A nonlinear partial integro-differential equation

9 downloads 0 Views 1MB Size Report
This paper proposes a numerical method to deal with the integro-differential reaction-diffusion equation. In the proposed method, the time variable is eliminatedย ...
Journal of mathematics and computer science

13 (2014), 14-25

A nonlinear partial integro-differential equation arising in population dynamic via radial basis functions and theta-method Mohammad Aslefallah 1,2 and 1

Elyas Shivanian 1

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran 2

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran [email protected] , [email protected]

Article history: Received July 2014 Accepted August 2014 Available online September 2014

Abstract This paper proposes a numerical method to deal with the integro-differential reaction-diffusion equation. In the proposed method, the time variable is eliminated by using finite difference ๐œƒ โˆ’ method to enjoy the stability condition. The method benefits from collocation radial basis function method, the generallized thin plate splines (GTPS) radial basis functions are used. Therefore, it does not require any struggle to determine shape parameter. The obtained results for some numerical examples reveal that the proposed technique is very effective, convenient and quite accurate to such considered problems. Keywords: Integro-differential equation, Radial basis functions, Kansa method, Finite differences ๐œƒ โˆ’ method. 2010 Mathematics subject classification: 34A08,35R11,65M06.

1 Introduction Many problems in science and engineering modelled as differential equations. Solving equations by traditional numerical methods such as finite difference (FDM), finite element (FEM) needs generation of a regular mesh in the domain of the problem which is computationally expensive [1,2,3,4,5]. During the last decade, meshless methods have received much attention. Due to the difficulty of the mesh generation problem, meshless methods for simulation of the numerical problems

M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25

are employed. Radial basis functions (RBFs) interpolation is a technique for representing a function starting with data on scattered points [6,7,8,9]. The RBFs can be of various types, such as: polynomials of a given degree; linear, quadratic, cubic, etc; thin plate spline (TPS), multiquadrics (MQ), inverse multiquadrics (IMQ), Gaussian forms (GA), etc. Most differential equations do not have exact analytic solutions, so approximation and numerical techniques must be used. Development of constructive methods for the numerical solution of mathematical problems is a main branch of mathematics. Meshless methods have attracted much attention in the both mathematics and engineering community, recently. Extensive developments have been made in several varieties of meshless techniques and applied to many applications in science and engineering. These methods exist under different names, such as: the diffuse element method (DEM) [10], the hp-cloud method [11], Meshless Local Petrov- Galerkin (MLPG) method [12,13,14], the meshless local boundary integral equation (LBIE) method [15], the partition of unity method (PUM) [16], the meshless collocation method based on radial basis functions (RBFs)[17], the smooth particle hydrodynamics (SPH)[19], the reproducing kernel particle method (RKPM) [20], the radial point interpolation method [22], meshless local radial point interpolation method (MLRPI) [23,24], and so on. In this study, we implement the meshless collocation method for solving the following integrodifferential reaction-diffusion equation (also arising in population dynamic) [25,26] by using a radial basis function (RBF): โˆ‚๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ก

=

โˆ‚ 2 ๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ฅ 2

+ ๐›ฝ๐‘ข(1 โˆ’ ๐‘Ž๐‘ข โˆ’ ๐‘๐ฝ(๐‘ฅ, ๐‘ก)) + ๐‘“(๐‘ฅ, ๐‘ก),

(1)

where: ๐ฝ(๐‘ฅ, ๐‘ก) =

๐‘ฅ๐‘… โ€๐œ“(๐‘ฅ ๐‘ฅ๐ฟ

โˆ’ ๐‘ฆ)๐‘ข(๐‘ฆ, ๐‘ก)๐‘‘๐‘ฆ

(for ๐‘ก โˆˆ [0, ๐‘‡]) on a finite domain ๐‘ฅ๐ฟ < ๐‘ฅ < ๐‘ฅ๐‘… . ๐œ“(๐‘ฅ) is kernel function and ๐‘“(๐‘ฅ, ๐‘ก) is a given smooth function. Initial condition ๐‘ข(๐‘ฅ, 0) = ๐‘”(๐‘ฅ) for ๐‘ข(๐‘ฅ๐ฟ , ๐‘ก) = 0 and ๐‘ข(๐‘ฅ๐‘… , ๐‘ก) = 0.

๐‘ฅ๐ฟ < ๐‘ฅ < ๐‘ฅ๐‘… and boundary conditions are as follows:

In the special case, if ๐‘ = 0 and ๐‘“(๐‘ฅ, ๐‘ก) = 0 we have well-knownโ€Fisherโ€™sโ€equationโ€as:โ€ โˆ‚๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ก

=

โˆ‚ 2 ๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ฅ 2

+ ๐›ฝ๐‘ข(1 โˆ’ ๐‘Ž๐‘ข),

2 Preliminaries For implementation of this method we need the following definitions. Definition 2.1 ( Radial basis functions.) Considering a finite set of interpolation points ๐‘‹ = {๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘€ } โŠ† ๐‘… ๐‘‘ and a function ๐‘ข: ๐‘‹ โ†’ ๐‘… ๐‘‘ , according to the process of interpolation using radial basis functions [6], the interpolant of u is constructed in the following form:

15

M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25

(๐‘†๐‘ข)(๐‘ฅ) =

๐‘€ ๐‘–=1 โ€๐œ†๐‘– ๐œ‘(โˆฅ

๐‘ฅ โˆ’ ๐‘ฅ๐‘– โˆฅ) + ๐‘(๐‘ฅ), ๐‘ฅ โˆˆ ๐‘… ๐‘‘

where โˆฅ. โˆฅ is the Euclidean norm and ๐œ‘(โˆฅ. โˆฅ) is a radial function. Also, ๐‘(๐‘ฅ) is a linear combination of polynomials on ๐‘… ๐‘‘ of total degree at most ๐‘š โˆ’ 1 as follows: ๐‘(๐‘ฅ) =

๐‘€+๐‘™ ๐‘— =๐‘€+1 โ€๐œ†๐‘— ๐‘ž๐‘— (๐‘ฅ),

+๐‘‘โˆ’1 ๐‘™ = (๐‘š ) ๐‘‘

Moreover, the interpolant ๐‘†๐‘ข and additional conditions must be determined to satisfy the system: (๐‘†๐‘ข)(๐‘ฅ๐‘– ) = ๐‘ข(๐‘ฅ๐‘– ) ๐‘€ ๐‘–=1 โ€๐œ†๐‘– ๐‘ž๐‘— (๐‘ฅ๐‘– ) = 0,

, ๐‘– = 1,2, โ€ฆ , ๐‘€ ๐‘‘ , โˆ€๐‘ž๐‘— โˆˆ ฮ ๐‘š โˆ’1

๐‘‘ ๐‘‘ where ฮ ๐‘š โˆ’1 denotes the space of all polynomials on ๐‘… of total degree at most ๐‘š โˆ’ 1. Now we have a unique interpolant (๐‘†๐‘ข) of u if ๐œ‘(๐‘Ÿ) is a conditionally positive definite radial basis function of order m[28]. For any partial differential operator ๐ฟ, ๐ฟ๐‘ข can be represented by:

๐ฟ๐‘ข(๐‘ฅ) =

๐‘ฅ ๐‘– โˆˆ๐‘‹ โ€๐œ†๐‘– ๐ฟ๐œ‘(โˆฅ

๐‘ฅ โˆ’ ๐‘ฅ๐‘– โˆฅ) + ๐ฟ๐‘(๐‘ฅ),

The coefficients ๐œ†๐‘– will be obtained by solving the system of linear equations. We will use some RBFs which have the following form: ๐œ‘(โˆฅ ๐‘ฅ โˆ’ ๐‘ฅ๐‘– โˆฅ) = ๐œ‘(๐‘Ÿ๐‘– ) Some types of RBFs presented in Table.1. (c is shape parameter) Table 1. Some types of RBF functions

Name Cubic Thin plate splines Generalized Thin plate splines Inverse quadrics(or Cauchy)

Abbreviation CU TPS GTPS IQ

Multiquadrics Inverse Multiquadrics

MQ IMQ

Gaussian RBF

GA

Formula ๐œ‘(๐‘Ÿ) = ๐‘Ÿ 3 ๐œ‘(๐‘Ÿ) = ๐‘Ÿ 2 log(๐‘Ÿ) ๐œ‘(๐‘Ÿ) = ๐‘Ÿ 2๐‘š log(๐‘Ÿ), ๐‘š โˆˆ ๐‘ 1 ๐œ‘(๐‘Ÿ) = 2 2 ๐œ‘(๐‘Ÿ) = ๐œ‘(๐‘Ÿ) =

๐‘ +๐‘Ÿ ๐‘2 +

๐œ‘(๐‘Ÿ) = ๐‘’

1

๐‘Ÿ2

๐‘ 2 +๐‘Ÿ 2 โˆ’๐‘Ÿ 2 /๐‘ 2

Definition 2.2 ๐œƒ -method, (0 โ‰ค ๐œƒ โ‰ค 1), is general finite-difference approximation to

๐œ• 2 ๐‘ข(๐‘ฅ,๐‘ก) ๐œ•๐‘ฅ 2

given by: โˆ‚ 2 ๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ฅ 2

โ‰… ๐œƒ๐›ฟ2,๐‘ฅ ๐‘ˆ๐‘–,๐‘— +1 + (1 โˆ’ ๐œƒ)๐›ฟ2,๐‘ฅ ๐‘ˆ๐‘–,๐‘— ,

such that we define: 16

(2)

M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25

โˆ‡2 = ๐›ฟ2,๐‘ฅ ๐‘ˆ๐‘–,๐‘— = (where ๐‘• = ฮ”๐‘ฅ =

๐‘ฅ ๐‘… โˆ’๐‘ฅ ๐ฟ ๐‘€

1 (๐‘ˆ๐‘–+1,๐‘— (ฮ”๐‘ฅ)2

โˆ’ 2๐‘ˆ๐‘–,๐‘— + ๐‘ˆ๐‘–โˆ’1,๐‘— ),

๐‘—

for ๐‘ฅ-axis and ๐‘ˆ๐‘–,๐‘— = ๐‘ˆ๐‘– = ๐‘ˆ(๐‘ฅ๐‘– , ๐‘ก๐‘— ) represent the numerical approximation

solution) In other words: โˆ‚ 2 ๐‘ข(๐‘ฅ,๐‘ก) โˆ‚๐‘ฅ 2

โ‰…

1 (ฮ”๐‘ฅ)2

๐œƒ(๐‘ˆ๐‘–+1,๐‘— +1 โˆ’ 2๐‘ˆ๐‘–,๐‘— +1 + ๐‘ˆ๐‘–โˆ’1,๐‘— +1 ) + (1 โˆ’ ๐œƒ)(๐‘ˆ๐‘–+1,๐‘— โˆ’ 2๐‘ˆ๐‘–,๐‘— + ๐‘ˆ๐‘–โˆ’1,๐‘— ) , 1

Remark 2.3 Note that ๐œƒ = 0 gives the explicit scheme, ๐œƒ = 2 the Crank-Nicolson, and ๐œƒ = 1 a fully implicit backward time-difference method. Remark 2.4 The laplacian operator ๐›ป 2 for ๐œ‘ function is given by โˆ‡2 (๐œ‘(๐‘Ÿ)) =

โˆ‚๐œ‘ โˆ‚ 2 ๐‘Ÿ โˆ‚ 2 ๐œ‘ โˆ‚๐‘Ÿ 2 ( ) + ( ) , 2 โˆ‚๐‘Ÿ โˆ‚๐‘ฅ โˆ‚๐‘Ÿ 2 โˆ‚๐‘ฅ

(3)

3 Discretization According to definitions (2.1)and (2.2), from (1) and ๐œƒ-method we get: โˆ‚๐‘ข(๐‘ฅ,๐‘ก ๐‘› +1 ) โˆ‚๐‘ก

= [๐œƒโˆ‡2 ๐‘ข๐‘›+1 + (1 โˆ’ ๐œƒ)โˆ‡2 ๐‘ข๐‘› ] + ๐›ฝ๐‘ข๐‘›+1 โˆ’ ๐‘Ž๐›ฝ(๐‘ข๐‘› )2 โˆ’ ๐‘๐›ฝ๐‘ข๐‘› ๐ฝ๐‘› + ๐‘“ ๐‘›+1 ,

(4)

By substituting finite difference for left hand into (4) we have:

๐‘ข ๐‘› +1 โˆ’๐‘ข ๐‘› ฮ”๐‘ก

= [๐œƒโˆ‡2 ๐‘ข๐‘›+1 + (1 โˆ’ ๐œƒ)โˆ‡2 ๐‘ข๐‘› ] + ๐›ฝ๐‘ข๐‘›+1 โˆ’ ๐‘Ž๐›ฝ(๐‘ข๐‘› )2 โˆ’ ๐‘๐›ฝ๐‘ข๐‘› ๐ฝ๐‘› + ๐‘“ ๐‘›+1 ,

(5)

and for ฮ”๐‘ก = ๐‘˜: ๐‘ข๐‘›+1 โˆ’ ๐‘˜๐œƒโˆ‡2 ๐‘ข๐‘›+1 โˆ’ ๐‘˜๐›ฝ๐‘ข๐‘›+1 = ๐‘ข๐‘› + ๐‘˜(1 โˆ’ ๐œƒ)โˆ‡2 ๐‘ข๐‘› โˆ’ ๐‘˜๐‘Ž๐›ฝ(๐‘ข๐‘› )2 โˆ’ ๐‘˜๐‘๐›ฝ๐‘ข๐‘› ๐ฝ๐‘› + ๐‘˜๐‘“ ๐‘›+1 ,

(6)

In other words, we get: (1 โˆ’ ๐‘˜๐œƒโˆ‡2 โˆ’ ๐‘˜๐›ฝ)๐‘ข๐‘–๐‘›+1 = ๐‘ข๐‘–๐‘› + ๐‘˜(1 โˆ’ ๐œƒ)โˆ‡2 ๐‘ข๐‘–๐‘› โˆ’ ๐‘˜๐‘Ž๐›ฝ(๐‘ข๐‘–๐‘› )2 โˆ’ ๐‘˜๐‘๐›ฝ๐‘ข๐‘–๐‘› ๐ฝ๐‘–๐‘› + ๐‘˜๐‘“๐‘–๐‘›+1 ,

(7)

Now, according to the mentioned method in one-dimensional case, if we collocate ๐‘€ different points ๐‘ฅ1 , ๐‘ฅ2 , โ€ฆ , ๐‘ฅ๐‘€ , then: ๐‘ข(๐‘ฅ๐‘– , ๐‘ก๐‘›+1 ) =

๐‘€ ๐‘›+1 ๐œ‘(โˆฅ ๐‘— =1 โ€๐œ†๐‘—

๐‘›+1 ๐‘ฅ๐‘– โˆ’ ๐‘ฅ๐‘— โˆฅ) + ๐œ†๐‘›+1 ๐‘€+1 ๐‘ฅ๐‘– + ๐œ†๐‘€+2 ,

(8)

๐‘€ ๐‘›+1 ๐‘ฅ๐‘– ๐‘— =1 โ€๐œ†๐‘—

(9)

Two additional conditions can be described as: ๐‘€ ๐‘›+1 ๐‘— =1 โ€๐œ†๐‘—

=

Finally, by combining equations (8),(9), we obtain a matrix form: [๐‘ข]๐‘›+1 = ๐ด[๐œ†]๐‘›+1 17

= 0,

M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25 ๐‘›+1 where: [๐‘ข]๐‘›+1 = [๐‘ข1๐‘›+1 , ๐‘ข2๐‘›+1 , โ€ฆ , ๐‘ข๐‘€ , 0,0]๐‘‡

,

๐‘›+1 ๐‘‡ [๐œ†]๐‘›+1 = [๐œ†1๐‘›+1 , ๐œ†๐‘›+1 2 , โ€ฆ , ๐œ†๐‘€+2 ]

and the matrix ๐ด = (๐‘Ž๐‘–๐‘— )(๐‘€+2)ร—(๐‘€+2) is given by:

๐œ‘11 โ‹ฎ ๐œ‘๐‘–1 โ‹ฎ ๐ด= ๐œ‘๐‘€1 ๐‘ฅ1 1

โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฏ โ‹ฏ

๐œ‘1๐‘— โ‹ฎ ๐œ‘๐‘–๐‘— โ‹ฎ ๐œ‘๐‘€๐‘— ๐‘ฅ๐‘— 1

โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฏ โ‹ฏ

๐œ‘1๐‘€ โ‹ฎ ๐œ‘๐‘–๐‘€ โ‹ฎ ๐œ‘๐‘€๐‘€ ๐‘ฅ๐‘€ 1

๐‘ฅ1 โ‹ฎ ๐‘ฅ๐‘– โ‹ฎ ๐‘ฅ๐‘€ 0 0

1 โ‹ฎ 1 โ‹ฎ 1 0 0

(10)

By substituting (8) into (5),(6) and considering (9) and initial and boundary conditions we obtain a matrix form: [๐‘]๐‘›+1 = ๐ต[๐œ†]๐‘›+1 where:

๐‘›+1 [๐‘]๐‘›+1 = [๐‘1๐‘›+1 , ๐‘2๐‘›+1 , โ€ฆ , ๐‘๐‘€ , 0,0]๐‘‡

๐ฟ(๐œ‘11 ) โ‹ฎ ๐ฟ(๐œ‘๐‘–1 ) โ‹ฎ ๐ต= ๐ฟ(๐œ‘๐‘€1 ) ๐‘ฅ1 1

โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฏ โ‹ฏ

(11)

and

๐ฟ(๐œ‘1๐‘— ) โ‹ฎ ๐ฟ(๐œ‘๐‘–๐‘— ) โ‹ฎ ๐ฟ(๐œ‘๐‘€๐‘— ) ๐‘ฅ๐‘— 1

โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฑ โ‹ฏ โ‹ฏ โ‹ฏ

๐ฟ(๐œ‘1๐‘€ ) โ‹ฎ ๐ฟ(๐œ‘๐‘–๐‘€ ) โ‹ฎ ๐ฟ(๐œ‘๐‘€๐‘€ ) ๐‘ฅ๐‘€ 1

๐ฟ(๐‘ฅ1 ) โ‹ฎ ๐ฟ(๐‘ฅ๐‘– ) โ‹ฎ ๐ฟ(๐‘ฅ๐‘€ ) 0 0

๐ฟ(1) โ‹ฎ ๐ฟ(1) โ‹ฎ ๐ฟ(1) 0 0

(12)

where L represents an operator given by (1 โˆ’ ๐‘˜๐œƒโˆ‡2 โˆ’ ๐‘˜๐›ฝ)(โˆ—), ๐ฟ(โˆ—) = (โˆ—),

1