Petroleum refining â refinery streams. â Hydrotreating processes (HDT). â« GCÃGC: unravelling the petroleomics of refinery processes. â Desulfurization of fuel oil ...
GC×GC: A petroleomics approach to unravel petroleum refinery processes Asger B. Hansen 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Presentation outline Petroleomics – Petroleome and petroleomics technology
Petroleum refining – refinery streams – Hydrotreating processes (HDT)
GC×GC: unravelling the petroleomics of refinery processes – Desulfurization of fuel oil (HDS) Conversion of sulfur compounds
– Upgrading of shale oil Conversion of oxygen compounds (HDO)
– Aromatics in unconverted oil (UCO) Conversion of aromatics (HDA) – PNAs and ”mystery compound”
Conclusion 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Petroleome – Petroleomics Petroleome – The ”genome” of crude oil – a listing of all chemical compounds
Petroleomics – Prediction of petroleum properties based on elucidating the chemistry of all constituents in crude oil (~ 40,000) – Petroleum science moving from phenomelogical description to establishing structure-function/reactivity relationships GC×GC
FTICR-MS 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Petroleomics technology Targeting reaction products – Molecular-level understanding of the composition and reactivity of feedstocks helps determining the most efficient method for producing target reaction products
Molecule-based kinetic modeling – Detailed chemical composition analysis enables molecule-based reaction simulation and kinetic modeling
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Petroleum refining – refinery streams
Visbreaker – thermal cracking 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Petroleum refining – hydrotreatment (HDT)
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Hydrotreating processes Sulphur conversion (hydrodesulfurization - HDS) Nitrogen conversion (hydrodenitrogenation - HDN) Metals removal (hydrodemetallation - HDM) Oxygen conversion (hydrodeoxygenation - HDO)
Hydrogenation of: – Aromatic saturation (hydrodearomatization - HDA) – Olefins (HYD)
Hydrocracking (HYC) (Isomerisation, Ring Opening) 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Dibenzothiophenes (DBTs)
GC×GC-FID
Triaromatics
Diaromatics
Monoaromatics
Saturates
Benzothiophenes (BTs) 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Characterization of middle distillates saturates Characterization of paraffins/naphthenes GC×GC-
GC×GC-
FID
ToFMS
Aromatics Naphthenes
Paraffins
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Characterization of middle distillates aromatics Characterisation of aromatics/naphthenoaromatics
GC×GC-
GC×GC-
FID
ToFMS
DiAro
monoAro
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Reactivity of hydrocarbons during HDT
Unsaturated compounds
mAro
diAro
NdiAro
triAro
NtriAro
tetAro
14
Saturated compounds
12
60
10
40
Paraffins Naphthenes
30
area, %
50
area, %
NmAro
8 6 4
20 10
2
0
0
0
10
20
30
40
50
60
70
80
90 100
0
40
60
% HDS conversion
% HDS conversion
mAro
BT
NmAro
diAro
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
20
triAro
Confidential
NmAro
80
100
Component based description of HDS Obtain product samples with varying HDS conversion and rationalize results from GC×GC analysis
SR gas oil
T = 325 °C
CoMo cat.
P = 30 barg H2/oil = 250 Nl/l
WHSV: 0.4 – 240 h-1
Product with varying S content 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Phenanthrothiophenes (NDBT)
BenzoNaphthothiophenes (NBT)
GC×GC-SCD C0
Dibenzothiophenes (DBT)
C1
Naphthenobenzothiophenes (NBT)
C3
C4 C5
Benzothiophenes (BT)
Naphthenothiophenes (NT)
Thiophenes (T)
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
C2
Confidential
HDS as a function of catalyst volume DBT
LG.X.SK.B4 S = 13000 wt ppm
Feed LG.X.SK.B4
DBT
5% 10% 33%
CoMo cat.
BT
S ≈ 2000 wt ppm. All Ts and BTs has been removed
DBT S ≈ 800 wt ppm. Most DBT without substituents in 4,6 or both has been removed
T
DBT S ≈ 120 wt ppm. 2/3 of the catalyst volume is being used for removal of 4,6-alkylsubstituted DBTs !
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Overall reactivity of S-compounds Most abundant sulfur compounds
180
N Basic N
5000
Sulfur, wt ppm
200
BTs DBTs
160 140
4000
120
3000
100 80
2000
60 40
1000
20
0
0
0
20
40
60
% HDS conversion 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
80
100
Nitrogen, wt ppm
6000
Reactivity of benzothiophenes (BTs) 1. order rate constants for BTs as a function of carbon atoms
Carbon number and HDS rate for BTs 70
1. order k,h
-1
60
In contrast to DBTs, the substitution pattern has no effect on the reactivity of BTs
50 40 30 20 10 0 6 Ts C 1 l B -x A l 24 15 -C -xC B T 23 14 -C -xC B T 22 13 -C -xC B T 21 12 -C -xC B T 20 11 -C -xC B T 19 10 -C -xC B T 18 9 -C -xC B T 17 8 -C -xC B T 16 7 -C -xC B T 15 6 -C -xC B T 14 5 -C -xC B T 13 4 -C -xC B T 12 3 -C -xC B T 11 - C 10 B T 8- C -C BT
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Reactivity of dibenzothiophenes (DBT and C1-DBTs)
Reactivity order
250
S, wt ppm
200
150
100 DBT-C12 DBT-C13-1M
50
k = 6 h-1
DBT-C13-2/3M DBT-C13-4M
0 0
20
40
60
80
100
%HDS conversion
4-MethylDBT k = 0.5 h-1 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Reactivity of C2-DBTs
4,6-DimethylDBT
DBT-C14-2.3dM
DBT-C14-1.3/3.4/1.8dM
DBT-C14-1.4/1.6/2.8dM
DBT-C14-2.4dM
DBT-C14-3/2.6dM
DBT-C14-4.6dM
DBT-C14-4/3Et DBT-C14-1.2dM
DBT-C14-1.7/1.9/2.3dM
DBT-C14-1Et
DBT-C14-2/3.7dM
300 250
S, wt ppm
100
S, wt ppm
80 60
200 150
40
100
20
50
0
0 0
20
40
60
80
100
0
% HDS conversion
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
10
20
30
40
50
60
70
% HDS conversion
Confidential
80
90 100
Fate of DBTs during HDS Direct conversion of DBT and M-DBTs to BPs Hydrogenation of DBTs to CHBs
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
1M-DBT
2M-BP + xM-CHB
2M-DBT
3M-BP + xM-CHB
3M-DBT
4M-BP + xM-CHB
4M-DBT
3M-BP + xM-CHB
Confidential
Direct conversion of M-DBTs to M-BPs m/z 168
m/z 198
M-DBT
M-BP DBT
45
BP
40
2M-BP
2M-BP
10
Rel. Amount
35
Rel. Amount
1M-DBT
12
BP
30 25 20 15
8 6 4
10
2
1M-DBT
5
DBT
0 Feed
63%
68%
73%
79%
85%
Conversion (% )
90%
Feed
63%
96%
68%
73%
79%
85%
Conversion (% )
2M-BP 1M-DBT 90%
96%
3M-DBT
16
3M-BP
4M-BP
10 8 6
3M-BP
30
Rel. Amount
12
4M-DBT
35
4M-BP
14
Rel. Amount
0
BP DBT
25 20 15 10
4 2
3M-DBT
0 Feed
63%
68%
73%
Conversion (% )
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
79%
85%
4M-BP 3M-DBT 90%
5
2/4M-DBT
0 Feed
96%
63%
68%
73%
Conversion (% )
Confidential
79%
85%
3M-BP 4M-DBT 90%
96%
Shale oil (immature - unconventional oil) Mining – Oil shale (kerogen shale): organic-rich sedimentary rock that contains solid mixtures of chemical compounds – Surface mining (open pit, strip mining) – Underground mining (room and pillar method)
Extraction (ex-situ or in-situ) – Oil shale is immature: kerogen not converted to oil by heat/pressure – Pyrolysis/retorting (450-500°C): converts kerogen to shale oil (synthetic crude oil) and gas
Refining/upgrading – Hydrotreating/-cracking 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Shale oil properties
Shale kerogen
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Shale oil refining (HDO) - 1 GCxGC-MS and ChromaTof classification 1.SO.X.NAO.B2 (HT)
SO.X.NAO.B2 (feed)
HYK 1231 625 APF1
HYK 1231 1243 APF1
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Shale oil processing (HDO) - 2 Oxygen speciation Oxygen-containing compounds Normalised Peak Area (TIC - Paraffins)
0,80 0,70 0,60 0,50 0,40
Ketones
0,30
Phenols
0,20
DiHydBenz
0,10
Naphthols
0,00 SO.X.NAO.B2
1.SO.X.NAO.B2 HYK 1231 625 APF1 Sample Name
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
HYK 1231 1243 APF1
Hydrotreating/hydrocracking of PNAs in unconverted oil (UCO) Gasoil feed (350-550°C, 2% S, 1500 wt ppm N)
Hydrotreating
Hydrocracking Recycle hydrogen
Make-up hydrogen
Interstage
HPS
Light ends
APF
Naphtha Jet Diesel
Recycle of UCO 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
UCO
PNA reactions during hydroprocessing Hydrogenation / dehydrogenation
Polycondensation polymerisation
A + nH2 ↔ AH exothermic: 63-71 kJ/mol H2
T↑A
P ↑ AH
Coke
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Hydrocracking
Effect of temperature on PNA conversion in UCO during HDT HYC @ RH 402 - 250°C
Feed (UCO)
PAH/HPNA
HYC @ RH 478 - 300°C
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
HYC @ RH 611 - 350°C
Confidential
Fate of PNAs in uncoverted oil (UCO) during hydrotreatment Sample Hydrotreatment (°C)
Feed (pretreated UCO)
HYC @ RH 402 (250°C)
HYC @ RH 478 (300°C)
HYC @ RH 611 (350°C)
1-ring compounds (m/e) unspec
mononaphthenes
2-ring compounds (m/e) unspec
dinaphthenes
3-ring compounds (m/e) 206-220-234 182-196-(210)-224 178-192-206-220-234-248 unspec 4-ring compounds (m/e) 202-216-230-244-258 228-242-256-270-284 (204)-218-(232)-246 208-222-236 218-232-246-260-274 5-ring compounds (m/e) 252-266-280 244-258 252-266-280 258-272-286-300
phenanthrenes H4-phenanthrenes phenalenes trinaphthenes pyrenes chrysenes H2-pyrenes H6-pyrenes H16-pyrenes
H16-pyrenes
H12-benzo(xy)pyrenes H18-benzo(xy)pyrenes
H18-benzo(xy)pyrenes
H18-benzo(xy)pyrenes
benzo(x)pyrenes H6-benzo(xy)pyrenes
6-ring compounds (m/e) 276-290-304 278-292 298-312
benzo(ghi)perylenes H2-benzo(ghi)perylenes
7-ring compounds (m/e) 300-314 316 324-338
coronenes H2-dibenzoperylenes
1st
H16-pyrenes
Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
benzo(ghi)perylene H16-benzo(ghi)perylenes H22-benzo(ghi)perylenes
H24-coronenes
Confidential
H22-benzo(ghi)perylenes
H22-benzo(ghi)perylenes
coronene
coronene
H24-coronenes
H24-coronenes
Conclusion To control and predict refinery processes using tailor-made catalysts improved knowledge about refinery streams, their composition, properties and reactivity based on a petroleomics approach with comprehensive separation and identification of component classes and individual compounds is needed. In such processes, GC×GC seems a very strong analytical and diagnostic tool.
1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
Acknowledgement I wish to acknowledge collegues and collaborators for contributing to this presentation:
Asbjørn S. Andersson (HTAS)
Sylvain Verdier (HTAS)
Rasmus G. Egeberg (HTAS)
Jon E. Johansen (Chiron, NO)
Thank you for your attention 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK
Confidential
100 years
Confidential
2013