Update the resistance models for reliability analysis. • Calculate reliability indices
for components designed using ACI 318-12. • Provide a basis for selection of ...
Reliability-based Calibration of Design Code for Concrete Structures (ACI 318)
Andrzej S. Nowak and Anna M. Rakoczy
ACI 318 Code • • • • • •
Outline Objectives New material test data Resistance parameters Reliability analysis Resistance factors Further developments
Department of Civil Engineering
DESIGN CODES HISTORICAL PERSPECTIVE
ACI 318 Code • The basic document for design of concrete (R/C and P/C) buildings in USA • ACI 318 specifies resistance factors and design resistance • ACI 318 specifies load factors • ACI 318 does not specify design load, reference is made to other codes
Department of Civil Engineering
Why Calibration of ACI 318? • Current load factors were adopted in 1950’s • Introduction of the new code with loads and load factors, ASCE 7 (American Society of Civil Engineers) • Load factors specified in ASCE 7 are already adopted for steel design (AISC) and wood (NDS) • Problems with mixed structures (steel and concrete) Department of Civil Engineering
Department of Civil Engineering
Load factors specified by ACI 318 and ASCE 7 The design formula specified by ACI 318-99 Code
The design formula specified by ASCE-7 Standard
1.4 D < f R 1.4 D + 1.7 L < f R 1.2 D + 1.6 L < f R 0.75 (1.4 D + 1.7 L + 1.7 W) < f R 1.2 D + 1.6 L + 0.5 S < f R 0.9 D + 1.3 W < f R 1.2 D + 0.5 L + 1.6 S < f R 0.75 (1.4 D + 1.7 L + 1.87 E) < f R 1.2 D + 1.6 W + 0.5 L + 0.5 S < f R 1.2 D + 1.0 E + 0.5 L + 0.2 S < f R 0.9 D – (1.6 W or 1.0 E) < f R
Objectives of Calibration of ACI 318 • Determine resistance factors, f, corresponding to the new load factors (ASCE 7) • Reliability of the designed structures cannot be less the predetermined minimum level • Maintain a competitive position of concrete structures • If needed, identify the need for changes of load factors in the ASCE 7
Department of Civil Engineering
Code Calibration Procedure • Selection of representative structural types and materials • Formulate limit state functions, identify load and resistance parameters • Develop statistical models for load and resistance parameters • Develop the reliability analysis procedure • Select the target reliability level(s) • Determine load and resistance factors Department of Civil Engineering
Considered Structural Components • Beams (reinforced concrete, prestressed concrete) • Slabs (reinforced concrete, prestressed concrete) • Columns (reinforced concrete, prestressed concrete, tied and spiral, axial and eccentric) • Plain concrete
Department of Civil Engineering
Considered Load Components • • • • • •
D = dead load L = live load S = snow W = wind E = earthquake Load combinations
Department of Civil Engineering
Assumed Statistical Data • Dead load l = 1.03-1.05, V = 0.08-0.10
• Live load l = 1.00, V = 0.20
• Wind l = 0.80, V = 0.35
• Snow l = 0.80, V = 0.25
• Earthquake l = 0.65, V = 0.55 Department of Civil Engineering
Load Factor
Department of Civil Engineering
Considered Materials • Concrete (cast-in-place and precast) – Ordinary concrete – Light weight concrete – High strength concrete (f’c ≥ 45 MPa) • Reinforcing steel bars • Prestressing steel strands
Department of Civil Engineering
Considered Cases • Old – Statistical data for materials from 1970’s – Design according to ACI 318-99 • New – Statistical data for materials from 2001-05 – Design according to proposed ACI 318
Department of Civil Engineering
Objectives • Update the materials strength models using new statistical data • Update the resistance models for reliability analysis • Calculate reliability indices for components designed using ACI 318-12
• Provide a basis for selection of resistance factors Department of Civil Engineering
Parameters of Resistance • Material : uncertainty in the strength of material, modulus of elasticity, cracking stresses, and chemical composition. • Fabrication : uncertainty in the overall dimensions of the component which can affect the cross-section area, moment of inertia, and section modulus.
• Analysis : uncertainty resulting from approximate methods of analysis and idealized stress/strain distribution models. Department of Civil Engineering
Parameters of Resistance R = Rn M F P where : Rn = nominal value of resistance M = material factor F = fabrication factor P = professional factor Department of Civil Engineering
Parameters of Resistance • The mean value of R is
R R n M F P • Coefficient of variation
VR
VM
2
VF VP 2
• Bias factor
l R l M l Fl P Department of Civil Engineering
2
Resistance Factor
Department of Civil Engineering
Material Factor • Available data-base from 1970’s (MacGregor) • Concrete industry provided test results (20002001 and 2003), gathered for this calibration • Code Calibration of ACI 318 (2005) is based on these recent test results
Department of Civil Engineering
Concrete Strength • Compressive strength - cylinders 6 x 12 in (150 x 300 mm) • Mostly 28 day strength, for precast concrete also 56 day strength
Department of Civil Engineering
Results of Material Tests • Cumulative distribution functions (CDF) • For an easier interpretation of the results, CDF’s are plotted on the normal probability paper • CDF of a normal random variable is represented by a straight line • Any straight line on the normal probability paper represents a normal CDF
Department of Civil Engineering
Strength of Ordinary Concrete Ready mix concrete 3,000 psi 3,500 psi 4,000 psi 4,500 psi 5,000 psi 6,000 psi
(21 MPa) (24 MPa) (28 MPa) (31 MPa) (35 MPa) (42 MPa)
Plant-cast concrete 5,000 5,500 6,000 6,500
psi psi psi psi
(35 (38 (42 (45
MPa) MPa) MPa) MPa)
Strength of Concrete Light-weight concrete 3,000 psi 3,500 psi 4,000 psi 5,000 psi
(21 (24 (28 (35
MPa) MPa) MPa) MPa)
High strength concrete 7,000 psi (49 MPa) 8,000 psi (56 MPa) 9,000 psi (62 MPa) 10,000 psi (70 MPa) 12,000 psi (84 MPa)
More Materials Data • Compressive Strength of Ordinary Concrete, Ready mixed, fc’: 3,000 3,500 4,000 4,500 5,000 and 6,000psi (21-42 MPa) • Yield Stress of Reinforcing Steel Bars, Grade 60 Bar Sizes: #3, #4, #5, #6, #7, #8, #9, #10, #11 and #14 (9.5mm – 44 mm) • Breaking Stress of Prestressing Steel (7-wire strands), Grade 270 (1865 MPa), Nominal Diameters: 0.5 in and 0.6 in (12.5-15 mm) Department of Civil Engineering
Ordinary Concrete – Number of Samples
Lightweight Concrete – Number of Samples
Presentation of Test Data • Cumulative distribution functions (CDF) are plotted on the normal probability paper • Vertical axis is the number of standard deviations from the mean value • If CDF is close to a straight line, then the distribution is normal
•The mean and standard deviation can be read directly from the graph Department of Civil Engineering
Probability Paper Data is plotted on the normal probability paper. A normal distribution function is represented by a straight line.
Department of Civil Engineering
Probability Paper
Department of Civil Engineering
Ordinary Concrete – CDF of Strength 4
fc’ = 3,000 psi, 21 MPa
2
1
0
-1
-2
-3
Source
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
1 (samples: 334)
Source 12 (samples:1046)
Source 13 (samples: 350)
Source 14 (samples: 203)
Source 15 (samples: 424)
Source 16 (samples: 562)
Source 17 (samples: 116)
Source 18 (samples: 173)
Source 19 (samples: 180)
Source 23 (samples: 276)
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 3,000 psi, 21 MPa
l = 1.33 V = 0.145
2
1
0
-1
= 4000
-2
s = 580
-3
All sources (samples: 4016)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 3,500 psi, 25 MPa
2
1
0
-1
-2
-3
Source 16 (samples: 339)
Source 19 (samples:
99)
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 3,500 psi, 25 MPa l = 1.24 V = 0.115
2
1
0
= 4330
-1
s = 500
-2
-3
All sources (samples:
527)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 4,000 psi, 28 MPa
2
1
0
-1
-2
-3
Source
1 (samples: 316)
10000
9000
8000
7000
6000
2 (samples: 156)
Source 13 (samples: 274)
Source 14 (samples: 269)
Source 15 (samples: 220)
Source 16 (samples: 584)
Source 18 (samples:
Source 19 (samples: 533)
99)
Source
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 4,000 psi, 28 MPa
l = 1.21 V = 0.155
2
1
0
= 4850 s = 750
-1
-2
-3
All sources (samples: 2784)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 4,500 psi
2
1
0
-1
-2
-3
Source 12 (samples: 839)
Source 13 (samples: 298)
Source 15 (samples: 164)
Source 23 (samples: 346)
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 4,500 psi
l = 1.19 V = 0.16
2
1
0
= 5350
-1
s = 850
-2
-3
All sources (samples: 1919)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 5,000 psi, 35 MPa
2
1
0
-1
-2
-3
Source
1 (samples: 138)
Source 10 (samples: 206)
Source 11 (samples: 294)
Source 14 (samples: 263)
Source 16 (samples: 100)
Source 18 (samples: 133)
Source 19 (samples: 422)
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 5,000 psi, 35 MPa
l = 1.22 V = 0.125
2
1
0
-1
= 6100
-2
s = 760
-3
All sources (samples: 1722)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Ordinary Concrete – CDF of Strength 4
fc’ = 6,000 psi, 42 MPa
l = 1.22 V = 0.075
2
1
0
= 7340
-1
s = 550
-2
-3
All sources (samples: 130)
Approximation
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
-4
0
Inverse Normal Distribution
3
Strength [psi]
Lightweight Concrete – CDF of Strength l = 1.430 V = 0.155
= 4290 s = 665 fc’= 3000 psi, 21 MPa
Lightweight Concrete – CDF of Strength l = 1.296 V = 0.122
= 4535 s = 555 fc’= 3500 psi, 25 MPa
Lightweight Concrete – CDF of Strength l = 1.338 V = 0.123
= 5350 s = 660 fc’= 4000 psi, 28 MPa
Lightweight Concrete – CDF of Strength l = 1.328 V = 0.117
= 5975 s = 700
fc’= 4500 psi , 32 MPa
Lightweight Concrete – CDF of Strength l = 1.110 V = 0.076
= 5550 s = 420
fc’= 5000 psi , 35 MPa
Lightweight Concrete – CDF of Strength l = 1.187 V = 0.121
= 8070 s = 975
fc’= 6800 psi , 48 MPa
Lightweight Concrete – CDF of Strength l = 1.126 V = 0.100
= 8000 s =805
fc’= 7100 psi, 49 MPa
Summary of the Statistical Parameters for Concrete
0.16 0.14
0.10
1.0
0.08
0.9
0.06
0.8
0.04
0.7
0.02
fc’ [psi]
fc’ [psi] 10000
9000
7000
0.00
6000
13000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
12000
fc’ [psi]
0.6
fc’ [psi]
13000
1.1
12000
0.12
11000
1.2
5000
1.3
Lightweigh Concrete Ordinary, Ready Mix Ordinary, Plant Cast High Strength Recommended V for NWC Recommended V for LWC
V
4000
1.4
0.18
3000
λ
1.5
0.20
Lightweigh Concrete Ordinary, Ready Mix Ordinary, Plant Cast High Strength Recommended λ for NWC Recommended λ for LWC
2000
1.6
V
8000
l
Bias Factor and Coefficient of Variation for Compressive Strength and Shear Strength of Concrete Concrete Grade fc' (psi)
Compressive strength
Shear Strength
l
V
l
V
3000, 21 MPa
1.31
0.17
1.31
0.205
3500
1.27
0.16
1.27
0.19
4000, 28 MPa
1.24
0.15
1.24
0.18
4500
1.21
0.14
1.21
0.17
5000
1.19
0.135
1.19
0.16
5500
1.17
0.13
1.17
0.155
6000, 42 MPa
1.15
0.125
1.15
0.15
6500
1.14
0.12
1.14
0.145
7000
1.13
0.115
1.13
0.14
8000
1.11
0.11
1.11
0.135
9000
1.10
0.11
1.10
0.135
10,000
1.09
0.11
1.09
0.135
12,000, 84 MPa
1.08
0.11
1.08
0.135
Reinforcing Steel Bars, Grade 60 (420 MPa) – Number of Samples
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress Bars #3
4
2
1
0
-1
-2
-3
Yield Stress [ksi]
Source 2 (samples: 741)
Source 4 (samples: 123)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #3 l = 1.18 V = 0.04
2
1
0
= 71.0
-1
s = 3.0
-2
-3
All sources (samples: 864)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #4
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 2369)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
106)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #4
l = 1.13 V = 0.03
2
1
0
= 67.5
-1
s = 1.9
-2
-3
All sources (samples: 2685)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #5
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 3333)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
179)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #5
l = 1.12 V = 0.02
2
1
0
= 67.0
-1
s = 1.5
-2
-3
All sources (samples: 3722)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #6
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 1141)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
104)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #6 l = 1.12 V = 0.02
2
1
0
= 67.0
-1
s = 1.5
-2
-3
All sources (samples: 1455)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #7
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 1318)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
79)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #7 l = 1.14 V = 0.03
2
1
0
= 68.5
-1
s = 1.9
-2
-3
All sources (samples: 1607)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #8
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 1146)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
90)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #8 l = 1.13 V = 0.025
2
1
0
= 68.0
-1
s = 1.6
-2
-3
All sources (samples: 1446)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #9
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 1290)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
73)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #9 l = 1.14 V = 0.02
2
1
0
= 68.5
-1
s = 1.5
-2
-3
All sources (samples: 1573)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #10
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples:
825)
Source 3 (samples:
60)
Source 4 (samples:
70)
Source 5 (samples:
74)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #10 l = 1.13 V = 0.02
2
1
0
= 68.0
-1
s = 1.4
-2
-3
All sources (samples: 1089)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #11
2
1
0
-1
-2
-3
Source 1 (samples:
60)
Source 2 (samples: 1019)
Source 3 (samples:
60)
Source 4 (samples:
Source 5 (samples:
90)
87)
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #11 l = 1.13 V = 0.02
2
1
0
= 68.0
-1
s = 1.5
-2
-3
All sources (samples: 1316)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
Bars #14 l = 1.14 V = 0.02
2
1
0
= 68.5
-1
s = 1.5
-2
-3
Yield [ksi]
All sources - Source 3 (samples: 12)
Approximation
110
100
90
80
70
60
50
40
30
20
10
-4
0
Inverse Normal Distribution
3
Reinforcing Steel Bars, Grade 60 – CDF of Yield Stress 4
for simulation: l = 1.13 V = 0.03
3 2 1 0 -1 -2 -3
110
100
90
80
70
60
50
40
30
20
10
0
-4
#3
#4
#5
#6
#7
#8
#9
#10
#11
#14
All Size
Approximation
Yield Stress [ksi]
Reinforcing Steel Bars, Grade 60 (420 MPa) – Statistical Parameters #3
l 1.18
V 0.04
#4 #5 #6 #7 #8 #9 #10 #11 #14
1.13 1.12 1.12 1.14 1.13 1.14 1.13 1.13 1.14
0.03 0.02 0.02 0.03 0.025 0.02 0.02 0.02 0.02
Bar Size
Prestressing Strands Grade 270 (1800 MPa) – Number of Samples
Total Number of Samples 47,421
Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress 4
Strands 0.5 in (12 mm)
2
1
0
-1
-2
-3
Breaking Stress [ksi]
Source 1 (samples:
3908)
Source 2 (samples: 1158)
Source 3 (samples:
268)
Source 4 (samples: 9795)
Source 5 (samples: 18258)
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
-4
0
Inverse Normal Distribution
3
Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress 4
Strands 0.5 in (12 mm) l = 1.04 V = 0.015
2
1
= 280
0
s=4
-1
-2
-3
Breaking Stress [ksi]
All sources (samples: 33387)
Approximation
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
-4
0
Inverse Normal Distribution
3
Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress 4
Strands 0.6 in
2
1
0
-1
-2
-3
Source 1 (samples:
700)
Source 2 (samples:
Source 3 (samples:
212)
Source 4 (samples: 3442)
Source 5 (samples: 8889)
785)
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
-4 0
Inverse Normal Distribution
3
Breaking Stress [ksi]
Prestressing Steel (7-wire strands), Grade 270 CDF of Breaking Stress 4
Strands 0.6 in (12 mm) l = 1.02 V = 0.015
2
1
0
= 275
-1
s=4
-2
-3
All sources (samples: 14028)
Approximation
400
380
360
340
320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
-4
0
Inverse Normal Distribution
3
Breaking Stress [ksi]
Prestressing Steel – Statistical Parameters Size
Number of samples
Bias Factor
V
250 ksi (1750 MPa)
1/4 (6.25 mm) 3/8 (9.5 mm) 7/16(11 mm) 1/2 (12.5 mm)
22 83 114 66
1.07 1.11 1.11 1.12
0.01 0.025 0.01 0.02
270 ksi (1900 MPa)
3/8 (9.5 mm) 7/16 (11 mm) 1/2 (12.5 mm) 0.6 (15 mm)
54 16 33570 14028
1.04 1.07 1.04 1.02
0.02 0.02 0.015 0.015
Grade
Structural elements and limit states • Reinforced concrete beams - flexure
• Reinforced concrete beams - shear (w/o stirrups) • Reinforced concrete beams - shear (with stirrups) • Axially loaded columns, tied • Axially loaded columns, spiral • One way slabs - flexure
• One way slabs - shear • Two way slabs – shear • Bearing strength
Bending Moment Resistance
a R As f y d 2 As. f y a ' 0.85 f c .b for beams r = 0.6 and 1.6%, for slabs r = 0.30%. Department of Civil Engineering
Shear Resistance of Flexural Members
R Vn Vc Vs VC 2 f c bw .d '
Vs
Av . f y .d s
Department of Civil Engineering
Shear Resistance of Slabs in TwoWay Shear 2 R min 1 c
f
sd 1 2 f c' b0 d , 4 2b0
2 f c' b0 d ,
' c simulations
f
0.95
' c nominal
Department of Civil Engineering
f b0 d ' c
Eccentrically Loaded Columns 1. Basic Assumptions
Columns Interaction Diagram
Pn [K] Axial Load 1500
Compression Control 1250
Limit State
1000 750
Balanced Failure
Safe Behavior 500 250
Tension Control Pure Bending 100
200
300
400
500
600
Department of Civil Engineering
M n [K ft]
Analysis of Possible Cases of Cross Section Behavior (a)
(b)
Interaction Diagram for Eccentrically Compressed Columns; (a) Cross Sections Type I, (b) Cross Sections Type II.
Simulated Interaction Diagrams • concrete strength of 8 ksi (55 MPa) • tied columns • cast-in-place
red dots = nominal values
Interaction Diagrams For Concrete 3 ksi (21 MPa) (tied columns, cast-in-place)
Interaction Diagrams For Concrete 5 ksi (35 MPa) (tied columns, cast-in-place)
Interaction Diagrams For Concrete 8 ksi (55 MPa) (tied columns, cast-in-place)
Interaction Diagrams • concrete 12 ksi (85 MPa) • tied columns, • cast-in-place
Bearing Resistance of Concrete R 0.85 f c A1 '
A2 A1 2 1
A1 A2
Department of Civil Engineering
Bias Factor of Resistance for Beams, Flexure Bias factor for resistance - R/C beam, flexure 1.20
1.19
Reinforcement ratio: 1.18
r = 0.006
Bias Factor
1.17
r = 0.016
1.16
1.15
1.14
1.13
1.12
1.11
1.10 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
Specified concrete compressive strength [psi]
Coefficient of Variation of Resistance for Beams, Flexure Coefficient of variation for resistance - R/C beam, flexure 0.10
0.09
Coefficient of variation
0.08
0.07
0.06
0.05
0.04
Reinforcement ratio: 0.03
r = 0.006
0.02
r = 0.016
0.01
0.00 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
Specified concrete compressive strength [psi]
Bias Factor of Resistance for Beams, Shear Bias factor for resistance - R/C beam shear with and without shear reinforcement 1.34
no shear reinforcement s = 6 in, Av min s = 8 in, Av min s = 12 in, Av min s = 6 in, Av min real (2 #3) s = 8 in, Av min real (2 #3) s = 12 in, Av min real (2 #3) s = 6 in, Av ave s = 8 in, Av ave s = 12 in, Av ave s = 6 in, Av max s = 8 in, Av max s = 12 in, Av max
1.32 1.30 1.28
Bias Factor
1.26 1.24 1.22 1.20 1.18 1.16 1.14 1.12 1.10 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000 11000 12000 13000 14000
Specified concrete compressive strength [psi]
Coefficient of Variation of Resistance for Beams, Shear Coefficient of variation for resistance - R/C beam shear with and without shear reinforcement
0.32
no shear reinforcement s = 6 in, Av min s = 8 in, Av min s = 12 in, Av min s = 6 in, Av min real (2 #3) s = 8 in, Av min real (2 #3) s = 12 in, Av min real (2 #3) s = 6 in, Av ave s = 8 in, Av ave s = 12 in, Av ave s = 6 in, Av max s = 8 in, Av max s = 12 in, Av max
0.30 0.28
Coefficient of variation
0.26 0.24 0.22 0.20 0.18 0.16 0.14 0.12 0.10 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000 11000 12000 13000 14000
Specified concrete compressive strength [psi]
Bias Factor of Resistance for One way Slab, Flexure Bias factor for resistance - R/C slab, 1-way flexure 1.10
d = 4 in d = 6 in 1.08
Bias Factor
d = 8 in
1.06
1.04
1.02
1.00 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
Specified concrete compressive strength [psi]
Coefficient of Variation of Resistance for One way slab, Flexure Coefficient of varaition for resistance - R/C slab, 1-way flexure 0.20
d = 4 in d = 6 in
Coefficient of variation
0.18
d = 8 in
0.16
0.14
0.12
0.10 0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
11000
12000
13000
14000
Specified concrete compressive strength [psi]
Bias Factor and Coefficient of Variation of Resistance for Concrete Bearing Strength Bias factor for resistance - concrete bearing
Coefficient of variation for resistance - concrete bearing
1.40
0.20
1.35
0.18
Coefficient of variation
Bias Factor
1.30
1.25
1.20
1.15
1.10
0.16
0.14
0.12 1.05
1.00 0
1000
2000
3000
4000
5000
6000
7000
Specified concrete compressive strength [psi]
0.10 0
1000
2000
3000
4000
5000
6000
7000
Specified concrete compressive strength [psi]
Statistical Parameters of Fabrication Factor (Ellingwood, Galambos, MacGregor, Cornell) l
V
width of beam, b
1.01
0.04
effective depth of beam, d
0.99
0.04
effective depth of one-way slab, d
0.92
0.12
d = 4 in
1.03
0.09
d = 6 in
1.02
0.06
d = 8 in
1.015
0.04
depth and width of column, b1, b2
1.005
0.04
area of reinforcement, As, Av
1.00
0.015
spacing of shear reinforcement, s
1.00
0.04
effective depth of two-way slab, d
Statistical Parameters of Professional Factor (Ellingwood, Galambos, MacGregor, Cornell) l
V
R/C beams - flexure
1.02
0.06
R/C beams - shear without stirrups
1.16
0.11
R/C beams - shear with stirrups
1.075 0.10
Axially loaded columns, tied
1.00
0.08
Axially loaded columns, spiral
1.05
0.06
One way slabs - flexure
1.02
0.06
One way slabs - shear
1.16
0.11
Two way slabs - shear
1.16
0.11
Bearing strength
1.02
0.06
Monte Carlo Simulation Results - Examples Resistance parameters for concrete fc’ = 4000 psi (28 MPa) l
V
R/C beams - flexure
1.14
0.08
R/C beams - shear without stirrups
1.27
0.23
R/C beams - shear with stirrups
1.235 0.15
Axially loaded columns, tied
1.22
0.145
Axially loaded columns, spiral
1.29
0.14
One way slabs - flexure
1.055 0.14
One way slabs - shear
1.165 0.255
Two way slabs - shear
1.305 0.24
Bearing strength
1.275 0.17
Basic questions: • How can we measure safety of a structure? • How safe is safe enough? What is the target reliability?
• How to implement the optimum safety level?
Department of Civil Engineering
Reliability Index,
Department of Civil Engineering
Reliability Index, For a linear limit state function, g = R – Q = 0, and R and Q both being normal random variables
R
Q
s s 2 R
2 Q
R = mean resistance Q = mean load sR = standard deviation of resistance sQ = standard deviation of load
Reliability index and probability of failure PF 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9
1.28 2.33 3.09 3.71 4.26 4.75 5.19 5.62 5.99
Reliability Analysis Procedures • Closed-form equations – accurate results only for special cases • First Order Reliability Methods (FORM), reliability index is calculated by iterations • Second Order Reliability Methods (SORM), and other advanced procedures • Monte Carlo method - values of random variables are simulated (generated by computer), accuracy depends on the number of computer simulations
Department of Civil Engineering
Reliability Indices for R/C Beams, Flexure, (D+L) Ordinary concrete
Lightweight concrete
R/C Beam in flexure, ρ=0.6%
R/C Beam in flexure, ρ=0.6%
6.0
6.0
β
β
OLD
5.0
5.0
4.0
4.0
3.0
3.0
f=0.85 2.0
ϕ = 0.85 2.0
f=0.90 f=0.95
1.0
D/(D+L)
0.0 0.1
0.2
0.3
ϕ = 0.95
1.0
Old data, f=0.90 0.0
ϕ = 0.90
0.4
0.5
0.6
0.7
0.8
0.9
1.0
NWC, ϕ = 0.95
D/(D+L)
0.0 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reliability Indices for R/C Beams, Shear, (D+L) Ordinary concrete
Lightweight concrete
R/C Beam shear, no shear reinforcement, f'c = 4000psi
5.0
R/C Beam shear, no shear reinforcement, f'c = 27.5 MPa (4000 psi)
5.0
β
β
4.0
4.0
3.0
3.0
2.0
2.0
ϕ = 0.70
f=0.80
ϕ = 0.75
f=0.85
1.0
1.0
f=0.90 Old data, f=0.85
ϕ = 0.80 NWC, ϕ = 0.75
D/(D+L)
D/(D+L)
0.0
0.0 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reliability Indices for R/C Slab, flexure, (D+L) Ordinary concrete
Lightweight concrete
R/C Slab, one-way flexure
R/C Slab, one-way flexure
5.0
5.0
ϕ = 0.85
β
β
ϕ = 0.90
4.0
4.0
3.0
3.0
2.0
2.0
ϕ = 0.95 NWC, ϕ = 0.90
f=0.85 f=0.90
1.0
1.0
f=0.95 Old data, f=0.90
D/(D+L)
D/(D+L) 0.0
0.0 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reliability Indices for R/C Slab, one-way shear, (D+L) Ordinary concrete
Lightweight concrete R/C Slab, one-way shear, f'c = 27.5 MPa (4000psi)
R/C Slab, one-way shear, f'c=4000psi 5.0
5.0
β
f=0.75 f=0.80
4.0
ϕ = 0.70
β
ϕ = 0.75
4.0
ϕ = 0.80
f=0.85 Old data, f=0.85
3.0
NWC, ϕ = 0.75
3.0
2.0
2.0
1.0
1.0
D/(D+L)
D/(D+L) 0.0
0.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reliability Indices for R/C Slab, two-way shear, (D+L) Ordinary concrete
Lightweight concrete R/C Slab, two-way shear, f'c = 27.5 MPa (4000psi)
R/C Slab, two-way shear, f'c=4000psi 5.0
5.0
β
β
f=0.75
f=0.80
4.0
ϕ = 0.70 ϕ = 0.75
4.0
ϕ = 0.80
f=0.85 Old data, f=0.85
3.0
NWC, ϕ = 0.75
3.0
2.0
2.0
1.0
1.0
D/(D+L)
D/(D+L) 0.0
0.0 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Reliability Indices for Concrete bearing, (D+L) Ordinary concrete
Lightweight concrete Concrete bearing, f'c = 27.5 MPa (4000psi)
Concrete bearing, f'c=4000psi
5.0
5.0
β
β 4.0
4.0
3.0
3.0
2.0
2.0
ϕ = 0.60
f=0.65
ϕ = 0.65
f=0.70
1.0
1.0
ϕ = 0.70
f=0.75 Old data, f=0.65
NWC, ϕ = 0.65
D/(D+L)
D/(D+L)
0.0
0.0 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
What is Optimum Reliability? • If reliability index is too small – there are problems, even structural failures • If reliability index is too large – the structures are too expensive
Department of Civil Engineering
Target Reliability • • • • •
Consequences of failure Economic analysis Past practice Human perception Social/political decisions
Department of Civil Engineering
Selected Range of Reliability Indices for Beams, designed according to “old” ACI 318
Reliability Index
Range of Target Reliability Index for Beams 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
Selected Range of Reliability Indices for Slabs, designed according to “old” ACI 318 Range of Target Reliability Index for Slabs 6.0
Reliability Index
5.0 4.0 3.0 2.0 1.0 0.0
Selected Range of Reliability Indices for Columns and Plain Concrete Elements, designed according to “old” ACI 318 Range of Target Reliability Index for Columns and Plain Concrete Elements 7.0
Reliability Index
6.0 5.0 4.0 3.0 2.0 1.0 0.0
Calibration Results ACI 318-99
ACI 318-05
Recommended
f
f
f
T
• R/C beams – flexure
0.90
0.90
0.90
3.5
• R/C beams - shear w/o stirrups
0.85
0.75
0.85
2.5
• R/C beams - shear with stirrups
0.85
0.75
0.85
3.5
• Axially loaded columns, tied
0.70
0.65
0.70
4.0
• Axially loaded columns, spiral
0.75
0.70
0.75
4.0
• One way slabs – flexure
0.90
0.90
0.90
2.5
• One way slabs – shear
0.85
0.75
0.85
2.5
• Two way slabs – shear
0.85
0.75
0.85
2.5
• Bearing strength
0.70
0.65
0.70
3.0
Load factors specified by ACI 318 and ASCE 7 The design formula specified by ACI 318-99 Code
The design formula specified by ASCE-7 Standard
1.4 D + 1.7 L < f R 0.75 (1.4 D + 1.7 L + 1.7 W) < f R 0.9 D + 1.3 W < f R 0.75 (1.4 D + 1.7 L + 1.87 E) < f R
1.4 D < f R 1.2 D + 1.6 L < f R 1.2 D + 1.6 L + 0.5 S < f R 1.2 D + 0.5 L + 1.6 S < f R 1.2 D + 1.6 W + 0.5 L + 0.5 S < f R 1.2 D + 1.0 E + 0.5 L + 0.2 S < f R 0.9 D – (1.6 W or 1.0 E) < f R
American Concrete Institute (ACI)
Department of Civil Engineering
Reliability Indices for Beams, designed according to the “new” ACI 318 Reliability Indices for Beams
Reliability Index
5 4
target value new , ordinary concrete
3 2 1 0
new , high strength concrete new , light w eight concrete
Reliability Indices for Slabs, designed according to the “new” ACI 318 Reliability Indices for Slabs
Reliability Index
5 4 3
target value new , ordinary concrete
2 1 0
new , high strength concrete new , light w eight concrete
Reliability Indices for Columns and Plain Concrete Elements, designed according to the “new” ACI 318 Reliability Indices for Columns and Plain Concrete Elements 8
Reliability Index
7 6 5 4
target value
3
new , ordinary concrete
2 1 0
new , high strength concrete new , light w eight concrete
Load factors specified by ACI 318 and Proposed Design Formula The design formula specified by ACI 318-99 Code 1.4 D + 1.7 L < f R 0.75 (1.4 D + 1.7 L + 1.7 W) < f R 0.9 D + 1.3 W < f R 0.75 (1.4 D + 1.7 L + 1.87 E) < f R
Proposed design formula 1.4 (D + L) < f R 1.2 D + 1.6 L < f R 1.2 D + 1.6 L + 0.5 S < f R 1.2 D + 0.5 L + 1.6 S < f R 1.2 D + 1.6 W + 0.5 L + 0.5 S < f R 1.2 D + 1.0 E + 0.5 L + 0.2 S < f R 0.9 D – (1.6 W or 1.0 E) < f R
Examples of the Reliability Analysis ACI 318-99 Old Statistical Data
ACI 318-05 New Statistical Data
ACI 318-05 with new load factor, 1.4(D+L)
R/C beam, flexure - ACI 318-99 (1.4D+1.7L) Old Statistical Data
R/C beam, flexure - ASCE-7 (1.4D or 1.2D+1.6L) New Statistical Data
R/C beam, flexure - Proposed (1.2D+1.6L or 1.4D+1.4L) New Statistical Data
7
. Reliability Index,
Reliability Index,
f0.
6 5 4 3 2
6 5 4 3 2
1
1
0
0 0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load Ratio D/(D+L)
1
f0.5 f0. f0.5
7 .
7
8
f0.5 f0. f0.5
Reliability Index,
8 .
8
6 5 4 3 2 1 0
0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load Ratio D/(D+L)
1
0
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
Load Ratio D/(D+L)
1
Conclusions for ACI 318 Calibration • Quality of materials (concrete and reinforcing steel) have improved in the last 20-30 years • Reliability of structures designed according to “old” ACI 318 is now higher than the minimum acceptable level • Resistance factors can be increased by 10-15%. Therefore, for the new load factors (ASCE 7), “old” resistance factors are acceptable
Department of Civil Engineering
Department of Civil Engineering
Thank you
Slide design © 2007, The Board of Regents of the University of Nebraska. All rights reserved.