A Matrix Inequality for Möbius Functions - EMIS

2 downloads 0 Views 326KB Size Report
Mar 27, 2009 - 2.2.2 A sufficient condition for the PNT and the RH . ... PNT. In this work we study an integer matrix whose determinant is also related to the.
A MATRIX INEQUALITY FOR MÖBIUS FUNCTIONS OLIVIER BORDELLÈS

BENOIT CLOITRE

2 allée de la combe 43000 AIGUILHE (France) EMail: [email protected]

19 rue Louise Michel 92300 LEVALLOIS-PERRET (France) EMail: [email protected]

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Received:

24 November, 2008

Accepted:

27 March, 2009

Communicated by:

L. Tóth

2000 AMS Sub. Class.:

15A15, 11A25, 15A18, 11C20.

Key words:

Determinants, Dirichlet convolution, Möbius functions, Singular values.

Abstract:

The aim of this note is the study of an integer matrix whose determinant is related to the Möbius function. We derive a number-theoretic inequality involving sums of a certain class of Möbius functions and obtain a sufficient condition for the Riemann hypothesis depending on an integer triangular matrix. We also provide an alternative proof of Redheffer’s theorem based upon a LU decomposition of the Redheffer’s matrix.

Contents

JJ

II

J

I

Page 1 of 17 Go Back Full Screen Close

Contents 1

Introduction 1.1 Arithmetic motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Convolution identities for the Möbius function . . . . . . . . . . . .

2

An Integer Matrix Related to the Möbius Function 2.1 The determinant of Γn . . . . . . . . . . . . . . . . . 2.2 A sufficient condition for the PNT and the RH . . . . . 2.2.1 Computation of Un−1 . . . . . . . . . . . . . . 2.2.2 A sufficient condition for the PNT and the RH

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

3 3 4 7 7 10 10 15

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 2 of 17 Go Back Full Screen Close

1.

Introduction

In what follows, [t] is the integer part of t and, for integers i, j > 1, we set mod (j, i) := j − i[j/i]. 1.1.

Arithmetic motivation

In 1977, Redheffer [5] introduced the matrix Rn = (rij ) ∈ Mn ({0, 1}) defined by ( 1, if i | j or j = 1; rij = 0, otherwise

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

and has shown that (see appendix) det Rn = M (n) :=

Möbius Functions

n X

Contents

µ(k),

k=1

where µ is the Möbius function and M is the Mertens function. This determinant is clearly related to two of the most famous problems in number theory, the Prime Number Theorem (PNT) and the Riemann Hypothesis (RH). Indeed, it is well-known that  PNT ⇐⇒ M (n) = o(n) and RH ⇐⇒ M (n) = Oε n1/2+ε (for any ε > 0). These estimations for | det Rn | remain unproven, but [6] h Vaughan i log n showed that 1 is an eigenvalue of Rn with (algebraic) multiplicity n− log 2 −1, that Rn has two "dominant" eigenvalues λ± such that |λ± |  n1/2 , and that the others eigenvalues satisfy λ  (log n)2/5 .

JJ

II

J

I

Page 3 of 17 Go Back Full Screen Close

It should be mentioned that Hadamard’s inequality, which states that n Y | det Rn | 6 kLi k22 , 2

i=1

where Li is the ith row of Rn and k·k2 is the euclidean norm on Cn , gives 2

(M (n)) 6 n

n  Y i=2

1+

h n i i

n−[n/2]

=2

n

[n/2] 

Y i=2

1+

h n i i

n−[n/2]

62



 n + [n/2] , n

which is very far from the trivial bound |M (n)| 6 n so that it seems likely that general matrix analysis tools cannot be used to provide an elementary proof of the PNT. In this work we study an integer matrix whose determinant is also related to the Möbius function. This will provide a new criteria for the PNT and the RH (see Corollary 2.3 below). In an attempt to go further, we will prove an inequality for a class of Möbius functions and deduce a sufficient condition for the PNT and the RH in terms of the smallest singular value of a triangular matrix.

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 4 of 17

1.2.

Convolution identities for the Möbius function

The function µ, which plays an important role in number theory, satisfies the following well-known convolution identity. Lemma 1.1. For every real number x > 1 we have hxi X x X µ(k) = M = 1. k d k6x d6x One can find a proof for example in [1]. The following corollary will be useful.

Go Back Full Screen Close

Corollary 1.2. For every integer j > 1 we have (i) j X µ(k) mod (j, k)

k

k=1

=j

j X µ(k) k=1

k

− 1.

(ii) j k X X µ(h) h k=1 h=1

Möbius Functions

! (mod(j, k + 1) − mod(j, k)) = 1.

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Proof. Title Page

(i) We have j X µ(k) mod (j, k) k=1

k

=

 j X µ(k) k=1

k

    j j X µ(k) X j j j−k =j − µ(k) k k k k=1 k=1

and we conclude with Lemma 1.1.

Contents

JJ

II

J

I

Page 5 of 17

(ii) Using Abel summation we get ! j k X X µ(h) (mod(j, k + 1) − mod(j, k)) h k=1 h=1 ! j j X µ(h) X (mod(j, k + 1) − mod(j, k)) = h h=1 k=1 ! k j−1 k+1 k X X µ(h) X µ(h) X − − (mod(j, m + 1) − mod(j, m)) h h m=1 k=1 h=1 h=1

Go Back Full Screen Close

=j

j X µ(k) k=1 j

=j

k

X µ(k) k=1

k



j−1 X µ(k + 1) mod (j, k + 1)

k+1

k=1 j



X µ(k) mod (j, k) k=1

and we conclude using (i).

k Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 6 of 17 Go Back Full Screen Close

2.

An Integer Matrix Related to the Möbius Function

We now consider the matrix Γn = (γij ) defined by  mod(j, 2) − 1, if i = 1 and 2 6 j 6 n;     mod(j, i + 1) − mod(j, i), if 2 6 i 6 n − 1 and 1 6 j 6 n; γij =  1, if (i, j) ∈ {(1, 1), (n, 1)};    0, otherwise. The matrix Γn is almost upper triangular except the entry γn1 = 1 which is nonzero. Note that it is easy to check that |γij | 6 i for every 1 6 i, j 6 n and that γij = −1 if [j/2] < i < j. Example 2.1.   1 −1 0 −1 0 −1 0 −1 0 2 −1 1 1 0 0 2   3 −1 −1 2 2 −2 0 0   0 4 −1 −1 −1 3  0 0 Γ8 =  . 0 0 5 −1 −1 −1 0 0 0 0 0 0 0 6 −1 −1   0 0 0 0 0 0 7 −1 1 0 0 0 0 0 0 0 2.1.

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 7 of 17 Go Back Full Screen Close

The determinant of Γn

Theorem 2.1. Let n > 2 be an integer and Γn defined as above. Then we have det Γn = n!

n X µ(k) k=1

k

.

A possible proof of Theorem 2.1 uses a LU decomposition of the matrix Γn . Let Ln = (lij ) and Un = (uij ) be the matrices defined by  0, if (i, j) = (n, 1);    uij = 1, if (i, j) = (n, n);    γij , otherwise

Möbius Functions Olivier Bordellès and Benoit Cloitre

and

lij =

 1,      Pj 

k=1

if 1 6 i = j 6 n − 1; µ(k) , k

Pn   n  k=1     0,

µ(k) , k

if i = n

and 1 6 j 6 n − 1;

otherwise.

Lemma 2.2. We have Γn = Ln Un .

Moreover, using Corollary 1.2 (ii) we get for i = n and 2 6 j 6 n − 1 lnk ukj = ln1 u1j +

JJ

II

J

I

Go Back Full Screen Close

k=1

k=1

Contents

Page 8 of 17

Proof. Set Ln Un = (xij ). When i = 1 we immediately obtain x1j = u1j = γ1j . We also have n X xn1 = lnk uk1 = ln1 u11 = 1 = γn1 .

xnj =

Title Page

if (i, j) = (n, n);

The proof of Theorem 2.1 follows from the lemma below.

n X

vol. 10, iss. 3, art. 62, 2009

n X k=2

lnk ukj

! j k X X µ(h) = mod(j, 2) − 1 + (mod(j, k + 1) − mod(j, k)) h k=2 h=1 ! j k X X µ(h) = (mod(j, k + 1) − mod(j, k)) − 1 = 0 = γnj h k=1 h=1 and, for (i, j) = (n, n), we have similarly xnn =

n X

lnk ukn = ln1 u1n +

k=1

= mod(n, 2) − 1 +

n−1 X

Möbius Functions Olivier Bordellès and Benoit Cloitre

lnk ukn + lnn unn

n−1 X

k=2 k X

k=2

h=1

µ(h) h

! (mod(n, k + 1) − mod(n, k))

n X

µ(k) k k=1 ! n k X X µ(h) = (mod(n, k + 1) − mod(n, k)) − 1 = 0 = γnn . h k=1 h=1 +n

Finally, for 2 6 i 6 n − 1 and 1 6 j 6 n, we get xij =

n X k=1

lik ukj = lii uij = uij = γij .

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 9 of 17 Go Back Full Screen Close

Example 2.2.  1 0 0 1  0 0  0 0 Γ8 =  0 0 0 0  0 0 1 12

0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 6

1 6

0 0 0 0 1 0 0 1 − 30

0 0 0 0 0 1 0 2 15

  0 0 1 −1 0 −1 0 −1 0 −1 0 0  0 2 −1 1 1 0 0 2   0 0  0 0 3 −1 −1 2 2 −2   0 0  0 0 0 4 −1 −1 −1 3   . 0 0  0 0 0 0 5 −1 −1 −1   0 0  0 0 0 0 0 6 −1 −1  1 0  0 0 0 0 0 0 7 −1 1 8 0 0 0 0 0 0 0 1 − 105 − 105

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Theorem 2.1 now immediately follows from Title Page

det Γn = det Ln det Un = (n − 1)! det Ln = n!

n X µ(k) k=1

k

.

Contents

We easily deduce the following criteria for the PNT and the RH. Corollary 2.3. For any real number ε > 0 we have PNT ⇐⇒ det Γn = o(n!) and 2.2.

RH ⇐⇒ det Γn = Oε (n

JJ

II

J

I

Page 10 of 17 −1/2+ε

n!).

A sufficient condition for the PNT and the RH

2.2.1. Computation of Un−1

The inverse of Un uses a Möbius-type function denoted by µi which we define below. Definition 2.4. Set µ1 = µ the well-known Möbius function and, for any integer

Go Back Full Screen Close

i > 2, we define the Möbius function µi by µi (1) = 1 and, for any integer m > 2, by  m µ i , if i | m and (i + 1) - m;        m −µ i+1 , if (i + 1) | m and i - m; µi (m) :=    m  µ mi − µ i+1 , if i(i + 1) | m;      0, otherwise. The following result completes and generalizes Lemma 1.1 and Corollary 1.2. Lemma 2.5. For all integers i, j > 2 we have   j X j µi (k) = δij , k k=i j X µi (k) mod (j, k)

k

k=i j

k X X µi (h) k=i

h=i

h

=j

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

j X µi (k) k=i

Möbius Functions

k

− δij ,

!

JJ

II

J

I

Page 11 of 17

(mod(j, k + 1) − mod(j, k)) = δij ,

where δij is the Kronecker symbol. Proof. We only prove the first identity, the proof of the two others being strictly identical to the identities of Corollary 1.2. Without loss of generality, one can suppose that 2 6 i 6 j. If i = j then we have       j X j j j µi (k) = µj (j) =µ = 1. k j j k=i

Go Back Full Screen Close

Now suppose that 2 6 i < j. By Lemma 1.1, we have j X

  j µi (k) = k k=i

j X k=i i|k, (i+1)-k

   k j µ − i k

j X

 µ

k=i (i+1)|k, i-k

k i+1

  j k

       j X k k j + µ −µ i i+1 k k=i i(i+1)|k

      j j X X k j k j = µ µ − i k i+1 k k=i k=i i|k

(i+1)|k

[j/i] X

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page

 [j/(i+1)]   X [j/i] [j/(i + 1)] µ(h) = − µ(h) h h h=1 h=1

JJ

II

= 1 − 1 = 0,

J

I

which concludes the proof.

Page 12 of 17

This result gives the inverse of Un .

Go Back

Corollary 2.6. Set Un−1 = (θij ). Then we have θij =

Contents



j X µi (k) k=i n X

θin = n

k=i

k µi (k) k

Full Screen Close

(1 6 i 6 j 6 n − 1) (1 6 i 6 n).

Proof. Since Un−1 is upper triangular, it suffices to show that, for all integers 1 6 i 6 j 6 n, we have j X θik ukj = δij . k=i

In what follows, we set Sij as the sum on the left-hand side We easily check that Sjj = 1 for every integer 1 6 j 6 n. Now suppose that 1 6 i < j 6 n − 1. By Corollary 1.2, we first have S1j =

j X

θ1k ukj = θ11 u1j +

k=1

j X

Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

θ1k ukj

k=2 j

= mod(j, 2) − 1 +

k X X µ(h) k=2

j k X X µ(h) = h k=1 h=1

Möbius Functions

h=1

h

!

Title Page

(mod(j, k + 1) − mod(j, k))

! (mod(j, k + 1) − mod(j, k)) − 1 = 0

and, if 2 6 i < j 6 n − 1, then by Lemma 2.5, we have ! j k X X µi (h) (mod(j, k + 1) − mod(j, k)) = δij = 0. Sij = h k=i h=1 Now suppose that j = n. By Corollary 1.2, we first have ! n n−1 k X X X µ(h) θ1k ukn = θ11 u1n + (mod(n, k + 1) − mod(n, k)) + θ1n unn S1n = h k=1 k=2 h=1 ! n−1 k n X X X µ(h) µ(k) = mod(n, 2) − 1 + (mod(n, k + 1) − mod(n, k)) + n h k k=2 h=1 k=1

Contents

JJ

II

J

I

Page 13 of 17 Go Back Full Screen Close

n k X X µ(h) = h k=1 h=1

! (mod(n, k + 1) − mod(n, k)) − 1 = 0

and, if 2 6 i 6 n − 1, we have ! n−1 k X X µi (h) Sin = (mod(n, k + 1) − mod(n, k)) + θin unn h k=i h=i ! n n−1 k X X X µi (h) µi (k) (mod(n, k + 1) − mod(n, k)) + n = h k k=i k=i h=i ! n k X X µi (h) = (mod(n, k + 1) − mod(n, k)) = δin = 0 h k=i h=i which completes the proof. For example, we get 

U8−1

1  0  0   0  = 0   0  0  0

1 2 1 2

0 0

1 12 1 4

1 − 30 1 − 12 1 12 1 20

2 15 1 − 12 1 − 12 1 20

1 − 105 1 − 12 1 − 12 1 20

0 0

0

1 5

0 0

0

0

1 30 1 6

0 0

0

0

0

1 30 1 42 1 7

4 15 4 21 1 7

0 0

0

0

0

0

1

0

1 6 1 6 1 3

1 6 1 − 12

8 − 105  − 23   1  3   − 35  

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I



.       

Page 14 of 17 Go Back Full Screen Close

2.2.2. A sufficient condition for the PNT and the RH

Corollary 2.7. For all integers i > 1 and n > 2 we have n X µi (k) 1 , 6 k nσn k=i where σn is the smallest singular value of Un . Thus any estimate of the form σn ε n−1+ε , where ε > 0 is any real number, is sufficient to prove the PNT. Similarly, any estimate of the form σn ε n−1/2−ε where ε > 0 is any real number, is sufficient to prove the RH. Proof. The result follows at once from the well-known inequalities kUn−1 k2

> max |θij | > |θin | 16i,j6n

(see [3]), where k·k2 is the spectral norm, and the fact that σn = kUn−1 k−1 2 . Smallest singular values of triangular matrices have been studied by many authors. For example (see [2, 4]), it is known that, if An = (aij ) is an invertible upper triangular matrix such that |aii | > |aij | for i < j, then we have σn >

min |aii | 2n−1

but, applied here, such a bound is still very far from the PNT.

Möbius Functions Olivier Bordellès and Benoit Cloitre vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 15 of 17 Go Back Full Screen Close

Appendix : A Proof of Redheffer’s Theorem Let Sn = (sij ) and Tn = (tij ) be the matrices defined by  M (n/i),  (   1, if i | j; sij = and tij = 1,  0, otherwise   0,

if j = 1; if i = j > 2; otherwise.

Möbius Functions Olivier Bordellès and Benoit Cloitre

Proposition 2.8. We have Rn = Sn Tn . In particular, det Rn = M (n). Proof. Set Sn Tn = (xij ). If j = 1, by Lemma 1.1, we have   n X X n X n/i xi1 = sik tk1 = M = M = 1 = ri1 . k d k=1 k6n d6n/i

i|k

If j > 2, then t1j = 0 and thus xij =

n X k=2

sik tkj = sij =

( 1, 0,

if i | j otherwise

vol. 10, iss. 3, art. 62, 2009

Title Page Contents

JJ

II

J

I

Page 16 of 17

= rij

which is the desired result. The second assertion follows at once from

Go Back Full Screen Close

det Rn = det Sn det Tn = det Tn = M (n). The proof is complete.

References [1] O. BORDELLÈS, Thèmes d’arithmétique, Editions Ellipses, 2006. [2] N.J. HIGHAM, A survey of condition number for triangular matrices, Soc. Ind. Appl. Math., 29 (1987), 575–596. [3] R.A. HORN Press, 1985.

AND

C.R. JOHNSON, Matrix Analysis, Cambridge University

Möbius Functions Olivier Bordellès and Benoit Cloitre

[4] F. LEMEIRE, Bounds for condition number of triangular and trapezoid matrices, BIT, 15 (1975), 58–64.

vol. 10, iss. 3, art. 62, 2009

[5] R.M. REDHEFFER, Eine explizit lösbare Optimierungsaufgabe, Internat. Schiftenreihe Numer. Math., 36 (1977), 213–216.

Title Page

[6] R.C. VAUGHAN, On the eigenvalues of Redheffer’s matrix I, in : Number Theory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283–296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993.

Contents

JJ

II

J

I

Page 17 of 17 Go Back Full Screen Close