A Cryptographic Algorithm using Wavelet Transforms over ... › publication › fulltext › A-Crypto... › publication › fulltext › A-Crypto...Feb 28, 2020 — hand, min-plus algebra uses minimization and addition operations. Classical works on these algebra focu
S1319-1578(19)31590-3 https://doi.org/10.1016/j.jksuci.2020.02.004 JKSUCI 747
To appear in:
Journal of King Saud University - Computer and Information Sciences
Received Date: Accepted Date:
4 December 2019 20 February 2020
Please cite this article as: Subiono, Cahyono, J., Adzkiya, D., Davvaz, B., A Cryptographic Algorithm using Wavelet Transforms over Max-Plus Algebra, Journal of King Saud University - Computer and Information Sciences (2020), doi: https://doi.org/10.1016/j.jksuci.2020.02.004
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2020 Production and hosting by Elsevier B.V. on behalf of King Saud University.
*`vTiQ;`T?B+ H;Q`Bi?K mbBM; qp2H2i h`Mb7Q`Kb Qp2` Jt@SHmb H;2#`I am#BQMQR- - CQFQ *?vQMQR-# - .B2Fv /xFBvR--∗- "BDM .ppxR-+ .2T`iK2Mi
Q7 Ji?2KiB+b- AMbiBimi h2FMQHQ;B a2TmHm? LQT2K#2`- EKTmb Aha amFQHBHQ@am`#v eyRRR- AM/QM2bB # aim/v S`Q;`K Q7 AM7Q`KiB+b 1M;BM22`BM;- a2FQH? hBM;;B h2FMBF iHb LmbMi`JHM;- AM/QM2bB + .2T`iK2Mi Q7 Ji?2KiB+b- ux/ lMBp2`bBiv- ux/- A`M
#bi`+i *`vTiQ;`T?v ?b `QH2 iQ b2+m`2 M BKTQ`iMi BM7Q`KiBQMX lMiBH MQr- KMv p`B2iB2b Q7 +`vTiQ;`T?B+ H;Q`Bi?Kb `2 pBH#H2 BM i?2 HBi2`im`2X AM i?Bb T@ T2`- r2 T`QTQb2 +`vTiQ;`T?B+ H;Q`Bi?K #b2/ QM hvT2 Ao Kt@THmb rp2H2i i`Mb7Q`Kb UJS@qp2H2ibVX 1M+`vTiBQM M/ /2+`vTiBQM H;Q`Bi?Kb `2 +QM@ bi`m+i2/ #b2/ QM i?2 MHvbBb M/ bvMi?2bBb T`Q+2bb Q7 hvT2 Ao JS@qp2H2ib`2bT2+iBp2HvX h?2 2M+`vTiBQM F2v +QMiBMb i?2 MmK#2` Q7 +?MM2Hb BM HH H2p2HbX h?2 2M+`vTiBQM F2v Bb +?Qb2M bm+? i?i KmHiBTHB+iBQM Q7 i?2 MmK#2` Q7 +?MM2Hb BM HH H2p2Hb Bb ;`2i2` i?M Q` 2[mH iQ i?2 MmK#2` Q7 +?`+i2`b BM i?2 SHBMi2tiX h?2 /2+`vTiBQM F2v +QMbBbib Q7 i?2 2M+`vTiBQM F2v M/ b2[m2M+2 ;2M2`i2/ #v i?2 #BM`v 2M+Q/BM; Q7 /2iBH +QKTQM2MibX h?Bb ;m`Mi22b i?i i?2 /2+`vTiBQM F2v Bb p2`v /B{+mHi iQ Q#iBM mbBM; i?2 #`mi2@7Q`+2 K2i?Q/X h?2 +`vTiQ;`T?B+ T`Q+2bb BMpQHp2b QMHv KtBKBxiBQM M/ //BiBQM QT2`iBQMb b KBM QT2`iBQMbX h?2 2tT2`BK2Mib M/ MHvbBb b?Qr i?i i?2 H;Q`Bi?K Bb ;QQ/ +`vTiQ;`T?B+ H;Q`Bi?K #b2/ QM i?2 +Q``2HiBQM #2ir22M SHBMi2ti M/ *BT?2`i2ti- 2M+`vT@ iBQM [mHBiv- i?2 /2+`vTiBQM F2v bT+2- +`vTiMHvbBb U*BT?2`i2ti@QMHv ii+FV M/ b2+m`Biv MHvbBb U2Mi`QTv MHvbBb- F2v b2MbBiBpBiv- SHBMi2ti b2MbBiBpBivVX I h?Bb rQ`F rb bmTTQ`i2/ #v qQ`H/ *Hbb S`Q72bbQ` Uq*SV T`Q;`K kyRN- b+?2K2 " MmK#2` hfddf.kXjfEEXy9Xy8fkyRNX ∗ *Q``2bTQM/BM; mi?Q` 1KBH //`2bb2b, bm#BQMQky3!Ki2KiBFXBibX+XB/ Uam#BQMQVDyFyn+?vyMy!v?QQX+QK UCQFQ *?vQMQV- /B2Fv!Ki2KiBFXBibX+XB/ U.B2Fv /xFBvV/ppx!vx/X+XB` U"BDM .ppxV
S`2T`BMi bm#KBii2/ iQ 1Hb2pB2`
62#`m`v k3- kyky
h?Bb H;Q`Bi?K Bb HbQ 2{+B2Mi BM i?2 `mMMBM; iBK2- #2+mb2 i?2 +QKTH2tBiv Bb HBM2` rX`XiX i?2 MmK#2` Q7 +?`+i2`b BM i?2 SHBMi2tiX E2vrQ`/b, *`vTiQ;`T?v- Kt@THmb H;2#`- rp2H2i i`Mb7Q`Kb RX AMi`Q/m+iBQM *`vTiQ;`T?v ?b #22M bbQ+Bi2/ rBi? i?2 T`Q#H2K Q7 /2bB;MBM; M/ M@ HvxBM; 2M+`vTiBQM b+?2K2b- BX2X b+?2K2b i?i T`QpB/2 b2+`2i +QKKmMB+iBQM Qp2` BMb2+m`2 +QKKmMB+iBQM K2/BX h?2 T`Q#H2K Q7 T`QpB/BM; b2+`2i +QKKmMB+iBQM 8
Qp2` BMb2+m`2 K2/B Bb i?2 KQbi i`/BiBQMH M/ #bB+ T`Q#H2K Q7 +`vTiQ;`T?vX h?2 b2iiBM; +QMbBbib Q7 irQ T`iB2b +QKKmMB+iBM; Qp2` BMb2+m`2 K2/BX h?2 2M+`vTiBQM b+?2K2 Bb T`QiQ+QH HHQrBM; i?2b2 T`iB2b iQ +QKKmMB+i2 b2+`2iHv rBi? 2+? Qi?2` (R)X hvTB+HHv- i?2 2M+`vTiBQM b+?2K2 +QMbBbib Q7 TB` Q7 H;Q`Bi?KbX h?2 }`bi
Ry
H;Q`Bi?K- +HH2/ 2M+`vTiBQM- Bb TTHB2/ #v i?2 b2M/2`- BX2X i?2 T`iv b2M/BM; K2bb;2X h?2 Qi?2` H;Q`Bi?K- +HH2/ /2+`vTiBQM- Bb TTHB2/ #v i?2 `2+2Bp2`- BX2X i?2 T`iv `2+2BpBM; i?2 K2bb;2X >2M+2- BM Q`/2` iQ b2M/ K2bb;2- i?2 b2M/2` }`bi TTHB2b i?2 2M+`vTiBQM H;Q`Bi?K iQ i?2 K2bb;2 M/ b2M/b i?2 `2bmHi- +HH2/ i?2 *BT?2`i2ti- Qp2` i?2 BMb2+m`2 K2/BX lTQM `2+2BpBM; *BT?2`i2ti- i?2 Qi?2`
R8
T`iv- BX2X i?2 `2+2Bp2`- TTHB2b i?2 /2+`vTiBQM H;Q`Bi?K iQ i?2 *BT?2`i2ti iQ `2i`B2p2 i?2 Q`B;BMH K2bb;2 +HH2/ i?2 SHBMi2tiX AM Q`/2` 7Q` i?Bb b+?2K2 iQ T`QpB/2 b2+`2i +QKKmMB+iBQM- i?2 +QKKmMB+iBM; T`iB2b Kmbi FMQr i?2 2M+`vTiBQM M/ /2+`vTiBQM F2vb (R)X qp2H2i i`Mb7Q`Kb ?p2 #22M rB/2Hv mb2/ BM bB;MH T`Q+2bbBM;X h?2`2 `2
ky
irQ T`Q+2bb2b BM rp2H2i i`Mb7Q`Kb, MHvbBb M/ bvMi?2bBbX ?B;? `2bQHm@ iBQM bB;MH Bb /2+QKTQb2/ #v i?2 MHvbBb T`Q+2bb iQ Q#iBM i?2 TT`QtBKiBQM M/ /2iBH bB;MHbX h?2 TT`QtBKiBQM bB;MH `2T`2b2Mib i?2 HQr2` `2bQHmiBQM TT`QtBKiBQM Q7 i?2 KBM bB;MHX h?2 /2iBH bB;MH 2Mbm`2b i?i i?2 ?B;? `2bQ@ HmiBQM bB;MH +M #2 `2+Qp2`2/ #v i?2 bvMi?2bBb T`Q+2bb (k)X h?2`2 `2 irQ