A Class of Entire Function Defined By Bicomplex

4 downloads 0 Views 860KB Size Report
Keywords and Phrases: Bicomplex Numbers, Entire Bicomplex Dirichlet series, Modified Banach ... C and the sets of complex and real numbers are denoted by.
© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

A Class of Entire Function Defined By Bicomplex Dirichlet Series Dr. Jogendra Kumar Assistant Professor- Mathematics Govt. Degree College, Raza Nagar Swar, Rampur(UP)-244924, India ________________________________________________________________________________________________________ Abstract: We have studied Entireness of Bicomplex Dirichlet Series in [6] and Banach Algebra of Entire Bicomplex Dirichlet



Series in [2]. In this paper we have studied a class H  f () 



 nn   n e n  : Sup n 1 

n 1

n

is bounded 



of Entire

Functions represented by Bicomplex Dirichlet Series. H has a Modified Banach algebra structure. H is a Modified Banach  – algebra which is neither a division algebra nor a B* algebra. Invertible and quasi invertible elements in H have been investigated. Keywords and Phrases: Bicomplex Numbers, Entire Bicomplex Dirichlet series, Modified Banach  – Algebra, Invertible and Qausi invertible elements. 2000 AMS Subject Classification: Primary-32A30, 30G35, Secondary-30B50, 30D10. ________________________________________________________________________________________________________ 1. INTRODUCTION Throughout this paper, the set of Bicomplex numbers is denoted by

C 2 and the sets of complex and real numbers are denoted by

C1 and C 0 , respectively. For details of the theory of bicomplex numbers, we refer to [3], [4] and [5]. The set of Bicomplex Numbers defined as:

C2  {x1  i1x 2  i 2 x 3  i1i 2 x 4 : x1, x 2 , x 3 , x 4  C0 , i1  i 2 and i12  i 22  1, i1 i 2  i 2 i1} We shall use the notations C ( i1 ) and C ( i 2 ) for the following sets:

C ( i1 )  {u  i1v : u, v  C0 } C ( i 2 )  {  i 2 : ,   C0 }

1.1 Idempotent Elements: Besides 0 and 1, there are exactly two non – trivial idempotent elements in C2 , denoted as

e1 

1  i1i 2 1  i1i 2 and e 2  2 2

Note that e1  e 2

e1

and

e2

and defined as

 1 and e1e2  e2e1  0.

1.2 Cartesian idempotent set: Cartesian idempotent set X determined by



X1 and X 2



is denoted as



X1 e X 2 and is defined as



X  X1 e X 2    C2 :   1 e1  2 e2 , 1 , 2  X1  X 2 .

C2  C(i1 ) e C(i1 )  C(i1 ) e1  C(i1 )e 2  {  C2 :   1 e1  2  e2 , (1  , 2  )  C(i1 )  C(i1 )} C2  C(i 2 ) e C(i 2 )  C(i 2 ) e1  C(i 2 )e 2  {  C2 :   1 e1  2 e 2 , (1 , 2 )  C(i 2 )  C(i 2 )} 1.3 Idempotent Representation of Bicomplex Numbers There are two idempotent representation of a Bicomplex Number

  x1  i1x 2  i 2 x 3  i1i 2 x 4 , C(i1 ) -idempotent

representation and C(i 2 ) -idempotent representation

C(i1 ) -idempotent representation   ( x1  i1x 2 )  i 2 ( x 3  i1x 4 )  z1  i 2 z 2  (z1  i1z 2 ) e1  (z1  i1z 2 ) e 2

 [( x1  x 4 )  i1 ( x 2  x 3 )] e1  [( x1  x 4 )  i1 ( x 2  x 3 )] e 2  1 e1  2 e 2 C(i 2 ) -idempotent representation

  (x1  i2 x3 )  i1(x 2  i2 x 4 )  w1  i1w 2  (w1  i 2 w 2 )e1  (w1  i2 w 2 )e2  [ (x1  x 4 )  i2 (x 2  x3 )] e1  [( x1  x 4 )  i2 (x 2  x3 ) ] e2  1 e1  2 e2

Note 1.1: Out of the two idempotent representation, we use C(i1 ) -idempotent representation. All the results may also be proved with the help of C(i 2 ) -idempotent representation technique. 1.4 Norm The norm in

C2

is defined as

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

229

© 2018 IJRAR August 2018, Volume 5, Issue 3



  z1  z 2 2



www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

12

2 12

 1 2  2  2   =   2  



2

2

2



2 1/ 2

= x1  x 2  x 3  x 4

C 2 becomes a modified Banach algebra, in the sense that .  2 

 .

… (1.1)

Singular Elements Non zero singular elements exist in C2 . In fact, a Bicomplex number Set of all singular elements in

C2

  z1  z 2i 2

is singular if and only if

z12  z 22  0 .

is denoted as O 2 .

Definition 1.1: Quasi Invertible Elements: If A is an algebra, then an element x of A is said to be left quasi – invertible, if  y  A , s.t.

y  x  y  x  y.x  0 right quasi – invertible, if  y  A , s.t. x  y  x  y  x .y  0 and quasi invertible if  y  A , s.t. y  x  y  x  y.x  0 ; and x  y  x  y  x.y  0 . Definition 1.2: Gel’fand Algebra: A commutative Banach Algebra with a unity element of norm one is called Gel’fand algebra. Definition 1.3: Banach *-algebra A Banach *-algebra ‘A’ is a Banach algebra over C1 such that The map * : A → A, called involution, having the following properties: 1. (x*)* = x  x  A 2. (x + y)* = x* + y* ; (xy)* = y* x*

 x, y  A

(x)   x for every λ in C1 and every x in A; here,  denotes the complex conjugate of λ. 4. ||x*|| = ||x||  x  A 3.

Definition 1.4:B*-algebra A B*-algebra ‘A’ is a Banach algebra over C1 such that The map *: A → A satisfying the following properties: 1.

x  (x )  x  x  A

2. (x + y)* = x* + y* ; (xy)* = y* x* 

3. (x) 4.

 x, y  A

  x    C1 and  x  A ; 

denotes the complex conjugate of λ.

x x  x  x  x  A

2. Class H of Entire Bicomplex Dirichlet Series : We consider a Class of Bicomplex Dirichlet Series defined as



  H  f ()    n e n  : Sup n n  n n 1 n 1 



Note 2.1: As,

f ()  

n 1

is bounded 



1  n  e H nn

Hence H is non – empty.

Note 2.2: Note that every member of H is an Entire Bicomplex Dirichlet series 

Let

f ()   n e n  H n 1

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

230

© 2018 IJRAR August 2018, Volume 5, Issue 3 i.e.



is bounded

Sup n n  n n 1

 nn n

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

is bounded

 nN

 K  0 such that n n  n  K ,  n  N Now,  n  N i.e.

K  nn

n 

1 n

 n

1 n

K  n  n 

1 n n

1 n n



1 n K

1 n n



1 n n (n )



1 n K

n

 0 as n   

 f ()    n e n  is an Entire Bicomplex Direichlet Series n 1



Note 2.3:

n

1 n

f ()   n1 n e  n  n 1 1 n 1 n n n

 n1n

1 n

 n

 0 as n   .



Hence,

f ()   n1 n e  n  is an entire Bicomplex Dirichlet series. n 1



But,

f ()   n1  n e n   H



n 1

Sup n

n





n

 Sup n n n1n



 Sup n n  n

 Sup n

 is not bounded.

Hence H is not the whole class of Entire functions represented by Bicomplex Dirichlet series. 



 α n e n   H ,

Note 2.4: If

then the series

n 1

α

 (  n)n k

en ξ

obtained after k–times term – by – term integration of

n 1



 α n e  n  is also belongs to H. n 1



Note 2.5: If

 αn e n ξ  H , then kth derivative defined by n 1

but belongs to H iff



Sup n k n α n n 1

Note 2.6:

1 2

ξ  C2 ,   2

2



2

 

2

2

 1

2 

2





1

IJRAR1903412

1

 

2





 (  n) k α n e  n ξ

is also an entire Bicomplex Dirichlet series

n 1

 

1

2



1

 1 Proof:     

2 



 is bounded.





2

2





2      2

2



 1

2



2



2

 2 1

2

 



 

1

2





2

2

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

231

© 2018 IJRAR August 2018, Volume 5, Issue 3

1 2 1    2  

 

 

2

 

2

1

1

  

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)



 

1

2



The Uniqueness theorem Theorem 2.1: Two Bicomplex Dirichlet Series 



f ()    n e  n 

g()   n e  n  are

and

both

absolutely

convergent

in

the

region

n 1

n 1

{  C2 : Re(1 )  a and Re(2 )  b} such that f ()  g () then  n  n for all n. Proof: Let  n   n  n and let h ()  f ()  g ()  0 . To prove that  n  0  n  N we assume that  n  0 for some n and obtain a contradiction. Let

N

n  0 .

be the smallest number for which

Re(1 )  a and Re(2 )  b ,

Now for  with

0  h() 





  n e n    N e N     n e n 

nN

Hence

n  N 1

 N   eN  

 N   N 

  n e n 

n  N 1



 N   eN   N 



n  N 1





1

n  N 1





1



1

n  N 1 

 n e( n  N )

n  N 1

and

1

 ( n  N ) Re(  )

e  ( n  N ) Re(

2

)

1



1



1



1

e n ( Re(

 eN    N 1  e 

 2  n e( n  N ) 





 n e  ( n  N ) Re( e N ( Re(





   2  ( n  N ) 2 e   1   n e   n  N 1

 e 2 

2



n  N 1

 n e( n  N )

1

Now, e

  1 ( n  N )   ( n  N ) 1  e   n   n e n  N 1  n  N 1 

 n en  

)

)  a )

)  a )

n  N 1 



2



 n e( n  N )

n  N 1

2



 n e  ( n  N ) Re(

eN a  eN    e n a  e n 

Re( 2 )  b

2

Re(1  )  a

2

)

eN a  eN    e n a  e N 1 

Re( 1 )  a

eN a en a

 n  N  1

eN b en b

Re( 1 )  a

Re( 2 )  b

   eN   eN   N   N 1  e N a  1  n e  n a  N 1  e N b  2  n e n b n  N 1 n  N 1 e  e  1 2 1 2 Re(  )  b  N Re(  )  a   n n     N  a b   N   N    N    a b N  1   N  1  n n   n  N 1 n  N 1   1 2 As Re( )   and Re( )   we get  N  0 , which is a contradiction.

2.1 Algebraic Structure for H (i) Addition 

Let

f ()   α n e  n ξ , g()  n 1

IJRAR1903412



 n e n ξ H n 1

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

232

© 2018 IJRAR August 2018, Volume 5, Issue 3



n

n 1

 n  n    Sup  n   Sup   Sup

n

n

n

n 1

n

n

 Sup n 1

n

n 1

 Sup n

n

n

n

n 1

f ()   α n e  n ξ , g() 

  Sup n

 Sup n

n 1 n

n

n

n 1



 n e n ξ H n 1 n

 and Sup n   are bounded.    is bounded.

n

n 1



n



As,



n n n

n

n 1

 αn  n  e n ξ  H



Sup n  n  n n 1



f ()  g() 

Now we check

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

n

n 1

n



 αn  n  e n ξ  H .

 f ()  g() 

n 1

(ii) Scalar Multiplication 

Let

a  C1 and f ()   αn e n   H n 1

We check



Sup n n 1



 (a. αn ) e n   H

a. f () 

n

n 1



a . n



  a Sup n

 Sup n n a n n 1

As,

f () 



 Sup n n 1

n 1





 α n e n   H n 1

n

n



 a Sup n n n 1

n

n

 a. f () 

 is bounded   is also bounded n



 (a αn ) e n   H n 1

(iii) Weighted Hadamard Product 

Let

f ()   α n e

 nξ

,

g() 

 n e



f ()  g()    n e

 nξ

Where,

n 1



As, Let

f ()   α n e



n 1

 Sup n n n n 1

 nξ

,

g() 

H

 n  n n (n n )



 n e

 nξ

n 1

 is bounded and Sup n

n

n 1

  K1, K2  0 s.t. n n  n  K1 Now,

 nξ

n 1

n 1

Then,



and n

n

n

H

 is bounded

n  K 2  n  N

n n  n  n n n n (n n )  (n n n )(n n n )  2 n nn n n n  2 n n n n n n

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

233

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

n n  n  2 n n  n n n n  2 K1K 2



 is bounded

 Sup n n  n n 1



  n e n ξ  H .

 f ()  g()  Theorem 2.2: I()



Proof: As, Sup n n 1



 Sup n n n 1

n

 I()  Let

n

n 1 

 n  n en ξ , being the identity element of H.



n 1 n

n

 Sup n n   1 n n

n

n 1

 is bounded



 n  n e n ξ  H

f () 

n 1 

 αn en ξ be any element of H n 1

I()  f () 

Now,

Similar way, Hence





n 1

n 1

 n n (n n n )en ξ   nen ξ  f ()

f (  )  I ( )  f (  ) 

 n nen ξ be the identity of H.

I() 

n 1

Theorem 2.3: ( H, +) is an Abelian group. Proof: (i) Closure Property

f ()  g() 







n 1

n 1

n 1

 (αn  n ) en ξ  H ,  f ()   αn en ξ , g()   nen ξ H

(ii) Associativity

f (  )  ( g (  )  h ( ) )  ( f (  )  g (  ) )  h (  ) ,  C 2 is associative under addition.

 f (), g (), h ()  H

(iii) Existence of Identity

O() 



 0 en ξ be the additive identity of H n 1

Obviously,



 0 enξ  H

O() 

n 1

Now,

 f () 



 α n e n ξ  H n 1

O()  f ()  and,





n 1 

n 1 

 (0  αn ) en ξ   αn en ξ  f ()

f ()  O() 

 (αn  0) en ξ   αn e n ξ  f () n 1

n 1

(iv) Existence of Inverse

 f () 



 α n e n ξ  H n 1 

  f () 

 ( α n ) e n ξ  H n 1

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

234

© 2018 IJRAR August 2018, Volume 5, Issue 3 Such that,

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)



 0 en ξ  O()

f ()  ( f () )  ( f () )  f () 

n 1 

 0 e n ξ  O() n 1

(v) Commutativity Let

f () 



 αn en ξ , g()  n 1



 n e  n ξ  H n 1





n 1

n 1

 αn  n  en ξ   n  αn  en ξ  g()  f ()

f ()  g() 

As, α n ,  n  C 2

 α n  n  n  α n

( C 2 is commutative under addition)

Theorem 2.4: ( H, +,  ) is a Commutative ring with identity element. Proof: 1. (H, +) is an Abelian group (By Theorem 2.3) 2. (i)



 n n (αnn ) enξ  H ,  f (), g()  H

f ()  g() 

n 1

(ii) Let



 αn en ξ , g() 

f () 

n 1



 n en ξ and h()  n 1



  n e n ξ  H n 1

  f ( )  ( g ( )  h (  ) )   α n e  n ξ     n e  n ξ    n e  n ξ  n 1 n 1  n 1        α n e  λ n ξ   n n  n  n e  n ξ  n 1  n 1  











  n n α n n n n  n e  n ξ n 1 





  n n n n αnn  n en ξ n 1 



  n n αnn en ξ    n en ξ n 1 

n 1

     α n e  n ξ    n e  n ξ     n e  n ξ  ( f ( )  g ( ) )  h ( ) n 1  n 1  n 1 (iii)

I() 





 n n en ξ be the identity of H. n 1

(iv) Let

f () 



 αn en ξ , g()  n 1 

f ()  g() 



 n en ξ H n 1



 n n αnn  en ξ   n n  nαn en ξ  g()  f () n 1

n 1

As, α n ,  n  C 2

 α nn  n α n

( C 2 is commutative under multiplication)

(v) Distributions Law



  n ξ n ξ  α e   e   n  n    n e n ξ n 1  n 1  n 1        ( α n  n ) e  n ξ     n e  n ξ  n 1  n 1

(a) f ()  ( g() h()  

IJRAR1903412



International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

235

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)



  n n ( α n  n )  n e  n ξ n 1 



n 1

n 1

  n n αn  n en ξ   n n n  n en ξ  f ( )  h (  )  g ( )  h ( )     n ξ n ξ  e  α e   n  n e  n ξ   n n 1 n 1  n 1         n e  n ξ    ( α n  n ) e  n ξ  n 1  n 1 

(b) h() f ()  ( g() 





  n n  n ( αn  n ) en ξ n 1 



n 1

n 1

  n n  n α n e  n ξ   n n  n n e  n ξ  h ( )  f ( )  h ( )  g ( ) Hence the theorem. Theorem 2.5 : H is not an integral domain.

 n  n e1  e  n ξ , g()   n  n e 2  e  n ξ

f () 

Proof: Let





n 1

n 1

f (), g ()  H and f ()  O() , g ()  O() Obviously



But,



















f ()  g()   n n e1 e  n ξ   n n e 2 e  n ξ   n n n  n e1 n  n e 2 e  n ξ n 1

n 1 



n 1 

  n  n e1e 2  e  n ξ   n  n 0 e  n ξ   0 e  n ξ  O () . n 1

n 1

n 1

Hence, H is not an integral domain. Theorem 2.6: ( H( C1 ), +, . ) is a Linear space. Proof: 1. ( H, +) is an Abelian group (By Theorem 2.3) 2. (I)

a. f () 



 (a . α n ) e n ξ  H n 1

 a  C1 AND  f () 



 α n e n ξ  H . n 1



(ii) Let

a, b  C1 and f ()   αn e n ξ  H n 1

Now,

(a  b). f ()   





 (a  b) . αn en ξ n 1 

 (a . α n  b . α n ) e  n ξ n 1 



n 1 

n 1 

n 1

n 1

 (a . αn ) en ξ   (b . αn ) en ξ

 (a . αn ) en ξ   (b . αn ) en ξ

 a. f ()  b. f () 

(iii) Let

a, b  C1 and f ()   αn eλ n ξ  H n 1

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

236

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

  a . (b . f () )  a.  b . α n  e  n ξ   n 1 

Now,





 ab . αn  en ξ n 1 

 (ab) .  αn en ξ  (ab). f () n 1 



a  C1 and f ()   αn en ξ , g()   n en ξ  H .

(iv) Let

n 1

n 1 

  a. f ()  g ()  a.   α n e n ξ   n e n ξ  n 1  n 1      a. f ()  g()  a.   (α n   n ) e n ξ   n 1  

Now,



  a. (αn  n ) e n ξ n 1 

  (a . α n  a .  n ) e  n ξ n 1 



  (a . αn ) en ξ   (a .n ) en ξ  a. f ()  a.g () n 1

 n en ξ  H and 1 C1 be the identity of C1 .

f () 

(v) Let

n 1



n 1

Now, 1. f ()





n 1

n 1

  (1.αn ) en ξ   αn e n ξ  f () Hence the theorem.

2.1.1 Norm in H: Norm in H is naturally defined as



f () H  Sup n n n n 1

, where f ()   α 

n 1

n

e n ξ

f () H exist.

Obviously,

Theorem 2.7: ( H( C1 ), +, .,

H

) is a Normed Linear space.

Proof: Since, ( H( C1 ), +, .) is a Linear space

(By Theorem 2.6)

f () is defined as

The norm of



f () H  Sup n n n n 1





Since,

f ()   n e n   H



n 1

 Sup n  n n 1

n

 is bounded

 f () H exist. Now we will check other properties of norm (i)

f ( ) H  0

(ii) f ()



H

0

 Sup n n n n 1

IJRAR1903412

 0  n

n

n  0  n  1

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

237

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

  n  0  n  1  nn  0  n  1   n  0  n  1  f ()  O ( ) 

(iii) Let,

f ()   n e



n 

and

n 1 

g()   n e n  n 1

 (n  n ) en 

f ()  g() H 

n 1

  Sup  n

 Sup n

n

n 1

 n  n

n

n 1

H



 Sup  n

n

n

n 1



n

 f () H  g() H 

f ()    n e  n   H

(iv) Let a  C1 and

a. f ()

Now,

H

n 1



 ( a.  n ) e  n 



n 1

 a Sup  n

H

 Sup n

a.  n

n

n 1



n

n

n 1

Theorem 2.8: ( H( C1 ), +, .,

H

  Sup  n



n

n 1

a f ()

a n



H

) is a Banach space.

f p () be a Cauchy sequence in H.

Proof: Let

where, f p ()



   p, n e n  . n 1

Since, f p () be a Cauchy sequence in H Hence given

  0 ,  p 0  N , such that

f p ()  f q () Hence,

 ,  p, q  p0

H

 p, q  p 0





n 1

n 1

  p, n e n     q , n e n  



 p, n  q, n en  n 1



n

Hence,



  H

 Sup n n 1 n

 H

n

 p, n  q , n

 p, n  q , n    n  1

 p, q  p 0 and  n 1

n n  p, n  q , n     p, n   q , n   …………………….(1) Thus, the sequence  p, n , is a bicomplex Cauchy sequence. Hence, by using the completeness of C 2 , it converges to a bicomplex number ,say  n ,

 n 1 .



We define

f ()   n e n  n 1

Making q   in (1) for a fixed n, we get IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

238

© 2018 IJRAR August 2018, Volume 5, Issue 3



   Sup  n

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

 Sup n n  p, n   n n 1

f p ()  f ()

Now,

H

 

 p, n   n

n

n 1

 f p ()  f () Also,

  Sup n



Sup n n n n 1











n  p, n  p, n  Sup n n n  p, n  Sup n n p,n    K

n

n 1

n 1

n 1



 f ()   n en   H n 1

Hence, H is complete. Hence, H is a Banach Space. Theorem 2.9: H is a Commutative Algebra with identity element. Proof: By Theorem (2.4), ( H, +,  ) is a Commutative ring with identity element. By Theorem (2.6), ( H( C1 ), +, . ) is a Linear space.

a  C1

Now, Let

and

f () 





n 1

n 1

 αn en ξ , g()   n en ξ H

  a.( f ()  g() )  a.   n n ( n n ) e n ξ   n 1          n n (a n ) ( n ) e n ξ    (a n ) e n ξ     n e n ξ   a.f ()   g()  n 1  n 1   n 1  

Similarly,

a.( f ()  g() )  f () a.g()

Hence the theorem.

Theorem 2.10: H is a Commutative Modified Banach Algebra with identity. Proof: By Theorem (2.9), H is a Commutative Algebra with identity element. By Theorem 2.8 ( H( C1 ), +, .,

H

) is a Banach space



Also,

f ()  g()   n n (n n ) e n ξ n 1







f ()  g() H  Sup n n n n ( n n )  Sup n n n n  n n

 2 Sup  n 2 Sup  n

n 1

 2 Sup n n n n  n n 1

 

n

n 1

n

n

n 1

 2 f ()

H

n

n



n 1



n    Sup  n   n

n

n

n 1

g ()

n

Hence the Theorem.

H

Corollary 2.1: H is a Modified Gelfand Algebra. Proof: The identity element of H is given by 

I()   n n e n ξ n 1

Now,

I()

T



 Sup n n n  n n 1

  1.

Hence, the result.

In literature, three types of conjugations are defined on C 2 (cf. [1]): Let

ξ  1ξ e1  2 ξ e 2 be a bicomplex number, then

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

239

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

The i1 – conjugation of

ξ  1ξ e1  2 ξ e 2 is *  1 e 2  2  e1

The i 2 – conjugation of

ξ  1ξ e1  2 ξ e 2 is  # = 1 e 2 + 2  e1

The

j – conjugation of ξ  1ξ e1  2 ξ e 2 is  '  1 e1  2  e 2

We now proceed to provide H with a Modified Banach*–algebraic structure with i1 , i 2 and

j  conjugation as involution.

Corollary 2.2: H is a modified Banach  –algebra. Note 2.7: H is not a B* Algebra As, H is a modified Banach  –algebra Therefore, H is not a B* Algebra. But, we have the following relation

f ()  f * () f ()  f * ()

H

 2 f () H f * ()

H

 2 ( f () H )2

H

 2 f ( ) H f ( ) H  2 ( f ( ) H ) 2

Note 2.8: H is not division algebra. 

f ()    n e  n ξ  H such that

Theorem 2.11: Let

n 1

 1 Sup  n  n n n 1 

  is bounded.  

The inverse of

α n O2  n  1 . Then f () is invertible if and only if

f ()    n e

nξ

, in case it exist, is given by

n 1

n 2n  n ξ f ()   e .  n n 1 1





Proof: Let

f ()   n en ξ  H is invertible in H. n 1



 g()   n e n ξ  H , such that n 1

f ( )  g ( )  g ( )  f ( )  I ( ) Let, f ()  g ()  I() 



 n n (n n ) en ξ   n n en ξ n 1

n 1

 n (n n )  n n

 n 

n 2n n

n

n  1 n  1



Since,

g()   n en ξ  H



 Sup n n 1

n 1

n

n

 is bounded

 n  2 n   Sup  n n  is bounded   n 1  n   1   Sup  n  n  is bounded n  n 1   n 1  Conversely, let Sup  n  is bounded . n  n 1 

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

240

© 2018 IJRAR August 2018, Volume 5, Issue 3 Define a sequence

  n  , such that ,

n 

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

n 2n n

Now, we define a series 

g()    n en ξ n 1

As,



Sup n n 1

n

   Sup  n n n 1  



n



 is bounded

 Sup n n  n n 1

n 2 n n

  n 1     Sup  n  n    n 1 

 g ()  H 

Now,

f ()  g()   n n (n  n ) en ξ  I() n 1

Similarly,

g ( )  f ( )  I ( )

 f () is invertible.



f ()    n e  n ξ  H such that n n αn  1 O2  n  1 . Then f () is quasi invertible if and only

Theorem 2.12: Let

n 1

if

 n n  Sup  n n n 1   n n  1

  is bounded.  

The quasi inverse of

f ()    n e

nξ



, in case it exist, is given by

n 1

Proof: Let

n e n ξ . n 1 (n  n  1)

g()  

n

f () is quasi invertible 

i.e.

 g()   n e  n ξ  H such that n 1

f (  )  g ( )  f (  )  g ( )  f ( )  g (  )  O (  )  f ( )  g ( )  f ( )  g ( ) 







n 1

n 1

n 1

n 1

   n e  n ξ   n e  n ξ    n e  n ξ   n e  n ξ 

  ( n  n ) e n 1

n ξ



  n n ( n n ) e  nξ n 1





  ( n  n ) e  n ξ   (n n  nn ) e  n ξ n 1

n 1

  n  n  n  n n n

 (n n  n  1) n   n   n  n n n n  1

IJRAR1903412

 n n  n  1  O2

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

241

© 2018 IJRAR August 2018, Volume 5, Issue 3

www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)



Since,

g()   n en ξ  H



 Sup n n 1

n 1

n

n

 is bounded

    Sup  n n n n  is bounded n  n  1  n 1    n n  n   Sup   is bounded n n   1 n 1   n   n n  n  Conversely, let Sup   is bounded . n n   1 n 1   n   Define a sequence   n  , such that ,  n  n n n n  1 Now, we define a series 

g()    n en ξ n 1

As,



Sup n n n 1

n



 Sup n n  n n 1

 Sup  n n 1

 

 is bounded

n

n n n n  1

  n n n    Sup   n   n 1   n n  1

    

 g ()  H Now,







n 1 

n 1

n 1

f ()  g()  f ()  g()    n e  n ξ    n e  n ξ   n n ( n  n ) e  n ξ   ( n   n  n n  n  n ) e  n ξ n 1 

  ( n  (1  n n  n )  n e  n ξ n 1

 (1  n n  n )  n   n ξ    n  e n ( n   1 ) n 1  n  



  0 e n ξ n 1

 O ( ) ACKNOWLEDGMENTS I am heartily thankful to Mr. Sukhdev Singh, Assistant Professor-Mathematics, Lovely Professional University, Punjab and Dr. Mamta Nigam, Assistant Professor-Mathematics,University of Delhi for their encouragement and support during the preparation of this paper. REFERENCE [1] Jogendra Kumar, 2016 “Conjugation of Bicomplex Matrix”. “Journal of Sci. and Tech. Res. (JSTR) Vol. 1(1): 21-25 [2] Jogendra Kumar, 2014 “Banach Algebra of Entire Bicomplex Dirichlet Series”. “Inter. J. of Math. Sci. & Engg. Appls. (IJMSEA), 8 (III): 309-314. [3] M.E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, 2015 “Bicomplex Holomorphic Functions:The Algebra, Geometry and Analysis of Bicomplex Numbers” Springer International Publishing [4]G.B. Price, 1991 “An introduction to Multicomplex spaces and functions” Marcel Dekker , Inc. [5] Rajiv K. Srivastava, 2008 “Certain Topological Aspects of Bicomplex Space”. Bull. Pure & Appl. Math,: 222-234. [6] Rajiv K. Srivastava and Jogendra Kumar, 2011“On Entireness of Bicomplex Dirichlet Series” Inter. J. of Math. Sci. & Engg. Appls. (IJMSEA), 5 (II),:221-228.

IJRAR1903412

International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org

242

Suggest Documents