14.46 12.13 13.66
48.6 46.5 44.4 38.5 31.8 26.0 28.1
20.0 25.9 33.0 51.7 77.8 110.6 117.7
C 0.391 l%Cr Mn 0.79jEnl8D Cr 1.03J530A40 Hardened 85O0C OQ Tempered 6400C (Ih) OQ
RT 100 200 400 600
7.85
*— 452 473 519 561
— 12.35 13.05 14.40 15.70
— 44.8 43.5 37.7 31.4
22.8 28.1 35.2 53.0 78.5
C 0.28/0.33] Mn 0.4/0.6 Si 0.2/0.35 \ 1% Cr-Mo Cr 0.8/1.1 Mo 0.15/0.25 J Hardened and tempered
0 RT 100 200 300 400 500 600 700 800 1000 1200
42.7 — 42.7 — 40.6 — 37.3 — 31.0 — 28.1 30.1
— 22.3 27.1 34.2 — 52.9 — 78.6 — 110.3 117.1 122.2
— 12.25 12.70 13.70 14.45
— 42.7 42.3 37.7 33.1
22.2 26.3 32.6 47.5 64.6
—
C 0.41 Mn 0.67 Cr 1.01 Mo 0.23 Hardened Tempered
1% Cr-Mo En 19 708A42
7.85
— — 477 515 544 595 657 737 825 883 — —
RT 100 200 400 600
7.83
C 0.41 1 0 / „ . , Mn 0.4 l%%nM0 Cr 1.1 b n z u u Mo 0.7 J Hardened and tempered
RT 100 200 400 600 800
7.85
— 12.3 12.6 13.7 14.4 —
— 41.9 41.9 38.9 32.7 26.0
C 0.41 , 0 / ^ A/r w Mn 0.6 f \ C n r - M ° - V Cr 3.0 ™ 7 £ Mo 0.8 w / u y V 0.2 J Hardened and tempered
RT 100 200 400 600
7.83
— 12.5 12.9 13.5 14.0
— 37.7 37.7 34.8 31.0
C 0.351 Mn 0.59 T ,. M. r Ni 0.20 LowNi-Cr-Mo Cr 0.88 Mo 0.2Oj Annealed
RT 100
7.84
— 12.67 ^ n 13.82 14.55 11.92 13.86
42.7 42.7 ^ 9 38.9 33.9 26.4 28.1
85O0C OQ 6000C (Ih) OQ
2QQ
400 600 800 1000
*— — 473 519 561
— 477 515
595 737 883 —
~
21.1 27.1 ^ 2 52.9 78.6 110.3 117.1 (continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties {see Notes)
Material and condition Composition % C Mn Si Cr W Mo
0.23) 0.45 3% Cr-W-Mo-V 0.45 2.87 0.59 0.51
V
0.77 J
Temperature 0 C
Specific gravity gem" 3
Specific heat J kg~ K" 1
Coefficient of thermal expansion 1(T 6 KT 1
Thermal conductivity Wm- 1 K- 1 '
— 11.9 12.4 13.1 13.6 14.1
38.5 33.6 33.1 30.6 29.3 28.9
35.5 39.0 46.2 63.0 85.4 —
Electrical resistivity \LQ cm
RT 100 200 400 600 800
7.83
C 0.321 w . Mn 0.55 [ p i j 1 Ni 3.47J Annealed
RT 100 200 400 600 800 1000
7.85
— 482 523 590 749 604 —
— 11.20 11.80 12.90 13.87 11.10 13.29
36.4 37.7 38.9 36.8 32.7 25.1 27.6
25.9 32.0 39.0 56.7 81.4 112.2 118.0
C 0.33 W K - _ r r Mn 0.50 p ^ 1 t n Z J Ni 3.4 Cr 0.8 Hardened and tempered
RT 100 200 400 600 800 1000
7.85
— 494 523 599 775 557 —
— 11.36 12.29 13.18 13.72 10.69 13.11
34.3 36.0 36.8 36.4 31.8 26.0 27.6
25.6 31.7 38.7 56.7 81.7 111.5 117.8
RT 100
7.84
Hardened and tempered
C Ni
0.41 1.43
Cr
1.07 ~?_rLn
Mo 0.26 Hardened Tempered C 0.32 Ni 2.60 Cr 0.67 Mo 0.51 Hardened Tempered
, V/°Ni-Cr-Mo 817M40
8300C OQ 6300C (1 h) OQ ] 2l%Ni-Cr-Mo **f> 8Z0iVU1 0
83O C OQ 65O0C OQ
C 0.34] Mn 0.54 w ._f Ni 3.53 1 p i l 1 ^ M 0 Cr 0.76 Mo 0.39] Hardened and tempered
C Ni
0.291 . I 0 , x r „ 4.23 ^ 4 / ° Ni-Cr
— -
200
l2A0
400 600
13.60 14.30
55.2 79.7
— _ 11.55 13.10 13.85
27.7 ^ 38.7 57.3 82.5
RT
7.85
m
200 400 600 RT 100 200 400 600 800 1000 RT
7.86
7 &^
'-^
— 486 523 607 770 636 —
— 11.63 12.12 13.12 13.79 10.67 12.96 —
10Q
10 55
Cr 1 . 2 6 j Hardened 82O0C AC Tempered 25O0C (Ih)
200
12.00
C 0.181 2%Ni-Mo Ni 1.761 En 34 Mo 0.20] 665A17 Blank carburised 9200C Hardened 8000C OQ
RT 100 200
bn3UA
24.8 29.8
7.85
— 12.50 13.10
36J
33.1 33.9 35.2 35.6 30.6 26.8 28.5 — 2J6
29.7
27.7 33.7 40.6 58.2 82.5 111.4 117.6 37.0 41 6
49.3
24.9 29.6 37.1
(continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties {see Notes)
Material and condition Composition % C
0.15
Ni 4 25 Cr
, , i 0 / X T . r,
Temperature 0 C A/r
- P™
1.18 J8 ?3 5j A; f1 5
Mo 0.20 Blank carburised 9200C Hardened 8000C OQ C 0.39) Low alloy steel Mn 1.35 En 100 Ni 0.65 945M38 Cr 0.48 Mo 0.17 J Hardened 8500C OQ Tempered 6200C (1 h) OQ
RT
10
Specific gravity gem"3
Specific heat J kg" 1 K^ 1
7.85
Coefficient of thermal expansion 10-6K-1
Thermal conductivity Wm-1K-1
—
36.3
1L3
°
200
Electrical resistivity \iQ cm
401
°
12.55
46.7
RT 100 200 400 600
7.86
— 12.00 12.75 14.00 14.75
24.7 28.2 34.0 52.0 74.7
C 0.39 Low Ni-Cr-Mo Ni 1.39 EnIlO Cr 1.02 816M40 Mo 0.14 J Hardened 8400C OQ Tempered 65O0C (Ih) OQ
RT 100 200 400 600
7.84
— 12.00 12.65 13.65 14.30
24.8 29.2 35.6 54.0 78.0
C 0.17) | % N i - C r Ni 0.861 En 351 Cr 0.71J635A14 Blank carburised 91O0C Hardened 8200C OQ
RT 100 200
7.85
— 12.80 13.10
29.1 34.2 41.1
RT
7.87
—
C 0.17) , U / . . . _ _„ Ni 1.25 ^ N i - C r - M o Cr 1.02 oJV^rV Mo 0.15 8 1 5 A 1 6 Blank carburised 910° C Hardened 8100C OQ C 0.16 2% Ni-Cr-Mo Ni 2.00 En 355 Cr 1.50 822Al 7 Mo 0.20 Blank carburised 9100C Hardened 8100C OQ C 0.48 2% Si-Cu Mn 0.90 Si 1.98 Cu 0.64 Annealed
C 0.05) Mn 0.3 2% B Si 0.7 B 1.96 Al 0.03 J Hot worked
31.8
m
n
200
12.45
RT 100 200
7.84
RT 100 200 400 600 800 1000
7.73
0 RT 100 200 400 600 800
7.72
30
36 6
43.2
— 11.80 12.30
— 498 523 603 749 528 — 461
— 11.19 12.21 13.35 14.09 13.59 14.54 — — 10.0 11.0 11.9 11.8 13.3
Jl^ ^ 1 ^'
^ 1 1?'\ ^ 5K)A
41.9 47.0 52.9 68.5 91.1 117.3 122.3 24.9 — 30.9 38.7 57.4 81.9 — (continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties (see Notes)
Specific gravity gem-3
Specific heat J kg~1 K- 1
7.40
523
RT 100 200 400 600 700
7.86
*440 465 494 557 632 674
C 0.10 1 5 % Cr Si 1.0 max J AISI 502 Cr 4.0/6.0 J Annealed
30 100 200 400 600 800 1200
7.7
C 0.45 Mn 0.5 . c 3/oCr 3/obl Si 3.5 Cr 3.5 Hardened and tempered
RT 100 300 500 700 900
7.6
— 13.0 13.0 13.0 14.0 —
22.2 — — — — 31.4
80
C 0.45 Mn 0.5 Cr 8.0 Si 3.4 Hardened
RT 100 300 500 700 900
7.6
— 13.0 13.0 13.0 14.0 —
22.2 — — — — 31.4
80.0 — 110.0
C 0.40) Mn 0.3 J 11% Cr Cr 11.5 J Hardened and tempered
RT 100 300 500 700 750
7.75
— 10.0 11.0 12.0 12.0 —
23.5 — — — — 24.3
60.0 — — — — 119.0
C 0.121 9%Cr-Mo Cr 9.0 I Mo 1.0 J Normalised and tempered
RT 100 200 400 600 700
7.78
11.15 11.30 11.60 12.10 12.65 12.85
26.0 26.4 26.8 27.6 26.8 26.8
49.9 55.5 63.0 79.5 97.5 106.5
Material and condition Composition % C 0.10] Mn 0.14 4% B Si 0.431 B 4.2 Al 0.53 J As cast
Typically C 0.10 1 i % Mo-B Mo 0.5 [ 'Fortiweld' B 0.004] Normalised and stress-relieved 6000C
Temperature 0 C 0 RT 100 200 300 400 500 600 700 800 1000
Coefficient of thermal expansion KT 6 KT 1
Thermal conductivity Wm-1K-'
— — 9.5 — 10.4 — 11.2 — 11.8 — 13.0
Electrical resistivity \iQ cm 39.9 — 50.6 61.5 72.3 83.3 — 106.5 — 129.4 —
12.00 12.55 13.25 14.30 15.10 15.40
46.1 45.2 44.4 41.5 36.9 35.2
— 11.0 11.6 12.6 13.3 — —
36.0 — 35.2 — — 26.8 26.8
20.0 24.5 31.0 48.5 74.5 88.0
High alloy steels
8%Cr-3%Si En 52 401S45 and tempered
*402 427 461 528 595 624
(continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued
Thermal properties {see Notes) Material and condition Composition % C 0.201 Mn 0.4 11% Cr-Mo-V-Nb Cr 11.0 I Mo 0.5 [ V 0.7 Nb 0.15] Hardened and tempered
Specific Coefficient Specific heat of thermal Thermal Electrical Temperature gravity J kg" 1 expansion conductivity resistivity 0 C gem" 3 K- 1 10- 6 K" 1 Wm-1K-1 ^cm RT 100 200 400 600 800
7.75
C 0.13 13% Cr Mn 0.25 En56B Cr 12.95 420S29 Ni 0.14 J Annealed
RT 100 200 400 600 800 1000
7.74
C 0.07) Mn 0.8 I 17% Cr Cr 17.0 J Annealed
RT 100 200 300
7.7
C 0.06] Mn 0.8 I 21% Cr Cr 21.0 J Annealed
RT 100 300 500 700 900
7.76
C 0.22) Cr 30.4 [30% Cr-Ni Ni 0.26) Hardened and tempered
RT 100
7.90
RT 100 200 400 600 800 1000
7.87
RT 100 200 400 600 800 1000 RT 100 300 500 600 700 850
C Mn
1.22) 1.30)li/oMn 10500C Air-cooled
C 0.28) Mn 0.89 [28% Ni Ni 28.4 J 95O0C9WQ
C 0.10 12%Cr^%Al Mn 0.60 AISI406 Cr 12.0 Al 4.5 Softened
— 9.3 10.9 11.5 12.1 12.2 — 473 515 607 779 691 —
— 10.13 10.66 11.54 12.15 12.56 11.70
26.8 27.6 27.6 27.6 26.4 25.1 27.6
48.6 58.4 67.9 85.4 102.1 116.0 117.0
— 10.0 11.0 12.0
21.8
62.0
— 10.0 11.0 11.0 12.0 13.0
21.8
62.0
— 10.0
12.6
80.0
— 519 565 607 704 649 673
— 18.01 19.37 21.71 19.86 21.86 23.13
13.0 14.6 16.3 19.3 21.8 23.5 25.5
66.5 75.7 84.7 100.4 110.0 120.4 127.5
8.16
— 502 519 540 586 586 599
— 13.73 15.28 17.02 17.82 18.28 18.83
12.6 14.7 16.3 18.9 22.2 25.1 27.6
82.9 89.1 94.7 103.9 111.2 116.5 120.6
7.42
502
— 11.0 12.0 12.0 — 13.0 —
— 25.1 — 28.5 —
122 125 129 — 136 — 141
482
(continued)
Table 14.11
PHYSICAL PROPERTIES OF STEELS—continued Thermal properties {see Notes)
Material and condition Composition %
Specific Temperature gravity 0 C gem"3
Specific heat J kg" l K" 1
Coefficient of thermal expansion 10-6K-1
Thermal conductivity Wm-1K"1
C 0.72] Mn 0.25 Ni 0.07 4% Cr-18% W Cr 4.26 W 18.5 J Annealed 83O0C
RT 100 200 400 600 800 1000
— 410 435 502 599 716 —
— 11.23 11.71 12.20 12.62 12.97 12.44
24.3 26.0 27.2 28.5 27.2 26.0 27.6
40.6 47.2 54.4 71.8 92.2 115.2 120.9
— 482
— 10 11 12
18.8 — — 24.3
72.0 — — 103.0
511 532 569 649 641 —
14.82 16.47 17.61 18.43 19.03 —
15.9 16.3 17.2 20.1 23.9 26.8 28.1
69.4 77.6 85.0 97.6 107.2 114.1 119.6
15.9
72
C 0.16 Mn 0.2 Ni 2.5 Cr 16.5 Softened
16% Cr-Ni En 57 431S29
C 0.08 1 Mn 0.3/0.5 i L C A Ni 8 ^n 9 C 9 V Cr 18/20 ^/.^ 0 HOO CWQ
C A*
0.12 1c
8/
°
, 110/xr 18% C r - 1 1 % N i
RT 100 200 400 600 800 1000 R T
1 O 0 / r
S
№ ILO r , r Cr 17.5 Nb 1.2 Softened C 0.221 Mn 0.6 Cr 20.0 \ Ni 8.5 Ti 1.2 J Softened
RT 100 300 500
H S e d )
?™i7 "^/M/
20%Cr-8%Ni (Ti stabilised)
C 0.15] Mn 0.8 19%Cr-14%Ni Ni 14 (Nb stabilised) Cr 19 Nb 1.7 J Softened
8.69
'''
7.92
7.9
1 A n
— ,rr,
300
\t°0
Tl 2
500 700
18.0 19.0
18.8 20.1
RT 100 300 500 700 900
7.72
— 15.0 15.0 16.0 17.0 18.0
RT 100 200 400 600
7.92
— 17.0 17.2 17.6 18.6
C 0.30 18%Cr-8%Ni-W Mn 0.6 En55 Si 1.5 I Ni 8 I Cr 20 W 4 Softened
RT 100 300 500 700 900 1050
C 0.121 18% Cr-8% Ni-Al Mn 0.3 (Ti stabilised) Ni 8.5 I Cr 18.5 [ Ti 0.8 Al 1.4 I Normalised and tempered
RT 100 300 500 700 900
7.8 16.0 17.0 17.0 18.0 18.0 — 7.67
— 15 15 15 16 17
Electrical resistivity [iQ, cm
82
— 15.1 16.8 20.1 24.3 13
85
29
125
18.0
85
26.0
125
(continued)
Table 14.11 PHYSICAL PROPERTIES OF STEELS—continued Thermal properties {see Notes)
Material and condition Composition %
Specific Temperature gravity 0 C gem-3
Specific heat J kg- 1 K" 1
Coefficient of thermal expansion 10-6K-1
Thermal conductivity Wm-1K-1
— 18
15.5 16.8
70 77
14.80 15.70 16.75 18.25 18.95 19.30
12.6 13.8 15.4 18.8 21.8 23.0
74.1 80.0 86.7 99.4 108.4 114.4
C 0.10 Mn 0.3 12%Cr-12%Ni Ni 12.5 En 58D Cr 12.5 Softened
RT 100
8.01
490
C 0.10] Mn 6.0 15/10/6/1 Cr 15.0 Cr-Ni-Mn-Mo Ni 10.0 Mo 1.0 J Solution treated 1 1000C
RT 100 200 400 600 700
7.94
*477 494 511 536 557 565
RT
8.08
C
0.27]
M n
L 2 5
lllo/oCr 36%Ni [ U/oLr"Jb/oNl J
Ni 36 Cr 11 Softened C 0.1 ] Mn 1.3 Si 1.2 [ 3 0 % Cr-Ni Ni 1.8 Cr 29.0 J Softened C 0.1 Mn 1.0 Ni 63 Cr 14 Softened
^0. x r 14%Cr-63%Ni
1/10/ n
10
° 300 500
RT 200 800 1000 1 100
7.5
RT 100
8.1
C 0.4 Mn 0.9 13%Cr-13%Ni Si 1.4 -W-Nb Ni 13.0 Cr 13.0 W 2.3 Nb 0.9 Normalised
RT 100 200 400 600 800
C 0.4 Mn 0.8 Si 1.0 13% Cr-13% Ni 13 Ni-W-Mo-Co-Nb Cr 13 \ W 2.5 Mo 2.0 Nb 3.0 Co 10.0 Solution treated
RT 100 200 400 600 800
12.1
97
— 18.4
— 117
10 11 13 13
15.9
88
26.4
126
12.6
105
28.9
110
12 5
400 600 800 1000 RT 100 300 500 700
— 14 15 16
12.0
2Q()
C 0.30 Mn 3.0 17% Cr-17% Ni-Mo Ni 17.5 - C o - N b Cr 16.5 Mo 3.0 Nb 2.5 Co 7.0 Softened
Electrical resistivity ^ c m
13.5 14.5 15.5 16.5 8.0
R m
— 15 16 16 17
12.6
93.8
_ \
n \ \''i J^i
}Q, y J
'
8.13
— 15.6 15.8 16.9 17.3 18.0
— 13.4 17.2 18.8 22.2 25.5
(continued)
Table 14.11 PHYSICAL PROPERTIES OF STEELS—continued Thermal properties (see Notes)
Material and condition Composition %
Specific Specific heat Temperature gravity J kg~1 0 C gem" 3 K- 1
C 0.271 Mn 0.77 Ni 10.5 ir^~lr0/o Cr 19.1 N1-460^0 Mo 2.2 Nb 1.4 V 3.0 Co 46.6 Solution treated and aged
RT 100 200 400 600 800
C Mn
0.1 Il Plain carbon 0.351 B.S. 1617A A950°C,N950°C
C Mn
0.4) Plain carbon 0.51 BS 1760 A 9000C, OQ 83O0C T 6500C
C Mn Mo
0.17] CarbonMo 0.74} BS 1398 0.50) A920°C,SR650°C
8.26
Coefficient of thermal Thermal Electrical expansion conductivity resistivity 10- 6 K- 1 Wm-1K"1 \iQ cm — 14.8 15.0 15.2 15.9 16.8
— 14.7 16.3 19.7 23.0 26.0
100 200 300 400 500 600 100 200 300 400 500 600
12.2 12.6 13.2 13.6 13.9 14.2 11.8 12.4 12.8 13.3 13.7 14.2
48.6
19.5
42.3
23.5
100 200 300 400 500 600
12.4 12.8 13.1 13.4 13.8 14.2
100 200 300 400 500 600
13.2 13.3 13.7 14.1 14.7 15.2
100 200 300 400 500 600
12.5 12.7 13.0 13.4 13.9 14.4
Cast steels
C Mn
0.25} \l% Mn 1.55J BS 1456A A 95O0C, WQ 9100C, T 66O0C
C Cr Ni Mo
0.291 1.80 0.46 0.52J
U % Cr Ni Mo BS 1458 OQ 9000C, T 6600C
C Ni Cr
0.341 o i 0 / X T . _ ,_ 2.82 ^ 1 %NiCr Mo 0 74 BS 1459
Mo IA OQ85u 20.0 J 0.351 1.50 O 1 0 / n O0/ X T . 0.80 ^ r 8 % № 7.0 Ro 0 ZV 4 O n B S 1 6 4 8 D 21.0 4.0 J
C 0.20) Si 1.20 2 5 % C r l 2 % N i Mn 1.30 BS 1648 E Ni 13.0 Cr 25.0 J Normalised
10
C 0.2Ol Si 1.00 0