6. Laminar and turbulent boundary layers

18 downloads 440 Views 367KB Size Report
Laminar and turbulent boundary layers. 6.1 Some introductory ideas. College of Energy and Power Engineering JHH. 2. Flow boundary layer. ❑ A boundary ...
6 . Laminar and turbulent boundary layers

6.1 Some introductory ideas

Flow boundary layer ‰

A boundary layer of thickness δ ƒ Ludwig Prandtl (1875-1953) made the mathematical description of the boundary in 1904

6. Laminar and turbulent boundary layers

δ = fn(u∞ , ρ , μ , x) δ

6.1 Some introductory ideas

x

= fn (Re x ) Re x ≡

δ x College of Energy and Power Engineering

6 . Laminar and turbulent boundary layers

JHH

1

6.1 Some introductory ideas

College of Energy and Power Engineering

6 . Laminar and turbulent boundary layers

Flow boundary layer ‰

=

ρu ∞ x u ∞ x = μ ν 4.92 Re x

JHH

2

6.1 Some introductory ideas

Flow boundary layer Reynolds experiment

Osborne Reynolds (1842~1912) and his laminarturbulent flow transition experiment.

ƒ Laminar

ƒ Transitional

ƒ Transitional / turbulent

Recritical ≡

ρ D (uav )crit = 2100 μ College of Energy and Power Engineering

6 . Laminar and turbulent boundary layers

ƒ Turbulent JHH

3

6.1 Some introductory ideas

College of Energy and Power Engineering

6 . Laminar and turbulent boundary layers

Flow boundary layer ‰

u∞ xcrit

ν

‰

6.1 Some introductory ideas

The thermal boundary layer during the flow of cool fluid over a warm plate ∂T −kf

≅ 5 × 105

conduction into the fluid

∂T ∂y

Nu L = 5

=− y =0

(Tw − T∞ ) kf / h

ƒ Nusselt Number T

JHH

= h(Tw − T∞ )

∂y y = 0 

kf / h

College of Energy and Power Engineering

4

Thermal boundary layer

Boundary layer on a long, flat surface with a sharp leading edge

Re x critical ≡

JHH

L

⎛ T −T ⎞ ∂⎜ w ⎟ ⎝ Tw − T∞ ⎠ ⎛ y⎞ ∂⎜ ⎟ ⎝ L⎠

=

hL = Nu L kf

y / L =0

δ t′ ƒ Nu is inversely proportional to the thickness of the thermal b.l. College of Energy and Power Engineering

JHH

6

6 . Laminar and turbulent boundary layers

6.2 Laminar incompressible boundary layer on a flat surface

Conservation of mass-The continuity equation ‰

A steady, incompressible, two-dimensional flow field ƒ Velocity field u = ui + vj + wk ƒ continuity equation

∂u ∂v + =0 ∂x ∂y ƒ

streamlines, constant ψ .

v=−

6.2 Laminar incompressible boundary layer on a flat surface

∂ψ ∂x

6 . Laminar and turbulent boundary layers

JHH

7

College of Energy and Power Engineering

6.2 Laminar incompressible boundary layer on a flat surface

6 . Laminar and turbulent boundary layers

Example 6.1 ‰ ‰

∂ψ ∂x

and u = y

ƒ by integrating

∂ψ ∂y

0=− x

∂ψ ∂x

‰

∂ψ ∂y

and u∞ = y

x

ƒ comparing these equations

fn(x)=constant fn(y)=u∞ y +constant

JHH

9

6.2 Laminar incompressible boundary layer on a flat surface

∂u ∂v ∂w + + =0 ∂x ∂y ∂z

JHH

8

6.2 Laminar incompressible boundary layer on a flat surface

p ≠ fn ( y )

6 . Laminar and turbulent boundary layers

‰

∂τ yx ⎞ ⎛ ⎛ ∂τ yx ∂p ⎞ ∂p ⎞ ⎛ dy ⎟ dx − τ yx dx + pdy − ⎜ p + dx ⎟ dy = ⎜ − ⎟ dxdy ⎜τ yx + ∂y ∂x ⎠ ⎝ ⎝ ⎠ ⎝ ∂y ∂x ⎠ ƒ Newton’s law of viscous shear

‰

JHH

10

6.2 Laminar incompressible boundary layer on a flat surface

Rate of x-momentum increase ⎛ 2 ∂ρ u 2 ⎞ ⎛ ∂ρ uv ⎞ dx ⎟ dy − ρ u 2 dy + ⎜ u ( ρ v) + dy ⎟ dx − ρ uvdx ⎜ ρu + ∂x ∂y ⎝ ⎠ ⎝ ⎠ ⎛ ∂ρ u 2 ∂ρ uv ⎞ =⎜ + ⎟ dxdy ∂y ⎠ ⎝ ∂x Momentum eq.

∂ ⎛ ∂u ⎞ ∂p ∂ρu 2 ∂ρuv ⎜μ ⎟− = + ∂y ⎜⎝ ∂y ⎟⎠ ∂x ∂x ∂y

∂u ∂y

⎡ ∂ ⎛ ∂u ⎞ ∂p ⎤ ⎢ ⎜ μ ⎟ − ⎥ dxdy ⎣ ∂y ⎝ ∂y ⎠ ∂x ⎦ JHH

ƒ

College of Energy and Power Engineering

ƒ In the x direction

τ yx = μ

ƒ

∂u ∂u