40pt New solution methods for coating flows based on ...

3 downloads 0 Views 2MB Size Report
Laminar shear flow Free surface film flow Dynamic b.c.. Reynolds .... Ritz. FEM. Comparison with FEM soluti- ons of original Navier–Stokes equations for h = 0.2, ...
New solution methods for coating flows based on first integrals of Navier-Stokes equations M. Scholle1 , F. Marner1 , A. Haas2 , and P. H. Gaskell3 1

Institute for Automotive Technology and Mechatronics Heilbronn University, Germany 2

Manufacture Franaise des Pneumatiques Michelin Centre of Technology Ladoux, France 3

School of Engineering and Computing Sciences University of Durham, UK

10th European Coating Symposium, Sep. 11–13, 2013, Mons. .

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Contents 1.

Motivation

2.

Steady 2D–flow

3.

Examples

4.

Steady 3D–flow

5.

Outlook

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

2 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Motivation: Foundations of fluid mechanics

Inviscid & irrotational

Scalar potential: ⃗u = ∇φ

Inviscid, ∇ × ⃗u ̸= ⃗0

A. Clebsch (1859): ⃗u = ∇φ + α∇β

Integration

Integration

Bernoulli’s equation ⃗u 2 φ˙ + +P +U =0 2

Gen. Bernoulli’s equation and 2 additional transport equations

Scholle (HHN)

First Integral of Navier–Stokes Equations

Viscous flow

?

ECS 2013

3 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Motivation: Foundations of fluid mechanics

Inviscid & irrotational

Scalar potential: ⃗u = ∇φ

Inviscid, ∇ × ⃗u ̸= ⃗0

A. Clebsch (1859): ⃗u = ∇φ + α∇β

Integration

Integration

Bernoulli’s equation ⃗u 2 φ˙ + +P +U =0 2

Gen. Bernoulli’s equation and 2 additional transport equations

Scholle (HHN)

First Integral of Navier–Stokes Equations

Viscous flow

?

ECS 2013

4 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Motivation: Foundations of fluid mechanics

Inviscid & irrotational

Scalar potential: ⃗u = ∇φ

Inviscid, ∇ × ⃗u ̸= ⃗0

A. Clebsch (1859): ⃗u = ∇φ + α∇β

Integration

Integration

Bernoulli’s equation ⃗u 2 φ˙ + +P +U =0 2

Gen. Bernoulli’s equation and 2 additional transport equations

Scholle (HHN)

First Integral of Navier–Stokes Equations

Viscous flow

?

ECS 2013

5 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Restriction to steady 2D–flow

Complex variables:

Scholle (HHN)

ξ := x2 + ix1

First Integral of Navier–Stokes Equations

u := u1 + iu2

ECS 2013

6 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Restriction to steady 2D–flow

ξ := x2 + ix1

Complex variables: Navier–Stokes equations:

Scholle (HHN)

u := u1 + iu2

[ [ ] ] ¯u ∂ ∂ u u2 ∂u iϱ + η p+U +ϱ =i 2 ∂ξ ∂ξ 2 ∂ξ

First Integral of Navier–Stokes Equations

ECS 2013

6 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Restriction to steady 2D–flow

ξ := x2 + ix1

Complex variables: Navier–Stokes equations: New scalar ’potential’ Φ: (Ranger 1994)

Scholle (HHN)

u := u1 + iu2

[ [ ] ] ¯u ∂ ∂ u u2 ∂u iϱ + η p+U +ϱ =i 2 ∂ξ ∂ξ 2 ∂ξ p + U + Re

¯u u ∂ ∂ = Φ 2 ∂ξ ∂ξ

First Integral of Navier–Stokes Equations

ECS 2013

6 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Restriction to steady 2D–flow

ξ := x2 + ix1

Complex variables: Navier–Stokes equations: New scalar ’potential’ Φ: (Ranger 1994)

integrable equation:

Scholle (HHN)

u := u1 + iu2

[ [ ] ] ¯u ∂ ∂ u u2 ∂u iϱ + η p+U +ϱ =i 2 ∂ξ ∂ξ 2 ∂ξ p + U + Re

¯u u ∂ ∂ = Φ 2 ∂ξ ∂ξ

] [ ∂u ∂2Φ ∂ u2 −i 2 =0 iϱ + η 2 ∂ξ ∂ξ ∂ξ

First Integral of Navier–Stokes Equations

ECS 2013

6 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Restriction to steady 2D–flow

ξ := x2 + ix1

Complex variables: Navier–Stokes equations: New scalar ’potential’ Φ: (Ranger 1994)

integrable equation:

Integration and gauging of Φ Scholle (HHN)

u := u1 + iu2

[ [ ] ] ¯u ∂ ∂ u u2 ∂u iϱ + η p+U +ϱ =i 2 ∂ξ ∂ξ 2 ∂ξ p + U + Re

¯u u ∂ ∂ = Φ 2 ∂ξ ∂ξ

] [ ∂u ∂2Φ ∂ u2 −i 2 =0 iϱ + η 2 ∂ξ ∂ξ ∂ξ



u2 ∂u ∂2Φ +η − i 2 = f (ξ) = 0 2 ∂ξ ∂ξ

First Integral of Navier–Stokes Equations

ECS 2013

6 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Introducing a streamfunction

Continuity equation identically fulfilled by:

Scholle (HHN)

First Integral of Navier–Stokes Equations

u=

∂ψ ∂ξ

ECS 2013

7 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Potential representation Introducing a streamfunction

Continuity equation identically fulfilled by:

u=

∂ψ ∂ξ

First integral of Navier–Stokes equations iϱ 2

(

∂ψ ∂ξ

)2



∂2ψ ∂2Φ − i =0 ∂ξ 2 ∂ξ 2

Remark: 2nd order PDE instead of 3rd order PDE

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

7 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

Scholle (HHN)



x



First Integral of Navier–Stokes Equations

ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

Scholle (HHN)



x



∂2φ ∂2ψ ∂2ψ uv − − 2 = Re ∂x∂y h ∂y 2 ∂x 2 2

∂2φ ∂2φ u 2 −v 2 ∂2ψ − + = Re ∂x∂y 2h ∂x 2 ∂y 2

with Reynolds number Re = U0 H/η.

First Integral of Navier–Stokes Equations

ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

No–slip–conditions:

Scholle (HHN)



x



∂2φ ∂2ψ ∂2ψ uv − − 2 = Re ∂x∂y h ∂y 2 ∂x 2 2

∂2φ ∂2φ u 2 −v 2 ∂2ψ − + = Re ∂x∂y 2h ∂x 2 ∂y 2

with Reynolds number Re = U0 H/η. ψ (x, −a cos x) = 0 v (x, −a cos x) = 0

First Integral of Navier–Stokes Equations

u (x, h) = 1 v (x, h) = 0

ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

No–slip–conditions:



x



∂2φ ∂2ψ ∂2ψ uv − − 2 = Re ∂x∂y h ∂y 2 ∂x 2 2

∂2φ ∂2φ u 2 −v 2 ∂2ψ − + = Re ∂x∂y 2h ∂x 2 ∂y 2

with Reynolds number Re = U0 H/η. ψ (x, −a cos x) = 0 v (x, −a cos x) = 0

u (x, h) = 1 v (x, h) = 0

Approximations:



lubrication approximation for Stokes flow case (Re = 0)

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

No–slip–conditions:



x



∂2φ ∂2ψ ∂2ψ uv − − 2 = Re ∂x∂y h ∂y 2 ∂x 2 2

∂2φ ∂2φ u 2 −v 2 ∂2ψ − + = Re ∂x∂y 2h ∂x 2 ∂y 2

with Reynolds number Re = U0 H/η. ψ (x, −a cos x) = 0 v (x, −a cos x) = 0

u (x, h) = 1 v (x, h) = 0

Approximations:

◮ ◮

lubrication approximation for Stokes flow case (Re = 0) variational formulation for Re–corrections Scholle (HHN)

First Integral of Navier–Stokes Equations

Ritz’s direct method ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Reynolds number effects on shear flow between wavy walls

y



✲ U0



h

❄ ✛

a ✻ ❄ 2π

No–slip–conditions:



x



∂2φ ∂2ψ ∂2ψ uv − − 2 = Re ∂x∂y h ∂y 2 ∂x 2 2

∂2φ ∂2φ u 2 −v 2 ∂2ψ − + = Re ∂x∂y 2h ∂x 2 ∂y 2

with Reynolds number Re = U0 H/η. ψ (x, −a cos x) = 0 v (x, −a cos x) = 0

u (x, h) = 1 v (x, h) = 0

Approximations:

◮ ◮ ◮

lubrication approximation for Stokes flow case (Re = 0) variational formulation for Re–corrections discretization with 20 coefficients Scholle (HHN)

Ritz’s direct method

low computational costs

First Integral of Navier–Stokes Equations

ECS 2013

8 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Results: Reynolds number study at h = 0.2, a = 0.08 and validation

Re = 0

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

9 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Results: Reynolds number study at h = 0.2, a = 0.08 and validation

Re = 0

Re = 40

Re = 80

Re = 120 Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

9 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Results: Reynolds number study at h = 0.2, a = 0.08 and validation

Re = 0

Re = 40

Comparison with FEM solutions of original Navier–Stokes equations for h = 0.2, a = 0.1 and Re = 100:

Ritz

Re = 80 FEM Re = 120 Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

9 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

Scholle (HHN)

✑ ✑ ✑ ✑

✑ ✑ ✑

✑ ✑

First Integral of Navier–Stokes Equations

ECS 2013

10 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation

Field equations for Stokes’ flow: ( ∂2φ y) ∂2ψ ∂2ψ − − 2 = 2 1 − ∂x∂y h ∂y 2 ∂x 2

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

Scholle (HHN)

✑ ✑ ✑ ✑

✑ ∂2ψ ∂2φ ∂2φ ✑ 2 + = 0 − ✑ ∂x∂y ∂x 2 ∂y 2 ✑ ✑

First Integral of Navier–Stokes Equations

ECS 2013

10 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation

Field equations for Stokes’ flow: ( ∂2φ y) ∂2ψ ∂2ψ − − 2 = 2 1 − ∂x∂y h ∂y 2 ∂x 2

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

Scholle (HHN)

✑ ✑ ✑ ✑

✑ ∂2ψ ∂2φ ∂2φ ✑ 2 + = 0 − ✑ ∂x∂y ∂x 2 ∂y 2 ✑ ✑

Boundary conditions:

◮ ◮ ◮

ψ = 0 and ∂n ψ = 0 at bottom ∂n ψ = 0 at free surface Dynamic b.c. at free surface

First Integral of Navier–Stokes Equations

ECS 2013

10 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation

Field equations for Stokes’ flow: ( ∂2φ y) ∂2ψ ∂2ψ − − 2 = 2 1 − ∂x∂y h ∂y 2 ∂x 2

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

✑ ✑ ✑ ✑

✑ ∂2ψ ∂2φ ∂2φ ✑ 2 + = 0 − ✑ ∂x∂y ∂x 2 ∂y 2 ✑ ✑

Boundary conditions:

◮ ◮ ◮

ψ = 0 and ∂n ψ = 0 at bottom ∂n ψ = 0 at free surface Dynamic b.c. at free surface

Reformulation of dynamic b.c. required: replace pressure p by its potential representation! Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

10 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation of dynamic boundary condition

[

Original form: (p0 − p)δij + η

Scholle (HHN)

(

∂uj ∂ui + ∂xj ∂xi

)]

nj (s) = σ xk =fk (s)

First Integral of Navier–Stokes Equations

dti ds

ECS 2013

11 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation of dynamic boundary condition

[

Original form: (p0 − p)δij + η

(

∂uj ∂ui + ∂xj ∂xi

)]

nj (s) = σ xk =fk (s)

dti ds

substitute:

∂2Φ u u −ϱ k k −U ∂xk ∂xk 2 ( [ ] [ 2 ] ) δij ∂uj ∂ui ∂ Φ ∂ 2 Φ δij η = ϱ ui uj − uk uk +2 + − ∂xj ∂xi 2 ∂xi ∂xj ∂xk ∂xk 2 p =

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

11 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Formulation of dynamic boundary condition

[

Original form: (p0 − p)δij + η

(

∂uj ∂ui + ∂xj ∂xi

)]

nj (s) = σ xk =fk (s)

dti ds

substitute:

∂2Φ u u −ϱ k k −U ∂xk ∂xk 2 ( [ ] [ 2 ] ) δij ∂uj ∂ui ∂ Φ ∂ 2 Φ δij η = ϱ ui uj − uk uk +2 + − ∂xj ∂xi 2 ∂xi ∂xj ∂xk ∂xk 2 p =

Condition for potential Φ of 2nd order ] [ 2 ∂2Φ ∂ Φ − δij U (fk (s)) ni (s) + 2 ∂xi ∂xj ∂xk ∂xk x

nj (s) = σ k =fk (s)

dti ds

This condition is integrable! Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

11 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Resulting integrals of dynamic boundary conditions

Final form: Dirichlet/Neumann boundary conditions!

Φ = ∂n Φ =

Scholle (HHN)

[

] dσ [xn − fn ] Uδni + εni ti ds ds ] ∫ [ σ ti dσ Uni + − ti ds 2 2 ds

1 2



First Integral of Navier–Stokes Equations

ECS 2013

12 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Complete formulation

Field equations for Stokes’ flow: ( ∂2φ y) ∂2ψ ∂2ψ − − 2 = 2 1 − ∂x∂y h ∂y 2 ∂x 2

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

Scholle (HHN)

✑ ✑ ✑ ✑

✑ ✑ ✑

∂2ψ ∂2φ ∂2φ 2 + = 0 − ✑ ∂x∂y ∂x 2 ∂y 2 ✑ Boundary conditions:

◮ ◮ ◮

ψ = 0 and ∂n ψ = 0 at bottom ∂n ψ = 0 at the free surface φ = · · · and ∂n φ = · · · at the free surface

First Integral of Navier–Stokes Equations

ECS 2013

13 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Complete formulation

Field equations for Stokes’ flow: ( ∂2φ y) ∂2ψ ∂2ψ − − 2 = 2 1 − ∂x∂y h ∂y 2 ∂x 2

⃗g



z

❏ ❪ ❏





✑ ❏❛✑ ✑ ✑ ✑ ✰ ✑ ✑ x ✑α

✑ ✑ ✑ ✑

✑ ✑ ✑

∂2ψ ∂2φ ∂2φ 2 + = 0 − ✑ ∂x∂y ∂x 2 ∂y 2 ✑ Boundary conditions:

◮ ◮ ◮

ψ = 0 and ∂n ψ = 0 at bottom ∂n ψ = 0 at the free surface φ = · · · and ∂n φ = · · · at the free surface

Solution method? Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

13 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. FOSLS - First Order System Least-Squares



Rewrite field equations as FOS with solution vector W = (u1 , u2 , φx , φy )T pure Dirichlet boundaries for W

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

14 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. FOSLS - First Order System Least-Squares





Rewrite field equations as FOS with solution vector W = (u1 , u2 , φx , φy )T pure Dirichlet boundaries for W 4 ∑ Minimization of LS-functional J (W ; f ) = ∥Li W − fi ∥20 i=1

yields variational formulation: ∫ ∫ LVh f dΩ LWh LVh dΩ = Ω

˜h ∀Vh ∈ V



→ FEM discretization, Newton linearization: spd linear systems efficient scalable solvers

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

14 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. FOSLS - First Order System Least-Squares





Rewrite field equations as FOS with solution vector W = (u1 , u2 , φx , φy )T pure Dirichlet boundaries for W 4 ∑ Minimization of LS-functional J (W ; f ) = ∥Li W − fi ∥20 i=1

yields variational formulation: ∫ ∫ LVh f dΩ LWh LVh dΩ = Ω



˜h ∀Vh ∈ V



→ FEM discretization, Newton linearization: spd linear systems efficient scalable solvers Free surface: Eulerian grid-adaptive method

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

14 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. FOSLS - First Order System Least-Squares





Rewrite field equations as FOS with solution vector W = (u1 , u2 , φx , φy )T pure Dirichlet boundaries for W 4 ∑ Minimization of LS-functional J (W ; f ) = ∥Li W − fi ∥20 i=1

yields variational formulation: ∫ ∫ LVh f dΩ LWh LVh dΩ = Ω

◮ ◮

˜h ∀Vh ∈ V



→ FEM discretization, Newton linearization: spd linear systems efficient scalable solvers Free surface: Eulerian grid-adaptive method Problem: mass conservation → appropriate weighting, augmented LS . . . Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

14 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Varied film thickness

h = 0.15

Scholle (HHN)

h = 0.3

First Integral of Navier–Stokes Equations

h = 0.8

ECS 2013

15 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Varied Reynolds number

Re = 0.3

Scholle (HHN)

Re = 10

First Integral of Navier–Stokes Equations

Re = 30

ECS 2013

16 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Laminar shear flow Free surface film flow Dynamic b.c. Varied Reynolds number

Re = 0.3

Re = 30 Scholle (HHN)

Re = 10

Re = 50 First Integral of Navier–Stokes Equations

Re = 30

Re = 100 ECS 2013

16 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition

Complex representation: not available for 3D! ¯u u2 u ∂2Φ ∂u ∂2Φ p + U + Re , iϱ + η = =i 2 2 2 ∂ξ ∂ξ ∂ξ∂ξ

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

17 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition

Complex representation: not available for 3D! ¯u u2 u ∂2Φ ∂u ∂2Φ p + U + Re , iϱ + η = =i 2 2 2 ∂ξ ∂ξ ∂ξ∂ξ Tensor representation (with Levi-Cevita Symbol ε): [ ] ∂uj ∂ui ∂ 2 (2Φ) ϱui uj + pδij − η + +Uδij = εik εjp ∂xj ∂xi ∂xk ∂xp | {z } −Tij

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

17 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition

Complex representation: not available for 3D! ¯u u2 u ∂2Φ ∂u ∂2Φ p + U + Re , iϱ + η = =i 2 2 2 ∂ξ ∂ξ ∂ξ∂ξ Tensor representation (with Levi-Cevita Symbol ε): [ ] ∂uj ∂ui ∂ 2 (2Φ) ϱui uj + pδij − η + +Uδij = εik εjp ∂xj ∂xi ∂xk ∂xp | {z } −Tij

Generalisation: Replace 1. Tij −→ stress tensor of any non-Newtonian fluid.

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

17 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition

Complex representation: not available for 3D! ¯u u2 u ∂2Φ ∂u ∂2Φ p + U + Re , iϱ + η = =i 2 2 2 ∂ξ ∂ξ ∂ξ∂ξ Tensor representation (with Levi-Cevita Symbol ε): [ ] ∂uj ∂ui ∂ 2 (2Φ) ϱui uj + pδij − η + +Uδij = εik εjp ∂xj ∂xi ∂xk ∂xp | {z } −Tij

Generalisation: Replace 1. Tij −→ stress tensor of any non-Newtonian fluid. ∂ 2 alq ∂ 2 (2Φ) −→ εik l εjpq ∂xk ∂xp ∂xk ∂xp with symmetric tensor potential alq = aql . 2. εik εjp

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

17 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition First integral of equations of motion, non-Newtonian, 3D, steady

ϱui uj − Tij + Uδij ∂ui ∂xi

Scholle (HHN)

= εikl εjpq

∂ 2 alq ∂xk ∂xp

with Tij = Tij

= 0

First Integral of Navier–Stokes Equations

(

∂uk ∂xl

)

− pδij

ECS 2013

18 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition First integral of equations of motion, non-Newtonian, 3D, steady

ϱui uj − Tij + Uδij ∂ui ∂xi

= εikl εjpq

∂ 2 alq ∂xk ∂xp

with Tij = Tij

= 0

Gauging of the tensor potential:

alq → alq +

(

∂uk ∂xl

)

− pδij

∂βq ∂βl + ∂xl ∂xq

with arbitrary vector field βq .

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

18 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition First integral of equations of motion, non-Newtonian, 3D, steady

ϱui uj − Tij + Uδij ∂ui ∂xi

= εikl εjpq

∂ 2 alq ∂xk ∂xp

with Tij = Tij

= 0

Gauging of the tensor potential:

alq → alq +

(

∂uk ∂xl

)

− pδij

∂βq ∂βl + ∂xl ∂xq

with arbitrary vector field βq . Reasonable gauging criteria: Choose βq such that ◮ 3 of 6 potentials vanish, or

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

18 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition First integral of equations of motion, non-Newtonian, 3D, steady

ϱui uj − Tij + Uδij ∂ui ∂xi

= εikl εjpq

∂ 2 alq ∂xk ∂xp

with Tij = Tij

= 0

Gauging of the tensor potential:

alq → alq +

(

∂uk ∂xl

)

− pδij

∂βq ∂βl + ∂xl ∂xq

with arbitrary vector field βq . Reasonable gauging criteria: Choose βq such that ◮ 3 of 6 potentials vanish, or ◮ field equations become self-adjoint, or

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

18 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition First integral of equations of motion, non-Newtonian, 3D, steady

ϱui uj − Tij + Uδij ∂ui ∂xi

= εikl εjpq

∂ 2 alq ∂xk ∂xp

with Tij = Tij

= 0

Gauging of the tensor potential:

alq → alq +

(

∂uk ∂xl

)

− pδij

∂βq ∂βl + ∂xl ∂xq

with arbitrary vector field βq . Reasonable gauging criteria: Choose βq such that ◮ 3 of 6 potentials vanish, or ◮ field equations become self-adjoint, or ◮ theory can be extended toward unsteady flows, or ◮ ... Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

18 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition Reformulation in terms of the tensor potential:

Original form of dynamic b.c. at the free surface F (xk ) = 0: Tij nj = σκni

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

19 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition Reformulation in terms of the tensor potential:

Original form of dynamic b.c. at the free surface F (xk ) = 0: Tij nj = σκni First integal and kinematic b.c. boundary condition for the tensor potential −εikl εjpq ∂k ∂p alq nj = [σκ − U] ni

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

19 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

From 2D to 3D General theory Dynamic boundary condition Reformulation in terms of the tensor potential:

Original form of dynamic b.c. at the free surface F (xk ) = 0: Tij nj = σκni First integal and kinematic b.c. boundary condition for the tensor potential −εikl εjpq ∂k ∂p alq nj = [σκ − U] ni Integration of b.c.

Scholle (HHN)

Dirichlet/Neumann type b.c.

First Integral of Navier–Stokes Equations

ECS 2013

19 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

2. 3D flow:

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

2. 3D flow: ◮

Generalisation of the theory using tensor calculus

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

2. 3D flow: ◮

Generalisation of the theory using tensor calculus



Further investigations necessary

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

2. 3D flow: ◮

Generalisation of the theory using tensor calculus



Further investigations necessary

More details: Proc. Roy. Soc. Lond. A 467 (2011) 127–143.

Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Motivation

Steady 2D–flow

Examples

Steady 3D–flow

Outlook

Summary and Outlook

1. 2D flow: ◮

Reduction of dynamic b.c. to Dirichlet/Neumann type



Development of efficient methods for film flows

2. 3D flow: ◮

Generalisation of the theory using tensor calculus



Further investigations necessary

More details: Proc. Roy. Soc. Lond. A 467 (2011) 127–143. Acknowledgement: The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for their financial support. Scholle (HHN)

First Integral of Navier–Stokes Equations

ECS 2013

20 / 20

Suggest Documents