Open Access
Case report
A rare case of neuroleptic malignant syndrome presenting with serious hyperthermia treated with a non-invasive cooling device: a case report Christian Storm1*, Rolf Gebker2, Anne Krüger1, Lutz Nibbe1, Joerg C Schefold1, Frank Martens1 and Dietrich Hasper1 Addresses: 1Department of Nephrology and Medical Intensive Care, Charité - Campus Virchow, Universitätsmedizin Berlin, Germany and 2Berlin Heart Centre, Department of Cardiology, Berlin, Germany Email: CS* -
[email protected]; RG -
[email protected]; AK -
[email protected]; LN -
[email protected]; JS -
[email protected]; FM -
[email protected]; DH -
[email protected] * Corresponding author
Received: 15 May 2008 Accepted: 18 November 2008 Published: 19 February 2009 Journal of Medical Case Reports 2009, 3:6170 doi: 10.4076/1752-1947-3-6170 This article is available from: http://jmedicalcasereports.com/jmedicalcasereports/article/view/6170 © 2009 Storm et al; licensee Cases Network Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract Introduction: A rare side effect of antipsychotic medication is neuroleptic malignant syndrome, mainly characterized by hyperthermia, altered mental state, haemodynamic dysregulation, elevated serum creatine kinase and rigor. There may be multi-organ dysfunction including renal and hepatic failure as well as serious rhabdomyolysis, acute respiratory distress syndrome and disseminated intravascular coagulation. The prevalence of neuroleptic malignant syndrome is between 0.02% and 2.44% for patients taking neuroleptics and it is not necessary to fulfil all cardinal features characterizing the syndrome to be diagnosed with neuroleptic malignant syndrome. Because of other different life-threatening diseases matching the various clinical findings, the correct diagnosis can sometimes be hard to make. A special problem of intensive care treatment is the management of severe hyperthermia. Lowering of body temperature, however, may be a major clinical problem because hyperthermia in neuroleptic malignant syndrome is typically unresponsive to antipyretic agents while manual cooling proves difficult due to peripheral vasoconstriction. Case presentation: A 22-year-old Caucasian man was admitted unconscious with a body temperature of 42°C, elevated serum creatine phosphokinase, tachycardia and hypotonic blood pressure. In addition to intensive care standard therapy for coma and shock, a non-invasive cooling device (Arctic Sun 2000®, Medivance Inc., USA), originally designed to induce mild therapeutic hypothermia in patients after cardiopulmonary resuscitation, was used to lower body temperature. After successful treatment it became possible to obtain information from the patient about his recent ambulant treatment with Olanzapin (Zyprexa®) for schizophrenia. Conclusion: Numerous case reports have been published about patients who developed neuroleptic malignant syndrome due to Olanzapin (Zyprexa®) medication. Frequently hyperthermia has been observed in these cases with varying outcomes. In our case the only residual impairment for the patient is dysarthria with corresponding symmetric cerebellar pyramidal cell destruction demonstrated by increased signal intensity in T2-weighted magnetic resonance imaging, most likely caused by the excessive hyperthermia.
Page 1 of 5 (page number not for citation purposes)
Journal of Medical Case Reports 2009, 3:6170
http://jmedicalcasereports.com/jmedicalcasereports/article/view/6170
Introduction The common application of atypical neuroleptics such as Olanzapin (Zyprexa®) is the treatment of schizophrenia or severe bipolar disorders. Neuroleptic malignant syndrome (NMS) is an uncommon side effect of neuroleptics, independent of the dosage and duration of drug therapy [1,2]. The main clinical findings are hyperthermia, altered mental state, haemodynamic dysregulation, elevated serum creatine kinase and rigor, but not all findings must necessarily occur together [2,3]. Intensive care therapy is necessary because of the life-threatening symptoms. Treatment mainly involves withdrawal of the causative agent and supportive care. Rapid lowering of body temperature is necessary once it reaches 40°C or above, since prognosis is not only related to maximum body temperature but also to duration of hyperthermia. It is reported that hyperthermia can cause brain lesions, especially in the cerebellum, although the mechanism is not fully clarified [2,4-6]. Furthermore, there is a known discrepancy between the measured central (rectal, oesophageal) temperature and the brain temperature which is often higher. Therefore, there is a need for aggressive manual cooling with cold blankets and ice water although efficacy of these measures may be limited by cutaneous vasoconstriction, which diminishes the capacity for heat loss. Therefore, in some cases extracorporeal cooling is necessary. In this case presentation, the Arctic Sun 2000® cooling device was used to treat the patient’s hyperthermia. To our knowledge this is the first time Arctic Sun 2000® has been used in a case of NMS for the treatment of excessive hyperthermia.
Case presentation A 22-year-old male Caucasian patient was admitted to our intensive care unit (ICU) after he was found on the street in a condition of fluctuating awareness with aggressive behaviour changing to somnolence. He had low blood pressure, tachycardia and laboured respiration. Because of his fluctuating awareness it was impossible to obtain any history from the patient when he was brought to the ICU by the rescue service. On admission, the patient had a Glasgow coma scale (GCS) of six and because of respiratory insufficiency, intubation and mechanical ventilation was immediately necessary. Only intravenous agents were used for sedation (Fentanyl, Midazolam and Etomidate). Furthermore, he was haemodynamically unstable with a shock index of two. He presented with mild muscle rigidity and an excessive, elevated body temperature of 42°C. He carried no personal documents and there was no possibility of identifying the patient or of acquiring any information about his prior medical history. Because antipyretic drugs had no effect on the severe state of hyperthermia we quickly decided to use the noninvasive Arctic Sun 2000® cooling device (Arctic Sun
2000®, Medivance Inc., USA) in order to lower his dangerous temperature. This system originally was designed to induce mild therapeutic hypothermia in patients after cardiopulmonary resuscitation. The water flushed energy transfer pads were pasted onto the patient’s skin and the Arctic Sun 2000® was used in the manual mode by controlling the flushed water temperature. The heat transfer and cooling performance of the system is induced by direct conduction and approximates the performance of water immersion by providing high energy transfer. The water temperature inside the energy transfer pads was set to 10°C and the target temperature of 38.5°C was reached after 120 minutes. For online temperature monitoring computer based monitoring software was used. Adjunctive drug therapy during the cooling therapy was sedation with a benzodiazepine (Midazolam) and an opioid (Fentanyl); however muscle relaxants were not administered. The patient presented initially only with mild muscle rigidity and had no tremor. Thus, we decided to start aggressive symptomatic therapy. Dantrolene was discussed as a further possible option in case symptomatic therapy did not improve the patient’s condition. The laboratory results on admission are given in Table 1. A toxicological screening test was performed on his blood and urine, showing in both only a cannabis metabolite and the benzodiazepine used for sedation. Because of hyperthermia of unknown origin, a cerebral computed tomography (CT) scan and a lumbar puncture were carried out to exclude, on the one hand, any cause of infection and, on the other hand, a cerebral cause for decreased awareness and autonomic dysregulation. The cerebral CT scan and the cerebrospinal fluid analysis showed no pathology explaining the patient’s condition. Because of massive rhabdomyolysis, the patient rapidly developed acute renal failure with a need for haemodialysis. An interesting observation was that the hyperthermia was not influenced
Table 1. Laboratory results on admission Value
Result
Range
Unit
Lactatdehydrogenase Aspartat-aminotransferase Alanin-aminotransferase pH pCO2 pO2 HCO3SBE Lactate Haemoglobin Glucose Sodium Potassium ScvO2
2020 785 157 7.27 42 610 19 -8 5.8 18.7 6.9 148 4.5 59
[