a practical approach for the intensivist in different ICU ...

0 downloads 0 Views 1MB Size Report
Jan 22, 2018 - Light sedation with dexmedetomidine: a practical approach for the intensivist in different ICU patients. Stefano ROMAGNOLI, Angela AMIGONI, ...
Minerva Anestesiologica EDIZIONI MINERVA MEDICA ARTICLE ONLINE FIRST This provisional PDF corresponds to the article as it appeared upon acceptance. A copyedited and fully formatted version will be made available soon. The final version may contain major or minor changes.

Light sedation with dexmedetomidine: a practical approach for the intensivist in different ICU patients Stefano ROMAGNOLI, Angela AMIGONI, Ilaria BLANGETTI, Giampaolo CASELLA, Cosimo CHELAZZI, Francesco FORFORI, Cristiana GARISTO, Maria Cristina MONDARDINI, Marco MOLTRASIO, Daniela PASERO, Tiziana PRINCIPI, Zaccaria RICCI, Fabio TARANTINO, GIORGIO CONTI Minerva Anestesiologica 2018 Feb 05 DOI: 10.23736/S0375-9393.18.12350-9 Article type: Review Article © 2018 EDIZIONI MINERVA MEDICA Article first published online: February 05, 2018 Manuscript accepted: January 26, 2018 Manuscript revised: January 22, 2018 Manuscript received: August 6, 2017

Subscription: Information about subscribing to Minerva Medica journals is online at: http://www.minervamedica.it/en/how-to-order-journals.php Reprints and permissions: For information about reprints and permissions send an email to: [email protected] - [email protected] - [email protected]

EDIZIONI MINERVA MEDICA

COPYRIGHT© EDIZIONI MINERVA MEDICA

Light sedation with dexmedetomidine: a practical approach for the intensivist in  different ICU patients

Stefano ROMAGNOLI 1*, Angela AMIGONI 2, Ilaria BLANGETTI 3, Giampaolo CASELLA 4, Cosimo  CHELAZZI 1, Francesco FORFORI 5, Cristiana GARISTO 6, Maria Cristina MONDARDINI 7, Marco  MOLTRASIO 8, Daniela PASERO 9, Tiziana PRINCIPI 10, Zaccaria RICCI 6, Fabio TARANTINO 11, Giorgio  CONTI 12. 

1

 Department of Anesthesiology and Intensive Care.

Azienda Ospedaliero­Universitaria Careggi ­ Largo Brambilla, 3 – 50139 ­ Florence, Italy Pediatric Intensive Care Unit ­ Department of Woman's and Child's Health –University Hospital of Padova ­



Cardiothoracic and Vascular ICU Emergency and Critical Care Department Santa Croce and Carle Hospital



­ Cuneo, Italy 1° Service of Anesthesia and Critical Care Emergency Department, Intensive Care Unit,  ASST Grande 

4

Ospedale Metropolitano Ospedale Niguarda "Cà Granda" Milano ­ Milano 20126, Piazza Ospedale Maggiore 3 5

 Anesthesia and Critical Care ­  University of Pisa – Pisa, Italy

6

 Department of Cardiology and Cardiac Surgery, Pediatric Cardiac Intensive Care Unit, Bambino Gesù 

Children’s Hospital, IRCCS, Piazza Sant'Onofrio, 4, 00165 ­ Rome, Italy 7

 Department of Paediatric Anaesthesia and Paediatric Intensive Care Unit Policlinico S. Orsola­Malpighi 

University Hospital – Bologna, Italy 8

 Cardiac Intensive Care Unit Centro Cardiologico Monzino, IRCCS ­  Milan, Italy

9

 Anesthesia and Critical Care 1, Department of Anesthesia and Critical Care AOU Città della Salute e della 

Scienza di Torino ­ Turin, Italy 10

 Emergency Department, Clinic od Anesthesia and Critical Care, Ospedali Riuniti Ancona ­ Ancona Italia Department of Anesthesia and Critical Care, Policlinico San Martino Hospital, Genova – Italy 

11 

12

 Department of Pediatric ICU, Intensive Care and Anesthesia, Catholic University of Rome, Rome, Italy

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

*Corresponding author Romagnoli Stefano  Department of Anesthesiology and Intensive Care Azienda Ospedaliero­Universitaria Careggi Largo Brambilla, 3 ­ 50139 Florence, Italy Phone +393356100535 Email: [email protected] 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Abstract Light  sedation, corresponding  to  a Richmond  Agitation­Sedation  Scale  between  0 and  ­1 is a  priority  of modern   critical   care   practice.   Dexmedetomidine,   a   highly   selective,   central,   2­adrenoceptor   agonist,   is increasingly administered in the intensive care units (ICUs) as an effective drug to induce light sedation, analgesia and a quasi­physiological sleep in critically ill patients. Although in general dexmedetomidine is well tolerated, side effects as bradycardia, hypertension, and hypotension may occur.  Although a general dosing range is suggested, different ICU patients may require different and highly precise titration that may significantly vary due to neurological status, cardio­respiratory function, base­line blood pressure, heart rate, liver   efficiency,   age   and   co­administration   of   other   sedatives.   This   review   analyzes   the   use   of dexmedetomidine in different settings including pediatric, adult, medical and surgical patients starting with some   considerations   on   delirium   prevention   and   sleep   quality   in   critically   ill   patients   and   how dexmedetomidine may contribute to these crucial aspects. Dexmedetomidine use in specific sub­populations with unique characteristics will be detailed, with a special attention to a safe use. 

Key words: Dexmedetomidine; sedation; analgesia; intensive care medicine

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Introduction Sedation and analgesia play fundamental roles in the management of critically ill patients who require close control   of   pain,   agitation   and   anxiety.   1  Current   guidelines   and   recommendations   strongly   advocate   the transition   from   moderate­deep   sedation   with   daily   interruption   to   continuous   light   sedation,   as   it   favors cooperation and comfort.  1–3  A crucial target in the modern approach to patients in the intensive care unit (ICU)   is   to   have   patients   calm,   cooperative,   easily   arousable   and   able   to   communicate   and   perform physiotherapy. Light sedation, defined as Richmond Agitation­Sedation Scale (RASS) between 0 (alert and calm) and ­1 (not fully alert, but has sustained awakening [eye opening/eye contact] to voice [>10 seconds])  4 has   been   recently   proposed   as   a   key   component   of   a   multi­interventional   approach   including   optimal analgesia, goal­directed minimal sedation and a central role of relatives.  3  In  this  context,   dexmedetomidine,   a  highly  selective  2­adrenoceptor  agonist  with   sedative  and  analgesic effects, plays an important role in the short­ and long­term light sedation for critically ill patients.  5   The choice of sedative agents in ICU is a key factor for successful provision of light sedation and  randomized controlled studies, although highly heterogeneous, suggest that dexmedetomidine could help  to reduce ICU stay and time to extubation. 6–8  Continuous infusion of dexmedetomidine has a good tolerability profile that comprises rare, reversible and manageable side effects as hypotension and bradycardia.  9 In addition, dexmedetomidine induces sleep by acting on the locus ceruleus and, importantly, patients sedated with dexmedetomidine look clinically very similar to those under physiological sleep (i.e. easily aroused and more cognitively intact when aroused), as demonstrated   by   instrumental   investigations,   including   electroencephalography   (EEG)   and   functional magnetic resonance imaging. 10,11   Currently, dexmedetomidine is approved in Europe for sedation of ICU patients requiring a sedation not deeper than arousal in response to verbal stimulation.  ICU   patients   may   present   highly   heterogeneous   features   (e.g.   respiratory   failure,   heart   failure,   liver dysfunction,   age,   surgical   vs.   medical   admission,   extracorporeal   organ   support)   and   the   sedative   and analgesic properties of dexmedetomidine, such as side effects, are dose­dependent. Therefore, the present review,   analyzes   the   use   of   dexmedetomidine   in   the   different   ICU   settings   focusing   on   specific   sub­ populations of patients with unique characteristics. Finally, although this report is intended to suggest some This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

therapeutic­sedative approaches to the new users whose decisions are complicated/hampered by the lack of experience   and   precise   guidelines,   it   will   also   highlight   the   absence   of   studies   exploring   many   clinical conditions in a number or different patient populations. Moreover, an initial paragraph has been dedicated to delirium prevention and sleep quality in ICU patients, a crucial aspect of ICU stay that is gaining more and more attention in everyday clinical practice.

Delirium, sleep and dexmedetomidine Delirium   has   been   recently   recognized   as   one   of   the   most   common   “organ   dysfunctions”   complicating critically   ill   patients   with   rates  ranging   from  20%   to   40%,   with   the   higher  rates  of   60–80%  observed   in mechanically ventilated medical or surgical patients.  12  It is a strong independent predictor of prolonged MV and ICU length of stay, cost, and mortality.   12  Many non­modifiable and modifiable risk factors for delirium development   have   been   identified.   Among   those   included   in   the   latter   group,   the   administration   of psychoactive   medications   (particularly   benzodiazepines)   use,   deep   sedation   and   sleep   disturbances   are among   the   most   important.1,13    In   light   of   these   strong   evidences,   with   regards   to   pharmacological approaches   to   ICU   patients,   the   Society   of   Critical   Care   Medicine   guidelines   1  suggests   the   use   of dexmedetomidine   over   benzodiazepines  in   MV   patients   as  it   may   be   associated   with   improved   delirium outcomes.  5,14,15  In   addition,   dexmedetomidine,   may   promote   sleep   via   more   physiological   pathways   in comparison with GABAergic sedatives (i.e. benzodiazepines and propofol), favoring the N3 (or Slow Wave Sleep)   stage.  16  Although   the   clear   relationship   between   sleep   and   delirium   still   needs   to   be   better understood, these findings suggest that dexmedetomidine may have an important role in the management of critically ill patients, by reducing the incidences of delirium and the degree of sleep disturbance.  17–19 Sleep is defined as a periodic, reversible state of disengagement from the environment and consists of an active process involving multiple mechanisms of the central nervous system (CNS). Normal sleep is divided into two states: rapid eyes movement (REM) and non­rapid eyes movement (NREM), the latter characterized by three stages that progress from 1 to 3 with the increase of sleep depth. Patients admitted to the ICU report sleep disorders, with fragmentation and disorganization. Sleep deprivation can cause physiological changes in the individual, such as abnormalities in the immune system,   psychological   disorders,   changes   in   metabolism   and   reduced   quality   of   life.   The   intensive   care environment has been regarded as disturbing for the sleep patterns of patients. Individuals hospitalized in This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

the ICU are often treated with sedatives and analgesics, to decrease anxiety and pain, and promote sleep. Agitated delirium in intubated patients is a major problem, but it can be worse in the non­intubated ones. Standard ICU sedatives (midazolam, propofol and lorazepam) present, as a great disadvantage, the risk of respiratory depression. The most common classes of ICU sedatives used to promote sleep are benzodiazepine, propofol and, more recently, dexmedetomidine. 17,20–22 Midazolam and propofol infusion increase the total sleep time, but the quality of these pharmacological sedation (GABA agonists) is not the same as physiological sleep, showing disturbance of the architecture, decreased slow wave sleep (stage 2 and 3 SWS) and REM sleep.  23,24 Dexmedetomidine inhibits the release of norepinephrine in the locus ceruleus and enhances SWS, NREM sleep.  Two  recent  clinical trials have demonstrated  that dexmedetomidine  improves  sleep efficiency and quality.   In   a   prospective   crossover   cohort   study,   Alexopoulou   et   al.   evaluated   the   sleep   efficiency   of dexmedetomidine  by  polysomnography, in 13/16 enrolled patients,  for  three nights. Patients  received  no treatment on night 1 and 3, and, dexmedetomidine on night 2. Polysomnography showed that the sleep efficiency  was improved  upon   dexmedetomidine   (77.9%,   SD  65.6–80.2%)   vs no  treatment   (15.8%,   6.4– 51.6%, p=0.002). The sleep stage distribution was as follows: 16.1% in stage 1, 78.7% in stage 2, 0.0% in stage 3 and 0.0% in REM for the dexmedetomidine group, and 56.2%, 39.2%, 0.0% and 0.0%, respectively, for the untreated group. Moreover, sleep fragmentation was lower in the dexmedetomidine group (2.7 vs 7.6 arousals/hours).  17    Wu et al., in a pilot trial conducted in 76 adults admitted to the ICU after non­cardiac surgery, administered low­dose dexmedetomidine or placebo for 15h. The polysomnogram was monitored throughout the whole study period. Dexmedetomidine increased stage 2 and decreased stage 1 sleep and increased the total sleep time, efficiency and subjective sleep quality.   22  In conclusion, dexmedetomidine could be useful for promoting sleep in both mechanically ventilated and non­ventilated ICU patents. At the same time, dexmedetomidine could be part of a multimodal approach for the prevention of delirium. Doses should be set to reach a RASS ­1. 

Acute cerebrovascular events

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Until 2010, dexmedetomidine was contraindicated in patients who had undergone cerebrovascular surgery or at risk of vasospasm (i.e. surgery for a cerebral aneurysm or arteriovenous malformations and up to 7 days after subarachnoid haemorrhage), but in the last few years several studies suggesting a neuroprotection role for dexmedetomidine have been published. Recent experimental studies showed a neuroprotective effect of dexmedetomidine against hypoxia­induced nervous system injury.  25,26 In an in vitro model of traumatic brain injury   (TBI)   dexmedetomidine   showed   a   more   pronounced   protective   effect   than   hypothermia   on hippocampal   cell   cultures   after   mechanical   trauma.   27  No   synergistic   effect   of   dexmedetomidine   and hypothermia   was   observed.   Moreover,   the   effect   of   dexmedetomidine   was   partially   reversed   by   the simultaneous administration  of  the mitogen­activated protein  kinase  kinase 1  (MEK1)  Inhibitor PD98059, suggesting   the   involvement   of   the   extracellular   signal­regulated   kinase   (ERK)   signalling   pathway   27. Moreover   two   clinical   studies   assessed   the   effects   of   dexmedetomidine   (bolus   1  g/kg   over   10   min)   on cerebral blood flow (CBF). 28,29 The first trial, performed at 0.4 g/kg/h following the bolus, showed a significant decrease  in   CBF  in   subjects  without  TBI   (control  group),   with  no  change   in   the   cerebral  metabolic  rate equivalent   (CMRe)   and   CMRe/CBF   ratio.   In   the   TBI   group,   dexmedetomidine   induced   non­significant changes in CBF, CMRe and CMRe/CBF ratio. The percentage of CBF reduction was greater in the control group compared to the TBI group.  28 The second study tested the effects of a loading dose alone in patients without TBI. An increase in cerebral vascular resistance following the bolus has been suspected to be the cause of an increase in the pulsatility index (PI) and cerebral vascular resistance index.  29 Finally, Humble et al.   demonstrated   in   85   patients   with   severe   TBI   who   received   dexmedetomidine   infusions,   a   significant decrease in the use of narcotics and sedatives combined with no decline in neurological function.  30 Clinical evidence on the use of dexmedetomidine in patients with TBI is lacking and new large trials are needed before principles of its use can be defined, then, indications cannot be obtained from literature so far. 

Trauma  Sedation and analgesia are central aspects in the care of traumatic critically ill patients. Commonly used sedative   drugs   in   ICU   patients   include   benzodiazepines,   opioids,   propofol   and,   more   recently, dexmedetomidine. 31  Light sedation and adequate analgesia represent a useful strategy to obtain cooperation and neurological check combined with no pain and discomfort in trauma patients. This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

No RCTs have been published on the use of Dexmedetomidine in trauma patients in ICU so far. In 2011, Devabhakthuni et al. retrospectively analyzed 127 adult mechanically ventilated trauma patients who   received   either   propofol,   standard­dose   dexmedetomidine   (0.7   g/kg/h)   (HDD).  32  Patients  in   the   HDD   group   displayed   higher  hypotension   rate, longer median hospital length of stay and longer ventilator time. Moreover, an increased requirement for analgesic,  sedative and antipsychotic  drugs was found  in  HDD  group. Weaknesses of this  study are its retrospective   design   and   the   lack   of   a   standardized   sedation   protocol.   Furthermore,   the   time   when dexmedetomidine was introduced was not clear, an important issue in an evolving critical illness as trauma. Another   retrospective   study   compared   opioid   requirements   in   adult   trauma   patients   receiving dexmedetomidine   or   propofol   for   sedation   while   being   weaned   from   MV. 33  Results   showed   similar   total analgesic requirements between the two groups within 48 h of sedative infusion.  Further RCTs should be performed to investigate, not only analgesic requirements, but also other endpoints such as time to extubation, need for reintubation, ICU length of stay, and medication­related adverse effects during Dexmedetomidine sedation in trauma patients in ICU. Dexmedetomidine   should   be   administered   in   well­stabilized   (hemodynamic/   thermic   control/   blood   pH conditions)   trauma   patients,   at   the   end   of   damage   control   procedures   and   in   those   not   requiring   acute resuscitation.   Light   sedation   should   facilitate   comfort   in   awake   patients   and   could   be   helpful   in   trauma management, allowing continuous central and peripheral neurological monitoring. Controversial results have been   demonstrated   in   the   only  two   retrospective   studies  analysing   adult   mechanically  ventilated   trauma patients.   Further   RCTs   are   needed   to   clarify   the   advantages   of   dexmedetomidine   in   critically   ill   trauma patients without severe head trauma.

Adult cardiac surgery and coronary ICU patients   Neurological complications represent   a major concern in patients undergoing cardiac surgery.   34  Despite new techniques and technologies are growing in this field, stroke, neurocognitive decline and delirium are still a critical issue. These conditions are associated with postoperative agitation, growing need for sedation and higher morbidity and mortality rates. 35 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Risk factors for postoperative neurologic complications include comorbidities (e.g. vascular disease, diabetes and renal impairment), perioperative events (e.g. transfusions, hypotension and acid­base balance) and the use of cardiopulmonary by­pass (e.g. timing and management). The incidence of delirium after cardiac surgery has been reported to be as high as 70%, depending on the methods employed to assess delirium 36; in particular, cardiopulmonary bypass and hypothermic circulatory arrest seem to play the main role in the development of postoperative delirium. Although our understanding of postoperative delirium is still incomplete, interventions to prevent and treat this disorder have been studied in post­cardiac surgery patients, and sedation with dexmedetomidine seems to be associated with a lower risk of delirium   37  although controversial observations, in elderly population, have  been  recently observed  38.  Nonetheless,   evidence  that  dexmedetomidine   might   be  suitable  in  post cardiac­surgical patients and can be considered for ICU management is quite consistent.  39–41  Post­operative pulmonary dysfunction is another frequent complication in patients recovering from cardiac surgery and when hypoxic respiratory failure occurs, NIV might be an important tool to improve oxygenation and prevent oro­tracheal intubation.  Often,  the main reason for NIV failure  is the interface’s intolerance, which   requires  sedation   with   hypnotic   drugs   or  opioids.   However,   the   main   drawback   of   these   drugs  is respiratory depression and the data available on the best drug to use are still poor.  42–44 As dexmedetomidine has minimal effects on the respiratory drive, it may be a promising drug to control agitation in extubated patients requiring NIV. It should remarked, however, that a reduced ventilatory responses to hypoxia and hypercapnia,  similar  to  propofol infusion,  has  been  observed  in  healthy  male   volunteers  suggesting  that attention   should   always  be   paid   to   respiratory   drive   during   sedation.     45    In   addition,   renal  and   cardiac protection properties have been recently demonstrated in  randomized controlled trials performed in patients undergoing cardiac surgery with cardiopulmonary bypass. 46,47  Special considerations should be pointed out in this setting of patients, where the hemodynamic assessment is crucial for postoperative management, and the dose of dexmedetomidine should be adjusted taking into account the following points: a) the needs for high dose of opioids to treat post­surgical pain; b) the use of cardiovascular   drugs   (i.e.   beta   blockers   and   calcium   channel   blockers),   which   both   increase   the   risk   of bradycardia.

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

In patients, already moderately/deeply sedated with propofol, a starting dose of dexmedetomidine between 0.4­0.7 g/kg/h, depending on the clinical evaluation, can be recommended with increasing or decreasing steps of 0.2 μg/kg/h every 30­45 minutes (figure 3). The dose should be titrated to reach the effect.  Similarly, in patients requiring NIV, we suggest a starting infusion dose of 0.2–0.7 g/kg/h, in association with analgesic drugs (remifentanil or morphine), with an increase of 0.1 g/kg/h every 40­45 minutes if RASS is still >1.   Patients   admitted   in   the  Coronary   Intensive   Care   Unit   (CICU)   are   a   highly   heterogeneous   population characterized by acute, chronic, and acute­on­chronic heart diseases, usually with several preexisting and progressive comorbidities. 48 In the last years, the characteristics of the CICU have changed by taking care of more   complex  patients  with   multi­organ   failure.   Therefore,   patients  often   require   advanced   and  invasive support, and the medical staff need advanced skills in handling analgesics and sedatives to implement the management   of   pain,   agitation   and   delirium.  36  Dexmedetomidine   has   been   investigated   only   in   studies including mixed patients, whereas experience in “pure” cardiac patients is still lacking. In the acute cardiac setting,   it   is   desirable   that   dexmedetomidine   provides   beneficial   effects   on   pain   with   less   nausea   and respiratory depression in comparison with alternative drugs.  49 A sedation protocol targeted to light sedation with reduced benzodiazepines has been demonstrated to decrease the mechanical ventilation in medical patients   with   cardiogenic   pulmonary   oedema   and   after   cardiac   arrest.   50  In   the   management   of   CICU populations, dexmedetomidine is a useful drug to treat delirium in non­intubated patients after haloperidol failure. 51 Zhao Huang enrolled 62 patients with acute respiratory failure due to pulmonary oedema intolerant to noninvasive ventilation.  52  Those treated with dexmedetomidine vs midazolam were weaned from  non­ invasive   mechanical   ventilation   (NIV)  faster   (57.5±7.9   h   vs   93.4±12.4   h,   respectively,   p=0.01).   In   the dexmedetomidine group, bradycardia developed more frequently but no patient required an intervention.  52  Besides sedation and analgesia, dexmedetomidine induces a reduction in BP and HR, which is often useful in   the   cardiac   settings   where   hypertensive   heart   failure   and   myocardial   ischemia   are   common.   53  The sedative­bradycardic effects could be beneficial in life­threatening medical emergencies to reduce circulating catecholamines  54,  which  along  with  enhanced  vagal tone,  reduced  ischemia­reperfusion  injury  and anti­ inflammatory properties, are underlying the speculative antiarrhythmic effects.  55 In a prospective randomized controlled clinical trial among 88 cardiac surgery patients without prior atrial fibrillation, dexmedetomidine reduced the incidence of new­onset postoperative atrial fibrillation in comparison to propofol (respectively This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

13.6 % vs 36.4% odds ratio = 0.28; 95 % confidence interval, 0.10, 0.80; P = 0.025), finally shortening ICU stay.   The   greater   rate   of   hypotension   observed   in   dexmedetomidine   than   propofol  group   was  managed overwhelmingly with fluid bolus or decreasing dexmedetomidine dose. 56 In conclusion, mostly available studies are based on mixed or small populations, so that the level of evidence in CV patients is low. However, dexmedetomidine represents a favorable profile in the context of cardiac critical   ill:   firstly,   the   cooperative   and   light   sedation   with   minimal   effects   on   the   respiratory   drive   during invasive   and   noninvasive   ventilation   could   be   advantageous   for   ventilatory   weaning,   extubation   and   to reduce the duration of mechanical ventilation (MV) and the risk of delirium. Secondly, the hypotensive and negative chronotropic effects are often worthwhile in the cardiac setting while deleterious in other contexts where,   up   till   now,   the   drug   has   been   investigated.   The   potential   supraventricular   and   ventricular antiarrhythmic  properties, mainly observed in cardiac surgery patients  could be useful also in other acute cardiac  settings,   when   beta­blocking,   sedative   and/or   antihypertensive   effects   are   needed   (i.e.   electrical storm). 41 The spared analgesic effect could also reduce the use of morphine, which could delay the onset of action of oral antiplatelet agents.  57 Dexmedetomidine could be started at a low infusion rate mainly during noninvasive ventilation with caution in hemodynamically unstable patients, moreover in hyperacute phase of cardiac critical event which are unpredictable. Dexmedetomidine is contraindicated in atrioventricular blocks (i.e profound first, second, third degrees) and in other bradyarrhythmias associated to hypoperfusion.  Future prospective trials are needed to define its role in this particular scenario.

Sepsis  Increasing evidence suggests that dexmedetomidine could be a promising sedative agent in septic patients, related to the effects on apoptosis and the modulation of the immune system.  58  Xiang  et  al.  showed   that,   in   a  murine   model  of  lipopolysaccharide­(LPS) induced  endotoxemia,  the   pre­ emptive administration of dexmedetomidine significantly attenuated the cytokine response and increased the survival rate. 59 Similar results were published by Hofer et al. reporting that the preemptive administration of dexmedetomidine   or   clonidine   successfully   improved   survival   and   suppressed   the   overproduction   of   the proinflammatory mediators in experimental sepsis induced by cecal ligation and puncture.  60

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

The  main   mechanism  responsible   for  the   anti­inflammatory  effects of   dexmedetomidine   may involve   the modulation of cytokine production by the activation of the parasympathetic nervous system (cholinergic anti­ inflammatory   pathway).   Dexmedetomidine   may   also   attenuate   LPS­induced   epithelial   cell   death   in endotoxemic rats protecting against gut barrier dysfunction.  61 As a consequence, intestinal microcirculation is improved, and intestinal epithelial cell death, tight junction damage, and intestinal bacterial translocation to the   spleen   are   reduced.  61  In   addition,   the   observation   that   this   agent   may   reduce   the   levels   of   serum endocan   suggests  its protective   action  against   endothelial  dysfunction.   61  In   clinical  practice   few  studies examined the effect of dexmedetomidine as sedation strategy in patients with sepsis.  In   the   Safety   and   Efficacy   of   Dexmedetomidine   Compared   with   Midazolam   (SEDCOM)   trial,   critically   ill patients  sedated   with  dexmedetomidine  had   reduced   number    of     secondary    infections, enhancing   the immunological effect of the drug. 62 Although   patients   with   septic   shock   receiving   dexmedetomidine   may   experience   hypotension   and bradycardia, a reduction in proinflammatory cytokines seems to outweigh any direct hypotensive effect of the drug. 63 In a subgroup analysis from the MENDS double­blind randomized controlled trial, septic patients receiving dexmedetomidine had more days free from brain dysfunction and MV and were less likely to die than those that   received   a   lorazepam­based   sedation   regimen,   supporting   the   hypothesis   that   sedation   with dexmedetomidine may lead to better outcomes for patients with sepsis than benzodiazepine sedation.  63 A systematic review evaluated the effect of dexmedetomidine use for sedation in patients with sepsis, severe sepsis,   or   septic   shock   comparing   to   other   sedatives   commonly   used   in   ICU.   The   systematic   review (including 6 studies; 242 patients) showed that in patients with sepsis the administration of dexmedetomidine exerts a beneficial effect on 28­day mortality and delirium/coma (moderate quality of evidence based on the GRADE approach) but has no significant effect on the length of ICU stay or duration of MV (moderate quality of evidence). The survival benefit was prominent in comparison with lorazepam but not with propofol.  64 No adverse  events  (with  the  exception  of  bradycardia)  in  using  of dexmedetomidine were observed.  64 In a recent   randomized   clinical   trial   that   included   patients   with   sepsis   undergoing   ventilation,   the   use   of dexmedetomidine did not result in statistically significant improvement in mortality or ventilation free­days.  65 In the study, with systematic protocolised sedation, dexmedetomidine treatment was associated with better

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

sedation but not with delirium reduction enhancing the importance of having a systematic sedation protocol as the main effective strategy for reducing delirium.  65  Currently, the small number of available studies with limited sample size warrants further trials to evaluate the long­term and short­term outcomes of dexmedetomidine sedation in patients with sepsis, and to compare its effects with different types and doses of sedative agents.   So finally, further trials are required to evaluate the beneficial effects of dexmedetomidine in comparison to other different sedative agent in patients with sepsis. Although dexmedetomidine seems to exert an effect on apoptosis   and   on   modulation   of   the   immune   system   which   might   be   particularly   important   in   the pathogenesis of sepsis its potential benefits and risks in patients with sepsis remains a controversy.           Patients with oncohematologic diseases that develop infections are being increasingly admitted in ICUs for respiratory failure needing NIV or invasive MV.   In the last years, the short­ and medium­term outcomes of these patient have been slowly improving.  66 ICU standard practice should be the same as for other critically ill patients, and sedation is not an exception.   Dexmedetomidine­driven light sedation retains its potential advantages   in   these   patients   and   can   be   used   during   NIV,   high­flow   oxygen   therapy,   insertion   of catheters/drains and overnight sedation. Specific literature is scarce and, up­to­date, data may be inferred by general papers on sedation and expert­opinion. Non­renal elimination of dexmedetomidine can favour its use in these patients, who often exhibit variable degrees of kidney injury, due to chemo­ or anti­infective therapy, whilst   caution  must  be taken in case  of hepatic failure.   67  NIV  is the most  common form  of respiratory support for ICU­oncohematologic patients and, as for the general ICU­population, it should target sound clinical   end­points   in   a   due   time   (e.g.   PaO 2/FiO2  or   respiratory   rate):   ventilator   settings   and optimization/rotation of interfaces are essential to maximise the chances of success  68. In this context, light sedation  may  provide better patient  comfort  and  increased  tolerance  to  NIV  as well as  reduced  oxygen demand and respiratory work­load.  44 The clinical target should be a better oxygenation and a reduced rate of tracheal intubation, with a potential positive effect on the outcome. This is particularly important in the oncohematologic patients, in which invasive MV is related to high rates of infective/bleeding complications and ventilator­induced lung injury. 68 The link between sedation and respiratory drive during NIV is complex and any approach should be strictly tailored on each single patient. A general consideration is that deep sedation during NIV should be avoided since it exerts depressive effects on forebrain. A poor neurologic status counter­indicates NIV and a deeply This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

sedated patient is at increased risk of respiratory acidosis, hypoxia and inhalation.  68 This is particularly true for oncohematologic patients, who can spend days or weeks on NIV due to persistent respiratory failure. In  summary,  data  on  dexmedetomidine  use  in  oncohematologic ICU­patients are  still lacking.  Due  to  its pharmacodynamics,   dexmedetomidine   may   be   helpful   in   the   complex   management   of   those   patients, particularly during NIV. Due to its pharmacokinetics, its use can be considered in patients with acute kidney injury and could be considered a helpful sedative to provide light sedation in oncohematologic patients due to the minimal effects on respiratory drive. 

 Pediatric critically ill patients  The first experience about dexmedetomidine use in pediatric population was published in 2002 by Tobias et al. in three different settings, following the studies performed in adult populations: in pediatric ICU (PICU), to provide   sedation   in   mechanically   ventilated   patients,   intraoperatively,   to   control   hypertension   during orthopedic surgery, and during a procedure to provide sedation.  69 After this preliminary report, a large body of literature has been produced on the preoperative and peri­procedural applications in the operative room, outside the operative room and in the ICU. 70–72 Dexmedetomidine was effectively adopted in children during diagnostic, airway, and painful procedures.   73 The larger experience was reported on the use of this drug for Nuclear Magnetic Resonance sedation, where it was found effective and safe either alone or with midazolam, versus propofol or midazolam itself.  74–76  In PICU, this agent was firstly administered to spare other analgesic and sedative drugs.   77,78  Data in this setting are poor, as few randomized controlled trials (RCTs) were conducted.   79  A study by Tobias et al. comparing dexmedetomidine to midazolam in 10 versus 10 patients reported a better sedation and fewer analgesic doses in the dexmedetomidine group. 80 Recently, a large analysis showed that dexmedetomidine was effective as primary sedative in obtaining adequate sedation in low criticality patients. Moreover, this study demonstrated a decreased duration of MV weaning in patients intolerant of an awake intubated state. 81

  Encouraging   results   have   recently   emerged   from   a   cohort   observational   study   on   the   use   of

dexmedetomidine   as  a  single  continuous  agent  for sedation   during   NIV   on  202  critically  ill  children  (not neonates) with acute respiratory insufficiency. It is currently the largest pediatric report regarding this specific use.82

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

In neonates, dexmedetomidine was safely used also in term newborn babies and pre­terms ages, without serious adverse effects or severe haemodynamic changes. 83  Many   off­label   indications   exist   in   non­operative   room   anesthesia   and   in   PICU   settings   due   to   the advantages   of   this   drug,   especially   considering   the   negligible   effect   on   the   respiratory   function   and   the comfort achieved by patients, but also because this drug does not promote delirium and may help to prevent it.  84  Dexmedetomidine   may   be   used   moving   forward   to   the   early   Comfort   using   Analgesia,   minimal Sedatives and maximal Human Care (e­CASH) concept proposed for adult critically ill patients  3 and the so­ called pediatric goal­oriented sedation.  85 However, no study supports an evidence­based effect of this drug in promoting early mobilization and better outcome in PICU patients.    Finally, published data indicate that dexmedetomidine may be useful in PICU during withdrawal from opioids and benzodiazepines 86, but no conclusive studies have been published. In non­operating room sedation, a bolus of 0.5­2 g/Kg in 10 minutes (repeatable) was used, followed by an infusion   of   0.5­3   g/Kg/h  73  (table   1).     Pain   should   be   managed   before   and   during   sedation   with dexmedetomidine at any time especially during painful procedures.  In PICU, a loading dose is not recommended (figure 2). The initial infusion dose ranges from 0.2 g/Kg/h up to a maximum of 1.4 g/Kg/h, titrating it based on the patient response.  Dexmedetomidine  has  been  safely used  in  long­term infusion. Yet,  in  case  of  drug  infusion  interruption, patients need to be monitored due to the risk of developing withdrawal symptoms, like tremors, agitation and insomnia. 87,88 Dexmedetomidine   should   be   avoided   in   children   treated   with   digoxin,   beta­adrenergic   blockers,   calcium channels blockers and agents that cause bradycardia or hypotension.  We conclude that dexmedetomidine is effective and safe in providing sedation during non­operating room procedures   (bolus   of   0.5­2   g/Kg   followed   by   infusion   of   0.5­3   g/Kg/h),   but   the   association   with   an opioid/ketamine medication is necessary during the painful phases. In PICU, dexmedetomidine is indicated for   difficult   analgesia   and   sedation   but   some   of   its   most   important   advantages   are   the   protection   from delirium and the facilitator effect during weaning from analgosedative therapy and the extubation phase. The recommended dose for initial infusion ranges from 0.2 g/Kg/h up to a maximum of 1.4 g/Kg/h.

Pediatric cardiac surgery  This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Dexmedetomidine is mainly administered to pediatric cardiac surgery patients with 2 indications: sedation in pediatric cardiac ICU (pCICU) and sedation during minimally invasive procedures (i.e. in the catheterization laboratory).  89  A   special   mention   is   reserved   to   the   intraoperative   use   of   dexmedetomidine   to   prevent arrhythmic complications during surgical correction of congenital heart disease.  In the pCICU, dexmedetomidine is typically administered to maintain an adequate sedation level and an anxiolytic effect in association with a mild analgesic effect, without depressing the respiratory drive. This allows patients to easily awake and collaborate upon verbal stimulation, and an optimal compliance with medical and nursing procedures. 90 Specific indications to dexmedetomidine administration in the pCICU are: ­ application of NIV either with facial or nasal masks; ­ occurrence of delirium in spontaneously breathing patients: these children present a neurological condition characterized by agitation or irritability determined by termination of prolonged deep sedation, environmental reasons (eg. absence of parents) or low systemic and cerebral oxygenation in low cardiac output syndromes (e,g, children with dilative cardiomyopathy); ­ patients with difficult respiratory weaning: the addition of dexmedetomidine to other sedative drugs allows to reduce the overall sedation dose (sparing effect) and side effects (e.g. respiratory depression upon opioids, dysphoria and delirium upon benzodiazepines); 77,91,92 ­ patients who need prolonged sedation: in case of rotation of sedative drugs acting on different receptors (e.g. propofol, opioids, benzodiazepines), the infusion of ­2 agonists might be recommended to prevent or treat tachyphylaxis. Several   studies   have   supported   the   use   of   dexmedetomidine   during   catheterization   of   congenital   heart disease patients 70,93,94, to possibly maintain the patient in light sedation and spontaneously breathing in order to   eventually   achieve   more   realistic   hemodynamic   catheterization   laboratory     results   than   during   deep sedation and MV. In this case, dexmedetomidine can be used in combination with other drugs (e.g. propofol, ketamine, opioids, benzodiazepines) or as a single sedative medication, especially in older children to induce a light sedation and improve tolerance to the catheterization procedures. In   patients  undergoing   heart   surgery   with   high   risk  of  arrhythmias  secondary  to   surgical  damage   of   the conduction tissue (eg. in tetralogy of Fallot), the sympatholytic effect of dexmedetomidine and the reduced

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

release   of   catecholamines   induce   a   chronotropic   and   dromotropic   negative   effect   that   can   facilitate   the management of the tachyarrhythmia.70,71 Pediatric patients excluded from the use of dexmedetomidine: ­

patients with liver dysfunction, as the drug is metabolized almost exclusively via the liver, with the

production   of   inactive   metabolites   subsequently   excreted   by   the   kidneys.   Hence,   liver   but   not   renal dysfunction may alter the metabolism of dexmedetomidine, whereas it is not affected by renal dysfunction; ­

patients affected by atrioventricular block or sick sinus syndrome.

Dexmedetomidine has to be administered as a continuous infusion (0.2­1.4 g/kg/h) potentially preceded by a loading dose of 0.6­1 g/kg to obtain a more rapid sedative effect, especially when the drug is used as the unique sedative. 96–98 The interruption of dexmedetomidine administration requires slow de­escalation to avoid the occurrence of withdrawal symptoms. The dose is reduced by 25% every 2 hours until the complete stop of administration within 8 hours. In fact, in case of abrupt discontinuation of prolonged dexmedetomidine infusion, symptoms such as agitation, hypertension, tachycardia, vomiting, sneezing and seizures have been described.  99–101 The side effects expected during dexmedetomidine administration are bradycardia and hypotension. As both seem to be dose­dependent, particular attention should be paid when using the drug in patients with marked hemodynamic instability. 77,102,103 In   conclusion,   dexmedetomidine   could   be   a   promising   help   in   the   management   of   children   with   heart disease,   to   achieve   an   adequate   sedation   level.   Although   it   seems   safe   at   the   recommended   doses, pediatric   cardiac   surgery   patients   may   be   at   higher   risk   of   developing   dexmedetomidine   related hemodynamic side effects.

Take­off and cruise speed: start and titrate the infusion rate Currently, a loading dose of dexmedetomidine is not recommended in clinical practice due to the high risk of  adverse effects (hypotension/hypertension, bradycardia).  9 An initial dose of 0.7 g/Kg/h is advised in patients  already intubated and sedated, who require a switch to light sedation. Thereafter, the sedation has to be  titrated within the wide range of 0.2 to 1.4 g/Kg/h.  9 Nonetheless, due to the wide range of doses, different  patient response or sensitivity to the drug and, especially, different baseline neurological and cardiovascular  (CV) conditions, a personalized approach to choose the starting dose could/should be adopted by the  This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

caregiver (figure 1). Moreover, studies have shown than even low­dose of dexmedetomidine (i.e. 0.1 g/Kg/h)  might be efficacious in selected population of patients.  104 Some crucial aspects that should be considered before setting the infusion pump are: 1) the pharmacokinetic profile (onset time and metabolism); 2) the effects on blood pressure (BP) and heart rate (HR); 3) the state of agitation (sometimes delirium); 4) the effects on respiratory function.

1) A   linear  pharmacokinetics  has  been   demonstrated   for  dexmedetomidine   doses  ranging   from  0.2 to1.4 g/Kg/h. 9,105 The onset and peak of sedation occur within 15 and 45 min and 1 h, respectively, from the start  of intravenous (IV) infusion.   1,106  Therefore, it may take up to 1 h to reach a new steady­state sedation level after having increased the continuous infusion.  9 The terminal elimination half­life is approximately 1.5­3 h in patients with normal liver function, while in case of severe hepatic dysfunction,   dexmedetomidine   clearance   can   be   impaired,   thus   prolonging   the   emergence   and

2)

requiring lower doses. 1,9  Dexmedetomidine has sympatholytic activity. A reduction in norepinephrine and epinephrine levels has been demonstrated in healthy volunteers and post­operative patients.  9,53 The effects on BP are biphasic,   with   decrease   at   low   doses   and   increase   at   high   doses.   9,53  For   instance,   infusion   of dexmedetomidine 0.2­0.7 g/Kg/h without a loading dose resulted in BP decrease of 16% within 2 hours in critically ill patients requiring sedation for >24 h.   107  In the absence of a loading dose, an average 10% fall in systolic BP, HR and cardiac output (CO) has been observed following a dose of 1  μg/kg/h.  106  Published   studies   have   shown   that   BP,   even   decreased   during   dexmedetomidine infusion, may remain within normal limits. 107 In contrast, a transient increase in BP, due to peripheral vasoconstriction, has been demonstrated in patients receiving a loading dose of 1 g/Kg followed by continuous infusion of 0.2­0.7 g/Kg/h.   9  HR decrease commonly occurs in healthy volunteers and critically   ill   patients.   Indeed,   infusion   of   dexmedetomidine   0.2­0.7   g/Kg/h   without   a   loading   dose resulted in HR decrease  of 21%  within  12 hours  in  critically ill patients  requiring sedation.   9,53,107 Based on the documented effects of dexmedetomidine on BP and HR, an individualized approach to select the starting dose, always avoiding a loading dose, is suggested (figure 1).  

3) Dexmedetomidine   is   commonly   administered   to   provide   anxiolysis,   sedation,   and   moderate analgesia in patients admitted to the ICU. In addition, this agent has been shown to reduce the incidence of delirium 14 and to be a potential rescue drug for treating delirium­induced agitation after haloperidol failure in non­intubated patients. 51 This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

4) Dexmedetomidine has minimal effects on the respiratory function in both healthy volunteers and ICU patients.  9,53,108,109  It can reduce the oropharyngeal muscle tone, thus increasing the risk of airway obstruction   in   non­intubated   patients.   Therefore,   continuous   respiratory   monitoring   is   indicated. Nonetheless, the absence of significant effects of dexmedetomidine on respiratory drive makes this agent particularly safe in non­intubated patients, compared to other sedatives (see below). The choice of the starting dose and timing for re­set the posology should take into account all the above­ mentioned key features of dexmedetomidine. For instance, a higher starting dose (e.g. 1 g/Kg/h) could be administered in an agitated patient with high BP and HR (figure. 1). Other adjuvant temporary sedatives (e.g. propofol or midazolam) could be considered when starting sedation with dexmedetomidine according to its pharmacokinetics. On the contrary, a low dose (e.g. 0.3 g/Kg/h) could be more appropriate for those patients requiring light sedation to promote sleep and/or prevent delirium.       

Conclusions Dexmedetomidine is approved for sedation of adult ICU patients in Europe, and for procedural sedation use in   USA   and   other   countries.   Sedation   occurs   via   the   activation   of   adrenoceptors   at   the   site   that physiologically controls vigilance, thus ensuring a unique sedative profile characterized by a calm but alert state, in which patients are sedated but easily arousable and able to cooperate. Although a dose regimen of administration   is   actually   suggested   (0.2­1.4  μg/kg/h),   ICU  patients  may  differ   for   a   number   of   aspects, including neurological state, hemodynamic conditions and acute and chronic diseases.  During the last years, dexmedetomidine became a popular sedative agent for critically ill patients because of its unique properties able to keep patients sedated but cooperative and able to communicate their needs. Moreover, the minimal interference with the respiratory drive, hence facilitating weaning from ventilator in intubated   patients,   also   keep   dexmedetomidine   particularly   safe   for   non­intubated   ones.   In   addition, dexmedetomidine effects on sleep quantity and architecture could be of particular advantage in preserving a physiological sleep and preventing delirium. Although dexmedetomidine has these desirable properties, side effects   should   always   be   taken   into   serious   account.   Hypotension   and   bradycardia   during   continuous infusion are the most commonly described side effects although reduction in BP is commonly restrained. Different   subgroups   of   patients   have   their   own   clinical   characteristics   and   require   different   doses   and sometime personalized administration strategies. Careful drug titration should be applied in terms of sub­ This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

group   clinical  differences,   e.g.   adult  cardiac  surgery  vs.  pediatric  patients,   desired   drug   effect,   e.g.   light sedation when used alone vs. deep sedation in combination with other drugs, patient individual response, e.g.   high   doses   vs.   low   doses,   but   also   in   terms   of   intra­group   differences,   e.g.   agitated   patients   with tachycardia and hypertension vs. non hyperdynamic/hyperactive patients. In closing, dexmedetomidine is becoming the most promising candidate as first line sedation in critically ill patients requiring RASS levels between ­2 and 0 for its unique capability of providing light sedation, analgesia, physiologic­like sleep, and potentially helping in preventing delirium, potentially optimizing cooperation of mechanically ventilated and non­mechanically ventilated ICU patients. 

Key messages



Dexmedetomidine represents an optimal choice for sedation of critically ill patients for its unique properties to keep the patients calm and cooperative by providing (light) sedation and analgesia



Dexmedetomidine   could   be   a   fundamental   support   for   prevention   and   treatment   of   delirium   of critically ill patients. 



The induction and maintenance of a quasi­physiologic sleep, provided by dexmedetomidine, may be of great advantage in promoting patients’ recovery and preventing delirium occurrence.



ICU   patients   present   highly   heterogeneous   clinical   features.   These   should   be   taken   into   close consideration in order to take advantage of the good tolerability profile of this sedative and analgesic agent and to limit, at the same time, the occurrence of its hemodynamic side effects.

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

References  1.  2.  3.  4.  5.  6.  7.  8.  9.  10.  11.  12.  13.  14.  15.  16.  17.  18.  19.  20.  21.  22. 

Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the  management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.  Baron R, Binder A, Biniek R, Braune S, Buerkle H. Evidence and consensus based guideline for the  management of delirium , analgesia , and sedation in intensive care medicine. Ger Med Sci. 2015;13. Vincent JL, Shehabi Y, Walsh TS, Pandharipande PP, Ball JA, Spronk P, et al. Comfort and patient­ centred care without excessive sedation: the eCASH concept. Intensive Care Med. 2016;42(6):962– 71.  Ely EW, Truman B, Shintani A, Thomason JWW, Wheeler AP, Gordon S, et al. Monitoring sedation  status over time in ICU patients: reliability and validity of the Richmond Agitation­Sedation Scale  (RASS). Jama. 2003;289(22):2983–91.  Reade MC, Eastwood GM, Bellomo R, Bailey M, Bersten A, Cheung B, et al. Effect of  Dexmedetomidine Added to Standard Care on Ventilator­Free Time in Patients With Agitated  Delirium: A Randomized Clinical Trial. Jama. 2016;315(14):1460.  Tan JA, Ho KM. Use of dexmedetomidine as a sedative and analgesic agent in critically ill adult  patients: A meta­analysis. Intensive Care Med. 2010;36(6):926–39.  Adams R, Brown GT, Davidson M, Fisher E, Mathisen J, Thomson G, et al. Efficacy of  dexmedetomidine compared with midazolam for sedation in adult intensive care patients: A  systematic review. Br J Anaesth. 2013;111(5):703–10.  Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, et al. Benzodiazepine Versus  Nonbenzodiazepine­Based Sedation for Mechanically Ventilated, Critically Ill Adults. Crit Care Med.  2013;41(9):S30–8.  Keating GM. Dexmedetomidine: A Review of Its Use for Sedation in the Intensive Care Setting.  Drugs. 2015;75(10):1119–30.  Huupponen E, Maksimow A, Lapinlampi P, Särkelä M, Saastamoinen A, Snapir A, et al.  Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep.  Acta Anaesthesiol Scand. 2008;52(2):289–94.  Coull JT, Jones MEP, Egan TD, Frith CD, Maze M. Attentional effects of noradrenaline vary with  arousal level: Selective activation of thalamic pulvinar in humans. Neuroimage. 2004;22(1):315–22.  Ely EW. Delirium as a Predictor of Mortality in Mechanically Ventilated Patients in the Intensive Care  Unit. Jama. 2004;291(14):1753.  Lam EWK, Chung F, Wong J. Sleep­Disordered Breathing, Postoperative Delirium, and Cognitive  Impairment. Anesth Analg. 2017;124(5):1626–35.  Su X, Meng Z­T, Wu X­H, Cui F, Li H­L, Wang D­X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non­cardiac surgery: a randomised, double­blind, placebo­controlled trial.  Lancet. 2016;6736(16):1–10.  Jacob Jakob S, Ruokonen E, Grounds R, Sarapohja T, Garratt C, Pocock S, et al. Dexmedetomidine  vs Midazolam or Propofol for Sedation during prolonged mechanical ventilation. Jama.  2012;307(11):1151–60.  Delaney LJ, Van Haren F, Lopez V. Sleeping on a problem: the impact of sleep disturbance on  intensive care patients ­ a clinical review. Ann Intensive Care. 2015;5:3.  Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of  Dexmedetomidine on Sleep Quality in Critically Ill Patients. Anesthesiology. 2014;121(4):801.  Wu X­H, Cui F, Zhang C, Meng Z­T, Wang D, Ma J, et al. Low­dose Dexmedetomidine Improves  Sleep Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit.  Anesthesiology. 2016;(5):979–91.  Yang Y, Zhao X, Dong T, Yang Z, Zhang Q, Zhang Y. Risk factors for postoperative delirium following hip fracture repair in elderly patients: a systematic review and meta­analysis. Aging Clin Exp Res.  2017;29(2):115–26.  Oto J, Yamamoto K, Koike S, Onodera M, Imanaka H, Nishimura M. Sleep quality of mechanically  ventilated patients sedated with dexmedetomidine. Intensive Care Med. 2012;38(12):1982–9.  Kanji S, Mera A, Hutton B, Burry L, Rosenberg E, MacDonald E, et al. Pharmacological interventions  to improve sleep in hospitalised adults: a systematic review. BMJ Open. 2016;6:e012108.  Wu X, Cui F, Zhang C, Meng Z, Wang D, Ma J, et al. Low­dose Dexmedetomidine Improves Sleep  Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit. 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

23.  24.  25.  26.  27.  28.  29.  30.  31.  32.  33.  34.  35.  36.  37.  38.  39.  40.  41.  42.  43.  44.  45. 

Anesthesiology. 2016;125(5):979–91.  Kondili E, Alexopoulou C, Xirouchaki N, Georgopoulos D. Effects of propofol on sleep quality in  mechanically ventilated critically ill patients: a physiological study. Intensive Care Med.  2012;38(10):1640–6.  Engelmann C, Wallenborn J, Olthoff D, Kaisers U, Rüffert H. Propofol versus flunitrazepam for  inducing and maintaining sleep in postoperative ICU patients. Indian J Crit Care Med.  2014;18(4):212.  Pan W, Lin L, Zhang N, Yuan F, Hua X, Wang Y, et al. Neuroprotective Effects of Dexmedetomidine  Against Hypoxia­Induced Nervous System Injury are Related to Inhibition of NF­κB/COX­2 Pathways. Cell Mol Neurobiol. 2016;36(7):1179–88.  Akpinar H, Naziro M, Ovey I, Cig B, Akpinar O. The neuroprotective action of dexmedetomidine on  apoptosis, calcium entry and oxidative stress in cerebral ischemia­induced rats: Contribution of  TRPM2 and TRPV1 channels. Sci Rep. 2016;6:1–13.  Schoeler M, Loetscher P, Rossaint R, Fahlenkamp A, Eberhardt G, Rex S, et al. Dexmedetomidine is neuroprotective in an in vitro model for traumatic brain injury. BMC Neurol. 2012;12:20.  Wang X, Ji J, Fen L, Wang A. Effects of dexmedetomidine on cerebral blood flow in critically ill  patients with or without traumatic brain injury: A prospective controlled trial. Brain Inj. 2013;9052:1–6.  Arulvelan A, Manikandan S, Easwer HV. Cerebral vascular effects of loading dose of  dexmedetomidine: A Transcranial Color Doppler study. Indian J Crit Care Med. 2016;20(1):9–13.  Humble SS, Wilson LD, Leath TC, Marshall MD, Sun DZ, Pandharipande PP, et al. ICU sedation with dexmedetomidine after severe traumatic brain injury. Brain Inj. 2016;1–5.  Reade MC, Finfer S. Sedation and Delirium in the Intensive Care Unit — NEJM. N Engl J Med.  2014;370(5):444–54.  Devabhakthuni S, Pajoumand M, Williams C, Kufera J a, Watson K, Stein DM. Evaluation of  dexmedetomidine: safety and clinical outcomes in critically ill trauma patients. J Trauma.  2011;71(5):1164–71.  Aljuhani O a, McKinney CB, Erstad BL. Opioid Requirements in Mechanically Ventilated Trauma  Patients Receiving Dexmedetomidine Versus Propofol. J Trauma Nurs. 2014;21(3):111–4.  Arrowsmith J, Grocott H, Reves J, Newman M. Central nervous system complications of cardiac  surgery.pdf. Br J Anaesth. 2000;84:378–93.  McDonagh DL, Berger M, Mathew JP, Graffagnino C, Milano CA, Newman MF. Neurological  complications of cardiac surgery. Lancet Neurol. 2014;13(5):490–502.  van Diepen S, Sligl WI, Washam JB, Gilchrist IC, Arora RC, Katz JN. Prevention of Critical Care  Complications in the Coronary Intensive Care Unit: Protocols, Bundles, and Insights From Intensive  Care Studies. Can J Cardiol. 2017;33(1):101–9.  Liu X, Xie G, Zhang K, Song S, Song F, Jin Y, et al. Dexmedetomidine vs propofol sedation reduces  delirium in patients after cardiac surgery: A meta­analysis with trial sequential analysis of randomized  controlled trials. J Crit Care. 2017;38:190–6.  Li X, Yang J, Nie X­L, Zhang Y, Li X­Y, Li L­H, et al. Impact of dexmedetomidine on the incidence of  delirium in elderly patients after cardiac surgery: A randomized controlled trial. PLoS One.  2017;12(2):e0170757.  Karaman Y, Abud B, Tekgul ZT, Cakmak M, Yildiz M, Gonullu M. Effects of dexmedetomidine and  propofol on sedation in patients after coronary artery bypass graft surgery in a fast­track recovery  room setting. J Anesth. 2015;29(4):522–8.  Cheng H, Li Z, Young N, Boyd D, Atkins Z, Ji F, et al. The Effect of Dexmedetomidine on Outcomes  of Cardiac Surgery in Elderly Patients. J Cardiothorac Vasc Anesth. 2016;30(6):1502–8.  Geng J, Qian J, Cheng H, Ji F, Liu H. The influence of perioperative dexmedetomidine on patients  undergoing cardiac surgery: A meta­analysis. PLoS One. 2016;11(4):e0152829.  Devlin JW, Al­qadheeb NS, Chi A. Efficacy and Safety of Early Dexmedetomidine During Noninvasive Ventilation for Patients. Chest. 2014;145(6):1204–12.  Senoglu N, Oksuz H, Dogan Z, Yildiz H, Demirkiran H, Ekerbicer H. Sedation during noninvasive  mechanical ventilation with dexmedetomidine or midazolam: A randomized, double­blind, prospective study. Curr Ther Res Clin Exp. 2010;71(3):141–53.  Longrois D, Conti G, Mantz J, Faltlhauser A, Aantaa R, Tonner P. Sedation in non­invasive  ventilation: do we know what to do (and why)? Multidiscip Respir Med. 2014;9(1):56.  Lodenius Å, Ebberyd A, Hårdemark Cedborg A, Hagel E, Mkrtchian S, Christensson E, et al.  Sedation with Dexmedetomidine or Propofol Impairs Hypoxic Control of Breathing in Healthy Male 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

46.  47.  48. 

49.  50.  51.  52.  53.  54.  55.  56.  57. 

58.  59.  60.  61.  62.  63.  64.  65.  66.  67. 

Volunteers. Anesthesiology. 2016;125(4):700–15.  Ammar AS, Mahmoud KM, Kasemy ZA, Helwa MA. Cardiac and renal protective effects of  dexmedetomidine in cardiac surgeries: A randomized controlled trial. Saudi J Anaesth.  2016;10(4):395–401.  Zhai M, Kang F, Han M, Huang X, Li J. The effect of dexmedetomidine on renal function in patients  undergoing cardiac valve replacement under cardiopulmonary bypass: A double­blind randomized  controlled trial. J Clin Anesth. 2017;40:33–8.  Morrow DA, Fang JC, Fintel DJ, Granger CB, Katz JN, Kushner FG, et al. Evolution of critical care  cardiology: Transformation of the cardiovascular intensive care unit and the emerging need for new  medical staffing and training models: A scientific statement from the American Heart Association.  Circulation. 2012;1408–28.  Alavi A, Soltani G, Ghandi I, Fard A, A A. The Analgesic Effect of Morphine and Dexmedetomidine  Intravenous Patient­Controlled Analgesia method to Control Pain After Open Cardiac Surgery: A  Randomized Control Trial. Arch Crit Care Med. 2015;e6453.  Skrupky LP, Drewry AM, Wessman B, Field RR, Fagley RE, Varghese L, et al. Clinical effectiveness  of a sedation protocol minimizing benzodiazepine infusions and favoring early dexmedetomidine: a  before­after study. Crit Care. 2015;19(1):136.  Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the  Treatment of Hyperactive Delirium Refractory to Haloperidol in Nonintubated ICU Patients. Crit Care  Med. 2016;1.  Huang Z, Chen Y, Yang Z, Liu J. Dexmedetomidine Versus Midazolam for the Sedation of Patients  with Non­invasive Ventilation Failure. Intern Med. 2012;51(17):2299–305.  Ebert TJ, Hall JE, Barney J a, Uhrich TD, Colinco MD. The effects of increasing plasma  concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94.  Eifling M, Razavi M, Massumi A. The evaluation and management of electrical storm. Tex Heart Inst  J. 2011;38(2):111–21.  Tobias JD, Chrysostomou C. Dexmedetomidine: Antiarrhythmic effects in the pediatric cardiac  patient. Pediatr Cardiol. 2013;34(4):779–85.  Liu X, Zhang K, Wang W, Xie G, Fang X. Dexmedetomidine sedation reduces atrial fibrillation after  cardiac surgery compared to propofol: a randomized controlled trial. Crit Care. 2016;20(1):298.  Parodi G, Bellandi B, Xanthopoulou I, Capranzano P, Capodanno D, Valenti R, et al. Morphine is  associated with a delayed activity of oral antiplatelet agents in patients with st­elevation acute  myocardial infarction undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv.  2015;8(1):1–7.  Cui J, Zhao H, Wang C, Sun JJ, Lu K, Ma D. Dexmedetomidine attenuates oxidative stress induced  lung alveolar epithelial cell apoptosis in vitro. Oxid Med Cell Longev. 2015;2015:358396.  Xiang H, Hu B, Li Z, Li J. Dexmedetomidine Controls Systemic Cytokine Levels through the  Cholinergic Anti­inflammatory Pathway. Inflammation. 2014;37(5):1763–70.  Hofer S, Steppan J, Wagner T, Funke B, Lichtenstern C, Martin E, et al. Central sympatholytics  prolong survival in experimental sepsis. Crit Care. 2009;13(1):R11.  Yeh Y, Wu C, Cheng Y, Liu C, Hsiao J, Chan W, et al. Effects of Dexmedetomidine on Intestinal  Microcirculation and Intestinal Epithelial Barrier in Endotoxemic Rats. Anesthesiology.  2016;125(2):355–67.  Riker R, Shehabi Y, Bokesch P, et al. Dexmedetomidine vs Midazolam for Sedation of Critically Ill  Patients: A Randomized Trial. JAMA. 2009;301(5):489–99.  Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of  dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori­designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.  Zamani MM, Keshavarz­Fathi M, Fakhri­Bafghi MS, Hirbod­Mobarakeh A, Rezaei N, Bahrami A, et al. Survival benefits of dexmedetomidine used for sedating septic patients in intensive care setting: A  systematic review. J Crit Care. 2016;32:93–100.  Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, et al. Effect of  Dexmedetomidine on Mortality and Ventilator­Free Days in Patients Requiring Mechanical Ventilation  With Sepsis A Randomized Clinical Trial. Jama. 2017;317(13):1321–8.  Saillard C, Blaise D, Mokart D. Critically ill allogeneic hematopoietic stem cell transplantation patients  in the intensive care unit: reappraisal of actual prognosis. Bone Marrow Transpl. 2016;51(8):1050–61. Chen K, Lu Z, Xin Y, Cai Y, Chen Y, Pan S. Alpha­2 Agonists for Long­Term Sedation During 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

68.  69.  70.  71.  72.  73.  74.  75.  76.  77.  78.  79.  80.  81.  82.  83.  84.  85.  86.  87.  88.  89. 

90. 

Mechanical Ventilation in Critically Ill Patients. Cochrane Database Syst Rev. 2015;6(1):CD010269.  Azoulay E, Lemiale V, Mokart D, Pène F, Kouatchet A, Perez P, et al. Acute respiratory distress  syndrome in patients with malignancies. Intensive Care Med. 2014;40(8):1106–14.  Tobias JD, Berkenbosch JW. Initial experience with dexmedetomidine in paediatric­aged patients.  Paediatr Anaesth. 2002;12(2):171–5.  Lam JE, Lin EP, Alexy R, Aronson LA. Anesthesia and the pediatric cardiac catheterization suite: a  review. Paediatr Anaesth. 2015;25(4):127–34.  Kadam S, Tailor K, Kulkarni S, Mohanty S, Joshi P, Rao S. Effect of dexmeditomidine on  postoperative junctional ectopic tachycardia after complete surgical repair of tetralogy of Fallot: A  prospective randomized controlled study. Ann Card Anaesth. 2015;18(3):323–8.  Tobias JD. Dexmedetomidine: Applications in pediatric critical care and pediatric anesthesiology.  2007;8(2):115–31.  Mahmoud M, Mason KP. Dexmedetomidine: Review, update, and future considerations of paediatric  perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115(2):171–82.  Koroglu A, Teksan H, Sagir O, Yucel A, Toprak HI, Ersoy OM. A comparison of the sedative,  hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing  magnetic resonance imaging. Anesth Analg. 2006;103(1):63–7.  Heard C, Burrows F, Johnson K, Houck J. A Comparison of Dexmedetomidine­Midazolam with  Propofol for Maintenance of Anesthesia in Children Undergoing Magnetic Resonance Imaging.  Anesth Analg. 2008;107(6):1832–9.  Boriosi JP, Eickhoff JC, Klein KB, Hollman GA. A retrospective comparison of propofol alone to  propofol in combination with dexmedetomidine for pediatric 3T MRI sedation. Paediatr Anaesth.  2017;27(1):52–9.  Czaja AS, Zimmerman JJ. The use of dexmedetomidine in critically ill children. Pediatr Crit Care Med. 2009;10(3):381–6.  Pestieau SR, Quezado ZMN, Johnson YJ, Anderson JL, Cheng YI, McCarter RJ, et al. High­dose  Dexmedetomidine increases the opioid­free interval and decreases opioid requirement after  tonsillectomy in children. Can J Anesth. 2011;58(6):540–50.  Plambech MZ, Afshari A. Dexmedetomidine in the pediatric population: a review. Minerva Anestesiol.  2015;81(3):320–32.  Tobias JD, Berkenbosch JW. Sedation during mechanical ventilation in infants and children:  dexmedetomidine versus midazolam. South Med J. 2004;97(5):451–5.  Grant MJC, Schneider JB, Asaro LA, Dodson BL, Hall BA, Simone SL, et al. Dexmedetomidine Use  in Critically Ill Children With Acute Respiratory Failure. Pediatr Crit Care Med. 2016;17(12):1131–41.  Venkatraman R, Hungerford JL, Hall MW, Moore­Clingenpeel M, Tobias JD. Dexmedetomidine for  Sedation During Noninvasive Ventilation in Pediatric Patients. Pediatr Crit Care Med.  2017;18(9):831–7.  Chrysostomou C, Schulman SR, Herrera Castellanos M, Cofer BE, Mitra S, Da Rocha MG, et al. A  phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm  and term neonates. J Pediatr. 2014;164(2):276–282.e3.  Hauber JA, Davis PJ, Bendel LP, Martyn S V., McCarthy DL, Evans MC, et al. Dexmedetomidine as a Rapid Bolus for Treatment and Prophylactic Prevention of Emergence Agitation in Anesthetized  Children. Anesth Analg. 2015;121(5):1308–15.  Saliski M, Kudchadkar SR, States U. Optimizing Sedation Management to Promote Early Mobilization for Critically Ill Children. J Pediatr Intensive Care. 2015;4(4):188–93.  Oschman A, McCabe T, Kuhn R. Dexmedetomidine for opioid and benzodiazepine withdrawal in  pediatric patients. Am J Heal Syst Pharm. 2011;68(13):1233–8.  Whalen LD, Di Gennaro JL, Irby GA, Yanay O, Zimmerman JJ. Long­Term Dexmedetomidine Use  and Safety Profile Among Critically Ill Children and Neonates. Pediatr Crit Care Med.  2014;15(8):706–14.  Carney L, Kendrick J, Carr R. Safety and Effectiveness of Dexmedetomidine in the Pediatric Intensive Care Unit (SAD­PICU). Can J Hosp Pharm. 2013;66(1):21–7.  Schwartz LI, Twite M, Gulack B, Hill K, Kim S, Vener DF. The Perioperative Use of Dexmedetomidine in Pediatric Patients with Congenital Heart Disease: An Analysis from the Congenital Cardiac  Anesthesia Society­Society of Thoracic Surgeons Congenital Heart Disease Database. Anesth Analg. 2016;123(3):715–21.  Vet N, Kleiber N, Ista E, de Hoog M, de Wildt S. Sedation in Critically ill Children with Respiratory 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

91.  92.  93.  94.  95.  96.  97.  98.  99.  100.  101.  102.  103.  104.  105.  106.  107.  108.  109. 

Failure. Front Pediatr. 2016;24(4):89.  Lam F, Bhutta AT, Tobias JD, Gossett JM, Morales L, Gupta P. Hemodynamic effects of  dexmedetomidine in critically ill neonates and infants with heart disease. Pediatr Cardiol.  2012;33(7):1069–77.  Hasegawa T, Oshima Y, Maruo A, Matsuhisa H, Tanaka A, Noda R. Dexmedetomidine in  combination with midazolam after pediatric cardiac surgery. Asian Cardiovasc Thorac Ann.  2015;23(7):802–8.  Simsek M, Bulut MO, Ozel D, Yucel IK, Aykac Z. Comparison of sedation method in pediatrics  cardiac catheterization. Eur Rev Med Pharmacol Sci. 2016;20(8):1490–4.  Abbas S., Rashid A, Latif H. Sedation for children undergoing cardiac catheterization: A review of  literature. J Pak Med Assoc. 2012;62(2):159–63.  Chrysostomou C, Sanchez­de­toledo J, Wearden P, Malley EO, Shiderly D, Haney J. Perioperative  use of dexmedetomidine is associated with decreased incidence of ventricular and supraventricular  tachyarrhythmias after congenital cardiac operations. Ann Thorac Surg. 2011;92(3):964–72.  Su F, Nicolson SC, Zuppa AF. A dose­response study of dexmedetomidine administered as the  primary sedative in infants following open heart surgery. Pediatr Crit care Med. 2013;14(5):499–507.  Su F, Nicolson S, Gastonguay M, Barrett J, Adamson P, Kang D, et al. Population Pharmacokinetics  of Dexmedetomidine in Infants After Open Heart Surgery. Anesth Analg. 2010;110(5):1383–92.  Chrysostomou C, Di Filippo S, Manrique A­M, Schmitt CG, Orr R a, Casta A, et al. Use of  dexmedetomidine in children after cardiac and thoracic surgery. Pediatr Crit care Med.  2006;7(2):126–31.  Takahashi Y, Ueno K, Ninomiya Y, Eguchi T, Nomura Y, Kawano Y. Potential risk factors for  dexmedetomidine withdrawal seizures in infants after surgery for congenital heart disease. Brain Dev. 2016;38(7):648–53.  Tobias JD. Dexmedetomidine: are tolerance and withdrawal going to be an issue with long­term  infusions? Pediatr Crit Care Med. 2010;11(1):158–60.  Darnell C, Steiner J, Szmuk P, Sheeran P. Withdrawal from multiple sedative agent therapy in an  infant: is dexmedetomidine the cause or the cure? Pediatr Crit care Med. 2010;11(1):e1–3.  Hosokawa K, Shime N, Kato Y, Taniguchi A, Maeda Y, Miyazaki T, et al. Dexmedetomidine sedation  in children after cardiac surgery. Pediatr Crit Care Med. 2010;11(1):39–43.  Pan W, Wang Y, Lin L, Zhou G, Hua X, Mo L. Outcomes of dexmedetomidine treatment in pediatric  patients undergoing congenital heart disease surgery: A meta­Analysis. Paediatr Anaesth.  2016;26(3):239–48.  Su X, Meng Z­T, Wu X­H, Cui F, Li H­L, Wang D­X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non­cardiac surgery: a randomised, double­blind, placebo­controlled trial.  Lancet. 2016;6736(16):1–10.  Välitalo PA, Ahtola­Sätilä T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C. Population  pharmacokinetics of dexmedetomidine in critically Ill patients. Clin Drug Investig. 2013;33(8):579–87.  Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade M, Roberts BL, et al. Clinical application, the  use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40–50.  Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more  than 24 hours in critically ill patients: Sedative and cardiovascular effects. Intensive Care Med.  2004;30(12):2188–96.  Hall JE, Uhrich TD, Barney J a, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of  small­dose dexmedetomidine infusions. Anesth Analg. 2000;90(3):699–705.  Venn RM, Hell J, Grounds RM. Respiratory effects of dexmedetomidine in the surgical patient  requiring intensive care. Crit Care. 2000;4(5):302–8. 

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Table 1 – Pediatric patients requiring Non-Operating Room Anesthesia Not painful Painful Note

Dexmedetomidine loading dose: 0.5-1 g/Kg in 10 min, possibly associated with midazolam 0.1-0.2 mg/Kg; then continuous infusion: 0.5-1 g/Kg/min Dexmedetomidine loading dose: 0.5-2 g/Kg in 10 min + ketamine 2 mg/Kg (or fentanyl 2 g/Kg) repeatable. Then dexmedetomidine continuous infusion: 0.5-3 g/Kg/h. Note: pay attention to cardiovascular adverse effects like bradycardia and hypotension. Reduce the dose if any of these occur.

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

Figure 1 - Posology scheme for dexmedetomidine administration depending of patients’ baseline neurologic and hemodynamic characteristics.

COPYRIGHT© EDIZIONI MINERVA MEDICA

Figure 2 – Patients requiring sedation in pediatric ICU or pediatric cardiac ICU. before and during sedation with dexmedetomidine at any time.

110

Pain should be managed

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

COPYRIGHT© EDIZIONI MINERVA MEDICA

This document is protected by international copyright laws. No additional reproduction is authorized. It is permitted for personal use to download and save only one file and print only one copy of this Article. It is not permitted to make additional copies (either sporadically or systematically, either printed or electronic) of the Article for any purpose. It is not permitted to distribute the electronic copy of the article through online internet and/or intranet file sharing systems, electronic mailing or any other means which may allow access to the Article. The use of all or any part of the Article for any Commercial Use is not permitted. The creation of derivative works from the Article is not permitted. The production of reprints for personal or commercial use is not permitted. It is not permitted to remove, cover, overlay, obscure, block, or change any copyright notices or terms of use which the Publisher may post on the Article. It is not permitted to frame or use framing techniques to enclose any trademark, logo, or other proprietary information of the Publisher.

Figure 3 – Protocol of transition from propofol sedation regimen.

Suggest Documents