A first experimental and theoretical modelling of

4 downloads 0 Views 1MB Size Report
and cooling. ΔT/Δt=5°C/min) of extrapolated ternary eutectic. (LIQΩ. TER. =0 kJ/mol). DSC data (cooling ramp ΔT/Δt=2°C/min) of extrapolated ternary eutectic.
A first experimental and theoretical modelling of thermodynamic properties of pseudo-ternary LiBH4-NaBH4-KBH4 system Erika M. Dematteis,a)b) Eugenio R. Pinatel,b) Marta Corno,b) Torben R. Jensena) and Marcello Bariccob) DEPARTMENT OF CHEMISTRY a) AARHUS UNIVERSITY

Data:  Experimental  Ab initio  literature

DEPARTMENT OF CHEMISTRY

Motivation

b) UNIVERSITY OF TURIN

 Borohydrides for solid-state H2 storage

1.

 Infiltration of eutectic mixtures to improve release and uptake of H2  Full evaluation of thermodynamic properties fundamental for tailoring

Investigation of pure compounds 2.

Investigation of binary systems and their interaction parameters

3. Extrapolation of ternary system 4.

Thermodynamic database with assessed functions

SR-PXD data (λ=0.8259, heating and cooling ΔT/Δt=5°C/min) of extrapolated ternary eutectic (LIQΩTER=0 kJ/mol)

DSC data (cooling ramp ΔT/Δt=2°C/min) of extrapolated ternary eutectic (LIQΩTER=0 kJ/mol and LIQΩTER= -14 kJ/mol)

LiBH4-NaBH4-KBH4 LiBH4-NaBH4

Calphad approach to assess phase diagrams: 𝑒𝑥𝑐 𝐺𝑚 = 𝑥1 𝑥2 0 𝐿12 + 1 𝐿12 (𝑥1 − 𝑥2 ) if k=0 : Regular solution if k≥1 : Redlich-kister Ternary : Muggianu’s rule

Experimental : Calculated : ΔHmelt = 6990 J/mol ΔHmelt = 7070 J/mol 70.0 mol% LiBH4 71.0 mol% LiBH4 T = 489 K T = 492 K

Ternary : Literature : T = 369 K 69 mol% LiBH4 - 7 mol% NaBH4 - 24 mol% KBH4

Calculated LIQΩTER=0 kJ/mol : 65 mol% LiBH4 - 8 mol% NaBH4 - 27 mol% KBH4 T = 384 K Calculated LIQΩTER=-14 kJ/mol : 66 mol% LiBH4 - 11 mol% NaBH4 - 23 mol% KBH4 T = 375 K

NaBH4-KBH4 LiBH4-KBH4

Conclusions  Assessment of binary systems and good agreement with experimental data

Experimental : ΔHmelt = 12645 J/mol 68.2 mol% NaBH4 T = 741 K

Calculated : ΔHmelt = 15331 J/mol 68.2 mol% NaBH4 T = 741 K

 assessment of ternary system based on new experiments Experimental : ΔHmelt = 11025 J/mol 72.5 mol% LiBH4 T = 377 K

Calculated : ΔHmelt = 9828 J/mol 72.3 mol% LiBH4 T = 382 K

References Y.M. Muggianu, M. Gambino, J.P. Bros, J. de Chimie Physique, 1975, 72, 83-88. E.M. Dematteis, E. Roedern, E.R. Pinatel, M. Corno, T.R. Jensen, M. Baricco, RSC Adv., 2016, 6, 60101–60108. R.M. Adams, Borax to boranes, Advances in Chemistry, 1961, 32. K.N. Semenenko, A.P. Chavgun, V.N. Surov, Russ. Jour. of Inorg. Chem., 1971, 16, 271–273. M.B. Ley, E. Roedern, T.R. Jensen, Phys. Chem. Chem. Phys., 2014, 16, 24194–24199. S.R.H. Jensen, L.H. Jepsen, J. Skibsted, T.R. Jensen, J. Phys. Chem. C, 2015, 119, 27919–27929. Huff, G. F. US 2,935,428, 1960.

 Negative enthalpies of mixing suggest attractive interaction in the liquid state

Contact Erika Michela Dematteis [email protected]

Acknowledgements