Journal of mathematics and computer science
13 (2014), 14-25
A nonlinear partial integro-differential equation arising in population dynamic via radial basis functions and theta-method Mohammad Aslefallah 1,2 and 1
Elyas Shivanian 1
Department of Mathematics, Imam Khomeini International University, Qazvin, Iran 2
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
[email protected] ,
[email protected]
Article history: Received July 2014 Accepted August 2014 Available online September 2014
Abstract This paper proposes a numerical method to deal with the integro-differential reaction-diffusion equation. In the proposed method, the time variable is eliminated by using finite difference ๐ โ method to enjoy the stability condition. The method benefits from collocation radial basis function method, the generallized thin plate splines (GTPS) radial basis functions are used. Therefore, it does not require any struggle to determine shape parameter. The obtained results for some numerical examples reveal that the proposed technique is very effective, convenient and quite accurate to such considered problems. Keywords: Integro-differential equation, Radial basis functions, Kansa method, Finite differences ๐ โ method. 2010 Mathematics subject classification: 34A08,35R11,65M06.
1 Introduction Many problems in science and engineering modelled as differential equations. Solving equations by traditional numerical methods such as finite difference (FDM), finite element (FEM) needs generation of a regular mesh in the domain of the problem which is computationally expensive [1,2,3,4,5]. During the last decade, meshless methods have received much attention. Due to the difficulty of the mesh generation problem, meshless methods for simulation of the numerical problems
M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25
are employed. Radial basis functions (RBFs) interpolation is a technique for representing a function starting with data on scattered points [6,7,8,9]. The RBFs can be of various types, such as: polynomials of a given degree; linear, quadratic, cubic, etc; thin plate spline (TPS), multiquadrics (MQ), inverse multiquadrics (IMQ), Gaussian forms (GA), etc. Most differential equations do not have exact analytic solutions, so approximation and numerical techniques must be used. Development of constructive methods for the numerical solution of mathematical problems is a main branch of mathematics. Meshless methods have attracted much attention in the both mathematics and engineering community, recently. Extensive developments have been made in several varieties of meshless techniques and applied to many applications in science and engineering. These methods exist under different names, such as: the diffuse element method (DEM) [10], the hp-cloud method [11], Meshless Local Petrov- Galerkin (MLPG) method [12,13,14], the meshless local boundary integral equation (LBIE) method [15], the partition of unity method (PUM) [16], the meshless collocation method based on radial basis functions (RBFs)[17], the smooth particle hydrodynamics (SPH)[19], the reproducing kernel particle method (RKPM) [20], the radial point interpolation method [22], meshless local radial point interpolation method (MLRPI) [23,24], and so on. In this study, we implement the meshless collocation method for solving the following integrodifferential reaction-diffusion equation (also arising in population dynamic) [25,26] by using a radial basis function (RBF): โ๐ข(๐ฅ,๐ก) โ๐ก
=
โ 2 ๐ข(๐ฅ,๐ก) โ๐ฅ 2
+ ๐ฝ๐ข(1 โ ๐๐ข โ ๐๐ฝ(๐ฅ, ๐ก)) + ๐(๐ฅ, ๐ก),
(1)
where: ๐ฝ(๐ฅ, ๐ก) =
๐ฅ๐
โ๐(๐ฅ ๐ฅ๐ฟ
โ ๐ฆ)๐ข(๐ฆ, ๐ก)๐๐ฆ
(for ๐ก โ [0, ๐]) on a finite domain ๐ฅ๐ฟ < ๐ฅ < ๐ฅ๐
. ๐(๐ฅ) is kernel function and ๐(๐ฅ, ๐ก) is a given smooth function. Initial condition ๐ข(๐ฅ, 0) = ๐(๐ฅ) for ๐ข(๐ฅ๐ฟ , ๐ก) = 0 and ๐ข(๐ฅ๐
, ๐ก) = 0.
๐ฅ๐ฟ < ๐ฅ < ๐ฅ๐
and boundary conditions are as follows:
In the special case, if ๐ = 0 and ๐(๐ฅ, ๐ก) = 0 we have well-knownโFisherโsโequationโas:โ โ๐ข(๐ฅ,๐ก) โ๐ก
=
โ 2 ๐ข(๐ฅ,๐ก) โ๐ฅ 2
+ ๐ฝ๐ข(1 โ ๐๐ข),
2 Preliminaries For implementation of this method we need the following definitions. Definition 2.1 ( Radial basis functions.) Considering a finite set of interpolation points ๐ = {๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ } โ ๐
๐ and a function ๐ข: ๐ โ ๐
๐ , according to the process of interpolation using radial basis functions [6], the interpolant of u is constructed in the following form:
15
M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25
(๐๐ข)(๐ฅ) =
๐ ๐=1 โ๐๐ ๐(โฅ
๐ฅ โ ๐ฅ๐ โฅ) + ๐(๐ฅ), ๐ฅ โ ๐
๐
where โฅ. โฅ is the Euclidean norm and ๐(โฅ. โฅ) is a radial function. Also, ๐(๐ฅ) is a linear combination of polynomials on ๐
๐ of total degree at most ๐ โ 1 as follows: ๐(๐ฅ) =
๐+๐ ๐ =๐+1 โ๐๐ ๐๐ (๐ฅ),
+๐โ1 ๐ = (๐ ) ๐
Moreover, the interpolant ๐๐ข and additional conditions must be determined to satisfy the system: (๐๐ข)(๐ฅ๐ ) = ๐ข(๐ฅ๐ ) ๐ ๐=1 โ๐๐ ๐๐ (๐ฅ๐ ) = 0,
, ๐ = 1,2, โฆ , ๐ ๐ , โ๐๐ โ ฮ ๐ โ1
๐ ๐ where ฮ ๐ โ1 denotes the space of all polynomials on ๐
of total degree at most ๐ โ 1. Now we have a unique interpolant (๐๐ข) of u if ๐(๐) is a conditionally positive definite radial basis function of order m[28]. For any partial differential operator ๐ฟ, ๐ฟ๐ข can be represented by:
๐ฟ๐ข(๐ฅ) =
๐ฅ ๐ โ๐ โ๐๐ ๐ฟ๐(โฅ
๐ฅ โ ๐ฅ๐ โฅ) + ๐ฟ๐(๐ฅ),
The coefficients ๐๐ will be obtained by solving the system of linear equations. We will use some RBFs which have the following form: ๐(โฅ ๐ฅ โ ๐ฅ๐ โฅ) = ๐(๐๐ ) Some types of RBFs presented in Table.1. (c is shape parameter) Table 1. Some types of RBF functions
Name Cubic Thin plate splines Generalized Thin plate splines Inverse quadrics(or Cauchy)
Abbreviation CU TPS GTPS IQ
Multiquadrics Inverse Multiquadrics
MQ IMQ
Gaussian RBF
GA
Formula ๐(๐) = ๐ 3 ๐(๐) = ๐ 2 log(๐) ๐(๐) = ๐ 2๐ log(๐), ๐ โ ๐ 1 ๐(๐) = 2 2 ๐(๐) = ๐(๐) =
๐ +๐ ๐2 +
๐(๐) = ๐
1
๐2
๐ 2 +๐ 2 โ๐ 2 /๐ 2
Definition 2.2 ๐ -method, (0 โค ๐ โค 1), is general finite-difference approximation to
๐ 2 ๐ข(๐ฅ,๐ก) ๐๐ฅ 2
given by: โ 2 ๐ข(๐ฅ,๐ก) โ๐ฅ 2
โ
๐๐ฟ2,๐ฅ ๐๐,๐ +1 + (1 โ ๐)๐ฟ2,๐ฅ ๐๐,๐ ,
such that we define: 16
(2)
M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25
โ2 = ๐ฟ2,๐ฅ ๐๐,๐ = (where ๐ = ฮ๐ฅ =
๐ฅ ๐
โ๐ฅ ๐ฟ ๐
1 (๐๐+1,๐ (ฮ๐ฅ)2
โ 2๐๐,๐ + ๐๐โ1,๐ ),
๐
for ๐ฅ-axis and ๐๐,๐ = ๐๐ = ๐(๐ฅ๐ , ๐ก๐ ) represent the numerical approximation
solution) In other words: โ 2 ๐ข(๐ฅ,๐ก) โ๐ฅ 2
โ
1 (ฮ๐ฅ)2
๐(๐๐+1,๐ +1 โ 2๐๐,๐ +1 + ๐๐โ1,๐ +1 ) + (1 โ ๐)(๐๐+1,๐ โ 2๐๐,๐ + ๐๐โ1,๐ ) , 1
Remark 2.3 Note that ๐ = 0 gives the explicit scheme, ๐ = 2 the Crank-Nicolson, and ๐ = 1 a fully implicit backward time-difference method. Remark 2.4 The laplacian operator ๐ป 2 for ๐ function is given by โ2 (๐(๐)) =
โ๐ โ 2 ๐ โ 2 ๐ โ๐ 2 ( ) + ( ) , 2 โ๐ โ๐ฅ โ๐ 2 โ๐ฅ
(3)
3 Discretization According to definitions (2.1)and (2.2), from (1) and ๐-method we get: โ๐ข(๐ฅ,๐ก ๐ +1 ) โ๐ก
= [๐โ2 ๐ข๐+1 + (1 โ ๐)โ2 ๐ข๐ ] + ๐ฝ๐ข๐+1 โ ๐๐ฝ(๐ข๐ )2 โ ๐๐ฝ๐ข๐ ๐ฝ๐ + ๐ ๐+1 ,
(4)
By substituting finite difference for left hand into (4) we have:
๐ข ๐ +1 โ๐ข ๐ ฮ๐ก
= [๐โ2 ๐ข๐+1 + (1 โ ๐)โ2 ๐ข๐ ] + ๐ฝ๐ข๐+1 โ ๐๐ฝ(๐ข๐ )2 โ ๐๐ฝ๐ข๐ ๐ฝ๐ + ๐ ๐+1 ,
(5)
and for ฮ๐ก = ๐: ๐ข๐+1 โ ๐๐โ2 ๐ข๐+1 โ ๐๐ฝ๐ข๐+1 = ๐ข๐ + ๐(1 โ ๐)โ2 ๐ข๐ โ ๐๐๐ฝ(๐ข๐ )2 โ ๐๐๐ฝ๐ข๐ ๐ฝ๐ + ๐๐ ๐+1 ,
(6)
In other words, we get: (1 โ ๐๐โ2 โ ๐๐ฝ)๐ข๐๐+1 = ๐ข๐๐ + ๐(1 โ ๐)โ2 ๐ข๐๐ โ ๐๐๐ฝ(๐ข๐๐ )2 โ ๐๐๐ฝ๐ข๐๐ ๐ฝ๐๐ + ๐๐๐๐+1 ,
(7)
Now, according to the mentioned method in one-dimensional case, if we collocate ๐ different points ๐ฅ1 , ๐ฅ2 , โฆ , ๐ฅ๐ , then: ๐ข(๐ฅ๐ , ๐ก๐+1 ) =
๐ ๐+1 ๐(โฅ ๐ =1 โ๐๐
๐+1 ๐ฅ๐ โ ๐ฅ๐ โฅ) + ๐๐+1 ๐+1 ๐ฅ๐ + ๐๐+2 ,
(8)
๐ ๐+1 ๐ฅ๐ ๐ =1 โ๐๐
(9)
Two additional conditions can be described as: ๐ ๐+1 ๐ =1 โ๐๐
=
Finally, by combining equations (8),(9), we obtain a matrix form: [๐ข]๐+1 = ๐ด[๐]๐+1 17
= 0,
M. Aslefallah, E. Shivanian / J. Math. Computer Sci. 13 (2014), 14-25 ๐+1 where: [๐ข]๐+1 = [๐ข1๐+1 , ๐ข2๐+1 , โฆ , ๐ข๐ , 0,0]๐
,
๐+1 ๐ [๐]๐+1 = [๐1๐+1 , ๐๐+1 2 , โฆ , ๐๐+2 ]
and the matrix ๐ด = (๐๐๐ )(๐+2)ร(๐+2) is given by:
๐11 โฎ ๐๐1 โฎ ๐ด= ๐๐1 ๐ฅ1 1
โฏ โฑ โฏ โฑ โฏ โฏ โฏ
๐1๐ โฎ ๐๐๐ โฎ ๐๐๐ ๐ฅ๐ 1
โฏ โฑ โฏ โฑ โฏ โฏ โฏ
๐1๐ โฎ ๐๐๐ โฎ ๐๐๐ ๐ฅ๐ 1
๐ฅ1 โฎ ๐ฅ๐ โฎ ๐ฅ๐ 0 0
1 โฎ 1 โฎ 1 0 0
(10)
By substituting (8) into (5),(6) and considering (9) and initial and boundary conditions we obtain a matrix form: [๐]๐+1 = ๐ต[๐]๐+1 where:
๐+1 [๐]๐+1 = [๐1๐+1 , ๐2๐+1 , โฆ , ๐๐ , 0,0]๐
๐ฟ(๐11 ) โฎ ๐ฟ(๐๐1 ) โฎ ๐ต= ๐ฟ(๐๐1 ) ๐ฅ1 1
โฏ โฑ โฏ โฑ โฏ โฏ โฏ
(11)
and
๐ฟ(๐1๐ ) โฎ ๐ฟ(๐๐๐ ) โฎ ๐ฟ(๐๐๐ ) ๐ฅ๐ 1
โฏ โฑ โฏ โฑ โฏ โฏ โฏ
๐ฟ(๐1๐ ) โฎ ๐ฟ(๐๐๐ ) โฎ ๐ฟ(๐๐๐ ) ๐ฅ๐ 1
๐ฟ(๐ฅ1 ) โฎ ๐ฟ(๐ฅ๐ ) โฎ ๐ฟ(๐ฅ๐ ) 0 0
๐ฟ(1) โฎ ๐ฟ(1) โฎ ๐ฟ(1) 0 0
(12)
where L represents an operator given by (1 โ ๐๐โ2 โ ๐๐ฝ)(โ), ๐ฟ(โ) = (โ),
1