a summary textbook for physics of classical

12 downloads 0 Views 821KB Size Report
When an object moves in a straight line and in one direction only , then this object ... explain whether both cars have the same velocity or not . ... Basically in a linear relationship the slope is constant to explain this phenomena look at the.
A SUMMARY TEXTBOOK FOR PHYSICS OF CLASSICAL MECHANICS 101

Written by Waleed Sh. Abu Khader Reviewed by Saleem Abdo

University of Jordan School of Engineering First Edition 2015

Contents Chapter 2 : Motion in One Dimension 2.1 Distance and Displacement

2

2.2 Velocity

3

2.3 Acceleration

4

2.4 Time Relationships

5

2.5 Motion Description

14

2.6 Constant Acceleration

15

Problems

17

Chapter Two : Motion in One Dimension

2.1 Distance and Displacement Displacement Magnitude Direction

Distance Magnitude No direction

= ๐’™๐’‡ โˆ’ ๐’™๐’Š or ๐’š๐’‡ โˆ’ ๐’š๐’Š

โˆ‘ ๐’… = ๐’…๐Ÿ + ๐’…๐Ÿ + ๐’…๐Ÿ‘ + โ‹ฏ + ๐’…๐’

โˆ†๐’™ ๐’๐’“โˆ†๐’š

๐’…

Example 2.1.1 : A car moves in the shown pattern calculate the distance and displacement when it moves from : ๐‘… +๐‘ฆ a) A to B . b) A to the center to B back to A moving in a straight line .

๐ต

+๐‘ฅ

๐ด

a) Distance = ๐Ÿ๐…๐‘นโ„๐Ÿ โ€ซู†ุตู ู…ุญูŠุท ุงู„ุฏุงุฆุฑุฉโ€ฌ Displacement = โˆ’๐Ÿ๐‘น = ๐Ÿ๐‘น (โˆ’๐’Šฬ‚ ) b) Distance = ๐Ÿ(๐Ÿ๐‘น) = ๐Ÿ’๐‘น Displacement = ๐’›๐’†๐’“๐’

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

2|Page

Remarks : -

When an object moves in a straight line and in one direction only , then this object has the same displacement and distance . โˆ†๐’™ = โˆ‘ ๐’… only in this case .

-

In general : ( โˆ†๐’™๐‘จ๐‘ฉ = ๐’™๐’‡ โˆ’ ๐’™๐’Š โ†’ ๐’…๐’Š๐’”๐’‘๐’๐’‚๐’„๐’†๐’Ž๐’†๐’๐’• ) and ( โˆ‘ ๐’… = ๐’…๐Ÿ + ๐’…๐Ÿ โ†’ ๐’…๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ) as for the figure shown at the bottom : ๐‘‘2 ๐‘ฅ๐‘“

โˆ†๐‘ฅ

๐‘‘1

๐‘ฅ๐‘–

๐ด

๐ถ

๐ต

1.2

Velocity

Average velocity : The total displacement moved by an object divided by the time passed to move this displacement . A quantity that has a magnitude and direction . ฬ…= ๐‘ -

โˆ†๐’™ โˆ†๐’•

If the term is positive this indicates that the displacement is > ๐ŸŽ . If the term is negative this indicates that the displacement is < ๐ŸŽ .

Examlple 2.2.1 : A book has moved from point ( ๐‘จ ) to point ( ๐‘ฉ ) as shown in the figure during a period of time ( ๐Ÿ. ๐Ÿ‘ ๐’” ) , determine the average velocity of the book . +๐‘ฆ

โƒ—๐‘ =

1.8 ๐‘š ๐ด

๐ต

+๐‘ฅ

=

โˆ†๐’™ โˆ†๐’•

โˆ’๐Ÿ. ๐Ÿ– ๐Ÿ. ๐Ÿ‘

= โˆ’๐ŸŽ. ๐Ÿ•๐Ÿ– ๐’Ž/๐’”

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

3|Page

The negative sign indicates that the direction of the velocity is directed to the left ( in the direction of the negative x-axis ) as shown in the figure .

Example 2.2.2 : A car ( ๐‘ฟ ) moves with ( โˆ’ ๐Ÿ๐Ÿ“ ๐’Ž/๐’” ) and another car ( ๐’€ ) moves with ( ๐Ÿ๐Ÿ“ ๐’Ž/๐’” ) , explain whether both cars have the same velocity or not . ๐‘จ๐’๐’” : Both cars have different velocities , despite of the magnitude of their average velocities they have different directions . Furthermore we can say that they have the same speed which has the same magnitude .

2.3 Acceleration โƒ— = ๐’‚

โˆ†๐‘ โˆ†๐’•

Acceleration basically depends on the change of velocity . ๐’Ž = ๐’” = ๐’Ž/๐’”๐Ÿ ๐’”

-

If the term is positive this indicates that the change in velocity is > ๐ŸŽ . If the term is negative this indicates that the change in velocity is < ๐ŸŽ . If the term equals zero this means that there is no change in velocity , in other words [ ๐‘๐’‡ = ๐‘๐’Š ] .

Example 2.3.1 : A particle moves in the ( ๐’™๐’š ) plane as the following path shows : from ( โˆ’๐Ÿ, ๐ŸŽ ) to ( ๐Ÿ“, ๐ŸŽ ) then back to the origin , in a straight line , determine : I. II. III.

The total distance The displacement The average velocity

๐‘‘1 3 ๐‘ ๐‘’๐‘ โˆ’1

0

+๐‘ฅ 5 ๐‘ ๐‘’๐‘

5

๐‘‘2

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

4|Page

l. โˆ‘ ๐’… = ๐’…๐Ÿ + ๐’…๐Ÿ ๐Ÿ” + ๐Ÿ“ = ๐Ÿ๐Ÿ ๐’–๐’๐’Š๐’•๐’” ll. โˆ†๐’™ = ๐’™๐’‡ โˆ’ ๐’™๐’‡ ๐ŸŽ โˆ’ (โˆ’๐Ÿ) = +๐Ÿ ๐’–๐’๐’Š๐’• The positive sign indicates that the displacement is in the direction of the positive x-axis . ฬ…= lll. ๐‘

โˆ†๐’™ โˆ†๐’•

From ( โˆ’๐Ÿ ๐’•๐’ ๐Ÿ“ ) : ๐‘๐Ÿ =

โˆ†๐’™๐Ÿ โˆ†๐’•๐Ÿ

= From ( ๐Ÿ“ ๐’•๐’ ๐’•๐’‰๐’† ๐’๐’“๐’Š๐’ˆ๐’Š๐’ ) : ๐‘๐Ÿ =

๐Ÿ“ โˆ’ (โˆ’๐Ÿ) = ๐Ÿ ๐’–๐’๐’Š๐’•/๐’”๐’†๐’„ ๐Ÿ‘

โˆ†๐’™๐Ÿ โˆ†๐’•๐Ÿ

=

๐ŸŽโˆ’๐Ÿ“ = โˆ’๐Ÿ ๐’–๐’๐’Š๐’•/๐’”๐’†๐’„ ๐Ÿ“

If asked to calculate the average speed : |๐’— ฬ…| = =

โˆ‘๐’… โˆ†๐’•

๐Ÿ๐Ÿ = ๐Ÿ. ๐Ÿ’ ๐’–๐’๐’Š๐’•/๐’”๐’†๐’„ ๐Ÿ‘+๐Ÿ“

2.4 Time relationships In this section you will learn how to deal with graphs during a specific time interval . -

Position โ€“ Time Velocity โ€“ Time Acceleration โ€“ Time

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

5|Page

Starting with the *position time relationship plot . โ€ซุจุดูƒู„ ุนุงู… ุนู†ุฏ ุงู„ุชุนุงู…ู„ ู…ุน ุงู„ุฑุณูˆู… ุงู„ุจูŠุงู†ูŠุฉ ูŠุฌุจ ุงู„ู†ุธุฑ ุงู„ู‰ ู…ุง ุชู…ุซู„ู‡ ุงู„ู…ุญุงูˆุฑ ุจุนุฏ ุฐู„ูƒ ุนู„ูŠูƒ ุชุญุฏูŠุฏ ู…ูŠู„ ุงู„ู…ู†ุญู†ู‰ ุนู†ุฏ ุฃูŠ ู†ู‚ุทุฉโ€ฌ .โ€ซุนู„ู‰ ุงู„ุฎุท ุงู„ู…ุณุชู‚ูŠู… ูˆ ู…ุง ูŠู…ุซู„ู‡ ุงู„ู…ูŠู„ ู…ู† ูƒู…ูŠุฉ ููŠุฒูŠุงุฆูŠุฉโ€ฌ

โˆ†๐‘ฅ

Case #1 ) You can see that at ( ๐’• = ๐ŸŽ ) the moving object was at position ( ๐’™ = ๐ŸŽ ) , which indicates that the object started from rest when it was at ( ๐’™ = ๐ŸŽ ) .

โˆ†๐‘ฅโˆ†๐‘ฅ

Now looking at the slope โˆ†๐’™โ„โˆ†๐’• And that physical quantity has been mentioned in section 2 in this chapter . furthermore if you take a tangent ( โ€ซ ) ู…ู…ุงุณโ€ฌat any point on the line and then calculate the slope of this tangent, you will see that at any point you take it would have the same slope which means same velocity . This condition is called a constant motion that has an acceleration equals to zero because the velocity is constant and does not change with respect to time , this will be explained more in 2.5 . Basically in a linear relationship the slope is constant to explain this phenomena look at the following mathematical derivation : ๐‘ฆ = ๐‘Ž๐‘ฅ + ๐‘ โ€ซู…ุนุงุฏู„ุฉ ุงู„ุฎุท ุงู„ู…ุณุชู‚ูŠู…โ€ฌ a : represent the slope b: represent the y-intercept Assume that at ( ๐’• = ๐ŸŽ ) the y-intercept equals zero ( ๐’™ = ๐ŸŽ ) ฬ…. ๐’• + ๐ŸŽ ๐’™=๐‘ ฬ…= ๐‘

โˆ†๐’™ โˆ†๐’•

๐‘ฅ(๐‘š)

Example 2.4.1 : which of the following is true about each graph : I.

๏ฒ ๐‘๐‘จ > ๐‘๐‘ฉ > ๐‘๐‘ช ๏ฒ ๐‘๐‘จ < ๐‘๐‘ฉ < ๐‘๐‘ช ๏ฒ ๐‘๐‘จ = ๐‘๐‘ฉ = ๐‘๐‘ช

๐ต ๐ถ ๐‘ก (sec)

๐‘จ๐’๐’” โˆถ Since each point has the same slope and happens to be located exactly on the line then they have the same velocity [ ๐‘๐‘จ = ๐‘๐‘ฉ = ๐‘๐‘ช ] .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

6|Page

๐ด

๏ฒ ๐‘๐‘จ = ๐‘๐‘ฉ = ๐‘๐‘ช ๏ฒ ๐‘๐‘จ > ๐‘๐‘ฉ > ๐‘๐‘ช

๐ด

๐‘ฅ (๐‘š )

ll.

๐ถ ๐ต

๏ฒ ๐‘๐‘ฉ > ๐‘๐‘จ > ๐‘๐‘ช

๐‘ก (sec)

๏ฒ ๐‘๐‘ช > ๐‘๐‘จ > ๐‘๐‘ฉ

๐‘จ๐’๐’” โˆถ Its clear that for each line has its own slope so its now time to compare each slope with the other , looking at each axis we can see that the slope here represent ( โˆ†๐’™โ„โˆ†๐’• ) โ‰ก ๐‘ . shown in the figure that slope ( C ) has the largest slope then comes ( A ) and finally ( B ) . [ ๐‘๐‘ช > ๐‘๐‘จ > ๐‘๐‘ฉ ]

Case #2 ) For a non-linear relationship the changes at each point on the curve , since each point has its different slope as shown in the figure we get different in every time period .

slope

velocities

This leads us to a new definition which is called instantaneous velocity : At every certain time ( ๐’• ) we get a certain velocity ( ๐‘๐’• ) according to the slope . Mathematically : For the function shown in the figure ( ๐’™(๐’•) ) , as we take a tangent at ( ๐’• ) we as will are deriving ( โ€ซ ) ู†ุดุชู‚โ€ฌthe function of ( ๐’™(๐’•) ) : (๐’…๐’™โ„๐’…๐’•)|

๐’•=๐’•๐Ÿ

As you can see here if we replace ( ๐’… ) by ( โˆ† ) we get ( โˆ†๐’™/โˆ†๐’• ) which is the velocity at the mentioned time ( ๐’•๐Ÿ ) .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

7|Page

Remarks : -

The slope of the tangent represents here ( ๐‘(๐’•) ) : instantaneous velocity โˆ†๐’™

[ ๐‘(๐’•) = ๐ฅ๐ข๐ฆ โˆ†๐’• ]. ๐’•โ†’๐ŸŽ

-

ฬ… ๐‘จ๐‘ช = If you take the average velocity in consideration here ( ๐‘

โˆ†๐’™ โˆ†๐’•

=

๐’™๐‘ช โˆ’๐’™๐‘จ ๐’•๐‘ช โˆ’๐’•๐‘จ

). The

average velocity is always calculated in a time period since the position โ€“ time relationship is not linear , the slope of the intersection of the curve between two points is the average velocity .

Example 2.4.2 : An object moves according to the graph shown ( position โ€“ time ) relationship . Determine the following : 5

ll. The instantaneous velocity at ( ๐’• = ๐Ÿ‘ ๐’”๐’†๐’„ )

4

x(m)

l. The instantaneous velocity at ( ๐’• = ๐Ÿ ๐’”๐’†๐’„ )

3 2 1

lll. The average velocity between ( ๐’• = ๐Ÿ ๐’”๐’†๐’„ ๐’‚๐’๐’… ๐’• = ๐Ÿ’ ๐’”๐’†๐’„ ) .

0 0

2

4

6

8

6

8

t ( sec )

5

x(m)

4

l. Graphically :

3 2 1

Draw a tangent at ( ๐’• = ๐Ÿ ๐’”๐’†๐’„ )

0

The slope of the tangent represents the instantaneous velocity at ๐’• = ๐Ÿ.

0

2

4

t ( sec )

I prefer the mathematical way for the second degree equation which can be easily obtained from the graph . : The general formula for the second degree equation is : ๐’š = ๐’‚ (๐’™ โˆ’ ๐’‰)๐Ÿ + ๐’Œ Where ( ๐’‰, ๐’Œ ) represents the head coordinates of the parabola . From the graph you can see that ( ๐’‰, ๐’Œ ) = ( ๐Ÿ‘, ๐Ÿ’ ) . Take any point on the parabola [ 0,0 ] for [ x,y ]

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

8|Page

And find the variable [ a ] . the equation is therefore : ๐’š=โˆ’

๐Ÿ’ ๐Ÿ’ (๐’™ โˆ’ ๐Ÿ‘)๐Ÿ + ๐Ÿ’ โ†’โ†’ ๐‘ฟ = โˆ’ (๐’• โˆ’ ๐Ÿ‘)๐Ÿ + ๐Ÿ’ ๐Ÿ— ๐Ÿ—

As you derive this you get ( ๐’—(๐’•) ) So (๐’…๐’™โ„๐’…๐’•)|

๐’•=๐Ÿ

๐Ÿ’

= โˆ’ ๐Ÿ— ร— ๐Ÿ(๐’• โˆ’ ๐Ÿ‘)(๐Ÿ) โ†’ ๐’• = ๐Ÿ ๐‘(๐Ÿ) =

๐Ÿ– ๐’Ž/๐’” ๐Ÿ—

ll. The same as the last question but if you draw a tangent at the head of the parabola the slope will be zero therefore the velocity is zero at this moment . lll. Draw an intersect between these two points as show in the figure : The slope of the intersect gives the average

5 4

try it your self .

x(m)

Velocity .

3 2 1 0 0

2

4

6

t ( sec )

Example 2.4.3 : A particle moves according to this equation : [ ๐’™(๐’•) = ๐’•๐Ÿ โˆ’ ๐Ÿ๐’• ] . l. Find the average velocity from [ ๐’• = ๐Ÿ‘ ๐’•๐’ ๐’• = ๐Ÿ“ ] seconds ll. Find the general equation of the velocity ( ๐‘(๐’•) ) . lll. Find the instantaneous velocity at ( ๐’• = ๐Ÿ ๐’”๐’†๐’„ ) .

ฬ…= l. ๐‘

๐’™๐Ÿ โˆ’๐’™๐Ÿ ๐’•๐Ÿ โˆ’๐’•๐Ÿ

๐’™(๐Ÿ‘) = ๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ ร— ๐Ÿ‘ =๐Ÿ‘๐’Ž ๐’™(๐Ÿ“) = ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ ร— ๐Ÿ“ = ๐Ÿ๐Ÿ“ ๐’Ž

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

9|Page

8

ฬ…= ๐‘

๐’™(๐Ÿ“) โˆ’ ๐’™(๐Ÿ‘) ๐Ÿ“โˆ’๐Ÿ‘ = ๐Ÿ” ๐’Ž/๐’”

๐’…๐’™

ll. ๐’…๐’• = ๐‘(๐’•) ๐‘(๐’•) = ๐Ÿ‘๐’• โˆ’ ๐Ÿ lll. ๐‘(๐Ÿ) ๐‘(๐Ÿ) = ๐Ÿ‘(๐Ÿ) โˆ’ ๐Ÿ = ๐Ÿ’ ๐’Ž/๐’”

Remark : -

Notice from example 2.4.3 that it is not necessary that at ๐’• = ๐Ÿ ๐’”๐’†๐’„ the instanteouse velocity would equal the average velocity for ( โˆ†๐’• = ๐Ÿ ) .

๐œ— (๐‘š/๐‘ 

*Velocity โ€“ Time plot : -

๐œ—โ€ฒ

At ( ๐’• = ๐ŸŽ ) is called the initial velocity . If ๐‘๐’Š = ๐ŸŽ the moving particle is initially at rest . The slope of the line represents the acceleration . The area under the line represents the ๐œ—๐‘– displacement . ๐‘ก๐‘œ Slope = โˆ†๐‘โ„โˆ†๐’• = ๐’…๐‘โ„๐’…๐’• = ๐’‚(๐’•) . ๐’•โ€ฒ Area = โˆซ๐’• ๐‘ ๐’…๐’• = ๐’…๐’Š๐’”๐’‘๐’๐’‚๐’„๐’†๐’Ž๐’†๐’๐’• ๐’๐’„๐’„๐’–๐’“๐’†๐’… ๐’…๐’–๐’“๐’Š๐’๐’ˆ [ ๐’•๐’ โˆ’ ๐’•โ€ฒ ] .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

๐‘กโ€ฒ

๐’

10 | P a g e

๐‘ก (๐‘ )

Example 2.4.4 : A particle is moving according to this equation : ๐‘(๐’•) = ๐Ÿ‘๐’•๐Ÿ โˆ’ ๐Ÿ๐Ÿ Answer the following : I. II. III.

I.

Find The general equation of the acceleration . Assuming that the particle started moving from ( ๐’™ = ๐ŸŽ. ๐Ÿ‘ ) , calculate the displacement after ( ๐Ÿ ๐’Ž๐’Š๐’ ) . Determine when does the object changes its moving direction .

โƒ— (๐’•) = ๐’…๐‘โ„๐’…๐’• ๐’‚ = ๐Ÿ‘(๐Ÿ)๐’• ๐’‚(๐’•) = ๐Ÿ”๐’•

II.

๐’•

๐Ÿ โˆซ๐’• ๐‘ ๐’…๐’• = โˆ†๐’™ ๐Ÿ

๐’•๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ ๐’• + ๐’„ ๐Ÿ‘ ๐’•๐’ ๐’‡๐’Š๐’๐’… ๐’•๐’‰๐’† ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• (๐’„) ๐’‚๐’• ๐’• = ๐ŸŽ โ†’ ๐’™ = ๐ŸŽ. ๐Ÿ‘ =๐Ÿ‘

๐’™(๐ŸŽ) = ๐ŸŽ โˆ’ ๐Ÿ๐Ÿ(๐ŸŽ) + ๐’„ = ๐ŸŽ. ๐Ÿ‘ ๐’„ = ๐ŸŽ. ๐Ÿ‘ The general equation of the displacement : ๐’™(๐’•) = ๐’•๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐’• + ๐ŸŽ. ๐Ÿ‘ To calculate the displacement after 2 minutes you have two options : Method #1 : ๐Ÿ

โˆ†๐’™ = โˆซ ๐Ÿ‘๐’•๐Ÿ โˆ’ ๐Ÿ๐Ÿ ๐’…๐’™ ๐ŸŽ

= โˆ’๐Ÿ๐Ÿ” ๐’Ž

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

11 | P a g e

Method #2 : โˆ†๐’™ = ๐’™๐’‡ โˆ’ ๐’™๐’Š ๐’™๐’Š ๐’Š๐’” ๐’‚๐’• ๐’• = ๐ŸŽ โ†’ ๐ŸŽ. ๐Ÿ‘ ๐’Ž ๐’™๐’‡ ๐’Š๐’” ๐’‚๐’• ๐’• = ๐Ÿ โ†’ ๐’™(๐Ÿ) = ๐Ÿ๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ(๐Ÿ) + ๐ŸŽ. ๐Ÿ‘ โ†’ โˆ’๐Ÿ๐Ÿ“. ๐Ÿ•๐’Ž

โˆ†๐’™ = โˆ’๐Ÿ๐Ÿ“. ๐Ÿ• โˆ’ ๐ŸŽ. ๐Ÿ‘ = โˆ’๐Ÿ๐Ÿ” ๐’Ž

To be able to change the direction of the particle it should stop first then move in other direction .

III.

๐‘(๐’•) = ๐ŸŽ ๐‘(๐’•) = ๐Ÿ‘๐’•๐Ÿ โˆ’ ๐Ÿ๐Ÿ = ๐ŸŽ ๐’• = ๐Ÿ‘ ๐’Ž๐’Š๐’

*Acceleration โ€“ Time plot : -

At any (๐’•) you can determine the acceleration . The area under the line represents the velocity . If the acceleration is constant that means it does not depend on time .

-

Area = โˆซ๐’• ๐’‚ ๐’…๐’• = ๐’‚๐’—๐’†๐’“๐’‚๐’ˆ๐’† ๐’—๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’„๐’„๐’–๐’“๐’†๐’… ๐’‡๐’“๐’๐’Ž [ ๐’•๐’ โˆ’ ๐’•โ€ฒ ] .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

๐’•โ€ฒ ๐’

12 | P a g e

The previous graphs gives you an introduction to the next section , which shows you that when you derive the function of the graph you get the next physical term.

Example 2.4.5 : The acceleration โ€“ time graph for a car starting from rest , is given below . Determine the following : I. II. III.

I.

II.

III.

Draw the velocity โ€“ time graph . Calculate the speed of the car at ( ๐’• = ๐Ÿ‘ ๐’”๐’†๐’„ ) . Calculate the displacement during the first two seconds .

Calculating the area for each interval which represents the velocity :

From the velocity time graph its clear that at ๐’• = ๐Ÿ‘ the velocity equals ๐Ÿ’ ๐’Ž/๐’” ๐‘(๐Ÿ‘) = ๐Ÿ’ ๐’Ž/๐’” The area under the velocity โ€“time graph represents the displacement .

๐‘จ๐’“๐’†๐’‚|๐’‡๐’“๐’๐’Ž (๐ŸŽโˆ’๐Ÿ) = =

๐Ÿ ๐’ƒ๐’‰ ๐Ÿ

๐Ÿ ร—๐Ÿร—๐Ÿ’ ๐Ÿ

โˆ†๐’™ = ๐Ÿ’ ๐’Ž

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

13 | P a g e

Remarks : ๐’…โ„ ๐’…๐’•

-

๐’™โ†’

-

๐’‚โ†’

๐’…โ„ ๐’…๐’•

๐‘โ†’

โˆซ ๐’‚ ๐’…๐’•

๐’‚

โˆซ ๐’— ๐’…๐’•

๐‘โ†’

๐’™

1.5

Motion Description

To describe the motion for the velocity โ€“ time graph , you should determine : -

โ€ซุฅุดุงุฑุฉ ุงู„ุณุฑุนุฉ ุจุญูŠุซ ุงุฐุง ูƒุงู†ุช ููˆู‚ ู…ุญูˆุฑ ุงู„ุฒู…ู† ุชูƒูˆู† ู…ูˆุฌุจุฉ ูˆ ุชุญุชู‡ ุชูƒูˆู† ุณุงู„ุจุฉโ€ฌ โ€ซ ุงุฐุง ูƒุงู† ู…ูŠู„ ุงู„ุฎุท ู…ูˆุฌุจ ุชูƒูˆู† ุฅุดุงุฑุฉ ุงู„ุชุณุงุฑุน ู…ูˆุฌุจุฉ ุงุฐุง ูƒุงู†โ€ฌุŒ โ€ซุฅุดุงุฑุฉ ุงู„ุชุณุงุฑุน ูˆ ุชุญุฏุฏ ู…ู† ุฎุงู„ู„ ู…ูŠู„ ุงู„ู…ุณุชู‚ูŠู…โ€ฌ โ€ซุงู„ู…ูŠู„ ุณุงู„ุจ ุชูƒูˆู† ุฅุดุงุฑุฉ ุงู„ุชุณุงุฑุน ุณุงู„ุจุฉโ€ฌ

Example 2.5.1 :

Time interval

Velocity

Acceleration

Motion

๐ŸŽ โˆ’ ๐Ÿ๐Ÿ“

Positive

Positive

Accelerating

๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ‘๐ŸŽ

Positive

Zero

Constant

๐Ÿ‘๐ŸŽ โˆ’ ๐Ÿ“๐ŸŽ

Positive

Negative

Deceleration

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

14 | P a g e

12 10

velocity (m/min )

8 6 4 2 0 0

2

4

6

8

10

12

-2 -4 -6

Time ( min )

Remarks : -

If the velocity and the acceleration of the moving object has the same sign then the motion of the object is accelerating

-

If the velocity and the acceleration of the moving object has different signs then the motion of the object is decelerating

-

It is a common mistake that most of the students determine the motion of the object according to the sign of the acceleration only . It does not mean that if the sign of the acceleration is negative that the motion is decelerating .

1.6 1 2 3 4

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

Constant acceleration ๐‘๐’‡ = ๐‘๐’Š + ๐’‚ ๐’• ๐‘๐’‡ = ๐‘๐’Š ๐Ÿ + ๐Ÿ ๐’‚ โˆ†๐’™ ๐Ÿ โˆ†๐’™ = ๐‘๐’Š ๐’• + ๐’‚ ๐’•๐Ÿ ๐Ÿ ๐‘๐’Š + ๐‘๐’‡ โˆ†๐’™ = [ ] โˆ†๐’• ๐Ÿ ๐Ÿ

15 | P a g e

These equation are the basics of motion in one dimension with constant acceleration , the idea here to solving problems is that you simply determine what is given in the problem and what is required , to choose the equation to substitute in , the following examples will tell you how . The following clues may help you solve the problem : Initially at rest Stopped moving Started moving with

๐‘๐’Š = ๐ŸŽ ๐‘๐’‡ = ๐ŸŽ ๐’ˆ๐’Š๐’—๐’†๐’ ๐‘

Example 2.6.1 : A car accelerates from ( ๐Ÿ๐ŸŽ ๐’Ž/๐’” ) to ( ๐Ÿ๐ŸŽ ๐’Ž/๐’” ) through ( ๐Ÿ ๐’”๐’†๐’„ ) , calculate its acceleration : โƒ— = ๐’‚

โˆ†๐‘ ๐‘๐’‡ โˆ’ ๐‘๐’Š = โˆ†๐’• โˆ†๐’•

When re-arranging the equation you get equation ( # 1 ) : ๐‘๐’‡ = ๐‘๐’Š + ๐’‚ ๐’• ๐Ÿ๐ŸŽ = ๐Ÿ๐ŸŽ + ๐’‚ ร— ๐Ÿ ๐’‚ = +๐Ÿ“

๐’Ž โ†’ ๐‘๐’‡ > ๐‘๐’Š ๐’”๐Ÿ

Example 2.6.2 : A plane lands on a road with a velocity ( ๐Ÿ๐Ÿ“๐ŸŽ ๐’Œ๐’Ž/๐’‰ ) , having an acceleration of a magnitude ( ๐Ÿ’. ๐Ÿ– ๐’Ž/๐’”๐Ÿ ) , calculate : I. II.

I.

The distance traveled on the road till the plane stopped in meters . The time needed till it stops in seconds .

๐‘๐’‡ ๐Ÿ = ๐‘๐’Š ๐Ÿ + ๐Ÿ ๐’‚ โˆ†๐’™ ๐Ÿ

๐Ÿ๐Ÿ“๐ŸŽ ร— ๐Ÿ๐ŸŽ๐Ÿ‘ ๐ŸŽ=[ ] + ๐Ÿ (โˆ’๐Ÿ’. ๐Ÿ–) ร— โˆ†๐’™ ๐Ÿ”๐ŸŽ ร— ๐Ÿ”๐ŸŽ โˆ†๐’™ = ๐Ÿ“๐ŸŽ๐Ÿ. ๐Ÿ‘ ๐’Ž โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

16 | P a g e

II. ๐‘๐’‡ = ๐‘ ๐’Š + ๐’‚ ๐’• ๐Ÿ๐Ÿ“๐ŸŽ ร— ๐Ÿ๐ŸŽ๐Ÿ‘ ๐ŸŽ=[ ] + (โˆ’๐Ÿ’. ๐Ÿ–) ร— โˆ†๐’• ๐Ÿ”๐ŸŽ ร— ๐Ÿ”๐ŸŽ โˆ†๐’• = ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ• ๐’” Since ๐‘๐’‡ = ๐ŸŽ < ๐‘๐’Š โ†’ ๐’‚ < ๐ŸŽ to stop the plane the motion should be decelerating.

Problems -

Fundamentals and Basics :

2-1 An object starts moving in the ( ๐’™๐’š ) plane from ( ๐Ÿ‘, โˆ’๐Ÿ’ ) to ( ๐ŸŽ, ๐Ÿ” ) back to the origin . calculate the following : a) The total distance moved . b) The displacement done by the object .

๐‘จ๐’๐’” โˆถ ๐Ÿ—. ๐Ÿ” ๐’–๐’๐’Š๐’•๐’” ๐‘จ๐’๐’” โˆถ ๐Ÿ“ ๐’–๐’๐’Š๐’•๐’”

2-2 A cyclist maintains a constant velocity , determine the following according to the graph shown : a) The slope of the line and what does it represent. ๐‘จ๐’๐’” โˆถ +๐Ÿ“

๐’Ž ๐’”

๐‘จ๐’๐’” โˆถ

, ๐’•๐’‰๐’† ๐’„๐’๐’๐’”๐’•๐’‚๐’๐’• ๐’—๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’„๐’š๐’„๐’๐’Š๐’”๐’•

b) What is the cyclistโ€™s positon from its starting positon at ( ๐Ÿ”๐ŸŽ ๐’”๐’†๐’„ ) ? ๐‘จ๐’๐’” โˆถ ๐Ÿ“๐Ÿ“๐ŸŽ ๐’Ž c) What is the displacement from the starting position at ( ๐Ÿ”๐ŸŽ ๐’” ) ? ๐‘จ๐’๐’” โˆถ ๐Ÿ‘๐ŸŽ๐ŸŽ ๐’Ž

2-3 A particle moves in the ( ๐’™ ) axis where its position is given by the equation : .

๐’™(๐’•) = โˆš๐Ÿ + ๐Ÿ’๐’• , where ๐’• โ‰ฅ ๐ŸŽ . Calculate the following : a) Time passed till the particle moves a distance of ( ๐Ÿ• ๐’Ž ) from where its original position . ๐‘จ๐’๐’” โˆถ ๐Ÿ๐Ÿ“. ๐Ÿ•๐Ÿ“ ๐’” b) The instantaneous velocity at ( ๐’• = ๐Ÿ” ๐’”๐’†๐’„ ) .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

๐Ÿ๐’Ž

๐‘จ๐’๐’” โˆถ ๐Ÿ“

๐’”

17 | P a g e

2-4 The velocity โ€“ time graph of a moving body is shown in the figure , The acceleration of the in the three time intervals shown is : ๐‘จ๐’๐’” โˆถ ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’• , ๐’…๐’†๐’„๐’“๐’†๐’‚๐’”๐’Š๐’๐’ˆ , ๐’›๐’†๐’“๐’

2-5 A student drives a bike with a constant acceleration in a straight line , starting from rest to a velocity of ( ๐Ÿ๐Ÿ. ๐Ÿ“ ๐’Ž/๐’” ) in ( ๐Ÿ. ๐Ÿ“ ๐’” ) . Calculate : a) Its constant acceleration . b) Its total displacement . c) Its average velocity .

-

๐‘จ๐’๐’” โˆถ +๐Ÿ“ ๐’Ž/๐’”๐Ÿ ๐‘จ๐’๐’” โˆถ +๐Ÿ๐Ÿ“. ๐Ÿ” ๐’Ž ๐‘จ๐’๐’” โˆถ ๐Ÿ”. ๐Ÿ‘ ๐’Ž/๐’”

Higher Level :

2.1 Two cars whose opposite to each other are moving in straight line as shown , and separated ( 1000 m ) from each other , after ( ๐ญ ๐จ ) they meet at point ( ๐จ ). ( Known the constant velocities of both cars ) calculate ( ๐’•๐’ ) in seconds .

2.2 A road concrete engineer wants to construct a rail-way such that a ( ๐Ÿ”๐Ÿ—. ๐Ÿ’ ๐’Ž/๐’” ) plane could travel on the terminal having ( ๐Ÿ’. ๐Ÿ– ๐’Ž/๐’”๐Ÿ ) constant acceleration and take off after ( ๐Ÿ๐Ÿ“ ๐’” ) . Calculate The minimum length of the road needed so that the plane fly safely having the least cost.

2.3 An object moves along has a position given by [ ๐’™ = ๐Ÿ”๐’•๐Ÿ โˆ’ ๐’•๐Ÿ‘ ] , where ( ๐’• : is measured in seconds ) , find the following : a) What is the positon of the object when it reaches its maximum speed in meters ? b) What is the average velocity during the time interval [ ๐Ÿ ๐’•๐’ ๐Ÿ“ ] seconds ? c) At what time would the acceleration of the object equals its velocity in magnitude ?

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

18 | P a g e

2.4 Starting from rest , a car travels ( ๐Ÿ. ๐Ÿ‘๐Ÿ“ ๐’Œ๐’Ž ) in one minute , it accelerated at ( ๐Ÿ ๐’Ž๐Ÿ /๐’” ) until it reached its cruising speed . Then it drove the remaining distance at a constant velocity , what was its cruising speed in ( ๐’Ž/๐’” ) ?

Finally : Some figures , graphs , problems and paragraphs are copied from some references and books : -

Physics for Scientists and Engineers with Modern Physics - 8th /6th Edition - Serway_Jewett Physics โ€“ Harcourt โ€“geoprojects Free high school science texts โ€“ FHSST authors

Copying this textbook in other authorโ€™s or personโ€™s name without a personal approval from the writer himself is considered a crime and will be severely punished according to law . TM

This work is published on www.academia.edu , for the latest work , papers , researches and summaries follow the author on : https://djasljsa.academia.edu/Kunka/Physics-(-Classical-Mechanics-) Waleed Shaher Abu Khader .

โ€ซูˆู„ูŠุฏ ุดุงู‡ุฑ ุฃุจูˆุฎุถุฑโ€ฌ

19 | P a g e