A review of internal combustion engine combustion ...

47 downloads 3367 Views 743KB Size Report
major center of engine research has codes of this type operational, and most have been reported at SAE during the last three years. just described dependsĀ ...
f

,

AIAA-84-1316 A Review of Internal Combustion Engine Combustion Chamber Process Studies at NASA Lewis Research Center Harold J. Schock, NASA Lewis Research Center, Cleveland, OH

Downloaded by Jose Gros-Aymerich on May 30, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.1984-1316

i

AIAA/SAE/ASME 20th Joint Propulsion Conference June 11-13, 1984/Cincinnati, Ohio Y

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 1633 Broadway, New York, NY 10019

NASA Technical Memorandum 83666 AIM-84- 1316

Downloaded by Jose Gros-Aymerich on May 30, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.1984-1316

r

A Review of Internal Combustion Engine Combustion Chamber Process Studies at NASA Lewis Research Center

u

Harold J. Schock Lewis Research Center Cleveland, Ohio

Prepared for the Twentieth Joint Propulsion Conference cosponsored by the AIAA, SAE, and ASME Cincinnati, Ohio, June 11-13, 1984

NASA

A REVIEW OF INTERNAL COMBUSTION ENGINE COMBUSTION CHAMBER PROCESS STUDIES AT NASA LEWIS RESEARCH CENTER H a r o l d J . %hock* N a t i o n a l Aeronautics and Space A d m i n i s t r a t i o n Lewis Research Center Cleveland, Ohio 44135

L

Abstract

a r e numerical s t u d i e s o r experiments which a r e This type o f study i s not d i s system-related. cussed i n t h i s r e p o r t , b u t i t would i n c l u d e e n g i n e l t u r b o c h a r g e r o r engine s y s t e m l p l a n e l f l i g h t analysis studies.

Downloaded by Jose Gros-Aymerich on May 30, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.1984-1316

.I

T h i s paper d e s c r i b e s work underway a t NASA Lewis Research Center whose o b j e c t i v e i s t o determine t h e i n - c y l i n d e r a i r f l o w c h a r a c t e r i s t i c s o f r o t a r y and p i s t o n engines. Experience has shown t h a t performance of i n t e r n a l combustion s t r a t i f i e d - c h a r g e engines i s h i g h l y dependent on t h e i n - c y l i n d e r f u e l - a i r m i x i n g processes o c c u r r i n g i n these engines. R e s u l t s showing t h e o u t p u t of m u l t i - d i m e n s i o n a l models, l a s e r v e l o c i m e t r y measurements and t h e a p p l i c a t i o n of a u n i q u e h o l o g r a p h i c o p t i c a l element are des c r i b e d . Models which s i m u l a t e t h e f o u r - s t r o k e c y c l e and s e a l dynamics of r o t a r y engines a r e a l s o described.

The macroscopic p r e d i c t i o n s i n c l u d e thermodynamic o r quasi-dimensional models. These models attempt t o s i m u l a t e t h e processes o c c u r r i n g i n t h e combustion chamber o f an engine w i t h o u t modeling t h e a c t u a l p h y s i c a l d e t a i l s of each process. Thermodynamic models can v a r y a g r e a t d e a l i n c o m p l e x i t y . They can be h i g h l y i d e a l i zed process models, which i n c l u d e assumptions such as c o n s t a n t volume heat a d d i t i o n , r e v e r s i b l e compression and expansion, and zero heat l o s s e s o r complex c y c l e analyses which have been r e f i n e d over many years, An e ample of t h e l a t t e r i s g i v e n b y t h e MIT group where i t has used experimental pressure-crank angle h i s t o r i e s t o deduce t h e r a t e a t which f u e l i s burned i n a l i g h t l y loaded s t r a t i f i e d - c h a r g e engine. The o b j e c t o f t h a t p a r t i c u l a r s t u d y was t o analyze t h e causes o f hydrocarbon emission mechanisms i n d i r e c t l y i n j e c t e d s p a r k - i g n i t i o n engines. Every m a j o r c e n t e r of engine r e s e a r c h has codes of t h i s t y p e o p e r a t i o n a l , and most have been r e p o r t e d a t SAE d u r i n g t h e l a s t t h r e e y e a r s .

Introduction

f

I n t e r n a l combustion (I.C.) engine o p t i m i z a t i o n has been underway f o r w e l l over 100 years. I t has n o t been u n t i l t h e l a s t 10 y e a r s t h a t t o o l s have been a v a i l a b l e t o p e r f o r m t h e i n - s i t u s t u d i e s necessary t o g a i n a fundamental unders t a n d i n g o f t h e processes o c c u r r i n g i n t h e engines o f i n t e r e s t . Two devices which have reached t h e l e v e l of r e f i n e m e n t necessary t o s t u d y t h e processes which occur d u r i n g combust i o n i n t h e s e engines a r e t h e l a s e r and t h e high-speed d i g i t a l computer. \i

The u s e f u l n e s s o f t h e thermodynamic models j u s t d e s c r i b e d depends h e a v i l y on t h e a v a i l a b i l i t v o f h i a h a u a l i t v Dressure data. v a l v e f l o w

Understanding t h e fundamental d e t a i l s of a i r f l o w and f u e l p y r o l y s i s i n an i n t e r n a l comb u s t i o n engine w i l l l e a d t o t h e development of engines w i t h h i g h e f f i c i e n c y , l o n g l i f e , and good power-to-weight r a t i o c h a r a c t e r i s t i c s . Designs which a r e o p t i m i z e d f o r manufacturing economy can a l s o be considered, once s u i t a b l e p r e d i c t i v e codes have been developed. T h i s paper d e s c r i b e s t h e research e f f o r t underway i n t h e I n t e r m i t t e n t Combustion Engine Branch a t NASA Lewis Research Center f o r understanding t h e corn- b u s t i o n processes o c c u r r i n g i n these engines.

measure i n d i c a t e d mean e f f e c t i v e p r e s s u r e on a T h i s a l l o w s one t o examine r e a l - t i m e basis.2 c y c l e - t o - c y c l e v a r i a b i l i t y , as w e l l as enginedependent i n t a k e and exhaust m a n i f o l d characteristics. M i c r o s c o p i c a n a l y s i s , i n theory, o f f e r s t h e p o t e n t i a l o f understanding t h e d e t a i l s of t h e combustion process i n engines o f i n t e r e s t . The p h y s i c a l processes o f importance are a i r motion, t u r b u l e n c e l e v e l , f u e l m i x i n g and evaporation, combustion, and heat t r a n s f e r . The boundary c o n d i t i o n s a t t h e i n t a k e and exhaust v a l v e s a r e of p a r t i c u l a r importance t o t h e s i m u l a t i o n and a r e p a r t i c u l a r l y d i f f i c u l t t o determine. The engine f l o w s of i n t e r e s t are three-dimensional i n n a t u r e , and a f i n e g r i d system i s r e q u i r e d t o r e s o l v e t h e f l o w d e t a i l s o f importance. A t h r e e dimensional s i m u l a t i o n o f t h e f o u r - s t r o k e c y c l e would i n c l u d e submodels such as a t u r b u l e n c e model, d e t a i l e d f u e l spray and m i x i n g models, m u l t i - s t e p k i n e t i c s , and a g r i d s i z e s m a l l enough t o r e s o l v e t h e i m p o r t a n t f l o w d e t a i l s near t h e surfaces. A coded model of t h i s t y p e would r e q u i r e a computational t i m e on t h e o r d e r of 100 CPU hours, even on t h e f a s t e s t a v a i l a b l e machine today such as a CRAY I.

Background The f o l l o w i n g b r i e f d i s c u s s i o n i s i n t e n d e d t o g i v e those who a r e n o t i n v o l v e d i n t h i s a c t i v i t y a f e e l i n g f o r t h e c u r r e n t s t a t u s of i n c y l i n d e r I . C . engine research. T h i s i s a l s o g i v e n t o s e t t h e stage f o r a d e s c r i p t i o n o f t h e I n t e r m i t t e n t Combustion Engine Branch's b a s i c research e f f o r t and a d e s c r i p t i o n o f t h e p h i l o s ophy upon which t h i s e f f o r t i s based.

I . C . engine i n - c y l i n d e r process s t u d i e s can be c a t e g o r i z e d as experimental o r as a numerical s i m u l a t i o n , and t h e a n a l y s i s can be e i t h e r macroscopic o r microscopic. E q u a l l y i m p o r t a n t but not included i n t h i s type o f c l a s s i f i c a t i o n

*

Aerospace Engineer

v Copyright 0 American ln~tilute of Aeronautic8 and Astronautics, Ine.. 1984. Ail righls reicrvtd.

This pap~risdeel.redaworkof the U.S. Government and IherDforeisinthepubliedomain.

1

A t t h i s time, n o t enough i n f o r m a t i o n i s known about t h e accuracy o f each submodel t o warrant assembling a code o f t h i s magnitude. The complex i n t e r a c t i o n o f f u e l sprays w i t h s u r r o u n d i n g a i r and t h e mode of v a p o r i z a t i o n and o x i d a t i o n o f m u l t i - d i m e n s i o n a l s p r a y i n a steady environment i s n o t w e l l understood a t t h i s t i m e . The d e t a i l e d modeling o f t h e combustion o f f u e l sprays i n a h i g h l y unsteady engine environment i s even more complicated.

The f u l l - f l o w f i e l d models j u s t d i s c u s s r d o f f e r t h e p o t e n t i a l o f q a i n i n g a fundamental u n d e r s t a n d i n g o f processes which occur i n an i n t e r n a l combustion engine. A t t h i s p o i n t , Iprc-. d i c t i v e codes a r e n o t i n good agreement w i t h measured r e s u l t s . The development o f these cntlrs w i l l deoend on v e r v c a r e f u l exoeriments f o r c o n & ~,~ parison with predicted results. A further d i r c u s s i o n on t h e p r e s e n t s t a t u s o f f l o w f i e l d modeling i s d e f e r r e d u n t i l t h e end o f t h i s S P C t i o n . Experimental techniques used f o r l o c a l i n - c y l i n d e r a n a l y s i s and model v e r i f i c a t i o n a r r now b r i e f l y discussed.

Downloaded by Jose Gros-Aymerich on May 30, 2015 | http://arc.aiaa.org | DOI: 10.2514/6.1984-1316

~

L

One of t h e most i m p o r t a n t m i c r o s c o p i c n l e d i urements i n use a t t h e p r e s e n t t i m e i s Laser Doppler V e l o c i m e t r y (LDV). Laser v e l o c i i n e t r y a l l o w s one t o make n o n - i n t r u s i v e v e l o c i t y m r a s urements i n t h e combustion chamber o f an o p r r i t i n q engine. The a b i l i t y t o make c y c l e r e s o l v i v i v e l o c i t y measurements r e q u i r e s c o n f i g u r a t i o n n f LDV systems which w i l l p r o v i d e h i g h d a t a c o u n t i n q r a t e s and a l s o computer systems which would p r o v i d e h i g h d a t a t r a n s f e r r a t e s . Other n o n i n t r u s i v e , and q e n e r a l l y laser-based techniques, a l l o w f o r measurement o f l o c a l temperatures, f u e l l s i r combustion p r o d u 5 t jiomgositions, b u r n i n g r a t e s , and flame speed. 3 3 A f i r s t step f o r u n d e r s t a n d i n g t h e s e processes i s t h e a b i l i t y t.n p e r f o r m f l o w v i s u a l i z a t i o n s . As e a r l y as 1871 N i c h o l a s O t t o b u i l t a g l a s s c y l i n d e r engine' which was hand cranked: however, most f l o w v i c r r a l i z a t i o n s i n p i s t o n engines have r e l i e d on t h c use o f f l a t windows t o s t u d y f l a m e p r o p a g a t i n n and combustion. I n t h e e a r l y 1 9 4 0 ' s . an import a n t f l o w v i s u a l i z a t i o n t u d y o f knock was r e p o r t e d b y C. D. M i l l e r ? , u s i n g a r o t a t i n g p r i s m camera which he designed. T h i s camera was capable o f f r a m i n g r a t e s t o 200,000 frames p r r second. Present day cameras based on t h e M i l l e r p r i n c i p l e a l l o w one t o make photographs a t f r a m i n g r a es g r e a t e r than 2.5 m i l l i o n frames p e r M i l l e r b e l i e v e s t h a t t h i s framing second r a t e would be s u f f i c i e n t t o observe t h e s a l i e n t f e a t u r e s o f knock i n an I . C . engine.9 Geometr i c a l c o n s i d e r a t i o n s have impeded f l o w v i s u a l i r a t i o n s t y d i e s i n f i r i n g p i s t o n engines. R e c e n t l y Richrnanl" r e p o r t e d on t h e development o f a t r a n s p a r e n t c y l i n d e r engine f o r f l u i d mechanics research. He demonstrated t h a t h o l o g r a p h i c o p t i c a l elements can be used as an a b e r r a t i o n c o r r e c t o r i n a piston-cylinder, schlieren flow v i s u a l i z a t i o n system. The s c h l i e r e n t e c h n i q u c produces s p a t i a l averaged d e n s i t y g r a d i e n t i n f o r m a t i o n . For c o m p l i c a t e d f l o w s such as those t h a t o c c u r w i t h i n an engine, t h i s t y p e o f i n f o r m a t i o n i s d i f f i c u l t t o i n t e r p r e t and compare w i t h model p r e d i c t i o n s .

A.

~~

~~

Most groups working on engine r e s e a r c h havc r e c o g n i z e d t h e importance o f f u l l - f l o w f i e l d models, and numerous r e s e a r c h e r s have publishPC

the- r e s u l t s of t h e i r work. A f a i r l y complete l i s t o f these p u b l i c a t i o n s can be foun I n t h e r p f e r e n c e s e c t i o n o f a r e p o r t b y Shih. ? I ' The m u l t i - d i m e n s i o n a l modeling e f f o r t underw a y a t t h e I m p e r i a l C o l l e g e has been t h e most

e x t i v s i v e one t o date. Recently, t h e y presented t h e r i i s u l t s of a three-dimensional a i r f l o w simul a t i o n u s i n a a K-E t u r b u l e n c e model t o c l o s e t h e ensrmbl e averaged c o n s e r v a t i o n equations. l2 Thc I m p e r i a l C o l l e g e group has a l s o made extensi"