A petroleomic approach to unravel petroleum refinery

0 downloads 0 Views 3MB Size Report
Petroleum refining – refinery streams. – Hydrotreating processes (HDT). ▫ GC×GC: unravelling the petroleomics of refinery processes. – Desulfurization of fuel oil ...
GC×GC: A petroleomics approach to unravel petroleum refinery processes Asger B. Hansen 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Presentation outline  Petroleomics – Petroleome and petroleomics technology

 Petroleum refining – refinery streams – Hydrotreating processes (HDT)

 GC×GC: unravelling the petroleomics of refinery processes – Desulfurization of fuel oil (HDS)  Conversion of sulfur compounds

– Upgrading of shale oil  Conversion of oxygen compounds (HDO)

– Aromatics in unconverted oil (UCO)  Conversion of aromatics (HDA) – PNAs and ”mystery compound”

 Conclusion 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Petroleome – Petroleomics  Petroleome – The ”genome” of crude oil – a listing of all chemical compounds

 Petroleomics – Prediction of petroleum properties based on elucidating the chemistry of all constituents in crude oil (~ 40,000) – Petroleum science moving from phenomelogical description to establishing structure-function/reactivity relationships GC×GC

FTICR-MS 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Petroleomics technology  Targeting reaction products – Molecular-level understanding of the composition and reactivity of feedstocks helps determining the most efficient method for producing target reaction products

 Molecule-based kinetic modeling – Detailed chemical composition analysis enables molecule-based reaction simulation and kinetic modeling

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Petroleum refining – refinery streams

Visbreaker – thermal cracking 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Petroleum refining – hydrotreatment (HDT)

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Hydrotreating processes  Sulphur conversion (hydrodesulfurization - HDS)  Nitrogen conversion (hydrodenitrogenation - HDN)  Metals removal (hydrodemetallation - HDM)  Oxygen conversion (hydrodeoxygenation - HDO)

 Hydrogenation of: – Aromatic saturation (hydrodearomatization - HDA) – Olefins (HYD)

 Hydrocracking (HYC)  (Isomerisation, Ring Opening) 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Dibenzothiophenes (DBTs)

GC×GC-FID

Triaromatics

Diaromatics

Monoaromatics

Saturates

Benzothiophenes (BTs) 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Characterization of middle distillates saturates  Characterization of paraffins/naphthenes GC×GC-

GC×GC-

FID

ToFMS

Aromatics Naphthenes

Paraffins

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Characterization of middle distillates aromatics  Characterisation of aromatics/naphthenoaromatics

GC×GC-

GC×GC-

FID

ToFMS

DiAro

monoAro

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Reactivity of hydrocarbons during HDT

Unsaturated compounds

mAro

diAro

NdiAro

triAro

NtriAro

tetAro

14

Saturated compounds

12

60

10

40

Paraffins Naphthenes

30

area, %

50

area, %

NmAro

8 6 4

20 10

2

0

0

0

10

20

30

40

50

60

70

80

90 100

0

40

60

% HDS conversion

% HDS conversion

mAro

BT

NmAro

diAro

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

20

triAro

Confidential

NmAro

80

100

Component based description of HDS Obtain product samples with varying HDS conversion and rationalize results from GC×GC analysis

SR gas oil

T = 325 °C

CoMo cat.

P = 30 barg H2/oil = 250 Nl/l

WHSV: 0.4 – 240 h-1

Product with varying S content 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Phenanthrothiophenes (NDBT)

BenzoNaphthothiophenes (NBT)

GC×GC-SCD C0

Dibenzothiophenes (DBT)

C1

Naphthenobenzothiophenes (NBT)

C3

C4 C5

Benzothiophenes (BT)

Naphthenothiophenes (NT)

Thiophenes (T)

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

C2

Confidential

HDS as a function of catalyst volume DBT

LG.X.SK.B4 S = 13000 wt ppm

Feed LG.X.SK.B4

DBT

5% 10% 33%

CoMo cat.

BT

S ≈ 2000 wt ppm. All Ts and BTs has been removed

DBT S ≈ 800 wt ppm. Most DBT without substituents in 4,6 or both has been removed

T

DBT S ≈ 120 wt ppm. 2/3 of the catalyst volume is being used for removal of 4,6-alkylsubstituted DBTs !

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Overall reactivity of S-compounds Most abundant sulfur compounds

180

N Basic N

5000

Sulfur, wt ppm

200

BTs DBTs

160 140

4000

120

3000

100 80

2000

60 40

1000

20

0

0

0

20

40

60

% HDS conversion 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

80

100

Nitrogen, wt ppm

6000

Reactivity of benzothiophenes (BTs) 1. order rate constants for BTs as a function of carbon atoms

Carbon number and HDS rate for BTs 70

1. order k,h

-1

60

In contrast to DBTs, the substitution pattern has no effect on the reactivity of BTs

50 40 30 20 10 0 6 Ts C 1 l B -x A l 24 15 -C -xC B T 23 14 -C -xC B T 22 13 -C -xC B T 21 12 -C -xC B T 20 11 -C -xC B T 19 10 -C -xC B T 18 9 -C -xC B T 17 8 -C -xC B T 16 7 -C -xC B T 15 6 -C -xC B T 14 5 -C -xC B T 13 4 -C -xC B T 12 3 -C -xC B T 11 - C 10 B T 8- C -C BT

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Reactivity of dibenzothiophenes (DBT and C1-DBTs)

Reactivity order

250

S, wt ppm

200

150

100 DBT-C12 DBT-C13-1M

50

k = 6 h-1

DBT-C13-2/3M DBT-C13-4M

0 0

20

40

60

80

100

%HDS conversion

4-MethylDBT k = 0.5 h-1 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Reactivity of C2-DBTs

4,6-DimethylDBT

DBT-C14-2.3dM

DBT-C14-1.3/3.4/1.8dM

DBT-C14-1.4/1.6/2.8dM

DBT-C14-2.4dM

DBT-C14-3/2.6dM

DBT-C14-4.6dM

DBT-C14-4/3Et DBT-C14-1.2dM

DBT-C14-1.7/1.9/2.3dM

DBT-C14-1Et

DBT-C14-2/3.7dM

300 250

S, wt ppm

100

S, wt ppm

80 60

200 150

40

100

20

50

0

0 0

20

40

60

80

100

0

% HDS conversion

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

10

20

30

40

50

60

70

% HDS conversion

Confidential

80

90 100

Fate of DBTs during HDS  Direct conversion of DBT and M-DBTs to BPs  Hydrogenation of DBTs to CHBs

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

1M-DBT



2M-BP + xM-CHB

2M-DBT



3M-BP + xM-CHB

3M-DBT



4M-BP + xM-CHB

4M-DBT



3M-BP + xM-CHB

Confidential

Direct conversion of M-DBTs to M-BPs m/z 168

m/z 198

M-DBT

M-BP DBT

45

BP

40

2M-BP

2M-BP

10

Rel. Amount

35

Rel. Amount

1M-DBT

12

BP

30 25 20 15

8 6 4

10

2

1M-DBT

5

DBT

0 Feed

63%

68%

73%

79%

85%

Conversion (% )

90%

Feed

63%

96%

68%

73%

79%

85%

Conversion (% )

2M-BP 1M-DBT 90%

96%

3M-DBT

16

3M-BP

4M-BP

10 8 6

3M-BP

30

Rel. Amount

12

4M-DBT

35

4M-BP

14

Rel. Amount

0

BP DBT

25 20 15 10

4 2

3M-DBT

0 Feed

63%

68%

73%

Conversion (% )

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

79%

85%

4M-BP 3M-DBT 90%

5

2/4M-DBT

0 Feed

96%

63%

68%

73%

Conversion (% )

Confidential

79%

85%

3M-BP 4M-DBT 90%

96%

Shale oil (immature - unconventional oil)  Mining – Oil shale (kerogen shale): organic-rich sedimentary rock that contains solid mixtures of chemical compounds – Surface mining (open pit, strip mining) – Underground mining (room and pillar method)

 Extraction (ex-situ or in-situ) – Oil shale is immature: kerogen not converted to oil by heat/pressure – Pyrolysis/retorting (450-500°C): converts kerogen to shale oil (synthetic crude oil) and gas

 Refining/upgrading – Hydrotreating/-cracking 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Shale oil properties

Shale kerogen

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Shale oil refining (HDO) - 1  GCxGC-MS and ChromaTof classification 1.SO.X.NAO.B2 (HT)

SO.X.NAO.B2 (feed)

HYK 1231 625 APF1

HYK 1231 1243 APF1

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Shale oil processing (HDO) - 2  Oxygen speciation Oxygen-containing compounds Normalised Peak Area (TIC - Paraffins)

0,80 0,70 0,60 0,50 0,40

Ketones

0,30

Phenols

0,20

DiHydBenz

0,10

Naphthols

0,00 SO.X.NAO.B2

1.SO.X.NAO.B2 HYK 1231 625 APF1 Sample Name

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

HYK 1231 1243 APF1

Hydrotreating/hydrocracking of PNAs in unconverted oil (UCO) Gasoil feed (350-550°C, 2% S, 1500 wt ppm N)

Hydrotreating

Hydrocracking Recycle hydrogen

Make-up hydrogen

Interstage

HPS

Light ends

APF

Naphtha Jet Diesel

Recycle of UCO 1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

UCO

PNA reactions during hydroprocessing Hydrogenation / dehydrogenation

Polycondensation polymerisation

A + nH2 ↔ AH exothermic: 63-71 kJ/mol H2

T↑A

P ↑  AH

Coke

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Hydrocracking

Effect of temperature on PNA conversion in UCO during HDT HYC @ RH 402 - 250°C

Feed (UCO)

PAH/HPNA

HYC @ RH 478 - 300°C

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

HYC @ RH 611 - 350°C

Confidential

Fate of PNAs in uncoverted oil (UCO) during hydrotreatment Sample Hydrotreatment (°C)

Feed (pretreated UCO)

HYC @ RH 402 (250°C)

HYC @ RH 478 (300°C)

HYC @ RH 611 (350°C)

1-ring compounds (m/e) unspec

mononaphthenes

2-ring compounds (m/e) unspec

dinaphthenes

3-ring compounds (m/e) 206-220-234 182-196-(210)-224 178-192-206-220-234-248 unspec 4-ring compounds (m/e) 202-216-230-244-258 228-242-256-270-284 (204)-218-(232)-246 208-222-236 218-232-246-260-274 5-ring compounds (m/e) 252-266-280 244-258 252-266-280 258-272-286-300

phenanthrenes H4-phenanthrenes phenalenes trinaphthenes pyrenes chrysenes H2-pyrenes H6-pyrenes H16-pyrenes

H16-pyrenes

H12-benzo(xy)pyrenes H18-benzo(xy)pyrenes

H18-benzo(xy)pyrenes

H18-benzo(xy)pyrenes

benzo(x)pyrenes H6-benzo(xy)pyrenes

6-ring compounds (m/e) 276-290-304 278-292 298-312

benzo(ghi)perylenes H2-benzo(ghi)perylenes

7-ring compounds (m/e) 300-314 316 324-338

coronenes H2-dibenzoperylenes

1st

H16-pyrenes

Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

benzo(ghi)perylene H16-benzo(ghi)perylenes H22-benzo(ghi)perylenes

H24-coronenes

Confidential

H22-benzo(ghi)perylenes

H22-benzo(ghi)perylenes

coronene

coronene

H24-coronenes

H24-coronenes

Conclusion  To control and predict refinery processes using tailor-made catalysts improved knowledge about refinery streams, their composition, properties and reactivity based on a petroleomics approach with comprehensive separation and identification of component classes and individual compounds is needed. In such processes, GC×GC seems a very strong analytical and diagnostic tool.

1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

Acknowledgement  I wish to acknowledge collegues and collaborators for contributing to this presentation:



Asbjørn S. Andersson (HTAS)



Sylvain Verdier (HTAS)



Rasmus G. Egeberg (HTAS)



Jon E. Johansen (Chiron, NO)

Thank you for your attention  1st Nordic GC×GC workshop 5 March 2013, Haldor Topsøe/DK

Confidential

100 years

Confidential

2013