A GENERALIZATION OF DIRICHLET TYPE 1 DISTRIBUTION ... - ijpam

2 downloads 0 Views 100KB Size Report
Translated from the Russian by G. G. Gould,. Gordon and Breach Science Publishers, New York, USA (1990). [8] H.M. Srivastava and P.W. Karlsson, Multiple ...
International Journal of Pure and Applied Mathematics Volume 95 No. 1 2014, 89-98

AP

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v95i1.10

ijpam.eu

A GENERALIZATION OF DIRICHLET TYPE 1 DISTRIBUTION Daya K. Nagar1 § , Armando G´omez2 1,2 Instituto

de Matem´aticas Universidad de Antioquia Calle 67, No. 53-108, Medell´ın, COLOMBIA Abstract: In this article, we give a generalization of the Dirichlet type 1 distribution. This generalization is based on the Lauricella’s type B hypergeometric function. We also study several of its properties. AMS Subject Classification: 62H99 Key Words: Appell hypergeometric function, Dirichlet distribution, hypergeometric function, Lauricella function 1. Introduction The random variables U1 , . . . , Un are said to have a Dirichlet type 1 distribution with parameters a1 , . . . , an ; an+1 , denoted by (U1 , . . . , Un ) ∼ D1(a1 , . . . , an ; an+1 ), if their joint probability density function (p.d.f.) is given by !an+1 −1 P n n X Y Γ( n+1 a ) i , ui uiai −1 1 − Qn+1i=1 Γ(a ) i i=1 i=1 i=1 ui > 0,

i = 1, . . . , n,

n X

ui < 1. (1.1)

i=1

The Dirichlet type 1 distribution is primarily used as a conjugate prior distribution for the multinomial distribution parameters. Dirichlet random variables are good candidates for random weights since their beautiful stochastic representation in terms of gamma random variables and their sum is automatically Received:

April 14, 2014

§ Correspondence

author

c 2014 Academic Publications, Ltd.

url: www.acadpubl.eu

90

D.K. Nagar, A. G´omez

one, which has applications in Bayes bootstrap method. The Dirichlet type 1 distribution has been studied extensively, for example, see Kotz, Balakrishnan and Johnson [1], and Gupta and Nagar [2]. In this article, we give a generalization of the Dirichlet type 1 distribution. This generalization is based on the Lauricella type B hypergeometric function and thus will be called Dirichlet-Lauricella type B distribution. In Section 2, we give definitions of Lauricella type B and type D hypergeometric functions. We define Dirichlet-Lauricella type B distribution in Section 3. Section 4, deals with several properties such as marginal densities and joint moment. 2. Preliminaries The Pochhammer symbol (a)n is defined by (a)n = a(a + 1) · · · (a + n − 1) = (a)n−1 (a + n − 1) for n = 1, 2, . . . and (a)0 = 1. The Appell-Lauricella hypergeometric functions of several variable are generalizations of the classical hypergeometric function of one variable. Appell’s name is usually associated to the two variable case, whereas the case of more variables is usually ascribed to Lauricella. In this section, we define the Lauricella hypergeometric functions (n) (n) FB and FD of several variables. For further results and properties of these functions the reader is referred to Srivastava and Karlsson [8], and Prudnikov, Brychkov and Marichev [7, Sec. 7.2.4]. The Lauricella hypergeometric functions (n) (n) FB and FD are defined in multiple series as (n)

FB (a1 , . . . , an , b1 , . . . , bn ; c; z1 , . . . , zn ) ∞ X (a1 )j1 · · · (an )jn (b1 )j1 · · · (bn )jn z1j1 · · · znjn , max{|z1 |, . . . , |zn |} < 1 = (c)j1 +···+jn j1 ! · · · jn ! j1 ,...,jn =0

(2.1)

and (n)

FD (a, b1 , . . . , bn ; c; z1 , . . . , zn ) ∞ X (a)j1 +···+jn (b1 )j1 · · · (bn )jn z1j1 · · · znjn = , max{|z1 |, . . . , |zn |} < 1, (c)j1 +···+jn j1 ! · · · jn ! j1 ,...,jn =0

(2.2)

respectively. If n = 2, then these functions reduce to Appell hypergeometric functions F3 and F1 , respectively. For n = 1, they reduce to the Gauss hypergeometric function 2 F1 .

A GENERALIZATION OF DIRICHLET TYPE 1 DISTRIBUTION

91

By writing (c)j1 +···+jn = (c)jr+1 +···+jn (c+ jr+1 + · · · + jn )j1 +···+jr , 1 ≤ r ≤ n, (n) in (2.1), the Appell hypergeometric function FB can also be expressed as (n)

FB (a1 , . . . , an , b1 , . . . , bn ; c; z1 , . . . , zn ) =

∞ X

jr+1 ,...,jn =0

j

r+1 · · · znjn (ar+1 )jr+1 · · · (an )jn (br+1 )jr+1 · · · (bn )jn zr+1 (c)jr+1 +···+jn jr+1 ! · · · jn !

(r)

× FB (a1 , . . . , ar , b1 , . . . , br ; c + jr+1 + · · · + jn ; z1 , . . . , zr ). (n)

The integral representation of FB

(2.3)

is given by

(n)

(2.4) FB (a1 , . . . , an , b1 , . . . , bn ; c; z1 , . . . , zn ) = Pn Pn Z Z Qn ai −1 n c− a −1 Y i=1 i (1 − i=1 ui ) Γ(c) i=1 ui Q Qn Pn dui , ··· n b i i=1 Γ(ai )Γ(c − i=1 ai ) i=1 (1 − zi ui ) i=1

u1 >0,...,u n >0 P 1− n i=1 ui >0

where Re(ai ) > 0, i = 1, . . . , n, Re(c − a1 − · · · − an ) > 0 and | arg(1 − zi )| < π, i = 1, . . . , n. The Lauricalla hypergeometric function FD has integral representation (n) FD (a, b1 , . . . , bn ; c; z1 , . . . , zn )

Γ(c) = Γ(a)Γ(c − a)

Z

1 0

ua−1 (1 − u)c−a−1 Qn du, (2.5) bi i=1 (1 − uzi )

where Re(c) > Re(a) > 0 and | arg(1 − zi )| < π, i = 1, . . . , n.

3. The Dirichlet-Lauricella Type B Distribution We define the Dirichlet-Lauricella type B distribution as follows. The random variables U1 , . . . , Un are said to have a Dirichlet-Lauricella type B distribution with parameters a1 , . . . , an ; c; d1 , . . . , dn ;θ1 , . . . , θn , denoted by (U1 , . . . , Un ) ∼ DLB(a1 , . . . , an ; c; d1 , . . . , dn ; θ1 , . . . , θn ), if their joint p.d.f. is given by KB

P Pn n c− n ai −1 X i=1 ai −1 u (1 − u ) i=1 i Q i=1 i ui < 1, , u > 0, i = 1, · · · , n, i n di i=1 (1 − θi ui )

Qn

i=1

(3.1)

92

D.K. Nagar, A. G´omez

P where a1 > 0, . . . , an > 0, c − ni=1 ai > 0 and |θi | < 1, i = 1, . . . , n. The normalizing constant KB in (3.1) is given by P Pn Z Z Qn n c− n ai −1 i=1 ai −1 Y u (1 − u ) −1 i=1 i Q i=1 i dui = ··· KB n di i=1 (1 − θi ui ) u1P >0,...,un >0 n ui a1 > 0, −1 < θ1 < 1 and 2 F1 is the Gauss hypergeometric function. The generalized beta type 1 distribution has been studied by Nagar and RadaMora [5], Libby and Novic [3], Pham-Gia and Duong [6]. Further, for n = 2, the p.d.f. in (3.1) slides to a generalized bivariate beta type 1 p.d.f. defined by (Nadarajah [4]), Γ(c) Γ(a1 )Γ(a2 )Γ(c − a1 − a2 ) F3 (a1 , a2 , d1 , d2 ; c; θ1 , θ2 ) ×

ua11 −1 ua22 −1 (1 − u1 − u2 )c−a1 −a2 −1 , u1 > 0, u2 > 0, u1 + u2 < 1, (1 − θ1 u1 )d1 (1 − θ2 u2 )d2

where a1 > 0, a2 > 0, c > a1 + a2 , −1 < θ1 < 1, −1 < θ2 < 1 and F3 is the third hypergeometric function of Appell. 4. Properties This section gives several properties of the Dirichlet-Lauricella type B distribution. P Consider the Zi = (1 − sj=1 Uj )−1 Ui , i = s + 1, . . . , n. Ptransformation Then, ui = (1− sj=1 uj )zi , i = s+1, . . . , n with the Jacobian J(us+1 , . . . , un → P zs+1 , . . . , zn ) = (1 − sj=1 uj )n−s . Substituting appropriately in (3.1), the joint p.d.f. of U1 , . . . , Us , Zs+1 , . . . , Zn is given by P P Qn Pn Qs Ps ai −1 ai −1 c− n c− si=1 ai −1 i=1 ai −1 z (1 − z ) u (1 − u ) i i i=s+1 i i=s+1 i=1 Q P , KB i=1 i Qs n s di di i=1 (1 − θi ui ) i=s+1 [1 − θi zi (1 − j=1 uj )] (4.1)

A GENERALIZATION OF DIRICHLET TYPE 1 DISTRIBUTION

93

P P where ui > 0, i = 1, . . . , s, si=1 ui < 1, zi > 0, i = s + 1, . . . , n and ni=s+1 zi < 1. First, we find the marginal p.d.f. of U1 , . . . , Us by integrating out zs+1 , . . . , zn from the joint p.d.f. of U1 , . . . , Us , Zs+1 , . . . , Zn as P Qs Ps ai −1 c− si=1 ai −1 u (1 − u ) i i=1 KB i=1 i Qs di i=1 (1 − θi ui ) P Pn Z Z Qn n ai −1 c− n Y i=1 ai −1 z (1 − z ) i i=s+1 i i=s+1 Qn Ps × ··· dzi . (4.2) di i=s+1 [1 − θi zi (1 − j=1 uj )] i=s+1

zs+1 Pn>0,...,zn >0 i=s+1 zi 0, i = 1, . . . , s, i=1 ui < 1 and Qs Ps −1 i=1 Γ(ai )Γ(c − i=1 ai ) (n) KB1 = FB (a1 , . . . , an , d1 , . . . , dn ; c; θ1 , . . . , θn ). Γ(c) It is interesting to note that the marginal p.d.f. of U1 , . . . , Us does not belong to the Dirichlet-Lauricella type B family of distributions and differs by an additional factor containing the Lauricella hypergeometric function FB . Further, making the transformation Zi = (1 − Us )−1 Ui , i = 1, . . . , s − 1 with the Jacobian J(u1 , . . . , us−1 → z1 , . . . , zs−1 ) = (1 − us )s−1 in (4.3), the joint p.d.f. of Z1 , . . . , Zs−1 and Us is derived as Qs−1 ai −1 Ps−1 c−Ps ai −1 i=1 zi (1 − i=1 zi ) uas s −1 (1 − us )c−as −1 i=1 KB1 Qs−1 di (1 − θs us ) i=1 [1 − θi zi (1 − us )] s X (n−s) ai ; as+1 , . . . , an , ds+1 , . . . , dn ; c − × FB i=1

θs+1 (1 − us ) 1 −

s−1 X i=1

zi

!

, . . . , θn (1 − us ) 1 −

s−1 X i=1

zi

!!

.

94

D.K. Nagar, A. G´omez

Ps−1 where 0 < us < 1, zi > 0, i = 1, . . . , s − 1, and i=1 zi < 1. Now, expanding (n−s) using (2.1) and integrating u1 , . . . , us−1 by applying (2.4) in the above FB p.d.f., the marginal p.d.f. of Us is derived as KB2

×

uas s −1 (1 − us )c−as −1 (1 − θs us )

js+1 θs+1

· · · θnjn

js+1 ! · · · jn !

∞ X

js+1 ,...,jn =0

(as+1 )js+1 · · · (an )jn (ds+1 )js+1 · · · (dn )jn (c − as )js+1 +···+jn

(s−1)

(1 − us )js+1 +···+jn FB

(a1 , . . . , as−1 , d1 , . . . , ds−1 ;

c + js+1 + · · · + jn − as ; θ1 (1 − us ), . . . , θn (1 − us )), where −1 = KB2

Γ(as )Γ(c − as ) (n) FB (a1 , . . . , an , d1 , . . . , dn ; c; θ1 , . . . , θn ). Γ(c)

Finally, rewriting the infinite series involving the Lauricella function by using (2.3), the p.d.f. of Us is derived as KB2

uas s −1 (1 − us )c−as −1 (n−1) (a1 , . . . , as−1 , as+1 , . . . , an , d1 , . . . , ds−1 , ds+1 , . . . , dn ; FB (1 − θs us )ds c − as ; θ1 (1 − us ), . . . , θs−1 (1 − us ), θs+1 (1 − us ), . . . , θn (1 − us )).

The marginal joint p.d.f. of Zs+1 , . . . , Zn is given by n Y

ziai −1 1 −

n X

!c−Pni=1 ai −1

zi i=s+1 Ps Qs P Z Z s ai −1 Y (1 − si=1 ui )c− i=1 ai −1 i=1 ui dui . × ··· Qs Q P (1 − θi ui )di ni=s+1 [1 − θi zi (1 − si=1 ui )]di i=1 i=1 uP 1 >0,...,us >0 s i=1 ui

Suggest Documents