A System of Mixed Equilibrium Problems, a General System of

0 downloads 0 Views 2MB Size Report
Jan 23, 2012 - 399–404, 1992. 48 K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press,. Cambridge, UK, 1990.
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2012, Article ID 414831, 35 pages doi:10.1155/2012/414831

Research Article A System of Mixed Equilibrium Problems, a General System of Variational Inequality Problems for Relaxed Cocoercive, and Fixed Point Problems for Nonexpansive Semigroup and Strictly Pseudocontractive Mappings Poom Kumam1, 2 and Phayap Katchang2, 3 1

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 2 Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand 3 Department of Mathematics and Statistics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand Correspondence should be addressed to Phayap Katchang, [email protected] Received 17 November 2011; Accepted 23 January 2012 Academic Editor: Giuseppe Marino Copyright q 2012 P. Kumam and P. Katchang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We introduce an iterative algorithm for finding a common element of the set of solutions of a system of mixed equilibrium problems, the set of solutions of a general system of variational inequalities for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroups, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings in Hilbert spaces. Furthermore, we prove a strong convergence theorem of the iterative sequence generated by the proposed iterative algorithm under some suitable conditions which solves some optimization problems. Our results extend and improve the recent results of Chang et al. 2010 and many others.

1. Introduction Let H be a real Hilbert space with inner product ·, · and norm  · . Let C be a nonempty closed convex subset of H. Recall that a mapping T : C → C is nonexpansive if

    T x − T y ≤ x − y,

∀x, y ∈ C.

1.1

2

Journal of Applied Mathematics

We denote the set of fixed points of T by FT , that is FT   {x ∈ C : x  T x}. A mapping f : C → C is said to be an α-contraction if there exists a coefficient α ∈ 0, 1 such that      fx − f y  ≤ αx − y,

∀x, y ∈ C.

1.2

Let B : C → H be a mapping. Then B is called: 1 monotone if 

 Bx − By, x − y ≥ 0,

∀x, y ∈ C;

1.3

2 d-strongly monotone if there exists a positive real number d such that 2    Bx − By, x − y ≥ dx − y ,

∀x, y ∈ C,

1.4

for constant d > 0, this implies that     Bx − By ≥ dx − y,

1.5

that is, B is d-expansive and when d  1, it is expansive; 3 L-Lipschitz continuous if there exists a positive real number L such that     Bx − By ≤ Lx − y,

∀x, y ∈ C;

1.6

4 c-cocoercive 1, 2 if there exists a positive real number c such that 

2   Bx − By, x − y ≥ cBx − By ,

∀x, y ∈ C,

1.7

Clearly, every c-cocoercive map B is 1/c-Lipschitz continuous; 5 relaxed c-cocoercive, if there exists a positive real number c such that 2    Bx − By, x − y ≥ −cBx − By ,

∀x, y ∈ C;

1.8

6 relaxed c, d-cocoercive, if there exists a positive real number c, d such that 

2 2    Bx − By, x − y ≥ −cBx − By  dx − y ,

∀x, y ∈ C,

1.9

for c  0, B is d-strongly monotone. This class of mapping is more general than the class of strongly monotone mapping. It is easy to see that we have the following implication: d-strongly monotonicity implying relaxed c, d-cocoercivity,

Journal of Applied Mathematics

3

7 k-strictly pseudocontractive, if there exists a constant k ∈ 0, 1 such that       Bx − By2 ≤ x − y2  kI − Bx − I − By2 ,

∀x, y ∈ C.

1.10

Remark 1.1 see 3, Remark 1.1 pages 135-136. If B : C → H is a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping with d > cL2B and 0 < τ < 2d − cL2B /L2B , then I − τB satisfies the following:     I − τBx − I − τBy ≤ 1 − τξx − y,

∀x, y ∈ C,

1.11

where ξ  L2B /22d − cL2B /L2B − τ. Similarly, if D : C → H is LD -Lipschitz continuous and relaxed c , d -cocoercive mapping with d > c L2D and 0 < δ < 2d − c L2D /L2D , then the mapping I − δD satisfies the following:      I − δDx − I − δDy ≤ 1 − δξ x − y,

1.12

where ξ  L2D /22d − c L2D /L2D − δ. Let A be a strongly positive linear bounded operator on H if there is a constant γ > 0 with the property Ax, x ≥ γx2 ,

∀x ∈ H.

1.13

We recall optimization problem for short, OP as the following min x∈F

μ 1 Ax, x  x − u2 − hx, 2 2

1.14

∞ where F  ∩∞  ∅, n1 Cn , C1 , C2 , . . . are infinitely closed convex subsets of H such that ∩n1 Cn / u ∈ H, μ ≥ 0 is a real number, A is a strongly positive linear bounded operator on H, and h is a potential function for γf i.e., h x  γfx for x ∈ H. This kind of optimization problem has been studied extensively by many authors, see, for example, 4–7 when F  ∩∞ n1 Cn and hx  x, b, where b is a given point in H. On the other hand, a family S  {Ss : 0 ≤ s < ∞} of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

i S0x  x for all x ∈ C; ii Ss  t  SsSt for all s, t ≥ 0; iii Ssx − Ssy ≤ x − y for all x, y ∈ C and s ≥ 0; iv for all x ∈ C, s → Ssx is continuous. We denote by FS the set of all common fixed points of S  {Ss : s ≥ 0}, that is, FS  ∩s≥0 FSs. It is known that FS is closed and convex.

4

Journal of Applied Mathematics

Let φ : C → R be a real-valued function and let {Θk : C × C → R, k  1, 2, . . . , N} be a finite family of equilibrium functions, that is, Θk u, u  0 for each u ∈ C. The system of mixed equilibrium problems for short, SMEP for function Θ1 , Θ2 , . . . , ΘN , φ is to find z ∈ C such that     Θ1 z, y  φ y − φz ≥ 0, ∀y ∈ C,     Θ2 z, y  φ y − φz ≥ 0, ∀y ∈ C, .. .     ΘN z, y  φ y − φz ≥ 0, ∀y ∈ C.

1.15

MEPΘk , φ, where MEPΘk , φ is the set of The set of solutions of 1.15 is denoted by ∩N k1 solutions of the mixed equilibrium problem for short, MEP, which is to find z ∈ C such that     Θk z, y  φ y − φz ≥ 0,

∀y ∈ C.

1.16

In particular, if φ ≡ 0, and N  1, then the problem 1.15 reduces to the equilibrium problem for short, EP, which is to find z ∈ C such that   Θ z, y ≥ 0,

∀y ∈ C.

1.17

It is well known that the SMEP includes fixed point problem, optimization problem, variational inequality problem, and Nash equilibrium problem as its special cases see 8– 13 for more details. For solving the solutions of a nonexpansive semigroup and the solutions of the system of mixed equilibrium problems were studied by many authors see 14–23 and reference therein. In 2010, Chang et al. 24 studied the following approximation method:   1   

   1 1 1 1 K un − K xn , η x, un ≥ 0, ∀x ∈ C, Θ1 un , x  φx − φ un  r1   1   

   2 2 2 2 K un − K xn , η x, un ≥ 0, ∀x ∈ C, Θ2 un , x  φx − φ un  r2 .. 1.18 .   1   

   N N N N ΘN un , x  φx − φ un  K un − K xn , η x, un ≥ 0, ∀x ∈ C, rN 1 tn N xn1  αn fWn xn   βn xn  γn SsWn un ds, tn 0 where 1

un  JrΘ1 1 xn , k

k−1

un  JrΘk k un

k−2

k−1  JrΘk k JrΘk−1 un

 JrΘk k · · · JrΘ2 2 JrΘ1 1 xn ,

1

 JrΘk k · · · JrΘ2 2 un ,

k  2, 3, . . . , N,

1.19

Journal of Applied Mathematics

5

JrΘk k : C → C, k  1, 2, . . . , N is the mapping defined by 2.22 below, Wn is the mapping defined by 2.12, and S  {Ss : 0 ≤ s < ∞} is a nonexpansive semigroup. They proved that MEPΘk , φ under control {xn } converges strongly to a fixed point of FS ∩ FW ∩ ∩N k1 conditions on the parameters. Let B, D : C → H be two mappings. The general system of variational inequalities problem see 25 is to find x∗ , y∗  ∈ C × C such that  τBy∗  x∗ − y∗ , x − x∗ ≥ 0,  δDx∗  y∗ − x∗ , x − y∗ ≥ 0,

 

∀x ∈ C, ∀x ∈ C,

1.20

where τ and δ are two positive real numbers. The set of solutions of the general system of variational inequalities problem is denoted by SVIC, B, D. In particular, if B  D, then the problem 1.20 reduces to the following equation:  τBy∗  x∗ − y∗ , x − x∗ ≥ 0,   δBx∗  y∗ − x∗ , x − y∗ ≥ 0, 

∀x ∈ C, ∀x ∈ C,

1.21

which is defined by Verma 26 see also Verma 27, and is called the new system of variational inequalities. Further, if we set D  0, then problem 1.20 reduces to the classical variational inequality is to find x∗ ∈ C such that Bx∗ , x − x∗  ≥ 0,

∀x ∈ C.

1.22

We denoted by VIC, B the set of solutions of the variational inequality problem. The variational inequality problem has been extensively studied in literature, see, for example, 28–31 and references therein. In order to find the solutions of the general system of variational inequality problem 1.20, Wangkeeree and Kamraksa 32 considered the following iterative algorithm:  1

K un  − K xn , ηx, un  ≥ 0, ∀x ∈ C, r zn  PC un − δDun ,     αn γfxn   βn xn  1 − βn I − αn A Wn PC zn − τBzn ,

Θun , x  φx − φun   xn1

1.23

where B, D : C → H is a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping and LD -Lipschitz continuous and relaxed c , d -cocoercive mapping, respectively. They proved that {xn } converges strongly to a fixed point of FWn  ∩ MEPΘ, φ ∩ SVIC, B, D which is a solution of general system of variational inequality 1.20. Very recently, Jaiboon and Kumam 33 studied a new general iterative method for finding a common element of the set of solution of a mixed equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings, and the set of solutions of variational inequalities for an inversestrongly monotone mapping in Hilbert spaces, which solves some optimization problems. Inspired and motivated by Chang et al. 24, Jaiboon and Kumam 33, Kumam and Jaiboon 34 and Wangkeeree and Kamraksa 32, the purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of solutions of 1.15, the

6

Journal of Applied Mathematics

set of solutions of 1.20 for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroup, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings. Consequently, we prove the strong convergence theorem in Hilbert spaces under control conditions on the parameters. Furthermore, we can apply our results for solving some optimization problems. Our results extend and improve the corresponding results in Chang et al. 24, Kumam and Jaiboon 34, Wangkeeree and Kamraksa 32, and many others.

2. Preliminaries Let H a real Hilbert space and C a nonempty closed convex subset of H. We denote strong convergence weak convergence by notation →  . In a real Hilbert space H, it is well known that       x − y2  x2 − y2 − 2 x − y, y ,     x  y2 ≤ x2  2 y, x  y ,     x  y2 ≥ x2  2 y, x ,       λx  1 − λy2  λx2  1 − λy2 − λ1 − λx − y2

2.1 2.2 2.3 2.4

for all x, y ∈ H and λ ∈ R. Recall that for every point x ∈ H, there exists a unique nearest point in C, denoted by PC x, such that   x − PC x ≤ x − y,

∀y ∈ C.

2.5

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive mapping of H onto C and satisfies 

2   x − y, PC x − PC y ≥ PC x − PC y

2.6

for every x, y ∈ H. Obviously, this immediately implies that          x − y − PC x − PC y 2 ≤ x − y2 − PC x − PC y2 ,

∀x, y ∈ H.

2.7

Moreover, PC x is characterized by the following properties: PC x ∈ C and   x − PC x, y − PC x ≤ 0,     x − y2 ≥ x − PC x2  y − PC x2 for all x ∈ H, y ∈ C.

2.8

Journal of Applied Mathematics

7

In order to prove our main results, we need the following lemmas. Lemma 2.1 see 35. Let V : C → H be a k-strict pseudo-contraction, then 1 the fixed point set FV  of V is closed convex so that the projection PFV  is well defined; 2 define a mapping T : C → H by T x  tx  1 − tV x,

∀x ∈ C.

2.9

If t ∈ k, 1, then T is a nonexpansive mapping such that FV   FT . A family of mappings {Vi : C → H}∞ i1 is called a family of uniformly k-strict pseudocontractions, if there exists a constant k ∈ 0, 1 such that       Vi x − Vi y2 ≤ x − y2  kI − Vi x − I − Vi y2 ,

∀x, y ∈ C, ∀i ≥ 1.

2.10

Let {Vi : C → C}∞ i1 be a countable family of uniformly k-strict pseudo-contractions. Let be the sequence of nonexpansive mappings defined by 2.9, that is, {Ti : C → C}∞ i1 Ti x  tx  1 − tVi x,

∀x ∈ C, ∀i ≥ 1, t ∈ k, 1.

2.11

Let {Ti } be a sequence of nonexpansive mappings of C into itself defined by 2.11 and let {μi } be a sequence of nonnegative numbers in 0, 1. For each n ≥ 1, define a mapping Wn of C into itself as follows: Un,n1  I,

  Un,n  μn Tn Un,n1  1 − μn I,   Un,n−1  μn−1 Tn−1 Un,n  1 − μn−1 I, .. .   Un,k  μk Tk Un,k1  1 − μk I,   Un,k−1  μk−1 Tk−1 Un,k  1 − μk−1 I, .. .   Un,2  μ2 T2 Un,3  1 − μ2 I,   Wn  Un,1  μ1 T1 Un,2  1 − μ1 I.

2.12

Such a mapping Wn is nonexpansive from C to C and it is called the W-mapping generated by T1 , T2 , . . . , Tn and μ1 , μ2 , . . . , μn . For each n, k ∈ N, let the mapping Un,k be defined by 2.12. Then we can have the following crucial conclusions concerning Wn . You can find them in 36. Now we only need the following similar version in Hilbert spaces. Lemma 2.2 see 36. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1 , T2 , . . . be nonexpansive mappings of C into itself such that ∩∞ n1 FTn  is nonempty, let μ1 , μ2 , . . . be real numbers such that 0 ≤ μn ≤ b < 1 for every n ≥ 1. Then,

8

Journal of Applied Mathematics 1 Wn is nonexpansive and FWn   ∩ni1 FTi , for all n ≥ 1; 2 for every x ∈ C and k ∈ N, the limit limn → ∞ Un,k x exists; 3 a mapping W : C → C defined by Wx : lim Wn x  lim Un,1 x, n→∞

n→∞

∀x ∈ C

2.13

is a nonexpansive mapping satisfying FW  ∩∞ i1 FTi  and it is called the W-mapping generated by T1 , T2 , . . . and μ1 , μ2 , . . . . Lemma 2.3 see 37. Let C be a nonempty closed convex subset of a Hilbert space H, {Ti : C → C} a countable family of nonexpansive mappings with ∩∞ / ∅, {μi } a real sequence such that i1 FTi   0 < μi ≤ b < 1, for all i ≥ 1. If D is any bounded subset of C, then lim supWx − Wn x  0.

n → ∞ x∈D

2.14

Lemma 2.4 see 38. Each Hilbert space H satisfies Opial’s condition, that is, for any sequence {xn } ⊂ H with xn x, the inequality   lim inf xn − x < lim inf xn − y n→∞

n→∞

2.15

holds for each y ∈ H with y /  x. Lemma 2.5 see 39. Assume A is a strongly positive linear bounded operator on H with coefficient γ > 0 and 0 < ρ ≤ A−1 . Then, I − ρA ≤ 1 − ργ. For solving the system of mixed equilibrium problems 1.15, let us assume that function Θk : H × H → R, k  1, 2, . . . , N satisfies the following conditions: H1 Θk is monotone, that is, Θk x, y  Θk y, x ≤ 0, for all x, y ∈ H; H2 for each fixed y ∈ H, x → Θk x, y is convex and upper semicontinuous; H3 for each x ∈ H, y → Θk x, y is convex. Let η : H × H → H and B : H → H be two mappings. B is said to be 1 monotone if 

  Bx − By, η x, y ≥ 0,

∀x, y ∈ H;

2.16

2 d-strongly monotone if there exists a positive real number d such that 

2    Bx − By, η x, y ≥ dx − y ,

∀x, y ∈ H;

2.17

3 L-Lipschitz continuous if there exists a constant L > 0 such that      η x, y  ≤ Lx − y,

∀x, y ∈ H.

2.18

Journal of Applied Mathematics

9

Let K : H → R be a differentiable functional on H, which is called: 1 η-convex 40 if      K y − Kx ≥ K x, η y, x ,

∀x, y ∈ H,

2.19

where K x is the Fr´echet derivative of K at x; 2 η-strongly convex 41 if there exists a constant σ > 0 such that 2      σ  K y − Kx − K x, η y, x ≥ x − y , 2

∀x, y ∈ H.

2.20

In particular, if ηx, y  x − y for all x, y ∈ H, then K is said to be strongly convex. Lemma 2.6 see 42. Let H be a real Hilbert space and let φ be a lower semicontinuous and convex functional from H to R. Let Θ be a bifunction from H × H to R satisfying (H1)–(H3). Assume that i η : H × H → H is λ-Lipschitz continuous with constant λ > 0 such that a ηx, y  ηy, x  0, for all x, y ∈ H, b η·, · is affine in the first variable, c for each fixed x ∈ H, y → ηx, y is sequentially continuous from the weak topology to the weak topology; ii K : H → R is η-strongly convex with constant σ > 0 and its derivative K is sequentially continuous from the weak topology to the strong topology; iii for each x ∈ H, there exist bounded subsets Ex ⊂ H and zx ∈ H such that for any y ∈ H \ Ex ,    1      Θ y, zx  φzx  − φ y  K y − K x, η zx , y < 0. r

2.21

For given r > 0, let JrΘ : H → H be the mapping defined by JrΘ x 



    1     y ∈ H : Θ y, z  φz − φ y  K y − K x, η z, y ≥ 0, ∀z ∈ H r

 2.22

for all x ∈ H. Then 1 JrΘ is single-valued. 2 FJrΘ   MEPΘ, Œ, where MEPΘ, Œ is the set of solution of the mixed equilibrium problem,     Θ x, y  φ y − φx ≥ 0, 3 MEPΘ, Œ is closed and convex.

∀y ∈ H.

2.23

10

Journal of Applied Mathematics

Lemma 2.7 see 43. Let {xn } and {vn } be bounded sequences in a Banach space X and let {βn } be a sequence in 0, 1 with 0 < lim infn → ∞ βn ≤ lim supn → ∞ βn < 1. Suppose xn1  1 − βn vn  βn xn for all integers n ≥ 0 and lim supn → ∞ vn1 − vn  − xn1 − xn  ≤ 0. Then, limn → ∞ vn − xn   0. Lemma 2.8 see 44. Assume {xn } is a sequence of nonnegative real numbers such that xn1 ≤ 1 − an xn  bn ,

∀n ≥ 0,

2.24

where {an } is a sequence in 0, 1 and {bn } is a sequence in R such that 1

∞

n1

an  ∞,

2 lim supn → ∞ bn /an  ≤ 0 or

∞

n1

|bn | < ∞.

Then, limn → ∞ xn  0. Lemma 2.9 see 45. Let C be a nonempty closed convex subset of a real Hilbert space H and g : C → R ∪ {∞} a proper lower-semicontinuous differentiable convex function. If z is a solution to the minimization problem gz  inf gx, x∈C

2.25

then 

 g x, x − z ≥ 0,

x ∈ C.

2.26

In particular, if z solves problem OP , then 

   u  γf − I  μA z, x − z ≤ 0.

2.27

Lemma 2.10 see 46. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let S  {Ss : 0 ≤ s < ∞} be a nonexpansive semigroup on C, then for any h ≥ 0,   t  1 t  1   T sx ds − T h T sx ds   0. lim sup  t → ∞ x∈C  t 0 t 0

2.28

Lemma 2.11 see 47. Let C be a nonempty bounded closed convex subset of H, {xn } a sequence in C, and S  {Ss : 0 ≤ s < ∞} a nonexpansive semigroup on C. If the following conditions are satisfied: i xn z; ii lim sups → ∞ lim supn → ∞ Ssxn − xn   0, then z ∈ S.

Journal of Applied Mathematics

11

Lemma 2.12 see 25. For given x∗ , y∗ ∈ C and x∗ , y∗  is a solution of the problem 1.20 if and only if x∗ is a fixed point of the mapping G : C → C is defined by Gx  PC PC x − δDx − τBPC x − δDx,

∀x ∈ H,

2.29

where y∗  PC x − δDx, δ and τ are positive constants and B, D : H → H are two mappings. Throughout this paper, the set of fixed points of the mapping G is denoted by SVIC, B, D. Lemma 2.13 see 32. Let G : C → C be defined in Lemma 2.12. If B : H → H is a LB -Lipschitzian and relaxed c, d-cocoercive mapping and D : H → H is a LD -Lipschitz and relaxed c , d -cocoercive mapping where τ ≤ 2d − cL2B /L2B and δ ≤ 2d − c L2D /L2D , then G is nonexpansive. Lemma 2.14 demiclosedness principle 48. Assume that S is a nonexpansive self-mapping of a nonempty closed convex subset C of a real Hilbert space H. If S has a fixed point, then I − S is demiclosed; that is, whenever {xn } is a sequence in C converging weakly to some x ∈ C (for short, xn x ∈ C), and the sequence {I − Sxn } converges strongly to some y (for short, I − Sxn → y), it follows that I − Sx  y. Here I is the identity operator of H.

3. Main Results In this section, we prove a strong convergence theorem of an iterative algorithm 3.1 for finding the solutions of a common element of the set of solutions of 1.15, the set of solutions of 1.20 for Lipschitz continuous and relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroups, and the set of common fixed points for an infinite family of strictly pseudocontractive mappings in a real Hilbert space. Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H which C  C ⊂ C and let f be a contraction of C into itself with α ∈ 0, 1. Let φ be a lower semicontinuous and convex functional from H to R and let {Θk : H × H → R, k  1, 2, . . . , N} be a finite family of equilibrium functions satisfying conditions (H1)–(H3). Let S  {Ss : 0 ≤ s < ∞} be a nonexpansive semigroup on C and let {tn } be a positive real divergent sequence. Let {Vi : C → C}∞ i1 be a countable family of uniformly k-strict pseudo-contractions, let {Ti : C → C}∞ i1 be the countable family of nonexpansive mappings defined by Ti x  tx  1 − tVi x, for all x ∈ C, for all i ≥ 1, t ∈ k, 1, let Wn be the W-mapping defined by 2.12, and let W be a mapping defined by 2.13 with FW /  ∅. Let A be a strongly positive linear bounded operator on H with coefficient γ > 0 and let 0 < γ < 1  μγ/α, B : H → H be a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping with d > cL2B , and let D : H → H be a LD -Lipschitz continuous and relaxed c , d -cocoercive mapping with MEPΘk , φ. d > c L2D . Suppose that Ω : FS ∩ FW ∩ F ∩ SVIC, B, D  / ∅, where F  ∩N k1 Let μ > 0, γ > 0 and rk > 0, k  1, 2, . . . , N, which are constants. For given x1 ∈ H arbitrarily k and fixed u ∈ H, suppose {xn }, {yn }, {zn } and {un }, k  1, 2, . . . , N are the sequences generated iteratively by   1   

   1 1 1 1 K un − K xn , η x, un ≥ 0, Θ1 un , x  φx − φ un  r1

∀x ∈ H,

12

Journal of Applied Mathematics   1   

   2 2 2 2 K un − K xn , η x, un ≥ 0, ∀x ∈ H, Θ2 un , x  φx − φ un  r2 .. .   1   

   N N N N ΘN un , x  φx − φ un  K un − K xn , η x, un ≥ 0, ∀x ∈ H, rN   N N zn  PC un − δDun , yn  PC zn − τBzn , xn1



   1  αn u  γfWn xn   βn xn  1 − βn I − αn I  μA tn

tn SsWn yn ds, 0

3.1 where 1

un  JrΘ1 1 xn , k

k−1

un  JrΘk k un 

JrΘk k

k−2

k−1  JrΘk k JrΘk−1 un

· · · JrΘ2 2 JrΘ1 1 xn ,

1

 JrΘk k · · · JrΘ2 2 un ,

3.2

k  2, 3, . . . , N,

JrΘk k : H → H, k  1, 2, . . . , N is the mapping defined by 2.22 and {αn } and {βn } are two sequences in 0, 1 for all n ∈ N. Assume the following conditions are satisfied: C1 η : H × H → H is λ-Lipschitz continuous with constant λ > 0 such that a ηx, y  ηy, x  0, for all x, y ∈ H, b x → ηx, y is affine, c for each fixed y ∈ H, y → ηx, y is sequentially continuous from the weak topology to the weak topology; C2 K : H → R is η-strongly convex with constant σ > 0 and its derivative K is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with a Lipschitz constant ν > 0 such that σ > λν; C3 for each k ∈ {1, 2, . . . , N} and for all x ∈ H, there exist bounded subsets Ex ⊂ H and zx ∈ H such that for any y ∈ H \ Ex ,      1     K y − K x, η zx , y < 0; Θk y, zx  φzx  − φ y  rk C4 limn → ∞ αn  0 and

∞

n1

3.3

αn  ∞;

C5 0 < lim infn → ∞ βn ≤ lim supn → ∞ βn < 1; C6 0 < τ < 2d − cL2B /L2B and 0 < δ < 2d − c L2D /L2D . Then, {xn } converges strongly to x∗ ∈ Ω, which solves the following optimization problem (OP): min ∗ x ∈Ω

μ 1 Ax∗ , x∗   x∗ − u2 − hx∗ , 2 2

3.4

Journal of Applied Mathematics

13

and x∗ , y∗  is a solution of the general system of variational inequality problem 1.20 such that y∗  PC x∗ − δDx∗ . Proof. By the condition C4 and C5, we may assume, without loss of generality, that αn ≤ 1 − βn 1  μA−1 for all n ∈ N. Indeed, A is a strongly positive bounded linear operator on H, we have A  sup{|Ax, x| : x ∈ H, x  1}.

3.5

Observe that     1 − βn I − αn I  μA x, x  1 − βn − αn − αn μAx, x



≥ 1 − βn − αn − αn μA

3.6

≥ 0, so this shows that 1 − βn I − αn I  μA is positive. It follows that            1 − βn I − αn I  μA   sup  1 − βn I − αn I  μA x, x  : x ∈ H, x  1    sup 1 − βn − αn − αn μAx, x : x ∈ H, x  1

3.7

≤ 1 − βn − αn − αn μγ. We shall divide the proofs into several steps. Step 1. We show that {xn } is bounded. MEPΘk , φ ∩ SVIC, B, D. In fact, by the Let x∗ ∈ Ω : FS ∩ FW ∩ ∩N k1 assumption that for each k ∈ {1, 2, . . . , N}, JrΘk k is nonexpansive. Let AN : JrΘNN · · · JrΘ2 2 JrΘ1 1 N and A0  I. Then, we have x∗  AN x∗ and un  AN xn . Since x∗ ∈ SVIC, B, D, then   x∗  PC PC x∗ − δDx∗  − τBPC x∗ − δDx∗   PC PC I − δDAN x∗ − τBPC I − δDAN x∗ . 3.8 Putting y∗  PC x∗ − δDx∗   PC I − δDAN x∗ , we have x∗  PC y∗ − τBy∗ . Since x∗  Ssx∗ , for all s ≥ 0 and x∗  Wn x∗ , for all n ≥ 1, therefore, we have       x∗  AN x∗  PC y∗ − τBy∗  Wn PC y∗ − τBy∗  SsWn PC y∗ − τBy∗ . Because PC and AN are nonexpansive mappings and from Remark 1.1, we have      yn − x∗   PC zn − τBzn  − PC y∗ − τBy∗    ≤ I − τBzn − I − τBy∗    ≤ zn − y∗        N N − PC x∗ − δDx∗   PC un − δDun

3.9

14

Journal of Applied Mathematics     N ≤ I − δDun − I − δDx∗      N ≤ un − x∗       AN xn − AN x∗  ≤ xn − x∗  3.10

which yields that        xn1 − x   αn u  αn γfWn xn  − I  μA x∗  βn xn − x∗          1 tn ∗   1 − βn I − αn I  μA SsWn yn ds − x   tn 0    ∗ ≤ αn u  αn γfWn xn  − I  μA x   βn xn − x∗      1 − βn − αn 1  μγ xn − x∗        ≤ αn u  αn γfWn xn  − γfx∗   αn γfx∗  − I  μA x∗   βn xn − x∗      1 − βn − αn 1  μγ xn − x∗      ≤ αn u  αn γαxn − x∗   αn γfx∗  − I  μA x∗   βn xn − x∗      1 − βn − αn 1  μγ xn − x∗            αn u  γfx∗  − I  μA x∗   1 − αn 1  μγ  αn γα xn − x∗       1 − αn 1  μγ − γα xn − x∗        u  γfx∗  − I  μA x∗   .  αn 1  μγ − γα   1  μγ − γα 3.11 ∗

It follows from 3.11 and induction that      u  γfx∗  − I  μA x∗     ,   xn − x  ≤ max x1 − p , 1  μγ − γα 



n ≥ 1.

k

3.12

Hence, {xn } is bounded, so are {yn }, {zn }, {Wn xn }, {fWn xn }, {un } for all k  1, 2, . . . , N t and {Kn Wn yn }, where Kn  1/tn  0n Ssds. N

N

Step 2. We prove that limn → ∞ xn1 − xn   0 and limn → ∞ un1 − un   0. Again, from Remark 1.1, we have the following estimates:   yn1 − yn   PC zn1 − τBzn1  − PC zn − τBzn  ≤ zn1 − τBzn1  − zn − τBzn  ≤ zn1 − zn        N N N N   PC un1 − δDun1 − PC un − δDun 

Journal of Applied Mathematics      N N N N  ≤  un1 − δDun1 − un − δDun     N N  ≤ un1 − un       AN xn1 − AN xn 

15

≤ xn1 − xn . 3.13 On the other hand, since Ti and Un,i are nonexpansive, we have     Wn1 yn − Wn yn   μ1 T1 Un1,2 yn − μ1 T1 Un,2 yn    ≤ μ1 Un1,2 yn − Un,2 yn     μ1 μ2 T2 Un1,3 yn − μ2 T2 Un,3 yn    ≤ μ1 μ2 Un1,3 yn − Un,3 yn  .. .

3.14

  ≤ μ1 μ2 · · · μn Un1,n1 yn − Un,n1 yn  n  ≤ M1 μi , i1

where M1 ≥ 0 is a constant such that Un1,n1 yn − Un,n1 yn  ≤ M1 for all n ≥ 0. It follows from 3.13 and 3.14 that we have       Wn1 yn1 − Wn yn  ≤ Wn1 yn1 − Wn1 yn   Wn1 yn − Wn yn  n    ≤ yn1 − yn   M1 μi i1

3.15

n  ≤ xn1 − xn   M1 μi . i1

It follows that   tn1     1 1 tn  Kn1 Wn1 yn1 − Kn Wn yn    SsWn1 yn1 ds − SsWn yn ds   tn1 0  tn 0 tn1   1 SsWn1 yn1 − SsWn yn ds ≤ tn1 0    1 tn1  1 tn    SsWn yn ds − SsWn yn ds  tn1 0  tn 0   tn tn tn1     1 1 1   ≤ Wn1 yn1 −Wn yn    SsWn yn ds SsWn yn ds− SsWn yn ds  tn1 tn  tn1 0 tn 0 tn1     1 SsWn yn ds ≤ Wn1 yn1 − Wn yn   tn1 tn

16

Journal of Applied Mathematics    1  1  tn    −  SsWn yn ds tn1 tn 0     tn ≤ Wn1 yn1 − Wn yn   2 1 − M2 tn1   n  tn ≤ xn1 − xn   M1 μi  2 1 − M2 , tn1 i1 3.16

where M2  max{SsWn yn }. Setting xn1  1 − βn vn  βn xn , for all n ≥ 1, we have       xn1 − βn xn αn u  γfWn xn   1 − βn I − αn I  μA Kn Wn yn  . vn  1 − βn 1 − βn

3.17

Then, we obtain       αn1 u  γfWn1 xn1   1 − βn1 I − αn1 I  μA Kn1 Wn1 yn1 vn1 − vn  1 − βn1       αn u  γfWn xn   1 − βn I − αn I  μA Kn Wn yn − 1 − βn   αn1  αn   u  γfWn1 xn1  − u  γfWn xn   Kn1 Wn1 yn1 − Kn Wn yn 1 − βn1 1 − βn   αn  αn1   I  μA Kn Wn yn − I  μA Kn1 Wn1 yn1 1 − βn 1 − βn1     αn1   u  γfWn1 xn1  − I  μA Kn1 Wn1 yn1 1 − βn1   αn   I  μA Kn Wn yn − u − γfWn xn   Kn1 Wn1 yn1 − Kn Wn yn . 1 − βn 3.18 It follows from 3.16 and 3.18 that vn1 − vn  − xn1 − xn  ≤

     αn1  u  γfWn1 xn1    I  μA Kn1 Wn1 yn1  1 − βn1      αn   I  μA Kn Wn yn   u  γfWn xn   1 − βn   n  tn  M1 μi  2 1 − M2 . tn1 i1 3.19

By the conditions C4, C5 and from tn ∈ 0, ∞, tn → ∞ and 0 < μi ≤ b < 1, for all i ≥ 1, we have lim supvn1 − vn  − xn1 − xn  ≤ 0. n→∞

3.20

Journal of Applied Mathematics

17

Hence, by Lemma 2.7, we obtain

lim vn − xn   0.

3.21

  lim xn1 − xn   lim 1 − βn vn − xn   0.

3.22

n→∞

It follows that

n→∞

n→∞

Applying 3.22 into 3.13, we obtain that      N N  lim yn1 − yn   lim zn1 − zn   lim un1 − un   0.

n→∞

n→∞

n→∞

3.23

Step 3. We show that limn → ∞ Kn Wn yn − yn   0, limn → ∞ yn − Ssyn   0, and t k1 k limn → ∞ un − un   0, where Kn  1/tn  0n Ssds. Since xn1  αn u  γfWn xn   βn xn  1 − βn I − αn I  μAKn Wn yn , we have   xn − Kn Wn yn 

  ≤ xn − xn1   xn1 − Kn Wn yn   xn − xn1           αn u  γfWn xn  βn xn  1 − βn I −αn I  μA Kn Wn yn −Kn Wn yn           xn − xn1  αn u  γfWn xn  − I  μA Kn Wn yn βn xn − Kn Wn yn        ≤ xn − xn1   αn u  γfWn xn    I  μA Kn Wn yn     βn xn − Kn Wn yn ,

3.24

that is   xn − Kn Wn yn  ≤

     1 αn  xn − xn1   u  γfWn xn    I  μA Kn Wn yn  . 1 − βn 1 − βn 3.25

By C4, C5, and 3.22 it follows that   lim Kn Wn yn − xn   0.

n→∞

3.26

18

Journal of Applied Mathematics N

Since JrΘNN : C → C is firmly nonexpansive, un and x ∈ Ω, we have ∗

 AN xn , where AN : JrΘNN · · · JrΘ2 2 JrΘ1 1

 2  2  N    un − x∗   AN xn − AN x∗ 

≤ AN xn − AN x∗ , xn − x∗

N  un − x∗ , xn − x∗  2    1   N   N 2 2  un − x∗   xn − x∗  − xn − un  , 2

3.27

and hence  2    N   N 2 2 un − x∗  ≤ xn − x∗  − xn − un  .

3.28

Observe that      xn1 − x∗ 2   1 − βn I − αn I  μA Kn Wn yn − x∗  βn xn − x∗    2  αn u  γfWn xn  − I  μA x∗   2       1 − βn I − αn I  μA Kn Wn yn − x∗  βn xn − x∗     2  α2n u  γfWn xn  − I  μA x∗       2βn αn xn − x∗ , u  γfWn xn  − I  μA x∗          2αn 1 − βn I − αn I  μA Kn Wn yn − x∗ , u  γfWn xn  − I  μA x∗   

2 ≤ 1 − βn − αn − αn μγ Kn Wn yn − x∗   βn xn − x∗     2  α2n u  γfWn xn  − I  μA x∗       2βn αn xn − x∗ , u  γfWn xn  − I  μA x∗          2αn 1 − βn I − αn I  μA Kn Wn yn − x∗ , u  γfWn xn  − I  μA x∗   

2  1 − βn − αn − αn μγ Kn Wn yn − x∗   βn xn − x∗   cn 2  2  ≤ 1 − βn − αn − αn μγ Kn Wn yn − x∗   βn2 xn − x∗ 2      2 1 − βn − αn − αn μγ βn Kn Wn yn − x∗ xn − x∗   cn 2  2  ≤ 1 − βn − αn − αn μγ Kn Wn yn − x∗   βn2 xn − x∗ 2  2     1 − βn − αn − αn μγ βn Kn Wn yn − x∗   xn − x∗ 2  cn 



1 − αn − αn μγ



2

 2   − 2 1 − αn − αn μγ βn  βn2 Kn Wn yn − x∗   βn2 xn − x∗ 2

  2  1 − αn − αn μγ βn − βn2 Kn Wn yn − x∗   xn − x∗ 2  cn



Journal of Applied Mathematics  2 2     1 − αn − αn μγ − 1 − αn − αn μγ βn Kn Wn yn − x∗ 

19

   1 − αn − αn μγ βn xn − x∗ 2  cn 2    ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ yn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn , 3.29 where  2     cn  α2n u  γfWn xn  − I  μAx∗   2βn αn xn − x∗ , u  γfWn xn  − I  μA x∗          2αn 1 − βn I − αn I  μA Kn Wn yn − x∗ , u  γfWn xn  − I  μA x∗ . 3.30 It follows from condition C4 that lim cn  0.

n→∞

3.31

Putting 3.28 into 3.29 and using also 3.10, we have 2    xn1 − x∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ yn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn 2     N  ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ un − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn         N 2 ∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ xn − x  − xn − un     1 − αn − αn μγ βn xn − x∗ 2  cn  2  1 − αn − αn μγ xn − x∗ 2      N 2 − 1 − αn − αn μγ 1 − βn − αn − αn μγ xn − un   cn      N 2 ≤ xn − x∗ 2 − 1 − αn − αn μγ 1 − βn − αn − αn μγ xn − un   cn .

3.32

It follows that 

1 − αn − αn μγ

   N 2 1 − βn − αn − αn μγ xn − un  ≤ xn − x∗ 2 − xn1 − x∗ 2  cn



≤ xn − xn1 xn − x∗   xn1 − x∗   cn . 3.33

20

Journal of Applied Mathematics

Therefore, by 3.22 and 3.31, we get    N  lim xn − un   0.

3.34

       N   N  un − Kn Wn yn  ≤ un − xn   xn − Kn Wn yn ,

3.35

n→∞

Since

and by 3.26 and 3.70, we have    N  lim un − Kn Wn yn   0.

3.36

n→∞

Since B is a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping on B and 0 < τ < 2d − cL2B /L2B for any x∗ ∈ Ω, we have      yn − x∗ 2  PC zn − τBzn  − PC y∗ − τBy∗ 2    2 ≤  zn − y∗ − τ Bzn − By∗   2  2    zn − y∗  − 2τ zn − y∗ , Bzn − By∗  τ 2 Bzn − By∗     2 2   2 ≤ xn − x∗ 2 − 2τ −cBzn − By∗   dzn − y∗   τ 2 Bzn − By∗    2 2  2  xn − x∗ 2  2τcBzn − By∗  − 2τdzn − y∗   τ 2 Bzn − By∗   2 2 2τd  2  ≤ xn − x∗ 2  2τcBzn − By∗  − 2 Bzn − By∗   τ 2 Byn − Bp L  B  2 2τd   xn − x∗ 2  2τc  τ 2 − 2 Bzn − By∗  . LB

3.37

Similarly, since D is a LD -Lipschitz continuous and relaxed c , d -cocoercive mapping on D and 0 < δ < 2d − c L2D /L2D , we also have

  zn − y∗ 2 ≤ xn − x∗ 2 



2δd

2δc  δ − 2 LD

2



 2  N  Dun − Dx∗  .

3.38

Journal of Applied Mathematics

21

Substituting 3.37 into 3.29, we have    xn1 − x∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ      2τd  ∗ 2 2 ∗ 2  × xn − x   2τc  τ − 2 Bzn − By LB    1 − αn − αn μγ βn xn − x∗ 2  cn  2  1 − αn − αn μγ xn − x∗ 2   2    2τd  2  1 − αn − αn μγ 1 − βn − αn − αn μγ 2τc  τ − 2 Bzn − By∗   cn LB   2 2τd  ≤ xn − x∗ 2  2τc  τ 2 − 2 Bzn − By∗   cn . LB 3.39 Again, substituting 3.38 into 3.29 and using also 3.10, we get 2    xn1 − x∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ yn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn 2    ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ zn − y∗     1 − αn − αn μγ βn xn − x∗ 2  cn    ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ     2 2δd   N ∗ 2

2 ∗ × xn − x   2δc  δ − 2 Dun − Dx  LD    1 − αn − αn μγ βn xn − x∗ 2  cn  2     1 − αn − αn μγ xn − x∗ 2  1 − αn − αn μγ 1 − βn − αn − αn μγ   2 2δd   N 

2 × 2δc  δ − 2 Dun − Dx∗   cn LD   2 2δd   N  ∗ 2

2 ≤ xn − x   2δc  δ − 2 Dun − Dx∗   cn . LD

3.40

Therefore, by 3.39 and 3.40, we have 



 2  2τd 2  Bzn − By∗  ≤ xn − x∗ 2 − xn1 − x∗ 2  cn − 2τc − τ 2 LB 

≤ xn − xn1 xn − x∗   xn1 − x∗   cn ,

 2 2δd

N 2 2

2  ∗ − 2δc − δ − Dx Du  ≤ xn − x∗  − xn1 − x∗   cn n L2D ≤ xn − xn1 xn − x∗   xn1 − x∗   cn .

3.41

22

Journal of Applied Mathematics

It follows from 3.22 and 3.31 that we obtain   lim Bzn − By∗   0,

3.42

   N  lim Dun − Dx∗   0.

3.43

n→∞

n→∞

From 2.6, we have 2       N N zn − y∗ 2   − PC x∗ − δDx∗  PC un − δDun ≤



N

un

N

− δDun



− x∗ − δDx∗ , zn − y∗



  2   2 1    N N  − x∗ − δDx∗   zn − y∗   un − δDun 2       2  N N − x∗ − δDx∗  − zn − y∗  − un − δDun ≤

 2     2   2   1    N   N N un − x∗   zn − y∗  −  un − zn − x∗ − y∗ − δ Dun − Dx∗  2



 2     2   1  2  N   N un − x∗   zn − y∗  −  un − zn − x∗ − y∗  2 2δ



N

un

 2   

  N  N − zn − x∗ − y∗ , Dun − Dx∗ − δ2 Dun − Dx∗ 

     2   1 2  N ≤ xn − x∗ 2  zn − y∗  −  un − zn − x∗ − y∗  2   2      N  N N ∗ ∗  ∗ 2 ∗ 2δ un − zn − x − y Dun − Dx  − δ Dun − Dx  . 3.44

So, we obtain       2 N zn − y∗ 2 ≤ xn − x∗ 2 −   un − zn − x∗ − y∗     2      N   N   N  2δ un − zn − x∗ − y∗ Dun − Dx∗  − δ2 Dun − Dx∗  .

3.45

Journal of Applied Mathematics

23

By 3.29, we get 2    xn1 − x∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ yn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn 2    ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ zn − y∗     1 − αn − αn μγ βn xn − x∗ 2  cn    ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ      2  N × xn − x∗ 2 −  un − zn − x∗ − y∗     2       N   N   N 2δ un − zn − x∗ − y∗ Dun − Dx∗  − δ2 Dun − Dx∗     1 − αn − αn μγ βn xn − x∗ 2  cn  2     1 − αn − αn μγ xn − x∗ 2  1 − αn − αn μγ 1 − βn − αn − αn μγ       N 2 × − un − zn − x∗ − y∗     2       N   N   N 2δ un − zn − x∗ − y∗ Dun − Dx∗  − δ2 Dun − Dx∗   cn         N 2 ≤ xn − x∗ 2 − 1 − αn − αn μγ 1 − βn − αn − αn μγ  un − zn − x∗ − y∗         N   N  2δ un − zn − x∗ − y∗ Dun − Dx∗  2     N  − δ2 1 − αn − αn μγ 1 − βn − αn − αn μγ Dun − Dx∗   cn 3.46 which implies that 

1 − αn − αn μγ



      N 2 1 − βn − αn − αn μγ  un − zn − x∗ − y∗ 

≤ xn − x∗ 2 − xn1 − x∗ 2        N   N  2δ un − zn − x∗ − y∗ Dun − Dx∗  2     N  − δ2 1 − αn − αn μγ 1 − βn − αn − αn μγ Dun − Dx∗   cn ≤ xn − xn1 xn − x∗   xn1 − x∗         N   N  2δ un − zn − x∗ − y∗ Dun − Dx∗  2     N  − δ2 1 − αn − αn μγ 1 − βn − αn − αn μγ Dun − Dx∗   cn .

3.47

24

Journal of Applied Mathematics

From 3.22, 3.31, and 3.43, we have       N lim  un − zn − x∗ − y∗   0.

n→∞

3.48

Now, from 2.2 and 2.7, we observe that         zn − yn  x∗ − y∗ 2  zn − τBzn  − y∗ − τBy∗    2 − PC zn − τBzn  − PC y∗ − τBy∗  τ Bzn − By∗       2 ≤ zn − τBzn  − y∗ − τBy∗ − PC zn − τBzn  − PC y∗ − τBy∗        2τ Bzn − By∗ , zn − yn  x∗ − y∗   2   2 ≤ zn − τBzn − y∗ − τBy∗  − PC zn − τBzn −PC y∗ − τBy∗        2τ Bzn − By∗  zn − yn  x∗ − y∗    2 ≤ zn − τBzn  − y∗ − τBy∗    2 − Kn Wn PC zn − τBzn  − Kn Wn PC y∗ − τBy∗        2τ Bzn − By∗  zn − yn  x∗ − y∗   2  2   zn − τBzn  − y∗ − τBy∗  − Kn Wn yn − Kn Wn x∗        2τ Bzn − By∗  zn − yn  x∗ − y∗        zn − τBzn  − y∗ − τBy∗  − Kn Wn yn − x∗       × zn − τBzn  − y∗ − τBy∗   Kn Wn yn − x∗        2τ Bzn − By∗  zn − yn  x∗ − y∗       ≤ zn − τBzn  − y∗ − τBy∗ − Kn Wn yn − x∗       × zn − τBzn  − y∗ − τBy∗   Kn Wn yn − x∗        2τ Bzn − By∗  zn − yn  x∗ − y∗         N    N   un − Kn Wn yn  x∗ − y∗ − un − zn − τ Bzn − By∗       × zn − τBzn  − y∗ − τBy∗   Kn Wn yn − x∗           2τ Bzn − By∗  zn − yn  x∗ − y∗ . 3.49 It follows from 3.36, 3.42, and 3.48 that we have     lim  zn − yn  x∗ − y∗   0,

n→∞

3.50

since               N N  Kn Wn yn − yn  ≤  Kn Wn yn − un    un − zn − x∗ − y∗    zn − yn  x∗ − y∗ . 3.51

Journal of Applied Mathematics

25

It follows from 3.36, 3.48 and 3.50, we get   lim Kn Wn yn − yn   0,

n→∞

3.52

and from 3.26, and 3.52 that we have   lim xn − yn   0.

n→∞

3.53

Since {Wn yn } is a bounded sequence in C, from Lemma 2.10 for all s ≥ 0, we have   t   1 tn  n   1   SsWn yn ds − Ss SsWn yn ds  lim Kn Wn yn − SsKn Wn yn   lim  n→∞ n → ∞  tn 0  tn 0  0, 3.54 and since         yn − Ssyn  ≤ yn − Kn Wn yn   Kn Wn yn − SsKn Wn yn   SsKn Wn yn − Ss yn      ≤ 2yn − Kn Wn yn   Kn Wn yn − SsKn Wn yn , 3.55 it follows from 3.52 and 3.54 that we get   lim yn − Ssyn   0.

n→∞

3.56

On the other hand, since JrΘk k : H → H is firmly nonexpansive, Ak : JrΘk k · · · JrΘ2 2 JrΘ1 1 , k  1, 2, . . . , N and x∗ ∈ Ω, we have  2  2  k1   Θk1 k k1 ∗  A xn − JrΘk1 x  A xn − x∗   Jrk1

k1 ≤ JrΘk1 Ak xn − x∗ , Ak xn − x∗ 3.57        2 2 2 1  Θk1 k     Θk1 k   A xn − Ak xn  , Jrk1 A xn − x∗   Ak xn − x∗  − Jrk1 2 and hence  2 2   k1    2 A xn − x∗  ≤ xn − x∗  − Ak1 xn − Ak xn  .

3.58

26

Journal of Applied Mathematics

From 3.10, 3.29, and 3.58, for each k  1, 2, . . . , N − 1, we have 2    xn1 − x∗ 2 ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ yn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn 2      ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ Ak xn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn 2      ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ Ak1 xn − x∗     1 − αn − αn μγ βn xn − x∗ 2  cn  2        k1 ∗ 2 k ≤ 1 − αn − αn μγ 1 − βn − αn − αn μγ xn − x  − A xn − A xn     1 − αn − αn μγ βn xn − x∗ 2  cn  2  1 − αn − αn μγ xn − x∗ 2 2      − 1 − αn − αn μγ 1 − βn − αn − αn μγ Ak1 xn − Ak xn   cn ≤ xn − x∗ 2 2      − 1 − αn − αn μγ 1 − βn − αn − αn μγ Ak1 xn − Ak xn   cn . 3.59 It follows that 

1 − αn − αn μγ



2    1 − βn − αn − αn μγ Ak1 xn − Ak xn 

≤ xn − x∗ 2 − xn1 − x∗ 2  cn

3.60

≤ xn − xn1 xn − x∗   xn1 − x∗   cn . Therefore, by 3.22 and 3.31, we get        k1 k  lim Ak1 xn − Ak xn   0 that is lim un − un   0.

n→∞

n→∞

3.61

Step 4. We prove that     lim sup u  γf − I  μA x∗ , xn − x∗ ≤ 0, n→∞

3.62

where x∗ is a solution of the optimization problem:

min x∈Ω

μ 1 Ax∗ , x∗   x∗ − u2 − hx∗ . 2 2

3.63

Journal of Applied Mathematics

27

To show this inequality, we can choose a subsequence {yni } of {yn } such that         lim u  γf − I  μA x∗ , yni − x∗  lim sup u  γf − I  μA x∗ , yn − x∗ .

i→∞

n→∞

3.64

Since {yni } is bounded, there exists a subsequence {ynij } of {yni } which converges weakly to z ∈ C. Without loss of generality, we can assume that yni z. From 3.53, we get xni z. Next, we show that z ∈ Ω : FS ∩ FW ∩ F ∩ SVIC, B, D, where F  MEPΘ ∩N k , φ. k1 1 First, we prove that z ∈ FS. Indeed, from Lemma 2.11 and 3.56, we get z ∈ FS, that is, z  Ssz, for all s ≥ 0. n 2 Next, we show that z ∈ FW  ∩∞ n1 FWn , where FWn   ∩i1 FTi , for all n ≥ 1 / FW, then there exists a positive integer m such and FWn1  ⊂ FWn . Assume that z ∈ / ∩m FT . Hence for any n ≥ m, z ∈ / ∩ni1 FTi   FWn , that is, that z ∈ / FTm  and so z ∈ i i1  SsWn z, for all s ≥ 0; z/  Wn z. This together with z  Ssz, for all s ≥ 0, shows z  Ssz / therefore, we have z /  Kn Wn z, for all n ≥ m. It follows from the Opial’s condition and 3.52 that     lim infyni − z < lim infyni − Kni Wni z i→∞ i→∞     ≤ lim inf yni − Kni Wni yni   Kni Wni yni − Kni Wni z i→∞   ≤ lim infyni − z,

3.65

i→∞

which is a contradiction. Thus, we get z ∈ FW. k1 k1 3 Now, we prove that z ∈ F. Since Ak1  JrΘk1 Ak , k  1, 2, . . . , N − 1, and un  Ak1 xn , we have     

   1  k1  K A xn − K Ak xn , η x, Ak1 xn ≥ 0, Θ Ak1 xn , x  φx − φ Ak1 xn  rk1 ∀x ∈ H. 3.66 It follows that 1 rk1

     

    K Ak1 xni − K Ak xni , η x, Ak1 xni ≥ −Θ Ak1 xni , x − φx  φ Ak1 xni 3.67

for all x ∈ H. From 3.61 and by conditions C1c and C2, we get lim

1

ni → ∞ rk1

     

K Ak1 xni − K Ak xni , η x, Ak1 xni  0.

3.68

By the assumption that φ is lower semicontinuous, then it is weakly lower semicontinuous and by the condition H2 that x → −Θi x, y is lower semicontinuous, then it is weakly

28

Journal of Applied Mathematics k

lower semicontinuous. Since yni z, it follows from 3.36, 3.52, and 3.61 that uni z for each k  1, 2, . . . , N − 1. Taking the lower limit ni → ∞ in 3.67, we have

Θk1 z, x  φx − φz ≥ 0,

∀x ∈ H, ∀k  0, 1, 2, . . . , N − 1.

3.69

MEPΘk , φ. Therefore, z ∈ ∩N k1 4 Next, we show that z ∈ SVIC, B, D. By 3.36 and 3.52, we have        N   N  un − yn  ≤ un − Kn Wn yn   Kn Wn yn − yn  −→ 0 as n −→ ∞.

3.70

By Lemma 2.13 that G is a nonexpansive, we obtain            N  N N N yn − G yn    − τBPC un − δDun − G yn  PC PC un − δDun        N  G un − G yn     N  ≤ un − yn .

3.71

Thus,    lim yn − G yn   0.

n→∞

3.72

By Lemma 2.14, we obtain that z ∈ SVIC, B, D. Hence z ∈ Ω is proved. Now, from Lemma 2.9, 3.64, and 3.53, we have         lim sup u  γf − I  μA x∗ , xn − x∗  lim sup u  γf − I  μA x∗ , yn − x∗ n→∞

n→∞

     lim u  γf − I  μA x∗ , yni − x∗ i→∞      u  γf − I  μA x∗ , z − x∗ ≤ 0.

3.73

By 3.52, 3.53, and 3.73, we obtain     lim sup u  γf − I  μA x∗ , Kn Wn yn − x∗ ≤ 0. n→∞

3.74

Journal of Applied Mathematics Step 5. Finally, we show that xn → x∗ . From 3.1, we obtain xn1 − x∗ 2   2       αn u  γfWn xn   βn xn  1 − βn I − αn I  μA Kn Wn yn − x∗         1 − βn I − αn I  μA Kn Wn yn − x∗  βn xn − x∗    2  αn u  γfWn xn  − I  μA x∗   2       1 − βn I − αn I  μA Kn Wn yn − x∗  βn xn − x∗           2αn 1 − βn I − αn I  μA Kn Wn yn − x∗ , u  γfWn xn  − I  μA x∗        2αn βn xn − x∗ , u  γfWn xn  − I  μA x∗  α2n u  γfWn xn  − I  μA x∗ 2 

2    ≤ 1 − βn − αn 1  μγ Kn Wn yn − x∗   βn xn − x∗       2αn 1 − βn γ Kn Wn yn − x∗ , fWn xn  − fx∗        2αn 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗     − 2α2n γ I  μA Kn Wn yn − x∗ , fWn xn  − fx∗        − 2α2n I  μA Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗        2αn βn γ xn − x∗ , fWn xn  − fx∗   2αn βn xn − x∗ , u  γfx∗  − I  μA x∗    2  α2n u  γfWn xn  − I  μA x∗  ≤

 

2  1 − βn − αn 1  μγ Kn Wn yn − x∗   βn xn − x∗        2αn 1 − βn γ Kn Wn yn − x∗ fWn xn  − fx∗        2αn 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗     − 2α2n γ  I  μA Kn Wn yn − x∗ fWn xn  − fx∗        − 2α2n  I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗         2αn βn γxn − x∗ fWn xn  − fx∗   2αn βn xn − x∗ , u  γfx∗  − I  μA x∗    2  α2n u  γfWn xn  − I  μA x∗ 





2 ≤ 1 − βn − αn 1  μγxn − x∗   βn xn − x∗     2αn 1 − βn γαxn − x∗ 2       2αn 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗    − 2α2n γα I  μA Kn Wn yn − x∗ xn − x∗        − 2α2n  I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗       2αn βn γαxn − x∗ 2  2αn βn xn − x∗ , u  γfx∗  − I  μA x∗

29

30

Journal of Applied Mathematics    2  α2n u  γfWn xn  − I  μA x∗   

  1 − αn 1  μγ  2αn γα xn − x∗ 2        αn 2 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗    − 2αn γα I  μA Kn Wn yn − x∗ xn − x∗        − 2αn  I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗       2βn xn − x∗ , u  γfx∗  − I  μA x∗    2  αn u  γfWn xn  − I  μA x∗     2    1 − 2αn 1  μγ  α2n 1  μγ  2αn γα xn − x∗ 2        αn 2 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗    − 2αn γα I  μA Kn Wn yn − x∗ xn − x∗        − 2αn  I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗       2βn xn − x∗ , u  γfx∗  − I  μA x∗    2  αn u  γfWn xn  − I  μA x∗  .    1 − 2αn 1  μγ − γα xn − x∗ 2        αn 2 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗      2βn xn − x∗ , u  γfx∗  − I  μA x∗  2  αn 1  μγ xn − x∗ 2    − 2γα I  μA Kn Wn yn − x∗ xn − x∗        − 2 I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗   2  u  γfWn xn  − I  μAx∗  . 3.75

Since {xn }, {fWn xn }, and {Kn Wn yn } are bounded, there exist M > 0 such that 

2 1  μγ xn − x∗ 2    − 2γα I  μA Kn Wn yn − x∗ xn − x∗          − 2 I  μA Kn Wn yn − x∗ u  γfx∗  − I  μA x∗     2  u  γfWn xn  − I  μA x∗  ≤ M

3.76

Journal of Applied Mathematics

31

for all n ≥ 0. It follows that xn1 − x∗ 2 ≤ 1 − αn an xn − x∗ 2  αn bn ,

3.77

  an  2 1  μγ − γα ,      bn  2 1 − βn Kn Wn yn − x∗ , u  γfx∗  − I  μA x∗      2βn xn − x∗ , u  γfx∗  − I  μA x∗  αn M.

3.78

where

Applying Lemma 2.8 to 3.77, we conclude that xn → x∗ . This completes the proof. Remark 3.2. For example, of the control conditions C4–C6, we set αn  1/10n, βn  n/n  1. We set B, D is a 1-Lipschitz continuous and relaxed 0, 1-cocoercive mapping, i.e., LB  1  LD and c  0  c , d  1  d . Then, we can choose τ ∈ 0, 2 and δ ∈ 0, 2 which satisfies the condition C6 in Theorem 3.1. Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H which C  C ⊂ C and let f be a contraction of C into itself with α ∈ 0, 1. Let φ be a lower semicontinuous and convex functional from H to R and let Θ : H × H → R be a finite family of equilibrium functions satisfying conditions (H1)–(H3). Let S  {Ss : 0 ≤ s < ∞} be a nonexpansive semigroup on C and let {tn } be a positive real divergent sequence. Let {Vi : C → C}∞ i1 be a countable family of uniformly k- strict be the countable family of nonexpansive mappings defined pseudo-contractions, let {Ti : C → C}∞ i1 by Ti x  tx  1 − tVi x, for all x ∈ C, for all i ≥ 1, t ∈ k, 1, let Wn be the W-mapping defined by 2.12, and let W be a mapping defined by 2.13 with FW  / ∅. Let A be a strongly positive linear bounded operator on H with coefficient γ > 0 and let 0 < γ < 1  μγ/α, B : H → H be a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping with d > cL2B , and let D : H → H be a LD -Lipschitz continuous and relaxed c , d -cocoercive mapping with d > c L2D . Suppose that Ω : FS∩FW∩MEPΘ, Œ∩SVIC, B, D /  ∅. Let μ > 0, γ > 0 and r > 0, which are constants. For given x1 ∈ H arbitrarily and fixed u ∈ H, suppose {xn }, {yn },{zn }, and{un } are the sequences generated iteratively by  1

K un  − K xn , ηx, un  ≥ 0, r zn  PC un − δDun ,

Θun , x  φx − φun  

yn  PC zn − τBzn ,

xn1  αn u  γfWn xn   βn xn 







 1 1 − βn I − αn I  μA tn

∀x ∈ H, 3.79

tn SsWn yn ds, 0

where un  JrΘ xn such that JrΘ : H → H is the mapping defined by 2.22 and {αn } and {βn } are two sequences in 0, 1 for all n ∈ N. If the functions η : H × H → H and K : H → R satisfy the

32

Journal of Applied Mathematics

conditions (C1)–(C6) as given in Theorem 3.1, then {xn } converges strongly to x∗ ∈ Ω, which solves the following optimization problem (OP): min ∗ x ∈Ω

μ 1 Ax∗ , x∗   x∗ − u2 − hx∗ , 2 2

3.80

and x∗ , y∗  is a solution of the general system of variational inequality problem 1.20 such that y∗  PC x∗ − δDx∗ . Proof. Taking N  1 in Theorem 3.1. Hence, the conclusion follows. This completes the proof. Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H which C  C ⊂ C and let f be a contraction of C into itself with α ∈ 0, 1. Let S  {Ss : 0 ≤ s < ∞} be a nonexpansive semigroup on C and let {tn } be a positive real divergent sequence. Let {Vi : C → C}∞ i1 be a countable family of uniformly k-strict pseudo-contractions, let {Ti : C → C}∞ i1 be the countable family of nonexpansive mappings defined by Ti x  tx  1 − tVi x, for all x ∈ C, for all i ≥ 1, t ∈ k, 1, let Wn be the W-mapping defined by 2.12, and let W be a mapping defined by 2.13 with FW /  ∅. Let A be a strongly positive linear bounded operator on H with coefficient γ > 0 and let 0 < γ < 1  μγ/α, B : H → H be a LB -Lipschitz continuous and relaxed c, d-cocoercive mapping with d > cL2B , and let D : H → H be a LD -Lipschitz continuous and relaxed c , d cocoercive mapping with d > c L2D . Suppose that Ω : FS ∩ FW ∩ SVIC, B, D  / ∅. Let μ > 0 and γ > 0, which are constants. For given x1 ∈ H arbitrarily and fixed u ∈ H, suppose {xn }, {yn }, and{zn } are the sequences generated iteratively by zn  PC xn − δDxn , yn  PC zn − τBzn ,

xn1  αn u  γfWn xn   βn xn 







 1 1 − βn I − αn I  μA tn

3.81

tn SsWn yn ds, 0

where {αn } and {βn } are two sequences in 0, 1 for all n ∈ N. If the sequence {xn } satisfy the conditions (C1)–(C6) as given in Theorem 3.1, then {xn } converges strongly to x∗ ∈ Ω, which solves the following optimization problem (OP): min ∗ x ∈Ω

μ 1 Ax∗ , x∗   x∗ − u2 − hx∗ , 2 2

3.82

and x∗ , y∗  is a solution of the general system of variational inequality problem 1.20 such that y∗  PC x∗ − δDx∗ . Proof. Put Θx, y ≡ φx ≡ 0 for all x, y ∈ H and r  1. Take Kx  x2 /2 and ηy, x  y − x, for all x, y ∈ H. Then, we get un  PC xn  xn in Corollary 3.3. Hence, the conclusion follows. This completes the proof. Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H and let f be a contraction of H into itself with α ∈ 0, 1. Let S  {Ss : 0 ≤ s < ∞} be a nonexpansive semigroup on C and let {tn } be a positive real divergent sequence. Let A be a strongly positive linear bounded

Journal of Applied Mathematics

33

operator on H with coefficient γ > 0 and let 0 < γ < 1  μγ/α, B : H → H be a LB -Lipschitz  ∅. continuous and relaxed c, d-cocoercive mapping with d > cL2B . Suppose that Ω : FS ∩ B−1 0 / Let μ > 0 and γ > 0, which are constants. For given x1 ∈ H arbitrarily and fixed u ∈ H, suppose the {xn }, {yn }, and {zn } are the sequences generated iteratively by zn  xn − τBxn , yn  zn − τBzn , xn1



   1  αn u  γfxn   βn xn  1 − βn I − αn I  μA tn

3.83

tn Ssyn ds, 0

where {αn } and {βn } are two sequences in 0, 1 for all n ∈ N. If the sequence {xn } satisfy the conditions (C1)–(C6) as given in Theorem 3.1, then {xn } converges strongly to x∗ ∈ Ω. Proof. Setting τ  δ, C ≡ H, D ≡ B and Wn ≡ PH ≡ I in Corollary 3.4, it follows from the proof of Theorem 4.1 in 25 that B−1 0  VIH, B. Hence, the conclusion follows. This completes the proof.

Acknowledgments The authors would like to thank the “Centre of Excellence in Mathematics” under the Commission on Higher Education, Ministry of Education, Thailand. Moreover, the authors are grateful to the reviewers for the careful reading of the paper and for the suggestions which improved the quality of this work.

References 1 R. U. Verma, “Generalized system for relaxed cocoercive variational inequalities and projection methods,” Journal of Optimization Theory and Applications, vol. 121, no. 1, pp. 203–210, 2004. 2 R. U. Verma, “General convergence analysis for two-step projection methods and applications to variational problems,” Applied Mathematics Letters, vol. 18, no. 11, pp. 1286–1292, 2005. 3 S. Saeidi, “Modified hybrid steepest-descent methods for variational inequalities and fixed points,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 134–142, 2010. 4 P. L. Combettes, “Hilbertian convex feasibility problem: convergence of projection methods,” Applied Mathematics and Optimization, vol. 35, no. 3, pp. 311–330, 1997. 5 F. Deutsch and I. Yamada, “Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings,” Numerical Functional Analysis and Optimization, vol. 19, no. 1-2, pp. 33–56, 1998. 6 H. K. Xu, “An iterative approach to quadratic optimization,” Journal of Optimization Theory and Applications, vol. 116, no. 3, pp. 659–678, 2003. 7 I. Yamada, N. Ogura, Y. Yamashita, and K. Sakaniwa, “Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space,” Numerical Functional Analysis and Optimization, vol. 19, no. 1-2, pp. 165–190, 1998. 8 A. S. Antipin, F. P. Vasilev, and A. S. Stukalov, “The regularized Newton method for solving equilibrium programming problems with an inexactly specified set,” Computational Mathematics and Mathematical Physics, vol. 47, no. 1, pp. 21–33, 2007. 9 F. Cianciaruso, G. Marino, and L. Muglia, “Iterative methods for equilibrium and fixed point problems for nonexpansive semigroups in Hilbert spaces,” Journal of Optimization Theory and Applications, vol. 146, no. 2, pp. 491–509, 2010. 10 S. D. Flam and A. S. Antipin, “Equilibrium programming using proximal-like algorithms,” Mathematical Programming, vol. 78, no. 1, pp. 29–41, 1997.

34

Journal of Applied Mathematics

11 A. Moudafi and M. Thera, “Proximal and dynamical approaches to equilibrium problems,” in IllPosed Variational Problems and Regularization Techniques (Trier, 1998), vol. 477 of Lecture note in Economics and Mathematical Systems, pp. 187–201, Springer, Berlin, Germany, 1999. 12 A. S. Stukalov, “An extraproximal method for solving equilibrium problems in a Hilbert space,” Computational Mathematics and Mathematical Physics, vol. 46, no. 5, pp. 743–761, 2006. 13 S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp. 506–515, 2007. 14 P. Sunthrayuth and P. Kumam, “A general iterative algorithm for the solution of variational inequalities for a nonexpansive semigroup in Banach spaces,” Journal of Nonlinear Analysis and Optimization, vol. 1, no. 1, pp. 139–150, 2010. 15 P. Kumam and K. Wattanawitoon, “A general composite explicit iterative scheme of fixed point solutions of variational inequalities for nonexpansive semigroups,” Mathematical and Computer Modelling, vol. 53, no. 5-6, pp. 998–1006, 2011. 16 P. Kumam, U. Hamphries, and P. Katchang, “Common solutions of generalized mixed equilibrium problems, variational inclusions, and common fixed points for nonexpansive semigroups and strictly pseudocontractive mappings,” Journal of Applied Mathematics, Article ID 953903, 28 pages, 2011. 17 T. Jitpeera and P. Kumam, “A new hybrid algorithm for a system of mixed equilibrium problems, fixed point problems for nonexpansive semigroup, and variational inclusion problem,” Fixed Point Theory and Applications, Article ID 217407, 27 pages, 2011. 18 P. Sunthrayuth and P. Kumam, “A new general iterative method for solution of a new general system of variational inclusions for nonexpansive semigroups in Banach spaces,” Journal of Applied Mathematics, Article ID 187052, 29 pages, 2011. 19 P. Kumam and C. Jaiboon, “A system of generalized mixed equilibrium problems and fixed point problems for pseudocontractive mappings in Hilbert spaces,” Fixed Point Theory and Applications, Article ID 361512, 33 pages, 2010. 20 P. Kumam and C. Jaiboon, “Approximation of common solutions to system of mixed equilibrium problems, variational inequality problem, and strict pseudo-contractive mappings,” Fixed Point Theory and Applications, Article ID 347204, 30 pages, 2011. 21 T. Jitpeera and P. Kumam, “A new hybrid algorithm for a system of equilibrium problems and variational inclusion,” Annali dell’Universit´a di Ferrara, vol. 57, no. 1, pp. 89–108, 2011. 22 P. Sunthrayuth and P. Kumam, “A system of generalized mixed equilibrium problems, maximal monotone operators and fixed point problems with application to optimization problems,” Abstract and Applied Analysis, vol. 2012, Article ID 316276, 39 pages, 2012. 23 P. Sunthrayuth and P. Kumam, “An iterative method for solving a system of mixed equilibrium problems, system of quasi variational inclusions and fixed point problems of nonexpansive semigroups with application to optimization problems,” Abstract and Applied Analysis, vol. 2012, Article ID 979870, 30 pages, 2012. 24 S.-S. Chang, C. K. Chan, H. W. J. Lee, and L. Yang, “A system of mixed equilibrium problems, fixed point problems of strictly pseudo-contractive mappings and nonexpansive semi-groups,” Applied Mathematics and Computation, vol. 216, no. 1, pp. 51–60, 2010. 25 L.-C. Ceng, C.-y. Wang, and J.-C. Yao, “Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities,” Mathematical Methods of Operations Research, vol. 67, no. 3, pp. 375–390, 2008. 26 R. U. Verma, “On a new system of nonlinear variational inequalities and associated iterative algorithms,” Mathematical Sciences Research Hot-Line, vol. 3, no. 8, pp. 65–68, 1999. 27 R. U. Verma, “Iterative algorithms and a new system of nonlinear quasivariational inequalities,” Advances in Nonlinear Variational Inequalities, vol. 4, no. 1, pp. 117–124, 2001. 28 F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem,” Fixed Point Theory and Applications, Article ID 383740, 19 pages, 2010. 29 L. C. Zeng, S. Schaible, and J. C. Yao, “Iterative algorithm for generalized set-valued strongly nonlinear mixed variational-like inequalities,” Journal of Optimization Theory and Applications, vol. 124, no. 3, pp. 725–738, 2005. 30 J.-C. Yao and O. Chadli, “Pseudomonotone complementarity problems and variational inequalities,” in Handbook of Generalized Convexity and Generalized Monotonicity, J. P. Crouzeix, N. Haddjissas, and S. Schaible, Eds., vol. 76, pp. 501–558, Kluwer Academic, Boston, Mass, USA, 2005.

Journal of Applied Mathematics

35

31 W. Kumam, P. Junlouchai, and P. Kumam, “Generalized systems of variational inequalities and projection methods for inverse-strongly monotone mappings,” Discrete Dynamics in Nature and Society, Article ID 976505, 23 pages, 2011. 32 R. Wangkeeree and U. Kamraksa, “An iterative approximation method for solving a general system of variational inequality problems and mixed equilibrium problems,” Nonlinear Analysis. Hybrid Systems, vol. 3, no. 4, pp. 615–630, 2009. 33 C. Jaiboon and P. Kumam, “A general iterative method for addressing mixed equilibrium problems and optimization problems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 73, no. 5, pp. 1180–1202, 2010. 34 P. Kumam and C. Jaiboon, “A new hybrid iterative method for mixed equilibrium problems and variational inequality problem for relaxed cocoercive mappings with application to optimization problems,” Nonlinear Analysis. Hybrid Systems, vol. 3, no. 4, pp. 510–530, 2009. 35 H. Zhou, “Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 69, no. 2, pp. 456–462, 2008. 36 K. Shimoji and W. Takahashi, “Strong convergence to common fixed points of infinite nonexpansive mappings and applications,” Taiwanese Journal of Mathematics, vol. 5, no. 2, pp. 387–404, 2001. 37 S. S. Chang, Variational Inequalities and Related Problems, Chongqing Publishing House, Changjiang, China, 2007. 38 Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bulletin of the American Mathematical Society, vol. 73, pp. 591–597, 1967. 39 G. Marino and H.-K. Xu, “A general iterative method for nonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 43–52, 2006. 40 M. A. Hanson, “On sufficiency of the Kuhn-Tucker conditions,” Journal of Mathematical Analysis and Applications, vol. 80, no. 2, pp. 545–550, 1981. 41 Q. H. Ansari and J. C. Yao, “Iterative schemes for solving mixed variational-like inequalities,” Journal of Optimization Theory and Applications, vol. 108, no. 3, pp. 527–541, 2001. 42 L.-C. Ceng and J.-C. Yao, “A hybrid iterative scheme for mixed equilibrium problems and fixed point problems,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 186–201, 2008. 43 T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 227–239, 2005. 44 H.-K. Xu, “Viscosity approximation methods for nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 298, no. 1, pp. 279–291, 2004. 45 Y. Yao, M. A. Noor, S. Zainab, and Y.-C. Liou, “Mixed equilibrium problems and optimization problems,” Journal of Mathematical Analysis and Applications, vol. 354, no. 1, pp. 319–329, 2009. 46 T. Shimizu and W. Takahashi, “Strong convergence to common fixed points of families of nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 211, no. 1, pp. 71–83, 1997. 47 K.-K. Tan and H. K. Xu, “The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 114, no. 2, pp. 399–404, 1992. 48 K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press, Cambridge, UK, 1990.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Suggest Documents