A Combinatorial Property of Convex Sets

9 downloads 0 Views 176KB Size Report
M. Abellanas,1 G. Hernandez,1 R. Klein,2 V. Neumann-Lara,3 and J. Urrutia4. 1 Facultad de .... H be the initial and final points of CH in the counterclockwise direction. For .... Then their boundaries intersect in at most two points. Fig. 3 ...
Discrete Comput Geom 17:307–318 (1997)

Discrete & Computational

Geometry

©

1997 Springer-Verlag New York Inc.

A Combinatorial Property of Convex Sets M. Abellanas,1 G. Hernandez,1 R. Klein,2 V. Neumann-Lara,3 and J. Urrutia4 1

Facultad de Inform´atica, Dept. de Matem´atica Aplicada, Universidad Politecnica de Madrid, Campus de Montegancedo, s/n, Boadilla del Monte, 28660 Madrid, Spain {mavellanas,gregorio}@fi.upm.es 2 Praktische Informatik VI, Fern Universit¨ at Hagen, Elberfelder Strasse 95, 5800 Hagen, Germany [email protected] 3

Universidad Nacional Antonoma de M´exico, Mexico

4

Department of Computer Science, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5 [email protected]

Abstract. A known result in combinatorial geometry states that any collection Pn of points on the plane contains two such that any circle containing them contains n/c elements of Pn , c a constant. We prove: Let 8 be a family of n noncrossing compact convex sets on the plane, and let S be a strictly convex compact set. Then there are two elements Si , Sj of 8 such that any set S 0 homothetic to S that contains them contains n/c elements of 8, c a constant (S 0 is homothetic to S if S 0 = λS + v, where λ is a real number greater than 0 and v is a vector of

Suggest Documents