Questionable validation. Iwo Jima of the Square Law. Fain. 60 land battles ...... Ed. Benjamin ... Fain, Janice B. "The Lanchester Equations and Historical.
AD-A233 235
Evolution of Modem Battle: An Analysis of Historical Data
A Monograph by Major Charles D. Aden Field Artillery
dDTIC V1TotELECT ISCtAVI$
School of Advanced Military Studies General Staff College United States Army Command andKansas Fort Leavenworth, First Term AY 90-91 Approved for Public Release; Distribution Is Unlimited
REPORT DOCUMENTATION
Form Approved OMB No. 0704-0188
PAGE
#taMhC recoring t itd fortif colI on of informaltln Ifttjmlti d tO SVWetg I hoUf ear VP00'tl. Ill dlqdi tht i for r",*.-ng fl l ttIOil Mcung earsttngtdats saOwicr. gattneq andm.fianitt lt di nttdl. and Cnntptetrnq an r'...ng rith coIltrion of infotm.UOn. tnn coinamlrr retarding IhO Madewd burdenOttiate or any Othe 1 arfer n lnnetsr. Dirc torfantForintorrn iOnOpeaiona and Aepono. IJ t$ Jlflon colleIOn of infformtllton. ocrudingwgl-tton, f reducing thit buden, to *aln0qt'on e DoatsHilg11wr Sul 1204,ArlniltOn. VA 22202.402. &nd to tihe Ofice Of Mianaqaeet and Sudget. PaP*aOrlt AdILuIon PrO1ec(07044166). Weaninqion. OC 21003.
2. REPORT DATE
1. AGENCY USE ONLY (Leave biank)
1
27 /
3. REPORT TYPE AND DATES COVERED
MONO(GRAI'II
2/90
4. TITLE AND SUBTITLE
EVOLUTION OF MODERN HISTORICAL DATA
S. FUNDING NUMBERS
BATTLE:. AN ANALYSIS
OF
6. AUTHOR(S)
MAJOR CHARLES D. ALLEN,
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
B. PERFORMING ORGANIZATION
REPORT NUMBER
SCHOOL OF ADVANCED MILITARY STUDIES ATTN: ATZL-SWV oRT LEAVENWORTH1, KANSAS 66027-6900 Ct41913) 684 3437 AUTOVON 552-3437 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)
10. SPONSORING/ MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/ AVAILABILITY STATEMENT
APP'ROVI)
FOR PUBI.I C RELEIASEI;
12b. DISTRIBUTION CODE
DI)STRIBUTION
UN I, IHTEID
13. ABSTRACT (Maximum200 words)
14. SUBJECT TERMS
is. NUMBER OF PAGES
LANCIIESTER E(UATIONS '1O1DE-.L VALI DATION II!STOP.ICAI. ANALYSIS 17. SECURITY CLASSIFICATION OF REPORT
UNC.ASS I
EI)
NSN 7540-01-280-5500
Ii.
8 16. PRICE CODE SECURITY CLASSIFICATION OF THIS PAGE
UNCLASS I FIE)
19.
SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIE)
20. LIMITATION OF ABSTRACT
UNILIMI TED Standard Form 298 (Rev. 2-89) Prcrlo Oy ANSt 2lilT02
lL9-6i
ABSTRACT OF EVOLUTION OF MODERN BATTLE: AN ANALYSIS DATA by MAJ Charles D. Allen, USA, 85 pages.
HISTORICAL
This monograph conducts an analysis of historical data to detect trends in war and the evolution to modern tactical battle. It also investigates the continued use of Lanchester-based attrition models. models Military analysts have used the attrition of of Lanchester in an attempt to capture the dynamics and for tactical modern battle to answer questions involve questions These decisionmakers. strategic weapon systems, force technical evaluations of structure, doctrinal issues, and training. historical data of 1080 The methodology uses study of battles tactical land battles compiled in a The data was partitioned into from the years 1618-1905. two sets, pre- and post-American Civil War, to test the changes around hypothesis that the conduct of warfare form of used a generalized 1865. -he evaluation in the form of a linear Lanchester's equations Lanchester-based model to indicate which regression standard A attrition model best represented the data. test statistical hypothesis test called the Student "t" was applied to determine if the population parameters of and different sets were statistically the data indicated a change in the conduct of battle. that analysis revealed The quantitative not adequately Lanchester's Linear and Square Laws do that This implies describe the battles of this study. by postulated process and battle conditions attrition Logarithmic Peterson's these laws are not supported. that Law is more representative o-F the data and implies the casualty producing power of a force increases as the 4orce size decreases. marked by of modern battle is The evolution to quantitative di'ference as measured by the casualty There is a trend toward decreasing initial force ratio. War that coincides with the post-American Civil ratios innovations of the period. The five technological breechloaders, century: rifled muskets, nineteenth the and smokeless powder were magazines, barbed wire, warfare. catalysts of change in the tactical conduct of increased their The lethality o4 the new weapons with substantial combined with the accuracy and range forced the change in rates of fire increase in battlefield tactics.
SCHOOL OF ADVANCED MILITARY STUDIES MONOGRAPH APPROVAL
Major Charles D. Allen
Title of Monograph:
Evolution of Modern Battle: An Analysis of Historical Data
Approved by:
Monograph Director
. ,_ LTC
Ernest R. Rogers
Director, School of COL W. H. Janes, M
,
Advanced Military
AS
Studies
Director, Graduate Degree Program
Philip J. Brookes, Ph.D.
Accepted this
315t
day of
_
C________"
1990
Table of Contents
I.
Introduction ..................................... 1
II.
Study of Attrition Models ........................ 7
III.
Historical
IV.
Statistical
V.
Evaluation
VI.
Conclusions and
VII.
Appendix
A:
Sample Page from Lex-con ............ 41
VIII.
Appendix
B:
Linear Regression Results ............ 42
Iy.
Appendix
C:
Data Set.
X.
Endnotes.
Xi.
Bibliography .................................... 83
Battles as Data Source ................ 19 Analysis of Historical
Data ..........21
of Results ........................... Implications ..................... -8
............................ 5
........................................ 79
Acces-tton Fo r NTIS GP'A&I I DTIC TAB
By_ Dlstribut ln/ ..... IAatll:iblItv Codos
D-st
!
pGecifl
I.
Introduction
Backaround Military of
analysts in
Lanchester
modern
battle
strategic
an
to
answer
fundamental
in
Training
Center
the
Square
these by
recent
studies
Peterson
casualties
modern the
of
the
simulations Lanchester
and
Army war
equations
historical
data.
of
too
is
that
results. of
the data
Armies
the
in
National
historical
Logarithmic in
Law
data
in
proposed
reflecting
battlefield.
that
the
complex
based
dynamics
to
models.
have
the
failed to validate
currently
games
of
from
appropriate
attrition
the
force
historical
Decay
data
the modern
are
Lanchester
and
on
mixed
to
Ron Johnson
implies that
battlefield
of
analysis
more
conducted
shortcomings
applied
authors suggest
Department
for
The
incurred on
Both
the
analysis
seems
of
involve
systems,
with
Exponential
by Major
Law.
tactical
questions
been
equations
when
"The
A
models
the dynamics
for
weapon
have
discussed
equations
Battle."
attrition
issues, and training.
Lanchester
paper,
These
of
studies
Schneider
his
questions
evaluations
Validation
the
to capture
attempt
structure, doctrinal
Lanchester
used
decisionmakers.
technical
James
have
be
captured
However, using
largely
shown
of
limited
the in the
computer upon
the
validity
Significance of Military
professionals
been concerned best
a
throughout
with developing the best
enemies.
to
nineteenth
Frederick
the
Great
train and
their
force structure.
and
twentieth
armies.-
Napoleon
the use of technology.
Throughout
centuries, military
have used maneuvers to test out
Models are, events
and
representation prediction
and
to varying
new ideas on
tactics and
which
to represent addition
develop
friendly
Spirit.. the
incorporated simulations
The use
of
as
models
and
are
for
an
the
to mimic
"abstract
purpose
understanding
about
of the
U.S. military has used models enemy
forces
in
conflict.
troop maneuvers of
Department
through
interactive
war
the
of
games
REFORGER
Defense
use
of
into
In
has
computer
its
defense
and training. Department
military
engagements such
and
They
used
to the traditional
Team
planning
is
The
combat.
degrees, an attempt
conditions.
to
the
These exercises were models used
real-world process."
and
were
commanders
validate concepts to be employed in actual
real
have
commanders who conducted war games and maneuvers as
tool
to
the ages
equipment, and the best tactics to use in defeating
their both
Military Models
from
FORCEM.
of
models task are
the to
Army
relies
conduct
force
to
employed to
heavily
analysis
corps
on
level.
evaluate
the
on
the
tactical Models, potential
L
effect
of
new
weapon
systems,
the
application
of
doctrine. and the effect of force structure chanaes from task
force
military
through
model
corps-level
is
theater used
commanders
level.
to
The FIRST
train
and
battalion
staffs
in
BATTLE through
the
actions
required to effectively manage resources and fight
their
forces. Table used most These
A
often
models
Center
provides a used by
are
listing of
the computer
TRADOC Analysis Command
currently
in
use
by
the
modela (TRAC).
Combined
Arms
(CAC) Combat Development and Training Development
Directorates. Table A - TRADOC Most Often Used Models
MODEL
USE
ACABUG AMDC APTBASS BABAS BPS CASTFOREM CBS(JESS) COMBAT-SIM CORBAN FIRST BATTLE FORCEM JANUS(T) JANUS(L) JTLS SOTACA
The iroives
UNIT LEVEL
ATTRITION
Analysis Analysis Training Training Decisions Analysis Training Training Training
Task Force Task Force Task Force Battalion Brigade Task Force Corps/Div Task Force Corps/Div
One-on-one One-on-one Lanchester One-on-one Lanchester One-on one Lanchester One-on-one Lanchester
Training Analysis Training Analysis Training Training
Bn/Corps Theater Task Force Task Force Theater Theater
Lanchester Lanchester One-on-one One-on-one Lanchester Lanchester
"real-world" the destruction
process of
of
VALIDATION!
forces
enemy units while
No No No No On-going Yes On-going On-going On-going No No No No No No
in
combat
receiving
friendly
casualties.
For
a
model
to
be
useful
it
must
reflect the destructive process of force attrition.
The
,engine"
of
mathematical A
presents
to
the
methods.
types of
forces,
based
hit,
attrition
on
and
target
detail
two
probabilities
the
models, this
destruction
characteristics
which
tlie of
and
of
is
based
methods
on
will are
force
be
models target
initial
Table
employed
calculate acquisition,
for each
weapon
Lanchester-based discussed
focused
over
a
Lanchester-based
given a hit
engagement.
paper,
of
attrition
attrition
target kill
in
in
model
one-on-one,
One-on-one
attrition
and
simulation
expression of the attrition process.
decrement
target
a
on
time
strength
in
the
based
level
greater rate
on
and
of
force
fighting
effect iveness. in
order
for
representation of process. process
TRAC of
aim
of
confidence
defines
other
the
be
credible
-sLtSt undergo a
model
validatior
the
model's
as
more is
events
valid to
model
by
its
validation "a
ormal is
that
it
outcomes.
increase
inferred
in
behavior
world experiences and
.alidation
that
to
it
that
the real
with
model
model
reality,
ensuring
agreement with comparable
a
the the
is The
degree model
in
of
will
occur. D* neer
the models
considered
listed
in Table A only CASTFOREM
validated
because
it
agreed
has wJ~n
The remaining models either
another established model). not
have
been
The
on-going.
of
use
the
or
validated
that
models
is
process
validation
been
not
have
validated should raise questions on the acceptability of for
results
their
defense
and
planning
training
purposes. In order to properly validate a model,
its outcomes
COL
(Ret) Trevor
should be compared to historical
data.
Dupuy writes that: If we can collect enough reliable data from militarv data from military history we should be able to determine patterns of conduct, performance, and outcomes that will provide insights into the nature of armed basic and that will indicate trends to conflIct, assist military planning for the future.-
purpose
The first
is
to
battle.
tactical
in
monograph
if
the
analysis
war
and
the
determine
trends
reflects
this
of
The
whether
the
continued
models
is
warranted
second use
of
based
historic
of
to
evolution
purpose
The
twofold.
is
to
is
data
modern
investigae
Lanchester-based attrition the
on
results
of
the
analysis. The tactical from
the
methodology battles years
will
compiled
1618-1905.
in
historical
use a
study
of
The data will
be
1500
hypothesis
that
the
conduct
of
of
battles
partitioned
into two sets, pre- and post-American Civil War, the
data
warfare
to test changes
around
1865.
qeneralized equations
The
form
in
evaluation of
the
criteria
of
a
linear
regression
model
will
indicate
attrition
model
best
represents
standard "t"
statistical
test
will
parameters of the
be
are
indicate potential AssUptn1
Por 1 '1 be
applied
which
to
change
attrition
data
called
Student
population
will determine
different
and
if
ca-
in the conduct of warfare.
the purpose of the monograph, the
used of
from
the
only
historical
attrition
models
land
battles
study.
will
time,
and The
tattlefield American Civil
the term
models
modern
conditions War.
thait
as
apply
battle they
to
on vary
homoqeneous
will
occurred
The
focus
deterministic models, those whose parameters do not
forces.
A
s
investigation
Dver
The
sets.
the
compare
The test
a
Lanchester-based
the
statistically
use
regression.
hypothesis test
the data sets.
parameters
combat
Lanchester's
form
will
refer after
to t
Study of Attrition Models
II.
BArkoroind
on Lanch;ster
Frederick
William
Lanchester
(1878-1946)
was
a
brilliant English mathematician, engineer,
and
He
aerodynamics,
was
highly
economics, early
and
the
conduct
number
of
for
military
advocate
envisioned the
respected
for
great
of
his
work
strategy.
the
impact that
war.
Beginning
articles
that
Lanchester
of
use
in
aircraft,
aircraft
in
inventor.
1914
would
attempted
he
to
was
an
and
he
have on
published
quantify
a
that
impact. He
developed
Lanchester
equations, to
engagements. principle
of
His
Modern
"so
many
weapons,
war.'thatJ anything.' analysis
has to
moCnl
of
the men, and is
the
known
firepower
anid
factors
for
the
for
more
ridiculous
to
as
pretend
combat
morale
to
or
demerits
'chances
argued
always begin with
forces available to each side.
forces.
ground
unknown
Lanchester
combat
Lanchester's land
that
such
land
the
air combat.
mocified
attrition
still
would
as
demonstrate
the unattended merits or
However, battle
of
to
the argument
unknown
it
was
adopted
acknowledged
leadership of of
intent
to the conditions of
usage
equations
Lancnester had
it
analysis,
predict the outcome of military
concentration
and then apply
basic
a mathematical
of
calculate that
a counting
any of
Development In
of
his
conditions
Lanchester's Square
original of
ancient
warfare, he contended individuals battle
of
systems are
survival
of
a
where
units
employed
force
man
modern
is
against
fight
man.
against
at
the is
units
systems.
destruction
by The
combat
weapon
the
ancient
forces
warfare,
on
In
the
characterized
equal
against
based
described
warfare.
battles were
combat,
In
activity
modern
approximately
contact.
collective weapon
in
of
Lanchester
and that
engaged
consisted
point
work:
Law
a
and The
of
the
eremv. This
view
of
of
technology
o~f
long-ranged,
battle,
the
immediate
in
warfare
Lanchester's magazine-fed
superiority
under
reflects
time
in
heavier
the
the
fire
tne
progress
introduction
weapons.
superior
a', , .. n)umerically far
with
rifled
"concentration ot
ranka:... [where i-self
modern
in
numbers Ective
infericr ... than
combat
is
return."'
P BLUE B (t
Figure
RED I
1
Mt)
-
Lanrhester'-
Model
R
of
gives an
force it
modern
Eombat
finds
able
to
The
combat dynamics
the
interaction
The
Lanchester
Lanchester's
modeled
between
forces
equations
Square
Law
by Lanchester as
shown
I and
2
below
(equation 3).
The
at any time t for the Blue or Red unit B(t)
and
strengths which The
are
Blue
rate
These rite
R(t) ,
respectively.
represented
destroys at
which
parameters,
Red
coefficients.
Square
Law
Vorce with
would
per
Red p
imply
the greatest
B_
p
p
that
in
force
The
level
force rate
at
is
given
by
1.
Blue
is
given
by
p.
as
the
were
equal,
victory
would
initial
result
initial
R..
known
p
and
1.
time
unit
are
Figure
is represented by
The and
destroys
and If
by
in
reflects
attrition then go
to
the the
strength.
Lanchester's Equations:
EON I EON 2 dB/dt = -pR for B>O dR/dt = -pB for R;O where dB/dt = C) for B=@ where dR/dt = 0 for R=C,
Square Law
EON
A
-
=
p(Roa
-
There are five basic assumption of
the
Square
Law
to
modern
combat.
7
Ra)
for
the application
Those
assumptions
are 1. Two forces are engaged in combat. The forces are homogeneous in composition (i.e. weapons systems are essentially similar, if not identical).
2.
Each
force
is
in
range of
the opponent's
weapons.
Attrition rates are known and do not vary 3. over the course of the battle (this is the condition for a deterministic model). Exact enemy locations are known and battle 4. damage assessment allows shifting to new targets. 5. Weapons surviving targets.
Current simulations opposing scenario
used
forces
constant
is
to
of
the
represent
employ
time
and
to
Square
conditions
"aimed"
acquire
independent
distributed
evenly
application
is
the
fire
of
the
is
number
targets.
The
conditions
where
and occupy
a constant-density defense..
Aimed will
pick
it."
Square the
Law
on
also
opposing
fire assumed targets
is
that the
used
forces
Law
.n
where
fire.
targets
over
Under
the this
assumed
to
be
of
available
to
represent
use
"area"
fire
"each firer on the red side blue
side
and
try
to
kill
This generally applies to the use of direct-fire
weapons--rifle,
tank,
antitank,
and
precision
guided
munitions. Area
fire
is
assumed
where the
individual
not able to acquire a specific target but fires general to
the
location of use or
the targets.
indirect
firer
is
into the
This generally applies
fire weapons,
such
as
artillery.,
along
with
automatic
weapons
and
other
direct
fire
weapons used aaainst a position.
Development of Lanchester's Linear Law Another
condition
characterized where
volley
position.! was
by
more
Lanchester
firing
was
Lanchester common
engagements
under
of
in
modern
as
"firing
employed
combat
conditions
that
than
where
into
brown"
an
enemy
such
in
air
ground
was
the
against
acknowledged
land
warfare
firing
and
sea
forces
are
sometimes unable to acquire and engage specific targets. The Linear Law and
is derived from the following equations 4
5.
FdB/dt n 4 =
L
E
-pBR for BR'::O where dB/dt = 0 for B=O
These
equations
EON 5 for R.BFO dRidt = -AlRB where dR/dt = 0 for R=O
have
included
variable of the targeted unit's strength. process number the
is
now
a function
of
the
number
of targets, and the rate at which
targets.
The solution
of
the above
to the Linear Law of equation 6. Linear Law
EON
--
-
p pRc
-
R)
an
additional The attrition
of
firers,
the
the firers kill equations
leads
Units
evenly distributed
are
4
is only available on the general
4a. Information location. 5a.
assumptions
to
The new assumptions are':
and 5 for the Square Law.
enemy
change
a
Law requires
Linear
The
a general
over
area. Current in
application
representing
area
fire
the
circumstances
and
circumstance
of
a
Linear
is
where opposing
constant-area
appropriate
Law
to
defense.
the
use
the
directed sides A
use
second
Linear
La4
occurs where both forces use aimed fire with the rate of target of
acquisition
targets
longer
(i.e.,
the
individual
inversely proportional the
time
based the
factor
greatly
firepower
coefficients.
number
choose
from,
and
engage
select
the an
Lanchester's Models
simplifying
deciding
to
to
the
:
Lanchester's original overly
targets
reQUired
target)
Shortcomings of
more
to
in
on
the
Each
be attacked based on
conduct
determining
the
that
models have been
force
is of
ratio
reflected the
five
the actual
of
battle.
victory of in
critiqued
the the
basic
in
as -The
battle
opponents attrition
assumptions
is and
rate can
conditions of warfare.
1) Opposing forces are rarely homogeneous. Differing levels of technology can produce weapons which have dissimilar capabilities in the era of modern warf are.
2) Because of the dispersion of the modern battlefield all forces will not be within weapons range of the other. over
Attrition rates are not constant 3) and vary over the duration of the battle.
time
4) The fog of war does not always allow the locations detection of specific and/or general enemy is not Battle damage assessment during battle. available to the extent where multiple hits on a target can be prevented. 5) The friction of war and non-linearity of the battlefield does not accommodate the idea of even distribution of fires or distribution of forces.
There
are
effect of
combat
the
Lanchester
in
characterized
the performance of
models.
soldiers on
the
are
They
the battlefield.
the concept
with
disagreed
Brackney
combat between forces was purely aimed engagements.
combat
not
Lanchester's Equations by Brackney
Adaptation of
forces--
are
that
training and technology on
morale, leadership,
Harold
dynamics
other
an
He
viewed
attactier
represented
combination
of
by
battle as and
a
fire or area
a contest between
defender.
equations
conditions
for
that
7
the
and
His 8
Square
fire two
model
reflects and
Brackney's Equations
I
dB/dt = -pR where dB/dt =
EON 8
-- - - - -
)
for B>O for B=0
for >O dR/dt = -ORB where dR/dt*= 0 for R,B='
---- -
a
Linear
Laws.
EON 7
of
The Blue Red
defender.
fires
in
the
As
a
The
Red
defense,
model
has been applied
Blue
represents the
guerillas
in
government positions. identify the
Mixed Law
the
is given
The
firer
specific aims
and
using
the advantages
place same
and
aimed
fire
concept
from
targets of
the
forces.-
operations
surprised
direction
and
insurgents
soldiers
general
Blue
a
and
to guerilla warfare where the Red
government
specific
acquire
the defender's position
attackers.
ambush
The
the
is able to select
specific
represents
of
to
defender, possessing
upon
f orce
is unable
result,
the direction
area fire. of
attacker
The would
covered
forces but the
Blue
would
would
not
place
attackers.
attack ing fire
and
force
upon
concealed be
able
to
area
fire
in
The
Brackney
by equation 9.
Mixed Law
EON
(/2)
9
The
same
(B
E
-
assumptions
BE)
= p(R.
used
for
-
R)
Lanchester's
Square
and Linear Law are applicable to the Mixed Law.
Adaptation of Lanchester Equations by Peterson Another equations
was
adaptation made
by
to
Richard
the H.
basic
Peterson.
Lanchester He
reasoned
that
the
as
targets are attrition
presented
of
a
force
the attrition
and
this
losses
rate
Peterson
that
is
a
function
inflicted 10
and
are
proportional
to
the
in
its
the
The
10
of
solution
that
incurs
"force size
own
as
early stages
the
Peterson's Equations
dB/dt = -oB where dB/dt
held
Peterson
that
level
and
[are]
of the enemy's numbers."'-
largely independent
SEON
force
of the
Therefore.
the opponent
by
11.
contended
number
cireater
of
process only applied
attrition
battle.
a
increases.
to the opponent.
equations
in
reflected
of
size
unit
for B:O for B=O =
Peterson's
-
EON 11 for R.O dR/dt = -3R where dR/dt = C for R=O-
equations
in
results
the
Logarithmic Law. Logarithmic
[
MON
0 Log
12
The
key
assumption
weapons
are within
weapons
are
through
camouflage of
B=/B = p Log R./R
for
use
the
the range of
intervisible.
the
of
Law
This
cover,
the targets.
Logarithmic the opponent condition
is
all
but no
two
Law
could
concealment
exist
and/'or
Development of Willard's Linear Regression Model The
first
Lanchester's conducted
Laws
equations
by Willard was
intent
stated
"adequately
battles between generalized 5)
comprehensive
describes
basic
to make them
in
and published
to determine
if
the
To conduct
approximations
and
and
substitution,
or
Linear
outcome
of
the test., Willard
equations
independent of time.
was
Willard's
Square
the
test
data
1962.
course
Lanchester
to
historical
versus
armies."--:
the
attempt
(1
,2
,4 and
Using mathematical he
arrived
at
the
following model.
Willard's Linear Regression Model-
ON3
log B,/R. =
This between force
equation
Biue
levels.
This
is
variable
is
ratio, and
the forces.
R_/B..
Red
respectively.
nodel
reflects
a
rlog
R 0 iB.
relationship
linear
the ratio of casualties and the ratio of
independent force
log E
forces E
a
predictive
the
The
represents
The parameter,
logarithm
casualties
are
model
depicted the
of
the
exchange
B=
the data.
the
initial on and
ratio
ov indicates which
is most representative of
where
inflicted by
initial
the R.,
between
attrition
Table B - Parameter Values
Appropriate Law +1 .5 0 -1
I Results of
Square Law Mixed Law Linear Law Logarithmic
Law
Validation Attempts
As stated earlier, models are designed to represent reality and are used as tools of prediction. of
a
the
model
is
model
to
attempts to is
to
a
the
amount
conflicts
of
available
to
that
the test
claim
for
the
of
the
results
reality
The purpose of
the model
models
comparing
of
collected
degree
number
Lanchester
cases
data
provide
The
process
represent.
predicted by
that
the
Validation
confidence
model that
that
of it
validation the
results
will occur.
of
studies
is
limited.
and
quality
twentieth the
that
have
Researchers of
data
century
models.-.
validation
have
are
not the
the
claimed
collected
Hence,
against
tested
from
readiiV
number
observed
data
of are
very rare. The models
validation have
met
of
with
Schneider
and
Ronald
summary
the
more
of
the
Lanchester-based
mixed Johnson
prominent
success. have
Both
provided
attempts
to
attrition
a
James brief
validate
the
and
Square
Linear
Laws.
attempts and their results.
validation
Validation Studies
Table C - Survey of
I
survey of
a
presents
Table C
Result
Name
Data Source
Busse
Inchon-Seoul Campaign
Unable to validate the Square Law
Engel
Battle of Iwo Jima
Questionable validation of the Square Law
Fain
60 land battles of World War II
Suggestion of Logarithmic Law
Johnson
National Training Center
Suggestion of Logarithmic Law
Schmieman
Bodart's Lex-ican
Square and Linear Laws inadequate
Willard
Bodart's LeAicon
Square and Linear Laws "poor choices"
comprehensive test of
The most was
conducted
validit/ that
of
the
projected
.5.
13
This
.5.
Willard.
Willard
the
assumed
both the Square and Linear Laws and expected
of
that
represented values
Daniel
analysis
combination
equation
by
the attrition models
of
use of
the
performing
would would
result
from
data
area a in
indicate
the data.
ranging
historical
and
aimed
regression y
approx imately
that
the
Mixed
to
-. 87
with
a
using
equal Law
a He
fire.
analysis
His analysis yielded -. 27
reflect
would
to
best
y parameter average
This result refutes Lanchester's basic
near
equaticons
in favor of Peterson's Loaarithmic Law. is
that
the
increases
as
casualty-producing
The implication
power
the force size decreases.
In
of
a
force
other
words,
a smaller unit presents less targets to its opponent and is more efficient This
is
counter
number of to the
in
to
its ability to
Lanchester's basic
casualties
incurred
initial force ratio.
increased
force
inflict
ratio
is
casualties.
premise
that
inversely proportional
Lanchester posited
would
the
reduce
casualties
that for
an the
superior force.
Historical
III.
The the
body of
Battles as a Data Source data
information
1.49. major
the
1618
Wars,
Year's the
to
the
The
i
source
The
Civil
Gaston
study
occurred between begins
through and
on
Bodart's
Bodart's
-
period
War,
is based
the
'ith
the
Napoleonic
concludes
with
1905. accepted of
information
strengths
sustained.
of is
Lexicon
identification
tnitial
in
progresses
American
comprehensive period.
analysis
engagements that
1905.
War,
Russo-Japanese War The
the
Arieqs-Lex icon.
covers the
Thirty
for
conplied
t1itaerhistorisches
years
used
data
as
on
collected
an
accurate
engagements by
Bodart
and for
the
includes
of
combatants,
location
of
of
the
and
CasULalties
forces,
the
battle,
The Appendix
data
is
A
a
is the
categorized classes to
of
organized sample
page
engagements
treffenr
meeting
gefecht
engagements.
belagerLng,
in
einnahme,
chronological
from into
and The
the eight
schlact
text.
Bodart
classes. can
remaining
erstuermung,
order.
be
The
equated
classes
kap i tulIati
of
on,
and
ueberfall are attacks against fortified positions.--The analysis was battles
conducted using
from the period
of
the study.
data on
1080
land
The data set
was
extracted from an annex
of Schmieman's dissertation.
It
consists
initial
and
of
Blue.
the and
(Appendix C)
year, the
casualties
force
strengths
incurred
by
for
each
Red side
IV.
Statistical Analysis of Historical Data The
research
question
is
to
determine
quantitative analysis of historical in the conduct of battle.
evolution
American Civil
modern
in the data that would mark< battle
Schmieman's
categorizing
the
data
yielded
statistically
by
battle
results
that
different.
pre- and post-Civil
War
preliminary
Willard's
linear
The
1
battles
to
arbitrary
analysis
process.
provided
in
was
which
assignment was
and
percent were
analysis
was
not
illitially
conducted
model.
As
l!og
= log E +
the data as
data
size
that
era.
regression
Bodart's
showed
utilizing previously
is:
determine
represented
the
the years of occurrence,
analysis
log B./i'
initial
with
generally
My
regression
presented, the model
EON
beginning
analysis
partitioned the data based upon
The
data reflects trends
War.
William
casualties
of
the
In specific, the analysis was
conducted to identify trends the
if
performed
B
the
10GO
model
best
with
Lanchester-based
indicated by the value of of
done The
Appendix
Ri
Red
to
to
maintain
results B-1.
the
The
of
winning
force
consistency the
value
-.
The in
in
the
regression
-re
-v
=
-. 47'
is
consistent
with
Willard's
ranged
-. 27
to -. 87.11
from
(page 17),
analysis
Referring
the
back
values
to
Table
data better than
B
Law
Peterson's Logarithmic
this suggests that
represents the historical
where
the Square or
Linear Laws. To evaluate the adequacy of descrining
the
required.
A
to
the
null
value
regression. the
data,
regression
point
along
hvpotheses noth
line, the
to
relationship
rt ypothesis confidence freauency
that
conditions.
state is
sample
compared
:onfidence
I- and
Log E
test
is
used
results will
a
95%
to
from
the
level.
a
the
and
the
number
level
"t"
associated computed
the 1 the
actual
asserts
reflect
are
linear
of
the
that
the true statistic
parameters
of
.
level.
computed
population
t-value If
A
null
evaluate
reflect
confidence
100.
a
statement
the hypothesis test will of
that
confidence
the test
intercept The
the data.
tte
slope of
the
indicate
statistical
by
E.
for
variance, to
and Log
a
times out
calculated
mean, is
95
are the
exist
is
Hence,
the results of
1.
av is,
specified
challenge
determined
parameters
would
hypothesis
statistical
this case
This
"t"
level
is
null
the parameters,
does not
a
the
is a
vertical
zero.
at
of
in
parameters
in
that
Student
A
the
regression
posit
equal
test
hypothesis
of
The
a
the regression model
of
the
observations.
It
with "t"
a
speC3fiC
exceeos
the
t-value, the null The tested "t"
null
at
hypothesis is rejected.
hypotheses,
the 95%
Loa
E
=
0
confidence level.
statistics both exceed
and
y
Since
the critical
0,
=
were
the computed
value of
t os
-
1.96. the null hypotheses were rejected. Another
indicator
of
the
adequacy
of
the
the coefficient of determination, R-square. calculated
from
the
degree
independent
and
dependent
The
of
R-square
in
the
value
variabilitv
For
regression. that
the
model
variability very
The when
of
partitioned
provided
in
pre-1661
model
rejected value the results Law mull
at
the
indicates
data
is are
the
R-square
for
15
the
regression.
the
accounted
accounts
amount for
percent
of
by
value
This value does not
into
the
shcws
of
the
indicate a
9-2
suggests y
=
95% that
B-0,
that
the The
confidence
similar.
With
in y
=
null
rejected
the
model. -. 496,
is a better representation of at
data
post-1861
are
Logarithmic
of
the
the
respectively.
level.
percent
for
were
and
and
-. 475.
15
analysis of
pre-1861
accounted
hypotheses
the
is
the regression
Appendix
with
between
is
the data to the model.
results of
appropriate
that
in the data.
good fit
indicates
model,
only
of
is
R-sqUare
correlation
variables
data
this
of
model
Law
hypotheses The
is
were
R-square
variability The
The
in
post-1861
the
Logarithmic
the data.
Again, the
the
q5%
confidence
level.
There
value
to
was a
18
slight
percent
of
improvement the
in
the R-square
variation
in
the
data
explained by the model.
Table D - Summary of Regression Results
Period
Loo
1620-1905
.652
-. 475
15%
Pre-
1861
.700
-. 475
15%
Post-1861
.180
-. 496
18%
regressions
indicate
Although relationship ratio
and
P-square in
the
basic and of
do
Laws
an
of
9_iB
was used
original function .01
logarithm of
not
the casualty
inspire
equations are
attempt
not
to
casualties
as
detect
to
initial
ratio,
"degree
of
manifested
in
through
it
The
transforms
lost.
A
applied.
= -4.605.
trends
initial
factor
data becomes a factor is
a
supported
investigated.
is
the
linear force
the
low
confidence that
the
the
the
Square
analysis
data.
since
magnitude
the
a
The regressions clearly show
Lanchester
historical
R-suare
logarithm of
outcome."
ratio
Log
between
values
In
not
the
the
Linear
E
For
in
the data,
strengths,
logarithmic the
data
and
R /R
function the
of
ten
of
two when the
This characteristic
.I is
=
and was
original
difference
ex ample, Log
the
in
the
logarithm -2.307
and
-eferred to as
"log
compression."
The
use
of
transformed,
compressed
data hinders the analysis of the population parameters.
Table E - Casualty Statistics
[
Red
(Percentages)
Blue
mean
.0858
.1759
st dev
.083
.153
The average casualties sustained by the victor over the
1620-1905
suffered
period
17.6 percent
conducted
at
the
hypothesis that statistic implies
=
t that
This finding are
the
sample of
level
exceeded
are
the
"tto
loser
test was test
the
The computed
t,
=
statistically
1.96
and
different.
losses of the victorious force
less than, the
losing
conducted
by
force
Richard
is
consistent
Helmold
or
a
that
a
ninety-two battles. Schneider
to
qualitatively
He posits that
was
greatly
that percent
in the conduct
style of
while
A paired
confidence
means
change
marked
percent.
casualties.
95%
20.35
analysis
James
[a]
8.6
the t~o means were equal.
the
generally
with
was
the
proposes
an
article
of warfare occurred distinct style of
to give
military
"rise
art.
the American Civil War was the event
transition
military
performed
in
with
art
to
from
the
classical
operational
art.
the ratios oartitioned
"
-
that
Napoleonic A, "t"
into
pre-
test and
Schneider's hypothesis.
data sets to test
post-1861
Table F - Statistics of Partitioned Data
pre-1861
Red post-1861
.0864
.0826
.184Z
.1271
007
.006
.024
.011
mean variance .t.
-. 53
The
-5.82
analysis
strength
ratio
difference 95%
of
implies
between
confidence
the victor's casualties
the
The
level.
analysis
results.
There
confidence between percent
level
the
pre-
is
The
Further and
and
to
no
post-1861
percent
Blue
of
loser
statistical
post-1861 dropped
initial
statistical means
Red
at
the
casualties
yielded
difference the
data
from
percent sets.
18.4
different at
the
95%
casualties The
percent
average of
the
12.7 percent.
analysis was Blue
and
is
to
the two periods.
the
a
there
in the means of
casualties
initial strength
Red
of
that
pre-
remained consistent over
the
Blue pre-1861 post-1861
data
and
conducted by performing
composite data with following results:
a
aggregating both "t"
test
or, the
Table G - Statistics of Aaareaated Data
pre-1861 mean variance
The
hypothesis
post-1861
rejected at the 95% there
is
a
.1354
.1048
.0186
.0087
that
casualty to
post-1861
the
initial
means
the
force ratio are
confidence level.
statistical
of
difference
This in
pre-
and
equal
Was
implies that
the
pre-
ard
set
as
post-1861 means. A
linear
performed
L EON where
regression
the
complete
E
RciRo
is
the
y-intercept
regression
line.
provided
Appendix
in
The
1(BcBo)
+
and
results
B-4.
At
N
is
of
t_,
s
R-square.
=
1.96.
indicates
The that
the 95%
coefficient only
1-7%
of
the
the
the null hypotheses. E = 0 and o= 0, with
data
using the model:
14
E
of
slope
of
ti-e
regression
are
confidence
level.
were both rejected of the
determination. variability
in
data is explained by the model. The results when
i
of
partitioned
the regression analysis of into
pre-1861
and
the
data
post-1861
are
I III I
provided
in
Appendix
analysis of rejected value the
the
at
pre-1861
the
indicates
data
is
B-5 and B-6,
95%
12
accounted
coefficients
Again,
null
confidence
percent
of
model .
in the
the
+orce ratio for
for
post-1861
are
similar.
Post-1861
The data four
periods:
1865 -
1905.
provided
However,
there
R-square
value.
in
the a
percent)
and
is
a
In
data
the
95%
significant this
case
explained
greater
between
at
by
34 the
correlation
the
casualty
Regression
to
I_
Results R-square
.051
.197
173%
.05.
.18
12%
.C) 7
.419
Z4%
was 1620
further -
partitioned
800.
Appendix
1800
-
9-7
into
1861,
through
to note that the analysis
relationship exists Ped
rejected
a
total
1861
-
for
1865'
The results of the regression analysis are
in
interesting
for
were
CE
1861
in
the Red and Blue forces.
Feriod
Pre-
variability
resulting
Table H - Summary ot
i 1620-1905
the
R-square
The
indicates
(approximately 58
The
the model.
variation
This
the
hypotheses were
level. of
In
in
hypotheses
level.
improvement
percent
for
regression the
data, the null
confidence
that
respectively.
Blue.
between That
B-10.
It
is
indicates a linear
the casualty to
relationship
as
force ratios measured
by
R-square
is
generally
and post-Civil Another
improving
through
the
Civil
War
war periods. set
of
aggregated
means
sub-periods.
Table
"t"
tests were
(both I
is
Red
a
performed
and
summary
Blue) of
the
on
the
over
the
descriptive
statistics for the partitioned data. Table I - Summary of
Percent Casualties Ratio
Number of Period
Mean
1620-1800 1800-1961 1861-1965 1865-1905
Variance
.1465 .1175 .1152 .100:-
.0218 .0130 .0074 .0092
Table J provides the results of means
of
the
statistical t
partitioned
1136 704 98 2
the
"t"
data
test between
set.
There
difference at the 95% confidence for
1.96
=
Observations
the
1800-1861 , pre-1800
following and
cases:
1865-1905,
level
the
is
a
where
pre-1800
and
1800-1861
and
1365-1 q05. Table J -
Computed "t"
values
----------- ----------- - -- ---------Ier
-
iod
16201800
1620-1600
..
1800-1861
4.46
......
1861-1865
1.90
.20
1865-1900-
4.4q
2.04
-------------------------------------
--------
1800186118651861 1865 1905 .....
..
1
.. -
I
V.
Results
Evaluation of
Qualitative Analysis of Results The quantitative analysis of the data
is summarized
as follows: 1.
Lanchester's
adequately
describe
the
This
implies
that
laws
are
supported.
not
casualties
to
the
that
independent
of
the
by
Square
a
force
of
the
size
of
the
Law
this
be
study.
by
these
process
that
inversely
The
forces
not
maintains
will
force.
do
Linear
is
Law
largely
engaged
bLtt
is
the attrition rate coefficients fr-
force. .
'Peterson'sLogarithmic
representative of producing
power
decreases. larger
units
-.
the data and of
An
a
force
e-'tension
are
the enemy than
less
The
depicts
linear
casualty
force
ratio.
R-square
this
efficient
generalized
represented
a
implies that
increases of
Law
as
is
the casualty
the
force
assertion
in
their
more
is
size that
attrition
of
are smaller units.
equations
the
Square Laws
battles
attrition
solely a function o+ each
The
size
the
of
1080
and
battle conditions postulated
sustained
proportional predicts
Linear
by
of
Willard's
relationship
ratio
form
regression
between
the
and
the
logarithm
However,
the
relatively
other
factors
indicate
that
Lanchester's
of
logarithm the
low
mav
model of
initial
values
exists
of
that
better explain the variations in the data. 4.
There
conduct of
a quantitative difference
ratio
There
is
for
the
a general
time
pre-
trend
period
Schneider's
assertion
shows
that
and
toward
A
casualty
Willard's
the
there
initial
of
Civil
of
War.
investigation post-1861
conduct
supports
of
warfare
The
analysis
fewer
percent
loser. relationship
ratio
than
model
the
measurable,
conduct
American
periods.
as
exists
is
using
present
measured
with
by
the
reveals
that
of determination.
a
tactical
result
sustains
linear force
analysis
is
the
victor
regression
coefficient The
the
ratios over
with the Civil War.
stronger
to
War
decreasing This
that
casualties than the battle's 5.
post-Civil
studied.
significantly changed also
in
battle as measured by the casualty to initial
force
the
is
of
period
historical
quantifiable
battle
The
next
change
that
occurs
step
is
conditions that
data
that
resulted
in
the
in
the
after
the
qualitative
existed
the
in
the
quantitative
change. Schneider in
his
He
posits
face
of
discusses
article, that
more
lethality
is
"The
Theory
"armies
lethal
the
declining of
the Empty
incur
fewer
weapons."
The
attributable
casualty
to
Battlefield."
casualties weapons'
five
ratios
in
the
increasec
technological
innovations of
powder.' 5
smokeless
a
These
artillery
rifled impact
significant
a
introduction of the machinegun and
direct result are the breech-loading,
as
follow
that
innovations
Other
and
wire,
barbed
magazines,
rifles,
breech-loading
muskets.
rifled
nineteenth century:
the
of
the conduct
on
had
inventions
after
battle
their adoption by the modern armies. Smoothbore by
muzzleloader
prior
armies
the mid-nineteenth
to
of
their
to
development Norton and the
adoption due
rapid The
loading. of
rifle
the
weapons
used
century.
The
1500's did not
with
practical
became
bullet
by
refinement by Captain
The new bullet
problems
the technical
cylindro-conodial
its subsequent
1840's.
in the
rifled musket
early development of lead
the
dominated
the
Captain Minie in the
be dropped down
could
muzzle of the weapon and did not require ramming. When bullet muzzle
the to
musket
spin
velocity
provided
as
was it
fired,
travelled
provided
study
in
troops
armed
with
rifles
the
barrel.
The
range and
improved
1840 proposed that
German
the
down
additional
which
stability
forced
the rifling
increased
the
the
the
spin
accuracy.
effectiveness and
by three
a
A of
half
. times over those with smoothbore muskets. %
The
adoption
weapons began British
of
in the
replaced
their
rifles
1840-s with traditioral
as
practical
the United Brown
infantry
States. Bess
The
mus :et
with
the
rifle
in
1842.-D and
bureaucratic reluctance
The
with
adopted
use
first
significant
in
the
Crimean
War
smoothbore
muskets
fought
occurred
French
forces
French
overcame
the Tiae
rifle for
equipped
of
where
with
rifles
the
next
breechloader
and
Additionally,
the
the
It
had
was
loaded
rifle
twice the
over
increased
rate of
velocity
which
was
adopted
a
with
by
bolt-action
Prussian
potential
rate
range
the
to
of
army
ir
fire
as the
However,
ball. by
Von
Dreyse.
von
the
Minie
the
the
by
fire was offset
limited
1862 was
rifle.-
1835
in
patented
needlegun
Dreyse's 1840.
innovation
armed
British
against
the Springfield, then the Enfield
combat
forces
Russian
rifles.
in
standard weapon of the American Civil War after
The
their
1857.':
in
its infantry
The
loss of
muzzle
approximately
60)
yards. The on of
above
changing
innovations had a
tactics
smoothbore
required
two
the
of
muskets, use
of
concentrate firepower. narrow
front
battalions firing. due to
with
would
These
the post-1861 with close
range
order
companies
tactics
era.
in
in
line
resulted
lethality of
F'revious
of
200
yards.,
approach
columns and
in
use
formations
Regiments would
d
deploy
the increased
a
effect
substantial
and
employ
highe-
the weapcns.
on
to a
then
volley
Casualties
During that by
"It~he
Civil
War,
exposed
additional
within
value
and
to
the
rifle
had
gained
power
defensive
was
life,
long
to
Mahan
range,
field
of
leaders
the
use
and
both of
give
recognized
Subsequently,
while
must
battle.
that
forces
into
observed
in open assaults,
a
devastate
incorporated
operations
Hart
entrenchments
assaults.
entrenchments
so
military
strengthened the
of
entrenched
Confederate
frontal
Dennis
great destruction
columns
Union
the
"
s
that
defense
conducting
the
use
of
offensive
and
frontal
assaults
was strongly discouraged.-
fire
The
use
and
reload
position f:re.
of
breechloaders
thereby
The
their
weapons
reducing
their
advantage
was
Austro-Frussian War of fire L.-e
at
a
more rapid
AUstria
who
Prussians, with to
achieve
a
1866.
had
in
soldiers the
vulnerability
prone
to
illustrated
to
enemy
in
the
The Prussians were able to
from
to
the
while
clearly
rate
their
six
allowed
prone
ztand
positions
to
against
reload.
The
new weapons and tactics. were able
to
one
firepower
advantage
over
the
Austrians. This
lesson
developed 1870. than
and
The
increased
the
not
fielded
ranqe
twice
was
of
lost the
the
range
of
on the
French
chassepot
chassepot the
was
Prussian
who
quickly
breechloader 1200
in
yards--more
needlegun.
The
lethality of the weapons forced a modification
in
French
pits the
tactics
against
they
the Prussian
Prussians
one-half
where
adopted
adopted
use
attacks. 4 .2
infantry
the
the
American
system of
of
rifle
In
turn,
advancing
of the force in rushes while the remaining half
provided covering fires. The 1849 in
in
magazine America
1879.7
rifles was
the
soldier.
each
firing of
the
Soldiers
and
their
initially patented
vertical
magazine,
increased
each
selection
and
The
innovations,
for
combined
with
potential
did
rate
not
accuracy
targets was
magazine was
not
have
could
to
other
fire
reload
improve
interrupted
patented
the of
by
in
of a'ter
since
the
the need
to
frequently reload. extension
An
development
the
employed
War.
This
the
initrailleuse
machinegun.
which
simultaneously,
represented
magazine
of rapid-fire weapons.
and
barrels
of
a great
and
increase
The French
in
the
fired the in
concept
was
the
developed
Franco-Prussian
thirty-seven
American
rifled
Gatling
iirepower produced
gun by
a
single weapon. The
Russo-Japanese
devastating integrated
impact into
the
of
War
of
rifles
defense
1905 and
of
demonstrated machineguns
fortified
Japanese frontal assaults against Russian
the when
positions.
fortifications
yielded exceptionally heavy casualties. The
introduction of
barbed wire on
the battlefield
restricted
severely breach
the
entrenchments. the
increased
emoloyinq
amount
frontal
the
that
were
uip
-Japanese hUnQ
and
fires.
were
Tactics in
costly
the
ended
assaults
massacred
to
the wire
attackers
very
the
[E) lways
through
the
and machinegUn
assaults
wire
attacking forces
of
time
of
War .
Russo-Japanese
ability
Attempts to get
to the rifle
e :posed
with
Barbed
to greatly enhance the defense.
served
the
on
up
bar-bed
wire... The -nrn
last
imp-Act
the
increase The
accuiracy. the
soldiers
the
introduction, of
Cloud
smol-e
shots
powder
firearms the
provided The
prio,-
to
enemy
being
This Compounded the
experienced The
identified
impAct
of
first
a
impact
and
a
new
concern
gree-ter
Prior created
location Would.
be
deetd
of
specter
of
to
to its
signature
a
the
able 7'h e
psychological
magazine
in
the
charges their
to
The
ot
the
weapon to
fire
s m oL:es
s
invisible
stress already
by the combatants.
demonstrated
nic:powder
them
of
evolution
battlefield.
Presented the additional
enemy.
was
use
and
provided
modern
battlefield.
tne
more
the
irnpact
the
velocity
muzzle
in
second
on
on
powder.
e~~~ssoe~
was
c~n
to
innovation
intense
for
les Wars.
Doer
position. and
rif
British -
accutr:te
and
smokeless
The
initial
artillery It.
in
turn,
cmunter-fire .
powder Use
Of
readily SUbjecteif 5O
the
increased
range
and
accuracy
provided
by
the
new
smokeless powder amplified the effectiveness of the Boer marksmen.
Accounts of
feeling of
"'being
the war
relate the participant's
opposed to an
invisible foe''"'- while
long-range fires.
under the The
introduction
increased
the
battlefield
and
century.
The
of
the
lethality reshaped
need
to
breech-loading
of
the
the
weapons
tactizs
reduce
of
vulnerability
weapons reestablished the superiority led
to
the
adoption
Modern
armies
against
entrenchment
The
of
to
had
tactics evolved
disperse
troop
trenches acCept
would to
for
such
fire
and
soldier the
to
magazine with smokeless
Bloch
and
heavy
powder
accurately
introduction no
larger
of
than
battlefield of
the
and
casualties. order
to
more
on
rate
of
relied
increased
allowed
sector of powder
moral
demands
predicted
long-ranged the
new
assaults
skirmish
the resultinQ
Smokeless
increased
the
fortifications.
the
also
exercise
of
the future would
on
that
firearms,
individual
responsibility on
units to disperse for survivability against enemy
to
defenses.
assume a greater
battlefield.
of
he
nineteenth
frontal
in
assaults
flanking movements against The
that
use
or
of the defense and
and
result
the
the
rifle
forced
the
an
invisible
the
soldiers.
"[blefore
the
battlefields
were
modern
brigades.
The
prove to be much greater
than those of The
conduct
post-1861 above
the past."
era.
were
of
modern
battle
The technological
employed
during
ratios
noted
attributed emerging
in
as
the
the
era
of
and
in
the
presented
shaped
the
The decline in casualty
quantitative
reaction
conditions
innovations
the
tactics by which armies fought.
evolved
of
analysis
the
warfare
armed
in
order
can
be
forces
to
to
protect
themselves from the horrors of the new battlefield.
VI.
Conclusions and
Implications
Summary of Findings The quantitative analysis reveals that Lanchester's Linear
and
Square
Laws
do
not
1060 battles of this study. process
and
are not
supported.
battle
representative of producing
power
decreases. larger the
units
enemy
implies that
conditions postulated
the data and a
force
by
less
are
implies that
increases as
extension
are
than
This
describe
Feterson's Logarithmic
of
An
adequately
of
this
efficient
smaller
the
attrition these
laws
Law is a more the casualty
the
force
assertion
is
size that
in
their
attrition
units.
These
findings
of are
consistent with other studies. The
generalized
represented linear
by
form
Willard's
relationship
of
Lanchester's
regression
between
the
model
equations depicts
logarithm
of
a
the
casualty
ratio
ratio.
However,
indicate
that
Caution derived
conduct
relatively factors
low
or
initial
values
models
of
may
force
R-square
exist
that
be exercised
of
pre-1861
modern
in applying
data
to
battle was
advances
that
modern
shaped
were
the
not
lessons
conditions.
greatly
available
by
the
during
period. The
evolution
quantitative initial
coincides five
of
difference
force
decreasing
ratio.
ratios
with
measured is
the
by
muskets,
change
in the tactical
time
period
of
of
their
marked
by
casualty
to
trend
that
period.
The
War the
nineteenth magazines.,
the catalysts
warfare. The increased
range combined with the substantial
:)
lethality
accuracy
increase
fire forced the change in battlefield
toward
studied
breechloaders.
conduct
with
the
general
smokeless powder were
weapons
is
a
innovations
wire.
new
battle
post-American Civil
barbed
the
and
as
over
the
rifled
modern
There
technological
century:
of
the
the variations in the data.
the
technological that
the
must
from
logarithm of
the
other
better explain
The
and
and
in rates oF
tactics.
Implications The Sauare
Lanchester and
historical
Linear
data.
equations Law
are
as
not
manifested
in
representative
Analysts have persisted
in
these
the of laws
of
because
form
generalized represented
their
and
simulations
by
ease
relative
the
of
of
acceptance.
widespread
Lanchester
the
in
employment
as
the dynamics of battle, then the Logarithmic must
implications
investigate the
should
be
also
accepted.
use of
other
If
equations
is accepted
Willard's model
computer
If more
as
capturing
Law and
not.
the
its
analysts
representative
models. The until
it
acceptance
has
been
decisions
The
result the
impact
training
of
battle, the
are
greatly
underlying model
any
subjected
that
of
of
our
on
model
to
made
the based
force
military
must
be
tentative
validation
process.
the
model's
upon
structure,
doctrine
leadership.
is not representative of
If
and the
the realities
lessons gleaned from the simulations will
be equally fictitious.
APPFENDIX
A
-
Sample Page
from Lex.-ictmr
Deutsch - Fran: rsischer Kricg 1870-1871.
1I7M 27./11.
SCHLACHT
Amiens k5.) (Villers
-
Bretonncux)
(Stad3 in Frf4nklceich. 114uptstadt des Dip. Sonmme P33 km eeIrdl. von Paris). Sieg alcr Deutsche* ('10A00o Inf 4 4.400 Kev, 1:1 iesh 3S.000 M.) unter Gen. Ji Inf. Fh. v. mFanicuirej iuhc die 0rasasen (M3.500 Inkt. 1.500 Kay., 4Z Gesch. - Z5.000 M.) unier Geni. Faidherbs. 1.10 (1 Sib. Is 0th.-) ..... tt.. . . 3AjeO (43 . 50 . ) .. . verwunt. . .
37% -~ 1..130 (7 Sib. 68 0th.-) .110 (
UIr3
41
.60LO(70
I
-
OtTLz) ..
Blatilre Eiubue
.
).
.
(I Sib. 331OfIz.) 260O (3 . .13 . ).1-10
vcrmibt.geringen
.......
(4 Sib. 419Orrz.) 1.400 20 . ) 2.100=
.
Cessuit-Vurlust......(70
0th.-)
Verl. an Trophlez: 9 Kanonen (-
1870
6,6% 141%
2.50Z 24-0s,
2116), 2 IFahnen.
BELAGERLJNG
1&-27./tI.
Unj
volt
La F~re
.
(S3adt in
ranlireiclI4 Dip. Oise. in dcr 01%c. 22 kin nord~ve,,33. von Laron).
the Deutsche% MOMXA NQ) zwtnlgefl ie iraux6sehe Besuizung (2.300 liii
.,
70 Gcich.)
Cbergabc. Die Garnasn wurde kicg%-cfangen.
1,S70 28./11.
SCHLAtLHT
Beaune- La- Rolande (4.) (tadt in Frankreich. Wp. Lairet. an der Rstnde. 19 km %Fd~U won Pihiviems. Dautache
Fraxisones
CF.M. Pz. Friedrich Karl,v.
reuben
Ccii. Ceouzat
Strrpitkrilflo: hnfantenie Kavallerie Oessint-SLrks
34.000
6.000 174 Gesch.
40.000
56.000 4.0W0 60.000
Gesch. 133
Verlu~te: 1.000 (1 Sib. 39 0Thz.) -
2-6% -a 1.000. .. .. ....
.
....
tat und vcrwundet *rmi~t. -cfangen,
(I(I
-
Sib. 312 Otfs..) 2.100 LBW0 -
ast.erlse . .. .. . . . . ...
I Gtchfils. Tor).
31716
.3046
.11, 6716
an Trephiss
Sample Page from Gaston Bodart's, Krejas-Lexicon 16183-1905. Vienna: 562.
Hilitaer-Historisches C. W. Stern, 19038, p.
ALL YEARS MULTIPLE LINEAR REGRESSION Dependent Variable:
LOG(Bc/Rc)
Variable
Mean
intercept LOG E LOG(Ro/Bo)
0. 244
Source .odel Error Tota1
T for HO: Parameter Standard parameter=O) Error Estimate 0.652 -C). 475
DF
Sum o-f Squares
1.v0 1 ,77.00 1 ,078. 00
154.42 887.77 1,042. 1
0.0) .') Mean Square 154.42 (.a-
0.54 0.91 169.36 0. 15 0. 15
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-I
5 _2. -13.69
F-Val ue 167
K
en.:
1
~
erE'
i-F-e-
PRE-1861
MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable Intercept LOG E LOG(Ro/Bo)
SGurce Model ErrorTctal
LOG(Bc/Rc)
Mean 0.249
DF 1.00 917.00 918.00
Parameter Standard Estimate Error 0. 700 0.03 -0.475 0.04 Sum of Squares 134.51 775. 10 909.61
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-2
L:
Mean Square 134.51 0.85
0.58 0.92 157.99 0. 15 ].15
T for HO: parameter=0 22.05 -12.62
F-Value 159 .14
-
L
me4 e~
~C
re s
i r, r-
!
POST-1861 MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable
LOG(Bc/Rc)
Mean
Intercept LOG E LOG(Ro/Bo) C. 215
Source Model Error Tctal
DF 1.00 158.00 159.00
Parameter Standard T for HO: Estimate Error parameter =0 080 -0.496
C).06 0.08
5.85 -5.85
1um of Mean Squares Square F-Value 21..1 98.26 I.57
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square AdjL sted R-Square
21.31 0. 62
0.27 0.79 289(01 0. 18 0.17
34
.26
ALL YEARS MULTIPLE LINEAR REGRESSION Dependent
Variable:
Variable
Rc/Ro Mean
T for HO: Parameter Standard parameter=O Error Estimate 0.051 0.197
Intercept e 0.176
Source Model Error Total
DF
Sum of Squares 0.98 6.44 7.42
1.00 1 ,078.0 )] I , 079.0C
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-4
14.. 2 12.84
0.00 0.()2 Mean Square 0.98 0. 01
0.09
0.08 90.02 0. 13 (. I-
F-Value 164
.86
-
r
L-
R eQre s cwi
-.s.'
PRE- 1861 MULTIPLE LINEAR REGRESSION Dependent
Variable:
Rc/Ro
Variable
Mean
Intercept e Bc/Bc
0.184
Source Model Error Tctal
DF
Parameter Estimate 0. 053 0. 183 Sum of Squares 0.78 5.75 6.53
1 .00 918. 00 919.00
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square
B-5
T for HO: Standard parameter=( Error 0.00 0.02
17. 17 i 14
Mean Square
F-Value
0.78 O. O1
0.09 C0 (8 91.64 0. 12 0. 12
124.01
Ap
.
eer ea's
B;' -
e -
ieres -n Fs-
ItE
POST-1861 MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable Intercept e BC/Bo
Source Model Error Total
Rc/Ro
Mean
Parameter Standard T -for HO: Estimate Error parameter=€) 0.030 0.419
0.127
DF
Sum of Squares
1.00 158.00 159.00
C. 30 0.59 0.89
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square l-6
0.01 0.05 Mean Square 0. 30 0.00
0.08 0.06 7:T.70 0.34 0..4
3.89 9.03
F-Value 81.5e
-:i
71e
-Li
qrear cn
Res
,u t
PRE- 1800 MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable
Rc/Ro
Mean
Parameter Standard T for HO: Estimate Error parameter=0
Intercept e BC/Bo0.20
C.056 0.166 Sum of
Source Model Error Total
DF
Squares
1.00 566. 00 567. 0))
O.46 4.05 4.50
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-7
0.01 0. 02
10. 18 7.98
Mean Square '.46 0. 01
0.09
(.08 94.09
0. 10 0. 10
F-Value 63.74
1800-1861 MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable Intercept Bc/Bo
Rc/Ro
Mean
Parameter Standard Estimate Error 0.046 0.)228
e 0.154
Source
DF
Model Error Total
1.-0 .....) 50. 00 .5 .
Sum of Squares , 1.69 20
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-8
0.01 0.03 Mean Square 0. 2J. 0. 00
0.08 0.07 86.00 c-. 16 0. 16
T for HO: parameter=z 6.0: 8.15
F-Value 66.45
1861-1865 MULTIPLE LINEAR REGRESSION Dependent
Variable:
Mean
Variable Intercept BC/Bo
Rc/Ro T for HO: Parameter Standard parameter=C) Error Estimate (. 045 C). 402
e o. 17,
Source
DF
Model Error Tota 1
47.00 48. 00
SLIm o-f Squares
t. C00
08 C. 13 0. 21
Dependent Mean Root Mean Square Error Coefficient of Variation R-Square Adjusted R-Square B-9
0.01 C). 08 Mean Square 0.08 U.
00
U. LU
(.05 54.37 1-). 37
3.55 5.21
F-Val ue 27. IQ
re
-
r
isS on-
;Ries
t.
POST-1865 MULTIPLE LINEAR REGRESSION Dependent Variable:
Variable
Rc/Ro
Mean
T for HO: Parameter Standard Estimate Error parameter=O
Intercept e Bc /Bo
0. 125
C.023 o. 421
).01 0.06
Source Model Error Tot a 1
DF 1.00 109. 00 110. C
Sum of Squares 0.22 0.44 0.66
Mean Square -. 0.00
Dependent Mean Root Mean Square Error Coefficient o+ Variation R-Square Adjusted R-Square B- I 0
0.08 U').€U6
e..78 J. 0.37
2.51 7.40
F-Value 54.80
A??ENDIX C - H STOR7CAL DATA SET
YEAR 1620 1621 1622 1622 1623 1626 1626 1628 1630 1631 1631 1632 1632 1632 1633 1634 1634 1634 1634 1635 1635 1635 1635 1635 1636 1636, 1636 1637 1638 1638 1638 1639 1639 1639 1640 1641 1642 1642 1642 1642
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro 47,500 20,000 26,000 13,000 28,000 26,000 10,000 7,000 10,000 36,000 20,000 60,000 20,000 33,000 17.000 5,000 35,000 30,000 15,000 34,000 7,000 4,000 5.000 3.000 22,000 10,000 5,000 12,000 14,000 5,000 5,000 14.000 18,000 9,000 10.000 10,000 12,000 20.000 25,000 7,500
400 5,000 2,000 2,000 1,000 1,000 800 1,000 500 5,000 400 1,000 4,000 1,000 1,000 100 2,000 8,000 1,000 3,000 400 500 1,000 600 7,000 1,000 500 3,000 1,600 400 500 1,500 600 1,000 2.000 1,000 1,000 800 5.000 400
32,000 20,000 21,000 17,000 22,000 11,000 15,000 6,000 29.000 34,000 8,000 46,000 25,000 27,000 15,000 6,000 25,000 4,000 12.000 16,000 7,000 6,000 7,000 4,000 30,000 12,000 3,000 16,000 17.000 4,000 7,000 20,000 10,000 18,000 18,000 11.000 25,000 18,000 30,000 9,000
6,000 5,000 8,000 2,000 4,000 3.000 2,200 600 800 8,000 1,700 2,000 5,000 3,000 7,000 1,500 6,000 1,400 4,000 5,000 2,400 1,500 1,700 1,500 10,000 2,000 1.000 4,000 2,000 700 4,000 6,000 1.000 2,000 4,000 3,000 2,000 3.000 10,000 4,000
0.0084 0,2500 0,0769 0,1538 0.0357 0.0385 0,0800 0,1429 0.0500 0.1389 0.0200 0 0167 0.2000 0.0303 0-0588 0 0200 0.057! 0.2667 0 0667 0.0882 0.0571 0.1250 0.2000 0.2000 0.3182 0.1000 0.1000 0.2500 0.1143 0.0800 0.1000 0.1071 0.0333 0.1111 0.2000 0.1000 0.0833 0.0400 0.2000 0.0533
Bc/Bo 0.1875 0.2500 0.3810 0.1176 0.1818 0.2727 0.1467 0.1000 0.0276 0.2353 0.2125 0.0435 0.2000 0.1111 0-4667 0.2500 0.2400 0.3500 0.3333 0.3125 0.3429 0 2500 0.2429 0 3750 0.3333 0,1667 0.3333 0.2500 0.1176 0.1750 0.5714 0.3000 0.1000 0.1111 0.2222 0.2727 0.0800 0.1667 0.3333 0.4444
Log RATIO Bc/Rc
Log RATIO Ro/Bo
2.71 0.00 1.39 0.00 1 39 1.10 1.01 -0.51 0.47 0.47 1.45 0.69 0.22 1.10 1.95 2.71 1.10 -1.74 1.39 0.51 1.79 i.10 0 53 0.92 0.36 0.69 0.69 0.29 0.22 0.56 2.08 1.39 0.51 0.69 0.69 1.10 0.69 1.32 0.69 2.30
0.39 0.00 0.21 -0.27 0.24 0.86 -0.41 0.15 -1.06 0.06 0.92 0.27 -0.22 0 20 0.13 -0. 1 0.34 2.01 0.22 0.75 0.00 -0.41 0.34 -0 29 -0 31 -0 18 0.51 -0.29 -0.19 0 22 -0.34 -0.36 0.59 -0.69 -0.59 -0.10 -0.73 0.11 -0.18 -0.18
AFEND:X C - HISTORICAL DATA S"ET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro
1642 1642 1643 1643 1644 1644 1644 1645 1645 1645 1645 1646 1647 1647 1648 1648 1650 1650 1651 1652 1653 1656 1657 1658 1659 1664 1665 1667 1673 1674 1674 1675 1675 1675 1676 1677 1677 1677 1678 1683
18,000 12,000 22,000 23,000 20.000 20,000 18.000 15,000 16,000 18.000 10,000 17,000 20,000 4,000 14,000 12,000 11,000 11,000 28,000 12,000 15,000 22,000 2,500 15,000 9,000 30,000 14,000 130,000 50,000 4,000 50,000 22,000 6,000 17,000 16.000 8,000 8,000 30,000 40,000 10,000
1,500 10,000 1,000 10,000 1.000 18,000 4,000 25,000 1,500 18,000 8,000 16,000 400 12,000 1,000 18,000 2,000 16,000 6.000 16,000 700 11,000 1,000 12,000 2,000 10.000 2,000 16,000 4,000 18,000 1,000 11,000 1,000 23,000 1,000 9,000 1,000 16,000 4,000 6.000 1,000 25,000 1,500 25,000 200 10,000 2.000 12,000 2.000 6,000 2,000 60,000 1,000 18,000 108,000 20,000 1,000 80,000 300 5.000 6,000 70,000 3,000 14,000 500 6,400 1,100 14,000 4,000 12,000 1,000 7,000 1.300 12,000 4,400 30,000 4.000 40,000 5,000 200,000
2,000 4.000 3,000 8,000 6,000 4.000 1,000 3,000 4,000 4,000 1,500 4,000 1,800 8,000 5,000 3,000 3,000 2,000 3,000 2,000 2,000 2,000 3,000 4,000 2,000 8,666 4,000 16,000 20,000 300 8,600 4,000 2,000 2,500 4,000 2,000 3,000 7,000 4,000 48,000
0.0833 0.0833 0.0455 0.1739 0.0750 0.4000 0.0222 0.0667 0.1250 0.3333 0.0700 0.0588 0.1000 0.5000 0.2857 0.0833 0.0909 0.0909 0.0357 0.3333 0.0667 0.0682 0.0800 0.1333 0.2222 0.0667 0.0714 0.8308 0.0200 0.0750 0.1200 0.1364 0.0833 0.0647 0.2500 0.1250 0.1625 0.1467 0.1000 0.5000
Bc/Bo 0.2000 0.4000 0.1667 0.3200 0.3333 0.2500 0.0833 0.1667 0.2500 0.2500 0.1364 0.3333 0.1800 0.5000 0.2778 0.2727 0.1304 0.2222 0.1875 0.3333 0.0800 0.0800 0.3000 0.3333 0.3333 0.1444 0.2222 0.8000 0.2500 0.0600 0.1229 0.2857 0.3125 0.1786 0.3333 0.2857 0.2500 0.2333 0.1000 0.2400
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.29 1.39 1.10 0.69 1.39 -0.69 0.92 1.10 0.69 -0.41 0.76 1.39 -0.11 1.39 0.22 1.10 1.,10 0.69 1.10 -0.69 0.69 0.29 2.71 0.69 0.00 1.47 1.39 -1.91 3.00 0 00 0.36 0.29 1.39 0.82 0.00 0.69 0.84 0.46 0.00 2.26
0.59 0.18 0.20 -0.08 0.11 0.22 0.41 -. 0.18 0.00 0.12 -0.10 0.35 0.69 -1.39 -0.25 0.09 -0.74 0.20 0.56 0.69 -0.51 -0.13 -1.39 0.22 0.4i -0.69 -0.25 1 87 -0.47 -0.22 -0.34 0.45 -0.06 0.19 0.29 0.13 -0.41 0.00 0.00 -3.00
APPENDIX C - HISTORICAL DATA SET
YEAR
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Rc/Ro Bc Bo Rc Ro
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ro/Bo
2.20 1.10 3.40 3.00 1.39 1.39 3.22 1.68 3.22 3.00 2.01 1.10 -0.75 0.34 0.69 0.49 0.76 0.92 -0.56 -0.06 0.41 1 10 0.99 -0.81 0.00 2.66 -0.36 1.39 0.22 0.85 1.25 2.89 -0.57 0.26 -0.38 1.10 -0.15 0.15 -0.41 0.69
0.56 -0.34 0.58 0.36 -0.47 -0.18 -1.61 1.85 -0.36 1.39 -0.58 0.42 2.30 -0.41 0.2,7 -0.22 -1.10 -0 69 1.7! -0.10 0.47 0.11 0.26 1.82 0 !8 -0.69 0.92 -1.49 -0.29 -0.92 1.10 -0.55 2.35 -0.18 0.19 0.36 1.32 0.88 0.22 0.08
.......................................................................
1683 1683 1684 1685 1686 1687 1688 1688 1689 1689 1689 1690 1690 1690 1690 1691 1691 1691 1692 1692 1693 1693 1694 1694 1696 1697 1697 1700 170] 1701 1701 1701 1702 1702 1702 1702 1702 1702 1702 1702
28,000 76,000 32,000 60,000 50.000 50,000 3,000 53.000 17,000 20,000 18,000 35,000 50,000 12.000 50,000 20,000 4,000 50,000 46,000 57.000 80.000 40.000 26,000 80.000 60.000 50,000 30,000 9,000 6,000 8.000 15,000 22,000 46,000 25,000 17.000 4.000 15,000 12,000 10,000 25.000
1,000 5,000 100 100 500 2.000 200 1,300 400 100 400 500 9,500 2,000 3,000 2,700 700 8,000 7.000 7,000 8,000 3,000 1.300 18.000 4.000 2,100 10,000 2,000 800 1,200 100 200 3,000 2,700 2,700 200 1.400 1,200 1,200 200
16.000 107,000 18,000 42.000 80,000 60.000 15.000 8.300 40,000 5,000 32,000 23,000 5,000 18,000 38.000 25,000 1-2,000 100.000 8,300 63.000 50,000 36.000 20,000 13.000 50,000 100,000 12,000 40.000 8,000 20.000 5,000 38.000 4.400 30,000 14,000 2,800 4,000 5,000 8,000 23,000
9,000 15,000 3,000 2.000 2,000 8.000 5,000 7,000 10,000 2,000 3,000 1,500 4,500 2.800 6.000 4,400 1.500 20,000 4,000 6,600 12,000 9,000 3.500 8,0 4,0 , 30.000 7,000 8.000 1,000 2.800 350 3,600 1,700 3,500 1,850 600 1,200 1,400 800 400
0.0357 0.0658 0.0031 0.0017 0.0100 0.0400 0.0667 0.0245 0.0235 0.0050 0.0222 0.0143 0.1900 0.1667 0.0600 0.1350 0.1750 0.1600 0.1522 0.1228 0,1000 0.0750 0.0500 0.2250 0 0667 0.0420 0.3333 0.2222 0.1333 0.1500 0.0067 0.0091 0.0652 0.1080 0.1588 0.0500 0.0933 0.1000 0.1200 0.0080
0.5625 0.1402 0.1667 0.0476 0.0250 0.1333 0.3333 0.8434 0.2500 0.4000 0.0938 0.0652 0.9000 0.1556 0.1579 0.1760 0.1250 0.2000 0.4819 0.1048 0.2400 0.2500 0.1750 0.6154 0.0800 0.3000 0.5833 0.2000 0.1250 0.1400 0.0700 0.0947 0.3864 0.1167 0.1321 0.2143 0.3000 0.2800 0.1000 0.0174
7- MsTgE:CAL DATA SET
RED
RED
BLUE
BLUE
INITIAL CASUALTY INITIAL CASUALTY Rc
Bo
Bc
Rc/Ro
Bc/Bo
Log
Log
RATIO
RATIO
Bc/Rc
Ro/Bo
YEAR
Ro
1702 1703 1703 1703 1703 1703 1703 1703 1703 1703 1703
12,000 19,000 26,000 18,000 24,000 12,000 2,000 4,200 1.300 7,000 14.000
2,300 5,000 4,000 900 500 100 500 200 1,300 4,000
22.000 15,000 5,600 22,000 3,500 10,000 12.000 5.000 8.700 2,500 6,000
2,000 2,500 1,800 4,000 300 1,200 1.300 800 2,400 700 1,000
0.0917 0.1211 0.1923 0.2222 0.0375 0.0417 0.0500 0.1190 0.1538 0.1857 0.2857
0.0909 0.1667 0.3214 0.1818 0.0857 0.1200 0.1083 0.1600 0.2759 0.2800 0.1667
0.60 0.08 -1.02 0.00 -1.10 0.88 2.56 0.47 2.48 -0.62 -1.39
-0.61 0.24 1.54 -0.20 1.93 0.18 -1.79 -0.17 -1.90 1.03 0.85
1703 1703 1704 1704 1704 1704 1704 1704 1704 1704 1704 1704 !705 1705 1705 1705 1705 1706 1706 1706 ,706 1706 1706 1706 1706 1706 1706 1707 1707
24,000 23,000 25.000 7.000 3,000 10,000 3,600 6.500 25,000 10,000 50.000 26,000 14,000 2.000 7,000 13.000 22,000 36,000 30,000 30,000 10,500 20,000 5,000 15,000 12.000 60,000 41,000 21,000 3,500
200 1.500 6,000 500 100 400 200 600 3,000 1,500 12,500 1,100 200 50 1,000 600 3,000 1,000 3,000 4,300 3.000 500 200 1.000 2.000 5.000 500 2.000 750
35,000 18,000 11,000 20.000 12,000 2.400 7,400 9.000 4,500 4,000 52.000 7,000 15,000 4.000 20,000 24,000 24,000 12,000 5.500 42,000 36,000 5.000 2,000 10.000 18.000 62,000 19.000 16.000 3,000
3.000 4,500 2.000 2,000 4,000 1,600 800 2,000 2,500 600 14,000 900 2,000 3,500 5,000 6,000 4,000 1,400 1,000 3,800 14,000 300 600 1,500 5,000 2,000 3,000 5,000 750
0.0083 0.0652 0.2400 0.0714 0.0333 0.0400 0.0556 0.0923 0.1200 0.1500 0.2500 0.0423 0.0143 0.0250 0.1429 0.0462 0.1364 0.0278 0.1000 0.1433 0.2857 0.0250 0.0400 0.0667 0.1667 0.0833 0.0122 0.0952 0.2143
0.0857 0.2500 0.1818 0.1000 0.3333 0.6667 0.1081 0.2222 0.5556 0.1500 0.2692 0.1286 0.1333 0.8750 0.2500 0.2500 0.1667 0.1167 0.1818 0.0905 0.3889 0.0600 0.3000 0.1500 0.2778 0.0323 0.1579 0.3125 0.2500
2.71 1.10 -1.10 1.39 3.69 1,39 1.39 1.20 -0.18 -0.92 0.11 -0.20 2.30 4.25 1.61 2.30 0.29 0.34 -1.10 -0.12 1.54 -0.51 1.10 0.41 0.92 -0.92 1.79 0.92 0.00
-0.38 0.25 0.82 -1.05 -1.39 1.43 -0.72 -0.33 1.71 0.92 -0.04 1.31 -0.07 -0.69 -1.05 -0.61 -0.09 1.10 1.70 -0.34 -1.23 1.39 0.92 0.41 -0.41 -0.03 0.77 0.27 0.15
1.100
AffNIIX'
-
HITOP:CAL
:A:A SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro
1708 1708 1708 1708 1708 1708 1708 1708 1708 1708 1709 1709 !709 1709 1709 1710 1710 ,710 1710 1710 1710 1710 1710 1710 1711 1711 1711 1712 1712 1712 1712 1712 1712 1712 1713 1713 1714 1715 1715 1715
7,000 35,000 7,000 10,000 3,000 12,000 7,000 17,000 90,000 11,000 40,000 6,000 93,000 16.000 54.000 60,000 21.000 28.000 9,000 12,000 24,000 22,000 31,000 14,000 260,000 30,000 2,500 22.000 25,000 14.000 40,000 30,000 18,000 28,000 40,000 80,000 40,000 18,000 22,000 10,000
1,600 14,000 300 500 200 2,000 1,200 4.000 6,000 1,000 5,400 400 25,000 400 5,000 8,000 4,000 7,000 900 1,500 400 1,600 3.000 3,000 7,000 3.000 800 400 500 1.700 2,200 2,100 3,000 1.000 10,000 10.000 20,000 500 1,200 1,000
33,000 16,000 15,000 16,000 1,200 6,000 3.500 13.000 80,000 22,000 7,000 7,000 90,000 20,000 26.000 8,000 13,600 7,000 3,000 4,000 22,000 20.000 4,000 11,000 40.000 5,000 8.000 7,000 3,200 12,000 18,000 18,000 5,500 2.200 7,000 9,300 16,000 5,000 7,000 3,000
900 7.000 2,000 6,000 200 3.000 3.000 5.000 6,000 2,500 3,200 2,600 11.000 17,000 9,200 3,000 3.000 3,400 1,000 600 1,500 5,000 1,800 4,000 2,100 1,800 2,500 200 1,000 4,000 3,000 2.300 2.000 700 2,000 3,600 6,000 2,500 2,000 700
0.2286 0.4000 0.0429 0.0500 0.0667 0.1667 0.1714 0.2353 0.0667 0.0909 0.1350 0.0667 0.2688 0.0250 0.0926 0.1333 0.1905 0.2500 0.1000 0.1250 0.0167 0.0727 0.0968 0.2143 0.0269 0.1000 0.3200 0.0182 0.0200 0.1214 0.0550 0.0700 0.1667 0.0357 0.2500 0.1250 0.5000 0.0278 0.0545 0.1000
Bc/Bo 0.0273 0.4375 0.1333 0.3750 0.1667 0.5000 0.8571 0.3846 0.0750 0.1136 0.4571 0.3714 0.1222 0.8500 0.3538 0.3750 0.2206 0.4857 0.3333 0.1500 0.0682 0.2500 0.4500 0.3636 0.0525 0.3600 0.3125 0.0286 0.3125 0.3333 0.1667 0.1278 0.3636 0.3182 0.2857 0.3871 0.3750 0.5000 0.2857 0.2333
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.58 -0.69 1.90 2.48 0.00 0.41 0.92 0.22 0.00 0.92 -0.52 1.87 -0.82 3.75 0.61 -0.98 -0.29 -0.72 0.11 -0.92 1.32 1.14 -0.51 0.29 -1.20 -0.51 1.14 -0.69 0.69 0.86 0.31 0.09 -0.41 -0.36 -1.61 -1.02 -1.20 1.61 0.51 -0.36
-1.55 0.78 -0.76 -0.47 0.92 0.69 0.69 0.27 0.12 -0.69 1.74 -0.15 0.03 -0.22 0.73 2.01 0.43 1.39 llO 1.10 0.09 0.10 2.05 0.24 1.87 1.79 -1.16 1.15 2.06 0.15 0.80 0.51 1.19 2.54 1.74 2.15 0.92 1.28 1.15 1.20
=
-'
}
TC-i
A'L
:'ATA
SET
YEAR
BLUE RED BLUE RED INITIAL CASUALTY INITIAL CASUALTY Bc Rc/Ro Re Bo Ro
1715 1716 1716 1717 1717 1717 1718 1719 1719 1724 1734 1734 1734 1734 1734 1735 1737 1737 1738 1738 1739 1739 1741 1741 1741 1742 1742 1742 1743 1743 1743 1743 1744 1744 1744 1744 1744 1744 1745 1745
70,000 45.000 63.000 23.000 100,000 50,000 9,300 29.000 18,000 16,600 10,000 53,000 20,000 117,000 40.000 6,000 80,000 6,000 10,000 40,000 80,000 60.000 21,600 10,000 5,000 4,000 18.000 28,000 35,000 5,400 13,000 32,000 80,000 24,000 40,000 24,000 70,000 26,000 70,000 2,500
10,000 12,000 4,500 18,000 4.500 60,000 1,000 2,000 20,000 30,000 5,400 150,000 6.000 1.500 2,000 21,000 5,200 4,000 6,200 800 1,500 6,000 4,000 37,000 800 .40,000 4,500 10,000 5,900 27,000 3.000 2,500 4,000 22,000 2,000 20,000 1,000 20,000 1,300 17,000 8,000 40.000 100 100,000 3,900 15,800 5,000 3.000 1,200 50 7,000 100 8,500 550 4.200 28,000 2,050 26,000 100 6.000 3,200 11,000 9,000 100 150 14,900 6.000 3,000 1,500 10,000 1,400 16,000 16.000 7,000 4,000 25,000 4,800 75,000 100 2,300
57
6,000 3.000 6,000 600 5,000 15,000 1.500 800 900 1,000 1,000 6,000 1,100 1,000 5,800 1,400 17,000 10,000 5,000 2,000 5,200 2,000 3,000 2,500 60 150 250 3,000 2,800 600 1,600 1,000 1,400 1,100 650 700 2,200 3,600 9,600 400
0.1429 0.1000 0.0714 0.0870 0.2000 0.1080 0.1613 0.0690 0.2889 0.0482 0.1500 0.0755 0.0400 0.0855 0.1475 0.4167 0.0500 0.3333 0.1000 0.0325 0.1000 0.0017 0.1806 0.3000 0.0100 0.0250 0.0306 0.1500 0.0586 0.0185 0.2462 0.0031 0.0019 0.1250 0.0375 0.0583 0.2286 0.1538 0.0686 0.0400
Bc/Bo 0.5000 0.1667 0.1000 0.6000 0.1667 0.1000 0.2500 0.0381 0.2250 0.1613 0.1667 0.1622 0.0275 0.2222 0.2148 0.4667 0.7727 0.5000 0.2500 0.1176 0.1300 0.0200 0.1899 0.5000 0.0500 0.0214 0.0294 0.1071 0.1077 0.1000 0.1455 0.1111 0.0940 0.1833 0.0650 0.0438 0.3143 0.1440 0.1280 0.1739
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.51 -0.41 0.29 -1.20 -1.39 1.02 0.00 -0.92 -1.75 0.22 -0.41 0.41 0.32 -2.30 -0.02 -0.58 1.45 1.61 1.61 0.43 -0.43 3.00 -0.26 -0.18 0.18 0.41 -0.79 -0.34 0.31 1.79 -0.69 2.30 2.23 -1.00 -0.84 -0.69 -1.98 -0.11 0.69 1.39
1.76 0.92 0.05 3.14 1.20 -1.10 0.44 0.32 1.50 0.98 0.51 0.36 -0.69 3.26 0.39 0.69 1.29 -1.20 -0.69 0.86 0.69 -0.51 0.31 0.69 1.43 -0.56 0.75 0.00 0.30 -0.11 0.17 1.27 1.68 1.39 1.39 0.41 2.30 0.04 -0.07 0.08
-
H:sT3ccAL DATA SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro
1745 1745 1745 1745 1745 1745 1745 1746 1746 1746 1746 1746 1746 1746 1747 1747 1747 1748 1749 1753 1755 1756 1756 1757 1757 1757 1757 1757 1757 1757 1757 1757 1757 1757 1758 1758 1758 1758 1758 1758
60.000 17.000 50.000 50,000 35,000 22,000 8.500 10.000 9,000 40,000 60.000 25,000 30.000 110,000 98.000 35,000 7,000 80.000 20,000 11.000 1.000 12,000 30,000 32.000 55.000 15,000 80,000 5.000 50,000 60,000 64,000 54,000 22,000 35,000 10,000 3,000 3,500 11.000 2.600 3.600
5,600 800 1,000 2,000 5,100 3,700 120 300 400 3.000 1,000 800 2,500 4,000 10,000 6,500 300 2,000 700 600 100 2,000 2,600 1,500 6.000 700 5,300 1,000 1,100 2,350 12.600 6.400 600 6,200 300 200 100 600 300 400
50,000 7.000 30,000 4.000 35,000 38,000 5,500 6,000 4,000 44,000 12,000 41.000 25,000 75.000 82,000 26,000 14.000 13.000 9,000 7,000 2.300 2,800 33,000 14,000 25,000 14.000 30.000 3.000 63,000 36,000 61,000 33,000 41.000 65,000 8.000 6,000 2,800 6.700 6,500 15,000
9,000 2,400 1,000 600 3,800 4,500 500 1,000 1,600 7,000 500 300 4,500 7.000 9,000 5.500 5,700 2.000 400 900 1.500 400 2,200 1,500 4,100 400 9.666 1.500 3.000 1,250 9,200 8.600 3.400 10.000 800 400 750 1,100 400 2,000
0.0933 0.0471 0.0200 0.0400 0.1457 0.1682 0.0141 0.0300 0.0444 0.0750 0.0167 0.0320 0.0833 0.0364 0.1020 0.1857 0.0429 0.0250 0.0350 0.0545 0.1000 0.1667 0.0867 0.0469 0.1091 0.0467 0.0663 0.2000 0.0220 0.0392 0.1969 0.1185 0.0273 0.1771 0.0300 0.0667 0.0286 0.0545 0.1154 0.1111
Bc/Bo 0.1800 0.3429 0.0333 0.1500 0.1086 0.1184 0.0909 0.1667 0.4000 0.1591 0.0417 0.0073 0.1800 0.0933 0.1098 0.2115 0.4071 0.1538 0.0444 0.1286 0.6522 0.1429 0.0667 0.1071 0.1640 0.0286 0.3222 0.5000 0.0476 0.0347 0.1508 0.2606 0.0829 0.1538 0.1000 0.0667 0.2679 0.1642 0.0615 0.1333
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.47 1.10 0.00 -1.20 -0.29 0.20 1.43 1.20 1.39 0.85 -0.69 -0.98 0.59 0.56 -0.11 -0.17 2.94 0.00 -0.56 0.41 2.71 -1.61 -0.17 0.00 -0.38 -0.56 0.60 0.41 1.00 -0.63 -0.31 0.30 1.73 0.48 0.98 0.69 2.01 0.61 0.29 1.61
0.18 0.89 0.51 2.53 0.00 -0.55 0.44 0.51 0.81 -0.10 1.61 -0.49 0.18 0.38 0.18 0.30 -0.69 1.82 0.80 0.45 -0.83 1.46 -0.10 0.83 0.79 0.07 0.98 0.51 -0.23 0.51 0.05 0.49 -0.62 -0.62 0.22 -0.69 0.22 0.50 -0.92 -1.43
AJ'N*
C -
HTOrICAL DATA SET
RED RED BLUE BLUE Log Log INITIAL CASUALTY INITIAL CASUALTY RATIO RATIO YEAR Ro Rc Bo Bc Rc/Ro Bc/Bo Bc/Rc Ro/Bo ------------------------------------------------------------------------------------1758 7.500 2.200 45,000 800 0.2933 0.0178 -1.01 -1.79 1758 30,000 600 18,000 700 0.0200 0.0389 0.15 0.51 1758 33,000 11,000 52,000 18,000 0.3333 0.3462 0.49 -0.45 1758 65.000 5.400 42,000 7,900 0.0831 0.1881 0.38 0.44 1758 31,000 1,800 47,000 5,200 0.0581 0.1106 1.06 -0.42 1758 4,000 1,000 7,300 600 0.2500 0.0822 -0.51 -0.60 1759 38,000 2,700 52,000 4,900 0.0711 0.0942 0.60 -0.31 1759 12,000 50 9,000 100 0.0042 0.0111 0.69 0.29 1759 12,000 200 4,000 300 0.0167 0.0750 0.41 1.10 1759 5.000 200 10,000 350 0.0400 0.0350 0.56 -0.69 1759 70,000 16,000 48,000 18,700 0.2286 0.3896 0.16 0.38 1759 8,000 650 4,500 1,500 0.0813 0.3333 0.84 0.58 1759 72,000 4,800 28.000 7.000 0.0667 0.2500 0.38 0.94 1759 38,000 1,000 13,500 1.300 0.0263 0.0963 0.26 1.03 1759 26.000 900 13.500 500 0.0346 0.0370 -0.59 0.66 1759 36.000 1,800 27.000 2,500 0.0500 0.0926 0.33 0.29 1759 30.000 200 4,000 1,800 0.0067 0.4500 2.20 2.01 1759 20,000 2.700 16,000 1.300 0.1350 0.0813 -0.73 0.22 1760 3,000 300 5,000 300 0.1000 0.0600 0.00 -0.51 1760 13,000 200 8,000 1,200 0.0154 0.1500 1.79 0.49 1760 44.000 10,000 66,000 9.000 0.2273 0.1364 -0.11 -0.41 1760 7,000 800 6,000 1,200 0.1143 0.2000 0.41 0.15 1760 30.000 800 16,000 650 0.0267 0.0406 -0.21 0.63 1760 19.000 1,300 17,000 1,500 0.0684 0.0882 0.14 0.11 1760 22.000 2,000 12.000 1,000 0.0909 0.0833 -0.69 0.61 1760 38.700 3,000 10,800 6.000 0.0775 0.5556 0.69 1.28 1760 30.000 3.300 30,000 3,800 0.1100 0.1267 0.14 0.00 1760 5,400 200 2.800 500 0.0370 0.1786 0.92 0.66 1761 10.000 300 4,000 600 0.0300 0.1500 0.69 0.92 1761 12.500 400 5,500 600 0.0320 0.1091 0.41 0.82 1761 12,000 400 15.000 2,500 0.0333 0.1667 1.83 -0.22 1761 14,000 1,000 7,000 800 0.0714 0.1143 -0.22 0.69 1761 14,000 1.700 4,000 400 0.1214 0.1000 -1.45 1.25 1761 52.000 1,300 100,000 3,000 0.0250 0.0300 0.84 -0.65 1762 12.000 1,100 10.000 700 0.0917 0.0700 -0.45 0.18 1762 24,000 700 16.000 500 0.0292 0.0313 -0.34 0.41 1762 7,000 300 5,000 1,400 0.0429 ^ 2800 1.54 0.34 1762 17,000 750 6,000 700 0.0441 u.1167 -0.07 1.04 1762 50,000 1,000 30,000 1,600 0.0200 0.0533 0.47 0.51 1762 8,000 1,500 10.000 600 0.1875 0.0600 -0.92 -0.22
59
A ?EN: :.
YEAR 1762 1762 1762 1762 1762 1762 1762 1769 1770 1770 1770 1771 1771 1771 1773 1775 1776 1776 1776 1777 1777 1777 1779 1779 1780 1780 1781 1782 1782 1787 1788 1788 1789 1789 1790 1790 1791 1791 1791 1792
7
-
HSTORI:CAL r)ATA SET
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Rc/Ro Bc Bo Rc Ro 17.000 27,000 16.000 23,000 57.000 17,000 16,000 30,000 10.000 40.000 12.000 10,000 15,000 32,000 6.000 2,000 6,000 25,000 2,400 15,000 5,000 18,000 3,200 11,000 2,000 10,000 2,400 20,000 7,000 12,000 8.000 90,000 23.000 27,000 7.000 32.000 36,000 18.000 18.000 45.000
3.000 1,600 1.100 1,600 300 100 450 600 400 1.000 2,500 1,000 500 2,000 800 1,150 430 320 10 500 600 600 20 300 300 300 600 1,100 1,300 1.000 1,600 4,800 300 600 100 10,000 1,000 4,000 500 2,000
12.500 31,000 32,000 20,000 25.000 3,000 13,000 80,000 16.000 15,000 12.000 10.000 40,000 57,000 10.000 1.200 2,000 11,000 1.500 10,000 6,000 8,000 10,000 3,000 4,000 7,000 5,000 10,000 31,000 5,000 8,000 14.000 30,000 50.000 7.000 40,000 64.000 15.000 15.000 13.200
50
3.500 3,000 1,200 1.750 1,500 200 800 3,000 3,000 20,000 6.000 4,000 2,000 4,000 2,000 450 200 2,000 1,300 1,200 600 900 800 400 900 1,000 700 700 6,000 3,000 550 10,000 1,000 5,000 2,000 31,000 3,000 8,000 1.500 1,000
0.1765 0.0593 0.0688 0.0696 0.0053 0.0059 0.0281 0.0200 0.0400 0.0250 0.2083 0.1000 0.0333 0.0625 0.1333 0.5750 0.0717 0.0128 0.0042 0.0333 0.1200 0.0333 0.0063 0.0273 0.1500 0.0300 0.2500 0.0550 0.1857 0.0833 0.2000 0.0533 0.0130 0.0222 0.0143 0.3125 0.0278 0.2222 0.0278 0.0444
Bc/Bo 0.2800 0.0968 0.0375 0.0875 0.0600 0.0667 0.0615 0.0375 0.1875 1.3333 0.5000 0.4000 0.0500 0.0702 0.2000 0.3750 0.1000 0.1818 0.8667 0.1200 0.1000 0.1125 0.0800 0.1333 0.2250 0.1429 0.1400 0.0700 0.1935 0.6000 0.0688 0.7143 0.0333 0.1000 0.2857 0.7750 0.0469 0.5333 0.1000 0.0758
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.15 0.63 0.09 0.09 1.61 0.69 0.58 1.61 2.01 3.00 0.88 1.39 1.39 0.69 0.92 -0.94 -0.77 1.83 4.87 0.88 0.00 0.41 3.69 0.29 1.10 1.20 0.15 -0.45 1.53 1.10 -1.07 0.73 1.20 2.12 3.00 1.13 1.10 0.69 1.10 -0.69
0.31 -0.14 -0.69 0.14 0.82 1.73 0.21 -0.98 -0.47 0.98 0.00 0.00 -0.98 -0.58 -0.51 0.51 1.10 0.82 0.47 0.41 -0.18 0.81 -1.14 1.30 -0.69 0.36 -0.73 0.69 -1.49 0.88 0.00 1.86 -0.27 -0.62 0.00 -0.22 -0.58 0.18 0.18 1.23
A??EX'::t
YEAR 1792 1792 1792 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 ,793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793 1793
C
DATA )TORICAL SET
-
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Bo Rc Bo Bc Bc/Ro 52,000 13,000 6.000 10,000 30,000 32.000 31,000 43,000 20.000 20.000 45,000 24.000 53,000 25,000 12,000 17,000 38,000 5,000 12,000 10,500 10,000 8,000 8,000 8,000 8,000 20,000 20,000 25,000 11,000 35,000 8,000 2,500 10,000 15,000 7,000 8,000 12,000 8,000 12,000 60,000
300 200 1,000 500 1,500 2,000 2,100 3,000 2,000 2,000 5,000 3,000 1,000 4,000 2,000 2,000 900 200 800 900 100 100 200 200 200 500 500 1,000 300 500 300 100 500 300 400 500 800 600 1.000 600
35,000 1,500 10,000 35,000 13,000 18,000 25,000 22,000 20.000 25.000 30,000 16,000 27,000 40,000 38,000 22,000 22.000 25,000 15.000 6,000 1,200 10,000 34,000 6,000 4,000 8.000 7,000 15,000 6,000 30,000 5,000 8,000 6,000 16,000 18,000 6,000 7,000 16,000 14,000 30,000
200 180 1.000 5,000 3,100 4,000 4.000 4,000 5,000 8,000 2,500 1,600 3,000 8,000 00 4,000 2,000 1,500 200 600 300 2,500 1.200 1,200 1,200 4,000 6.000 1,500 3,000 1,500 4,000 2,000 800 1,200 3,000 1,000 800 2,000 2,000 1.500
0.0058 0.0154 0.1667 0.0500 0.0500 0.0625 0.0677 0.0698 0.1000 0.1000 0.1111 0.1250 0.0189 0.1600 0.1667 0.1176 0.0237 0.0400 0.0667 0.0857 0.0100 0.0125 0.0250 0.0250 0.0250 0.0250 0.0250 0.0400 0.0273 0.0143 0.0375 0.0400 0.0500 0.0200 0.0571 0.0625 0.0667 0.0750 0.0833 0.0100
Bc/Bo 0.0057 0.1200 0.1000 0.1429 0.2385 0.2222 0.1600 0.1818 0.2500 0.3200 0.0833 0,1000 0.1111 0.2000 0.1316 0.1818 0.0909 0.0600 0.0133 0.1000 0.2500 0.2500 0.0353 0.2000 0.3000 0.5000 0.8571 0.1000 0.5000 0.0500 0.8000 0.2500 0.1333 0.0750 0.1667 0.1667 0.1143 0.1250 0.1429 0.0500
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.41 -0.11 0.00 2.30 0.73 0.69 0.64 0.29 0.92 1.39 -0.69 -0.63 1.10 0.69 0.92 0.69 0.80 2.01 -1.39 -0.41 1.10 3.22 1.79 1.79 1.79 2.08 2.48 0.41 2.30 1.10 2.59 3.00 0.47 1.39 2.01 0.69 0.00 1.20 0.69 0.92
0.40 2.16 -0.51 -1.25 0.84 0.58 0.22 0.67 0.00 -0.22 0.41 0.41 0.67 -0.47 -1.15 -0.26 0.55 -1.61 -0.22 0.56 2.12 -0.22 -1.45 0.29 0.69 0.92 1.05 0.51 061 0.15 0.47 -1.16 0.51 -0.06 -0.94 0.29 0.54 -0.69 -0.15 0.69
A ?EX:
YEAR
-
H:STOR:CAL DATA SET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Bo Bc Rc/Ro Ro Re
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ho/Bo
1793 1793 1793 1793 1793 1793 1793 1793 1794 1794 1794 1794 1794 1794
9,000 26.000 20.000 36.000 43.000 43.000 35,000 24.000 28,000 26.000 28,000 41,000 22,5(0 35,000
1,100 800 1,200 50 2.600 1,800 1.000 1,300 1,500 1,500 400 3,000 2,800 3,000
11,000 32,000 15,000 9.000 41,000 50,000 14.000 8,000 13.000 26.000 60,000 73.000 44,000 50,000
2,000 24.000 700 2.000 3.000 2.000 4,000 1.000 2,000 3,000 3,000 2.000 4.000 10,000
0.1222 0.0308 0.0600 0.0014 0.0605 0.0419 0.0286 0.0542 0.0536 0.0577 0.0143 0.0732 0.1244 0.0857
0.1818 0.7500 0.0467 0.2222 0.0732 0.0400 0.2857 0.1250 0.1538 0 1154 0.0500 0.0274 0.0909 0.2000
0.60 3.40 -0.54 3.69 0.14 0.11 1.39 -0.26 0.29 0.69 2.01 -0.41 0.36 1.20
-0.20 -0.21 0.29 1.39 0.05 -0.15 0.92 1.10 0.77 0.00 -0.76 -0.58 -0.67 -0.36
1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794 1794
22,000 88,000 9,000 20,000 7,000 18,000 81.000 10,000 20,000 20.000 14.000 12.000 12.000 2,000 30,000 60.000 20.000 12.000 10,000 28.000 35.000 9,000 70,000 90,030 8.0uO 6.000
4,000 1,500 50 500 300 1,000 5,000 800 1,000 1,000 500 500 600 100 400 1.000 1.500 1.000 1.000 1.000 1.000 1.000 3.000 1.500 1,000 1,000
28.000 77,000 6,000 30.000 15.000 11.000 46,000 20,000 20,000 20,000 2.000 10.000 12.000 7,000 16,000 60.000 8,000 10.000 7.000 42,000 18,000 6,000 74,000 90.000 12.000 5,000
8,000 3,000 600 900 1,200 800 5,000 1.400 600 2,000 500 3,000 1,300 1,300 1.000 2,500 3,000 6,000 2,000 2,000 1.500 1.500 4.000 7.000 4,000 2,000
0.1818 0.0170 0.0056 0.0250 0.0429 0.0556 0.0617 0.0800 0.0500 0.0500 0.0357 0.0417 0.0500 0.0500 0.0133 0.0167 0.0750 0.0833 0.1000 0.0357 0.0286 0.1111 0.0429 0.0167 0.1250 0.1667
0.2857 0.0390 0.1000 0.0300 0.0800 0.0727 0.1087 0.0700 0.0300 0.1000 0.2500 0.3000 0.1083 0.1857 0.0625 0.0417 0.3750 0.6000 0.2857 0.0476 0.0833 0.2500 0.0541 0.0778 0.3333 0.4000
0.69 0.69 2.48 0.59 1.39 -0.22 0.00 0.56 -0.51 0.69 0.00 1.79 0.77 2.56 0.92 0.92 0.69 1.79 0.69 0.69 0.41 0.41 0.29 1.54 1.39 0.69
-0.24 0.13 0.41 -0.41 -0.76 0.49 0.57 -0.69 0.00 0.00 1.95 0.18 0.00 -1.25 0.63 0.00 0.92 0.18 0.36 -0.41 0.66 0.41 -0.06 0.00 -0.41 0.18
{DATA
YEAR 1794 1794 1794 1794 1794 1794 1794 1795 1795 1795 1795 1795 1795 1795 1795 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Rc/Ro Bc Rc Bo Ro 47,000 60,000 50.000 24,000 25,000 50.000 30,000 35.000 42,000 25.000 43,000 6,000 13,000 27.000 36.000 50,000 28,000 25,000 25,000 15,000 20,000 17,500 4,600 15.000 35,000 36,000 24.000 28.000 26,000 27.000 14.000 9.000 44,000 15,000 35,000 30,000 50,000 14,000 19,500 24,000
500 1,000 600 1.300 1.000 3,000 1,500 600 300 2,500 600 200 500 650 i,400 1,200 5,600 600 1,000 300 750 900 400 300 100 400 600 1,000 650 500 800 700 1,200 1,500 500 600 2,000 2,200 2,100 500
7,000 13,000 5.000 19,000 10,000 45.000 10.000 25.000 60,000 18,000 37,000 12,000 17,000 12,000 33,000 48.000 21,000 9,000 12,000 14.000 10,000 9.500 34.000 6.000 25,000 11,000 12,000 32,000 24,000 10,300 4.000 4.000 30,000 8.000 23,000 24,000 11,000 8,000 10,500 14,000
53
2,000 4.000 1,000 900 1,500 5,500 1,500 2.500 700 3,000 1,100 1,000 1.700 1.500 3,000 1,100 3,000 550 900 400 1,000 400 12.000 1,100 2,000 500 1,600 1,000 1.000 300 2.500 3,000 2,000 3,500 300 2,300 400 800 4,400 1,000
0.0106 0.0167 0.0120 0.0542 0.0400 0.0600 0.0500 0.0171 0.0071 0.1000 0.0140 0.0333 0.0385 0.0241 0.0389 0.0240 0.2000 0.0240 0.0400 0.0200 0.0375 0.0514 0.0870 0.0200 0.0029 0.0111 0.0250 0.0357 0.0250 0.0185 0.0571 0.0778 0.0273 0.1000 0.0143 0.0200 0.0400 0.1571 0.1077 0.0208
Bc/Bo 0.2857 0.3077 0.2000 0.0474 0.1500 0.1222 0.1500 0.1000 0.0117 0.1667 0.0297 0.0833 0.1000 0.1250 0.0909 0.0229 0.1429 0.0611 0.0750 0.0286 0.1000 0.0421 0.3529 0.1833 0.0800 0-0455 0.1333 0.0313 0.0417 0.0291 0.6250 0.7500 0.0667 0.4375 0.0130 0.0958 0.0364 0.1000 0.4190 0.0714
Log RATIO Bc/Rc
Log RATIO Ro/Bo
1.39 1.39 0.51 -0.37 0.41 0.61 0.00 1.43 0.85 0.18 0.61 1.61 1.22 0.84 0.76 -0.09 -0.62 -0.09 -0.11 0.29 0.29 -0.81 3.40 1.30 3.00 0.22 0.98 0.00 0.43 -0.51 1.14 1.46 0.51 0.85 -0.51 1.34 -1.61 -1.01 0.74 0.69
1.90 1.53 2.30 0.23 0.92 0.11 1.10 0.34 -0.36 0.33 0.15 -0.69 -0.27 0.81 0.09 0.04 0.29 1.02 0.73 0.07 0.69 0.61 -2.00 0.92 0.34 1.19 0.69 -0.13 0.08 0.96 1.25 0.81 0.38 0.63 0.42 0.22 1.51 0.56 0.62 0.54
A}E\11x C
YEAR 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1796 1797 1797 1797 1797 1797 1797 1797 1797 1797 1798 1798 1798 1798 1798 1798 1798 1798 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799
-
HI:-TRwICAL
DATA SET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro 36,000 22.000 7,000 36,000 20,000 20,000 20,000 40.000 20,000 30.000 20,000 11,000 43,000 40,000 22,000 18,000 9,000 28,000 52,000 45,000 10,000 25,000 20,000 10,000 8,000 3.500 1.000 1,100 25,000 11,000 13,000 8,000 15,000 15,000 12,000 14,000 11,000 8,000 6,000 12,000
2.000 800 1,200 800 400 1,500 1,500 400 2,000 700 3,500 1.200 500 3,800 2.200 200 100 1,200 3,000 2,000 1,500 2.000 300 500 400 200 500 200 400 150 200 200 400 400 400 500 400 400 300 600
45,000 10,000 5,000 34,000 16,000 23,000 14,000 24,000 15,000 35.000 24,000 8,000 24,000 20,000 28,000 17,000 7,000 16,000 34,000 30,000 12.000 25,000 6,000 26,000 4.000 4,500 12,000 5,000 6,000 8,000 4,000 5,000 7,000 15,000 5,000 9,000 12,000 8,000 6,000 10,000
1,300 1,200 2,000 1,200 600 3,000 2,500 600 3,000 1,000 2,200 1.000 700 4,000 4,000 300 800 1,300 2,700 1,000 3,000 15.000 2,000 2,500 500 4,000 1.000 400 750 500 200 300 400 1,200 300 500 1,000 600 500 1,000
0.0556 0.0364 0.1714 0.0222 0.0200 0.0750 0.0750 0.0100 0.1000 0.0233 0.1750 0.1091 0.0116 0.0950 0.1000 0.0111 0.0111 0.0429 0.0577 0.0444 0.1500 0.0800 0.0150 0.0500 0.0500 0.0571 0.1667 0.1818 0.0160 0.0136 0.0154 0.0250 0.0267 0.0267 0.0333 0.0357 0.0364 0.0500 0.0500 0.0500
Bc/Bo 0.0289 0.1200 0.4000 0.0353 0.0375 0.1304 0.1786 0.0250 0.2000 0.0286 0.0917 0.1250 0.0292 0.2000 0.1429 0.0176 0.1143 0.0813 0.0794 0.0333 0.2500 0.6000 0 3333 0.0962 0.1250 0.8889 0.0833 0.0800 0.1250 0.0625 0.0500 0.0600 0.0571 0.0800 0.0600 0.0556 0.0833 0.0750 0.0833 0.1000
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.43 0.41 0.51 0.41 0.41 0.69 0.51 0.41 0.41 0.36 -0.46 -0.18 0.34 0.05 0.60 0.41 2.08 0.08 -0.11 -0.69 0.69 2.01 1.90 1.61 0.22 3.00 0.69 0.69 0.63 1.20 0.00 0.41 0.00 1.10 -0.29 0.00 0.92 0.41 0.51 0.51
-0.22 0.79 0.34 0.06 0-22 -0.14 0.36 0.51 0.29 -0.15 -0.18 0.32 0.58 0.69 -0.24 0.06 0.25 0.56 0.42 0.41 -0.18 0.00 1.20 -0.96 0.69 -0.25 -1.39 -1.51 1.43 0.32 1.18 0.47 0.76 0.00 0.88 0.44 -0.09 0.00 0.00 0.18
Ac - EISTOBICAZ
YEAR
DATA SET
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Rc/Ro Be Bo Re Ro
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.34 3.40 1.61 -0.13 2.48 0.74 0.46 1.61 2.30 1.70 0.29 0.05 1.61 0.00 1.79 0.69 -0.90 1.39 0.92 0.00 1.10 1.48 -0.22 0.00 0.69 -0.53 1.05 3.69 0.51 0.34 -0.69 1.20 2.48 1.01 0.39 0.29 1.10 2.39 -1.10 0.69
-0.78 1.04 0.76 0.12 0.34 -0.04 0.66 0.98 -0.37 0.41 1.70 0.62 -0.07 1.27 0.69 0.26 0.19 0.41 0.14 0.36 -0.32 0.60 0.76 0.56 0.41 0.20 0.85 -2.08 0.41 -0.06 0.75 -0.47 -1.87 0.83 0.90 0.13 -1.10 -1.10 0.85 -0.88
.......................................................................
1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799 1799
3,200 9.600 15,000 46,000 7,000 22,000 29,000 20,000 4,500 9,000 12,000 52.000 6,500 11,000 12,000 4,300 46,000 12,000 11.500 50,000 8,000 8.000 15,000 14,000 6,000 55,000 22.300 1.000 30,000 16,000 18,000 7,500 4.000 23.000 32,000 24,000 3,000 6.000 21.000 5,000
320 100 200 4,000 100 1,000 2.150 400 100 200 300 3.800 200 400 500 200 4,900 600 600 7,000 500 500 1,000 1,000 500 2,200 700 100 1,800 500 2,000 900 500 800 2.100 1,200 500 1.100 6,000 2.000
-li ...... .m,.,.
7.000 3,400 7.000 41.000 5,000 23.000 15.000 7,500 6,500 6,000 2.200 28.000 7,000 3.100 6,000 3,300 38,000 8,000 10,000 35,000 11,000 4,400 7,000 8.000 4.000 45,000 9,500 8,000 20.000 17,000 8.500 12.000 26.000 10.000 13,000 21,000 9,000 18,000 9,000 12,000
450 3,000 1,000 3,500 1,200 2,100 3.400 2,000 1,000 1,100 400 4,000 1,000 400 3,000 400 2,000 2,400 1,500 7,000 1,500 2,200 800 1,000 1,000 1,300 2.000 4,000 3,000 700 1,000 3,000 6,000 2.200 3,100 1,600 1,500 12,000 2.000 4,000
0.1000 0.0104 0.0133 0.0870 0.0143 0.0455 0.0741 0.0200 0.0222 0.0222 0.0250 0.0731 0.0308 0.0364 0.0417 0.0465 0.1065 0.0500 0.0522 0.1400 0.0625 0.0625 0.0667 0.0714 0.0833 0.0400 0.0314 0.1000 0.0600 0.0313 0.1111 0.1200 0.1250 0.0348 0.0656 0.0500 0.1667 0.1833 0.2857 0.4000
0.0643 0.8824 0.1429 0.0854 0.2400 0.0913 0.2267 0.2667 0.1538 0.1833 0.1818 0.1429 0.1429 0.1290 0.5000 0.1212 0.0526 0.3000 0.1500 0.2000 0.1364 0.5000 0.1143 0.1250 0.2500 0.0289 0.2105 0.5000 0.1500 0.0412 0.1176 0.2500 0.2308 0.2200 0.2385 0.0762 0.1667 0.6667 0.2222 0.3333
AFFEM.::X C
YEAR 1799 1799 1799 1799 1799 1799 1799 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1801 1801 1801 1805 1805
-
H:STORCAL DATA SET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Re Bo Be Rc/Ro 16.400 22,400 33,500 50.000 37,000 17.000 19.000 66.000 17.000 20,000 25.000 5 000 55,000 20.000 52,000 10,000 24,000 14.000 4.000 6,000 6.000 7,000 8.000 9.000 7,000 40.000 12.000 28,000 8.000 5.000 84,000 37.000 11.000 6.000 6.000 15,000 5,500 12.000 11.000 65,000
1,600 1,000 4,000 1,550 5,000 200 100 4,000 700 1.000 2,000 200 2,500 1,000 3,000 600 2,500 1,000 300 500 500 650 1,000 1,000 800 1,000 3,000 6.500 200 200 3,000 2,000 800 500 500 1,300 650 1.500 800 10,000
14,500 8,800 23.000 28.000 33.000 21.000 8.000 50.000 30.000 40.000 20.000 3.000 57.000 7,000 48.000 3,500 12.000 7.000 4,500 4,000 3,000 5.000 10,000 17,000 5.000 10,000 16.000 31.000 5.000 7.000 72.000 35,000 10,000 4.000 3.500 5.000 2.000 10,000 7,000 83.000
6
1,500 2,000 6,000 4.000 9.500 2,000 300 4,100 800 500 1,250 400 5,500 2,000 2,400 1,000 4,000 2,000 500 600 1,450 1,000 950 2,000 1.000 1,000 2,100 7,000 200 250 3,000 1,200 700 400 1,100 700 350 3,000 1,000 16,000
0.0976 0.0446 0.1194 0.0310 0.1351 0.0118 0.0053 0.0606 0-0412 0.0500 0.0800 0.0400 0.0455 0.0500 0.0577 0.0600 0.1042 0.0714 0.0750 0.0833 0.0833 0 0929 0.1250 0.1111 0.1143 0.0250 0.2500 0.2321 0.0250 0.0400 0.0357 0.0541 0.0727 0.0833 0 0833 0.0867 0.1182 0.1250 0.0727 0.1538
Bc/Bo 0.1034 0.2273 0.2609 0.1429 0.2879 0.0952 0.0375 0.0820 0.0267 0.0125 0.0625 0.1333 0.0965 0.2857 0.0500 0.2857 0.3333 0.2857 0.1111 0.1500 0.4833 0.2000 0.0950 0.1176 0.2000 0.1000 0.1313 0.2258 0.0400 0.0357 0.0417 0.0343 0.0700 0.1000 0.3143 0.1400 0.1750 0.3000 0.1429 0.1928
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.06 0.69 0.41 0.95 0.64 2.30 1.10 0.02 0.13 -0.69 -0.47 0.69 0.79 0.69 -0.22 0.51 0.47 0.69 0.51 0.18 1.06 0.43 -0.05 0.69 0.22 0.00 -0.36 0.07 0.00 0.22 0.00 -0.51 -0.13 -0.22 0.79 -0.62 -0.62 0.69 0.22 0.47
0.12 0.93 0.38 0.58 0.11 -0.21 0.86 0.28 -0.57 -0.69 0.22 0.51 -0.04 1.05 0.08 1.05 0.69 0.69 -0.12 0.41 0.69 0.34 -0.22 -0.64 0.34 1.39 -0.29 -0.10 0.47 -0.34 0.15 0.06 0.10 0.41 0.54 1.10 1.01 0.18 0.45 -0.24
A??E.\IX C
YEAR
-
IS'TO
CAL D-ATA SET
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Bc Rc/Ro Bo Ro Rc
6,300
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ro/Bo
1805 1805 1805 1805 1805 1805 1805 1805 1805 1805 1806 1806 1806 1806 1806 1806 1806 1806 1806 1806 1807 1807 1807 1807 1807
49,000 16,000 25,000 20,000 12,000 9,000 7,000 25,000 30,000 13,000 27,000 12,000 27,300 16,000 12,000 96,000 18,000 26,000 4.800 30,000 6,000 45,000 87,000 75,000 12,000
5,700 1,000 4,000 700 600 600 500 1,100 2,000 400 1,000 200 7,100 800 1,000 6.000 850 3,300 350 2,000 3,000 6,000 12,000 23.000 700
46,000 8,000 8,000 15,000 4.000 4,800 8,000 6,000 7,000 3,000 22.000 9,000 50,000 13,700 11,000 54,000 5,500 44,000 4,300 15,000 14.000 16,000 61,000 83.000 9,000
4,000 5,000 800 400 400 400 600 1,200 1,500 600 700 10,000 1,000 1,000 12,000 1,400 3,500 1,700 2,000 5,000 3,000 20,000 23,000 1,100
0.1163 0.0625 0.1600 0.0350 0.0500 0.0667 0.0714 0.0440 0.0667 0.0308 0.0370 0.0167 0.2601 0.0500 0.0833 0.0625 0.0472 0.12bg 0.0729 0.0667 0.5000 0.1333 0.1379 0.3067 0.0583
0.1370 0.5000 0.6250 0.0533 0.1000 0.0833 0.0500 0.1000 0.1714 0.5000 0.0273 0.0778 0.2000 0.0730 0.0909 0.2222 0.2545 0.0795 0.3953 0.1333 0.3571 0.1875 0.3279 0.2771 0.1222
0.10 1.39 0.22 0.13 -0.41 -0.41 -0.22 -0.61 -0.51 1.32 -0.51 1.25 0.34 0.22 0.00 0.69 0.50 0.06 1.58 0.00 0.51 -0.69 0.51 0.00 0.45
0.06 0.69 1.14 0.29 1.10 0.63 -0.13 1.43 1.46 1.47 0.20 0.29 -0.61 0.16 0.09 0.58 1.19 -0.53 0.11 0.69 -0.85 1.03 0.36 -0.10 0.29
1807 1807 1807 1807 1807 1808 1808 1808 1808 1808 1808 1808 1808 1808 1808
20,000 1,000 12,000 65,000 63,000 24,500 32,000 35,000 21,000 13,000 19,000 14,000 50,000 8,000 15,000
1.200 150 2,800 12,500 2,500 200 1.000 700 300 3,000 750 400 6,000 300 1,100
18,000 7,000 6,000 95,000 17,000 11,000 22,000 45,000 19,000 15,500 13,000 15.000 30,000 12.000 22,000
2,500 2,000 1,500 9,000 1,800 2,500 3,000 3,000 400 3,500 1,500 1,000 18,000 200 1,000
0.0600 0.1500 0-2333 0.1923 0.0397 0.0082 0.0313 0.0200 0.0143 0.2308 0.0395 0.0286 0.1200 0.0375 0.0733
0.1389 0,2857 0.2500 0.0947 0.1059 0.2273 0.1364 0.0667 0.0211 0.2258 0.1154 0.0667 0.6000 0.0167 0.0455
0.73 2.59 -0.62 -0.33 -0.33 2.53 1.10 1.46 0.29 0.15 0.69 0.92 1.10 -0.41 -0.10
0.11 -1.95 0.69 -0.38 1.31 0.80 0.37 -0.25 0.10 -0.18 0.38 -0.07 0.51 -0.41 -0.38
-7Y
AEKX
C
-
RED
YEAR 1808 1808 1808 1808 1808 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1609 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809
HTORCAL .}ATA SET
RED
BLUE
BLUE
INITIAL CASUALTY INITIAL CASUALTY Ro Re Bo Bc Rc/Ro 15.000 15,000 25,000 7,000 21.000 5,000 45,000 18,000 54,000 13,000 11.000 15,000 15,000 33,000 10,000 45,000 16,000 35,000 15,000 39,000 12,000 17,500 36,000 60,000 27,000 1.500 7,000 13,300 34,000 66,000 74,000 30,000 12,000 11,300 21,000 5.000 40,000 11,000 21,000 27,000
500 600 1.000 300 1.100 400 3,000 200 6,000 200 200 300 900 2,000 400 4,000 400 4,000 650 3,600 600 1,000 2,000 1,000 150 100 500 1,000 15,000 3,000 4.000 4.600 1,600 800 700 600 300 1,700 2,400 800
4.400 9,000 3,500 3,000 23,000 22,000 25,000 10.000 47,000 12,000 6,300 5 000 20,000 50,000 8,000 40,000 23,000 37.000 3,000 41,000 18,000 23,000 58,000 46,000 13,000 2,300 9.000 11.700 9.400 74,000 60,000 30,000 9,000 20,000 11,000 18,000 39,000 5,000 23,000 18,000
600 1,000 1,500 2,000 900 2,000 1.900 1.700 7,100 2.000 1,100 600 1.500 4,000 1.000 3,000 4,000 3,500 1.000 3.000 2.000 8.000 450 2,800 600 500 1.500 1.500 5,200 6,000 3,200 2.400 700 4,000 13,000 3.000 500 1,000 3,300 1,500
0.0333 0.0400 0.0400 0.0429 0.0524 0.0800 0.0667 0.0111 0.1111 0.0154 0.0182 0.0200 0.0600 0.0606 0.0400 0.0889 0.0250 0.1143 0.0433 0.0923 0.0500 0.0571 0.0556 0.0167 0.0056 0.0667 0.0714 0.0752 0.4412 0.0455 0.0541 0.1533 0.1333 0.0708 0 :'33 G ':'O O.OC" , 0.154) 0.1143 0.0296
B/Bo 0.1364 0.1111 0.4286 0.6667 0.0391 0.0909 0.0760 0.1700 0.1511 0.1667 0.1746 0.1200 0.0750 0.0800 0.1250 0.0750 0.1739 0.0946 0.3333 0.0732 0.1111 0.3478 0.0078 0.0609 0.0462 0.2174 0.1667 0.1282 0.5532 0.0811 0.0533 0.0800 0.0778 0.2000 1.1818 0.1667 0.0128 0.2000 0.1435 0.0833
Log
Log
RATIO Bc/Rc
RATIO Ro/Bo
0.18 0.51 0.41 1.90 -0.20 1.61 -0.46 2.14 0.17 2.30 1.70 0.69 0.51 0.69 0.92 -0.29 2.30 -0.13 0.43 -0.18 1.20 2.08 -1.49 1.03 1.39 1,61 1.10 0.41 -1.06 0.69 -0.22 -0.65 -0.83 1.61 2.92 1.61 0.51 -0.53 0.32 0.63
1.23 0.51 1.97 0.85 -0.09 -1.48 0.59 0.59 0.14 0.08 0.56 1.10 -0.29 -0.42 0-22 0,12 -0.36 -0.06 1.61 -0.05 -0.41 -0.27 -0.48 0.27 0.73 -0.43 -0.25 0.13 1.29 -0.11 0.21 0.00 0.29 -0.57 0.65 -1.28 0.03 0.79 -0.09 0.41
"-
YEAR
TC)RCAL DATA LET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ro/Bo
1.01 -0.46 0.07 1.61 1.61 0.75 0.69 0.85 0.00 1.22 1.39 -0.69 -0.69 0.00 -1.39 1.24 0.92 0.12 1.39 1.61 0.76 0.63 0.36 0.53 0.41 -0.92 0.59 1.39 0.00 0.22 0.74 0.63 1.39 1.54 1.10 0.69 0.13 0.62 0.00 3.00
-0.11 0.21 0.41 0.02 0.32 -0.85 0.41 0.12 -0.08 0.62 -0.63 0.69 0.51 2.54 2.27 -0.59 -0.46 0.41 1.20 -0.20 -0.46 1.53 2.30 0.37 0.09 1.87 -0.25 -0.22 0.76 0.18 0.00 -1.10 -0.84 -0.21 -1.01 -0.69 0.58 0.00 -0.30 0.51
.......................................................................
1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1809 1810 1810 1810 1810 1810 1810 1810 1810 1810 1810 1810 18" 1810 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811 1811
52,000 160.000 99,000 12,700 15,500 1,500 18,000 9,000 72,000 26,000 16,000 30,000 25,000 70,000 27,000 32,000 22,000 30,000 6,000 6,000 19,000 23,000 60,000 13,000 12.000 19,500 35,000 8,000 15,000 12,000 6,000 20,000 4,500 17,000 4,000 6,000 32.000 18,000 17,000 5.000
1,000 58,000 30,000 130.000 21,500 66,000 100 12,500 200 11,300 40 3.500 500 12,000 300 8,000 2,000 78,000 400 14,000 2,000 30,000 2,000 15,000 12,000 15,000 1,500 5,500 800 2,800 1,300 58,000 2,000 35,000 1,600 20,000 100 1,800 100 7,300 1,400 30,000 1,600 5,000 700 6,000 1,000 9,000 1.000 11.000 1.000 3,000 1,500 45,000 1.000 10,000 2,000 7,000 2,000 10,000 1.000 6,000 800 60,000 150 10,400 1,500 21,000 300 11,000 500 12,000 7,000 18,000 4,300 18,000 1,000 23.000 100 3,000
2,750 19,000 23,000 500 1,000 85 1,000 700 2,000 1,350 8,000 1,000 6,000 1,500 200 4,500 5,000 1,800 400 500 3,000 3,000 1,000 1,700 1,500 400 2,700 4,000 2,000 2,500 2,100 1,500 600 7,000 900 1,000 8.000 8,000 1,000 2,000
0.0192 0.1875 0.2172 0.0079 0.0129 0.0267 0.0278 0.0333 0.0278 0.0154 0.1250 0.0667 0.4800 0.0214 0.0296 0.0406 0.0909 0.0533 0.0167 0.0167 0.0737 0.0696 0.0117 0.0769 0.0833 0.0513 0.0429 0.1250 0.1333 0.1667 0.1667 0.0400 0.0333 0.0882 0.0750 0.0833 0.2188 0.2389 0.0588 0.0200
0.0474 0.1462 0.3485 0.0400 0.0885 0.0243 0.0833 0.0875 0.0256 0.0964 0.2667 0.0667 0.4000 0.2727 0.0714 0.0776 0.1429 0.0900 0.2222 0.0685 0.1000 0.6000 0.1667 0.1889 0.1364 0.1333 0.0600 0.4000 0.2857 0.2500 0.3500 0.0250 0.0577 0.3333 0.0818 0.0833 0.4444 0.4444 0.0435 0.6667
A??EN:. :x C
YEAR
-
HSTORICAL :ATA ZET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc c/Ro
1811 1811 1811 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812
33.000 18,000 10,000 30,000 4,000 6,000 3,500 51,000 23,000 28.000 35,000 20 000 32.000 9.000 33.000 90,000 46.000 24,000
1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1812 1813 1813 1813 1813 1813
124.000 36,000 34.000 40,000 180,000 36,000 35,000 27,000 2,000 50,000 33,000 4,500
61600 16.000 8.000 28,000 17,000 80.000 70,000 144.000 15,000 160,000
2,000 600 500 400 200 300 200 1.850 4.300 3.400 1,300 500 10.000 800 10.000 2.000 5,200 6,000
Bc/Bo
Log RATIO Bc/Rc
Log RATIO Ro/Bo
33,000 22,000 12.000 30,000 10,000 1,500 2,000 5,000 20,000 28,000 27,000 7 000 27,000 10,000 87,000 50,000 42.000 24,000
2,000 1,100 1,500 400 3.000 800 250 1,300 3,700 2,700 1.500 700 6.000 1.200 8.000 6,000 10,000 8,000
0.0606 0.0333 0.0500 0.0133 0.0500 0.0500 0.0571 0.0363 0.1870 0.1214 0.0371 0.0250 0.3125 0.0889 0.3030 0.0222 0.1130 0.2500
0.0606 0.0500 0.1250 0.0133 0.3000 0.5333 0.1250 0.2600 0.1850 0.0964 0.0556 0.1000 0.2222 0.1200 0.0920 0.1200 0.2381 0.3333
0.00 0.61 1.10 0.00 2.71 0.98 0.22 -0.35 -0.15 -0.23 0.14 0.34 -0.51 0.41 -0.22 1.10 0.65 0.29
0.00 -0.20 -0.18 0.00 -0.92 1.39 0.56 2.32 0.14 0.00 0.26 1.05 0.17 -0.11 -0.97 0.59 0.09 0.00
28.000 122,000 4,000 20,000 6,000 22.000 250 1,800 10,000 120,000 800 20,000 8,800 25.000 1,800 25.000 200 32.000 600 700 600 2.600 50 3,500 100 6.000 900 22,000 200 10,000 3,000 25,000 900 16.000 9.000 70,000 4,600 50,000 19,200 93,000 700 12,000 8,000 100,000
43,000 6.000 6,000 800 6.000 2,000 6,000 4.000 550 200 300 500 300 1,500 1,200 2.200 1,900 6,500 5,400 12,000 2.000 16.000
0.2258 0.1111 0.1765 0.0063 0-0556 0.0222 0.2514 0.0667 0.1000 0.0120 0.0182 0.0111 0.0152 0.0563 0.0250 0.1071 0.0529 0.1125 0.0657 0.1333 0.0467 0.0500
0.3525 0.3000 0.2727 0.4444 0.0500 0.1000 0.2400 0.1600 0.0172 0.2857 0.1154 0.1429 0.0500 0.0682 0.1200 0.0880 0.1188 0.0929 0.1080 0.1290 0.1667 0.1600
0.43 0.41 0.00 1.16 -0.51 0.92 -0.38 0.80 1.01 -1.10 -0.69 2.30 1.10 0.51 1.79 -0.31 0.75 -0.33 0.16 -0.47 1.05 0.69
0.02 0.59 0.44 3,10 0.41 0.59 0.34 0.08 -2.77 4.27 2.54 0.25 0.10 -0.32 -0.22 0.11 0.06 0.13 0.34 0.44 0.22 0.47
C - H A}
ORIcAL DATA SE
YEAR
BLUE RED RED BLUE INITIAL CASUALTY INITIAL CASUALTY Rc Bo Bc Ec/Ro Ro
1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1813 1814 1814 1814 1814
16.000 10,000 4,800 20.000 10,000 12.000 32,000 3.000 20.000 40,000 19.000 24.000 24.000 80,000 4.000 21,400 32,000 13,400 12,000 17.000 90,000 60,000 37,000 17,000 42.000 90,000 90.000 60,000 8,000 55.000 100,000 15.400 160.000 187,000 325.000 103.000 15,000 40.000 8.000 36,000
1.900 500 250 1,100 600 1.100 1,500 250 2,000 3.000 2,000 600 1.000 4,000 500 800 1.000 1,800 1,800 700 5,300 6,000 6,000 300 1,600 4,900 5,000 2.500 100 8,000 10,000 250 2,000 21.200 75,000 11.000 300 5,600 450 3,000
15,000 4,000 2.600 8,500 4.000 4.500 18,000 2.500 4.000 20,000 3.500 50.000 18,000 60,000 7,000 18.000 38.000 7,400 11,000 15,000 50,000 40.000 45,000 20.000 32,000 60,000 4.800 50.000 4,000 60,000 200,000 5,000 100,000 97,000 175.000 37,000 4,000 100,000 5.000 30,000
900 1,100 300 2,100 500 600 1,700 500 1,400 6,000 1,350 1,200 1,500 12,000 1,000 1,500 3,600 1,200 2.000 100 3,200 5,000 4,000 2,000 1,100 6,000 1,900 1.500 1,700 11,000 15.000 1.400 3.000 11.000 45.000 9.000 400 5,000 800 3,000
0.1188 0.0500 0.0521 0.0550 0.0600 0.0917 0.0469 0.0833 0.1000 0.0750 0.1053 0.0250 0.0417 0.0500 0.1250 0.0374 0.0313 0.1343 0.1500 0.0412 0.0589 0.1000 0.1622 0.0176 0.0381 0.0544 0.0556 0.0417 0.0125 0.1455 0.1000 0.u162 0.0125 0.1269 0.2308 0.1068 0.0200 0.1400 0.0563 0.0833
Bc/Bo 0.0600 0.2750 0.1154 0.2471 0.1250 0.1333 0.0944 0.2000 0.3500 0.3000 0.3857 0.0240 0.0833 0.2000 0.1429 0.0833 0.0947 0.1622 0.1818 0.0067 0.0640 0.1250 0.0889 0.1000 0.0344 0.1000 0.3958 0.0300 0.4250 0.1833 0.0750 0.2800 0.0300 0.1134 0.2571 0.2432 0.1000 0.0500 0.1600 0.1000
Log RATIO Bc/Rc
Log RATIO Ro/Bo
-0.75 0.79 0.18 0.65 -0.18 -0.61 0.13 0.69 -0.36 0.69 -0.39 0.69 0.41 1.10 0.69 0.63 1.28 -0.41 0.11 -1.95 -0.50 -0.18 -0.41 1.90 -0.37 0.20 -0.97 -0.51 2.83 0.32 0.41 1.72 0.41 -0.66 -0.51 -0.20 0.29 -0.11 0.58 0.00
0.06 0.92 0.61 0.86 0.92 0.98 0.58 0.18 1.61 0.69 1.69 -0.73 0.29 0.29 -0.56 0.17 -0.17 0.59 0.09 0.13 0.59 0.41 -0.20 -0.16 0.27 0.41 2.93 0.18 0.69 -0.09 -0.69 1.12 0.47 0.54 0.62 1.02 1.32 -0.92 0.47 0.18
At'iEND:X C - H:STI'R:CAL DATA SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Bc Bo Bc Rc/Ro
1814 1814 1814 1814 1814 1814 1814 1814 i814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 1814 814 1814 1814 1814 1814 1814 1815 1815 1815 1815 1815 1815 1815 1815 1815 1816
10.000 25,000 7,000 100,000 34,000 12.000 11.000 6,000 15.000 30,000 100.000 5.000 90.000 5.000 50.000 28.000 60.000 123.000 2.700 4.000 25.000 20.000 45.000 30.000 12.000 18.000 14.000 13.000 30.000 100.000 20.000 120.000 10.000 71,000 32.000 40,000 32.000 11.000 6,000 5,000
600 2,100 500 9.000 3,000 500 1.000 650 400 1,900 3,000 600 1.600 500 1,000 2,000 6,700. 6,000 500 770 1.400 500 3.200 800 400 600 1.600 500 2,000 3,500 1,000 19,000 600 12,000 5,100 2.000 2,500 700 20 800
8.800 39,000 4,000 42.000 32.000 10.000 16.000 11,000 10,000 20.000 30.000 4,000 25.000 7,000 20.000 21,000 32.000 41,000 9.000 5.000 13.000 30,000 35,000 13,000 4.000 9.000 25.000 9,000 15,000 50.000 17.000 72.000 5.000 84.000 21.000 20.000 24.000 29.000 12,000 12,000
1,500 3,000 500 7,000 2.800 300 5,000 1.000 800 800 3,400 2,400 2,600 300 1,000 5.000 4,000 3,000 1,900 650 500 3,000 3,000 2,300 600 2,400 1,700 1,000 1.400 4.000 500 25,000 1.600 16,000 4,400 1.000 2,500 1,700 2,000 3,000
0.0600 0.0840 0.0714 0.0903 0.0882 0.0417 0.0909 0.1083 0.0267 0.0633 0.0300 0.1200 0.0178 0.1000 0.0200 0.0714 0.1117 0.0488 0.1852 0.1925 0.0560 0.0250 0.0711 0.0267 0.0333 0.0333 0.1143 0.0385 0.0667 0.0350 0.0500 0.1583 0.0600 0.1690 0.1594 0.0500 0.0781 0.0636 0.0033 0.1600
Bc/Bo 0.1705 0.0769 0.1250 0.1667 0.0875 0.0300 0.3125 0.0909 0.0800 0.0400 0.1133 0.6000 0.1040 0.0429 0.0500 0.2381 0.1250 0.0732 0.2111 0.1300 0.0385 0.1000 0.0857 0.1769 0.1500 0.2667 0.0680 0.1111 0.0933 0.0800 0.0294 0.3472 0.3200 0.1905 0.2095 0.0500 0.1042 0.0586 0.1667 0.2500
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.92 0.36 0.00 -0.25 -0.07 -0.51 1.61 0.43 0.69 -0.86 0.13 1.39 0.49 -0.51 0.00 0.92 -0.52 -0.69 1.34 -0.17 -1.03 1.79 -0.06 1.06 0.41 1.39 0.06 0.69 -0.36 0.13 -0.69 0.27 0.98 0.29 -0.15 -0.69 0.00 0.89 4.61 1.32
0.13 -0 44 0.56 0.87 0.06 0.18 -0.37 -0.61 0.41 0.41 1.20 0.22 1.28 -0.34 0.92 0.29 0.63 1.10 -1.20 -0.22 0.65 -0.41 0.25 0.84 1.10 0.69 -0.58 0-37 0.69 0.69 0.16 0.51 0.69 -0.17 0.42 0.69 0.29 -0.97 -0.69 -0.88
AE.:,x.. C
YEAR 1828 1828 1828 1828 1828 1828 1828 1828 1828 1829 1829 1829 1829 1831, 1831 1831 1831 1831 1831 1832 1832 1832 1839 1840 1844 1847 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1848 1849
-
^ HISTORI CAL DATA SET
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Bc Rc/Ro 24.000 20,000 20,000 7,000 4,500 10.000 7,000 11.000 17,000 19,000 28,000 18,000 37,000 38,000 52.000 50,000 78,000 22,000 80,000 22,000 15,000 14,000 43,000 4,700 10,000 4,400 19,000 55,000 16,000 23,000 19,000 31,000 25,000 16,000 11,000 18,000 42,000 28,000 19,000 28,000
2,000 6,000 1,600 600 1,500 1,800 1,000 500 3,000 100 2,500 100 3,000 4,500 3,800 500 10,600 1,500 10,000 2,000 500 500 500 100 70 720 500 900 500 100 650 900 500 100 100 300 600 350 260 350
30,000 15,000 6,000 11,000 35,000 30,000 20,000 20,000 8,000 35,000 40.000 20,000 15,000 32,000 44,000 26.000 37,000 24,000 50,000 44,000 20,000 17,000 33.000 5,000 30,000 20,000 16,000 75,000 11,000 6.000 4,000 18,000 5,000 6,000 6,000 11,000 10,000 42,000 41,000 38,000
73
4,000 8,000 1,400 3,500 2,500 5,000 1,000 1,500 1,500 1,000 3,000 500 6,000 7,000 2,900 1,000 7,800 1.700 9,000 3,000 2,000 2,500 1,000 2,000 2,000 2,000 700 900 800 300 700 1.400 200 1,000 150 400 300 700 750 1,200
0.0833 0.3000 0.0800 0.0857 0.3333 0.1800 0.1429 0.0455 0.1765 0.0053 0.0893 0.0056 0.0811 0.1184 0.0731 0.0100 0.1359 0.0682 0.1250 0.0909 0.0333 0.0357 0.0116 0.0213 0.0070 0.1636 0.0263 0.0164 0.0313 0.0043 0.0342 0.0290 0.0200 0.0063 0.0091 0.0167 0.0143 0.0125 0.0137 0.0125
Bc/Bo 0.1333 0.5333 0.2333 0.3182 0.0714 0.1667 0.0500 0.0750 0.1875 0.0286 0.0750 0.0250 0.4000 0.2188 0.0659 0.0385 0.2108 0.0708 0.1800 0.0682 0.1000 0.1471 0.0303 0.4000 0.0667 0.1000 0.0438 0.0120 0.0727 0.0500 0.1750 0.0778 0.0400 0.1667 0.0250 0.0364 0.0300 0.0167 0.0183 0.0316
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.69 0.29 -0.13 1.76 0.51 1.02 0.00 1.10 -0.69 2.30 0.18 1.61 0.69 0.44 -0.27 0.69 -0.31 0.13 -0.11 0.41 1.39 1.61 0.69 3.00 3.35 1.02 0.34 0.00 0.47 1.10 0.07 0.44 -0.92 2.30 0.41 0.29 -0.69 0.69 1.06 1.23
-0.22 0.29 1.20 -0.45 -2.05 -1.10 -1.05 -0.60 0.75 -0.61 -0.36 -0.11 0.90 0.17 0.17 0.65 0.75 -0.09 0.47 -0.69 -0.29 -0.19 0.26 -0.06 -1.10 -1.51 0.17 -0.31 0.37 1.34 1.56 0.54 1.61 0.98 0.61 0.49 1.44 -0.41 -0.77 -0.31
AFPEND:X C --
:STORCAL DATA SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Be Rc/Ro
1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1849 1850 1850 1850 1853 1854 1854 1854 1854 1854 1854 1855 1855 1855 1856 1859 1859 1859 1859 1859 1860 1860 1860 1861
9.000 16,000 10,000 41.000 37,000 25,000 11,000 30.000 20.000 34,000 25,000 51.000 15,000 12,000 53,000 20,000 4,000 3,300 4,000 39,000 3.000 6,000 20.000 21,000 65.000 30.000 175,000 22.000 50.000 30,000 19.000 48,000 40,500 8.300 14,300 26.000 18,000 3,500 30.000 10,000
1,000 8,000 310 24,000 200 6,000 2,300 59,000 200 45,000 600 15.000 100 8,000 550 20.000 200 8,000 800 40,000 300 38,000 700 50.000 250 8,000 200 7,000 1,200 37.000 1,870 14.000 50 4,000 450 11.500 250 12,000 3,200 26,000 1,000 7,000 2,000 10.000 800 60,000 600 29.000 4,400 35.000 7,000 36.000 54,000 120.000 500 18,000 1,800 74,000 7,000 16,000 1,000 70,000 3,900 62.000 1,000 8.500 800 18,700 1,460 130,000 1,000 18,000 1,500 38,000 700 5,000 200 6,000 1,230 6,000
74
2,000 300 1,000 3,000 500 800 1.100 1,500 2,000 1,200 500 1,300 800 1,300 2.000 1,350 200 700 300 1,750 1.000 3.600 1.600 1.200 5.000 12.000 10,300 1,500 7,300 3.000 3.000 5.700 360 1,100 13,100 1,700 1,700 200 500 1,140
0.1111 0.0194 0.0200 0.0561 0.0054 0.0240 0.0091 0.0183 0.0100 0.0235 0.0120 0.0137 0.0167 0.0167 0.0226 0.0935 0.0125 0.1364 0.0625 0.0821 0.3333 0.3333 0.0400 0.0286 0.0677 0.2333 0.3086 0.0227 0.0360 0.2333 0.0526 0.0813 0.0247 0.0964 0.1021 0.0385 0.0833 0.2000 0.0067 0.1230
Bc/Bo 0.2500 0.0125 0.1667 0.0508 0.0111 0.0533 0.1375 0.0750 0.2500 0.0300 0.0132 0.0260 0.1000 0.1857 0.0541 0.0964 0.0500 0.0609 0.0250 0.0673 0.1429 0.3600 0.0267 0.0414 0.1429 0.3333 0.0858 0.0833 0.0986 0.1875 0.0429 0.0919 0.0424 0.0588 0.1008 0.0944 0.0447 0.0400 0.0833 0.1900
Log RATIO Bc/Rc
Log RATIO Ro/Bo
0.69 -0.03 1.61 0.27 0.92 0.29 2.40 1.00 2.30 0 41 0.51 0.62 1.16 1.87 0.51 -0.33 1.39 0.44 0.18 -0.60 0.00 0.59 0.69 0.69 0.13 0.54 -1.66 1.10 1.40 -0.85 1.10 0.38 -1.02 0.32 2.19 0.53 0.13 -1.25 0.92 -0.08
0.12 -0.41 0.51 -0.36 -0.20 0.51 0.32 0.41 0.92 -0.16 -0.42 0.02 0.63 0.54 0.36 0.36 0.00 -1.25 -1.10 0.41 -0.85 -0.51 -1.10 -0.32 0.62 -0.18 0.38 0.20 -0.39 0.63 -1.30 -0.26 1.56 -0.81 -2.21 0.37 -0.75 -0.36 1.61 0.51
AFEND:X C
RED
YEAR
'ATA SET
-:sTCICCAL
RED
BLUE
BLUE
INITIAL CASUALTY INITIAL CASUALTY Rc/Ro Bc Bo Rc Ro
Bc/Bo
Log
Log
RATIO Bc/Rc
RATIO Bo/Bo
1861
32.000
2,000
35,000
1,600
0.0625
0.0457
-0.22
-0.09
1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1862 1863 1863 1863 1863 1863 1863 1863 1863 1863 1863 1863 1864 1864 1864 1864 1864 1864 1864 1864 1864 1864 1864 1864 1864
50,000 68,000 94,000 24.000 8,000 12,000 27,000 14,000 60,000 39,000 20,000 25,000 78,000 85,000 45,000 70,000 90.000 18.000 80,000 25,000 65,000 14.000 45,000 30,000 26,000 75,000 70,000 60,000 37.000 55,000 118,000 93,000 120.000 100,000 25,000 52,000 5,000 60,000 43,000
9,400 3,150 19.000 1,800 450 1,200 2.660 1.000 10,200 6,500 1,300 2.200 4,700 11,700 1,900 15,800 17,700 300 10,800 200 5,600 2.000 9,600 2.300 1,100 9,000 4,000 1,700 5.600 3,100 14,300 4,000 39,000 16,200 3.000 4,000 480 700 4,400
70.000 34,000 106,000 15,000 16,000 16,000 17,000 11.000 40,000 51,000 18,000 22.000 117,000 50.000 30.000 57,000 68,000 9,000 130.000 33,000 45.000 16,000 38,000 18,000 5,000 28,000 40,000 100,000 27,000 38.000 62,000 52,000 67,000 50.000 30.000 38,000 5,000 30,000 13,000
10,200 3,700 10,000 1,600 1,050 1,100 2,000 1,000 9,800 4,400 1,800 2,700 11,000 9.400 1.300 11.500 15,300 500 11,400 1,200 2,600 4,000 9,300 3,000 200 7,000 8.500 11,000 1.300 15,000 7.000 1,500 40,000 5,000 3,000 3,000 420 4,600 2,000
0.1880 0.0463 0.2021 0.0750 0.0563 0.1000 0.0985 0.0714 0.1700 0.1667 0.0650 0.0880 0.0603 0.1376 0.0422 0.2257 0.1967 0.0167 0.1350 0.0080 0.0862 0.1429 0.2133 0.0767 0.0423 0.1200 0.0571 0.0283 0.1514 0.0564 0.1212 0.0430 0.3250 0.1620 0.1200 0.0769 0.0960 0.0117 0.1023
0.1457 0.1088 0.0943 0.1067 0.0656 0.0688 0.1176 0.0909 0.2450 0.0863 0.1000 0.1227 0.0940 0.1880 0.0433 0.2018 0.2250 0.0556 0.0877 0.0364 0.0578 0.2500 0.2447 0.1667 0.0400 0.2500 0.2125 0.1100 0.0481 0.3947 0.1129 0.0288 0.5970 0.1000 0.1000 0.0789 0.0840 0.1533 0.1538
0.08 0.16 -0.64 -0.12 0.85 -0.09 -0.29 0.00 -0.04 -0.39 0.33 0.20 0.85 -0.22 -0.38 -0.32 -0.15 0.51 0.05 1.79 -0.77 0.69 -0.03 0.27 -1.70 -0.25 0.75 1.87 -1.46 1.58 -0.71 -0.98 0.03 -1.18 0.00 -0.29 -0.13 1.88 -0.79
-0.34 0.69 -0.12 0.47 -0.69 -0.29 0.46 0.24 0.41 -0.27 0.11 0.13 -0.41 0.53 0.41 0.21 0.28 0.69 -0.49 -0.28 0.37 -0.13 0.17 0.51 1.65 0.99 0.56 -0.51 0.32 0.37 0.64 0.58 0.58 0.69 -0.18 0.31 0.00 0.69 1.20
75
A??END:X C
-
H:-ISTO.RCAL
)ATA SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Be Bo Be Rc/Ro
1864 1864 1864 1864 1864 1864 1864 1865 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1866 1867 1870 1370 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870
72.000 20,000 37,000 40.000 80,000 6,000 5.500 60.000 41,000 220,000 26,000 3.000 24,000 16.000 26,000 25,000 24,000 27,000 75,000 27,000 30,000 25.000 18,000 10.000 14.000 3,000 82,000 38,000 6,000 4,000 35,000 243,000 30.000 200,000 40,000 187.000 35,000 58,000 25,000 14,000
1,700 400 1.200 4,100 2,400 800 430 1,500 350 8,900 1.600 110 400 1,500 250 210 1,200 3,600 5,200 720 1,400 820 950 130 200 400 9,300 3,600 500 400 1,300 10,000 3.500 6.000 1.300 19,700 500 4,800 1,700 500
48.000 11,000 23.000 18.000 40,000 18,000 6,000 30.000 29,000 215,000 44.000 9 200 20.000 9,000 34,000 20,000 31,000 32.000 90.000 22.000 23.000 22,000 14,000 23.000 7.000 7,000 41,000 52,000 8,000 8.000 25,000 400,000 60.000 180,000 36,000 113,000 30,000 84.000 65,000 8,000
76
4,800 700 1,200 1,900 3,000 3,000 900 1,700 920 23,600 2,900 700 1.330 900 600 490 3.700 1,300 3.400 .1,100 3,330 750 750 370 510 1,000 8,000 4,500 1,400 1,800 1,400 16.000 5,000 8,000 1,200 12,800 700 3,200 5,000 800
0.0236 0.0200 0.0324 0.1025 0.0300 0.1333 0.0782 0.0250 0.0085 0.0405 0.0615 o.o367 0.0167 0.0938 0.0096 0.0084 0.0500 0.1333 0.0693 0.0267 0.0467 0.0328 0.0528 0.0130 0.0143 0.1333 0.1134 0.0947 0.0833 0.1000 0.0371 0.0417 0.1167 0.0300 0.0325 0.1053 0.0143 0.0828 0.0680 0.0357
Bc/Bo 0.1000 0.0636 0.0522 0.1056 0.0750 0.1667 0.1500 0.0567 0.0317 0.1098 0.0659 0.8078 0.06 0.1000 0.0176 0.0245 0.1194 0.0406 0.0378 0.0500 0.1448 0.0341 0.0536 0.0161 0.0729 0.1429 0.1951 0.0865 0.1750 0.2250 0.0560 0.0400 0.0833 0.0333 0.0333 0.1133 0.0233 0.0381 0.0769 0.1000
Log RATIO Bc/Rc
Log RATIO Ro/Bo
1.04 0.56 0.00 -0.77 0.22 1.32 0.74 0-13 0.97 0.98 0.59 1.?5 .20 -0.51 0.88 0.85 1.13 -1.02 -0.42 0.42 0.87 -0.09 -0.24 1.05 0.94 0.92 -0.15 0.22 1.03 1.50 0.07 0.47 0.36 0.00 -0.08 -0.43 0.34 -0.41 1.08 0.47
0.41 0.60 0.48 0.80 0.69 -1.10 -0.09 0.69 0.35 0.02 -0.53 -1.12 0.18 0.58 -0.27 0.22 -0.26 -0.17 -0.18 0.20 0.27 0.13 0.25 -0.83 0.69 -0.85 0.69 -0.31 -0.29 -0.69 0.34 -0.51 -0.69 0.11 0.11 0.50 0.15 -0.37 -0.96 0.56
AF-...:x
c - H:STOR:CA!LDATA SET
YEAR
RED RED BLUE BLUE INITIAL CASUALTY INITIAL CASUALTY Ro Rc Bo Ba Rc/Ro
1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1871 1871 1871 1871 1871 1871 1874 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877 1877
40,000 9,000 6,000 200,000 63.000 68.000 26.000 30,000 40,000 78,000 86,000 60,000 16.000 26.000 40,000 35,000 51,000 40.000 45.000 72.000 33.000 23.000 23,000 22,000 25.000 55.000 29.000 20.000 12,000 40.000 12.000 11,000 17.000 15.000 35,000 50.000 24.000 36.000 70.000 18.000
1,000 23,000 500 20,000 500 10,000 8,300 120,000 14,900 113,000 3,400 59,000 1.000 41,000 1,000 20,000 1,000 60,000 2,800 96,000 2.000 64,000 1.500 20.000 1,000 11,000 2,200 18,000 3.500 90,000 4.500 28,000 1,550 6,000 1,700 6,300 1,800 135,000 3.500 88,000 2,500 47.000 1,000 37,000 700 83,000 2,500 32,000 3,500 4,000 2,000 30.000 1,700 13,000 1,300 5,000 2,000 30,000 5,000 60,000 800 5.000 600 16.000 1,000 11,000 2,000 10,000 7.000 95,000 600 10.000 1,600 8,000 3,000 18,000 800 35,000 1,100 19.000
77
2,500 2,000 900 17,000 17,000 5,500 1,100 700 2,200 3,600 3,000 1,000 1,000 4,800 3.500 4,100 1.100 700 4.000 6.000 3.500 1.350 4,000 4,000 1,500 3,000 2.000 1,900 5,000 4.000 1,500 1,000 1,400 1.600 16,000 1.500 2.400 5.000 3.000 1.300
0.0250 0.0556 0.0833 0.0415 0.2365 0.0500 0.0385 0.0333 0.0250 0.0359 0.0233 0.0250 0.0625 0.0846 0.0875 0.1286 0.0304 0.0425 0.0400 0.0486 0.0758 0.0435 0.0304 0.1136 0.1400 0.0364 0.0586 0.0650 0.1667 0.1250 0.0667 0.0545 0.0588 0.1333 0.2000 0.0120 0.0667 0.0833 0.0114 0.0611
Bc/Bo 0.1087 0.1000 0.0900 0.1417 0.1504 0.0932 0.0268 0.0350 0.0367 0.0375 0.0469 0.0500 0.0909 0.2667 0.0389 0.1464 0.1833 0.1111 0.0296 0.0682 0.0745 0.0365 0.0482 0-1250 0.3750 0.1000 0.1538 0.3800 0.1667 0.0667 0.3000 0.0625 0.1273 0.1600 0.1684 0.1500 0.3000 0.2778 0.0857 0.0684
Log RATIO Ba/Rc
Log RATIO Ro/Bo
0.92 1.39 0.59 0.72 0.13 0.48 0.10 -0.36 0.79 0.25 0.41 -0.41 0.00 0.78 0.00 -0.09 -0.34 -0.89 0.80 0.54 0.34 0.30 1.74 0.47 -0.85 0.41 0.16 0.38 0.92 -0.22 0.63 0.51 0.34 -0.22 0.83 0.92 0.41 0.51 1.32 0.17
0.55 -0.80 -0.51 0.51 -0.58 0.14 -0.46 0.41 -0.41 -0.21 0.30 1.10 0.37 0.37 -0.81 0.22 2.14 1.85 -1.10 -0.20 -0.35 -0.48 -1.28 -0.37 1.83 0.61 0.80 1.39 -0.92 -0.41 0.88 -0.37 0.44 0.41 -1.00 1.61 1.10 0.69 0.69 -0.05
"-'-
YEAR
.... '¢
':"CAL :ATA L':
BLUE BLUE RED RED INITIAL CASUALTY INITIAL CASUALTY Be Rc/Ro Bo Re Ro
1877 1877 1877 1877
30,000 14,000 22.000 20.000
1877 1977 1877 1878 1878 1885 1885 1889 1891 1894 1894 1897 1898 1899 1899 1899 1899 1899 1899 1899 1899 1899 1900 1900 1900 1904 1904 1904 1904 1904 1904 1904 1904 1905 1905
10,000 26,000 18.000 18.000 67,0OOO 50,000 32.000 60,000 11.000 12.000 6.000 47.000 12,700 8,700 55.000 10,200 3,400 4,500 25,000 450 4,000 8,5Co 12,000 1.500 5,000 145,000 140.000 135.000 40,000 36,000 24,000 36,000 22,000 40,000 314,000
Bc/o
Log RATIO Bc/Rc
Log RATIO Ro/Bo
36,000 10,000 32,000 33,000
1,000 3,000 1,400 7,500
0.0153 0.1429 0.0455 0.1750
0.0278 0.3000 0.0438 0.2273
0.78 0.41 0.34 0 76
-0.18 0.34 -0.37 -0.50
7.000 200 15,000 1,000 5,400 27.000 300 10,000 6,000 29,000 1,900 32,000 2,500 30,000 8.000 5,000 1,600 14.000 700 15,000 600 5,000 1.800 35,000 1,300 1,850 1,500 330 30 13,500 6.000 500 260 1,200 1,500 230 9,500 180 200 5,000 11,500 120 200 2.500 2,000 430 1,200 20 500 12,000 17,00n 210.000 75,000 40.000 17,500 150.000 4,600 13,000 1,200 38.000 850 12.000 6,000 1,100 1,250 24,000 9,400 58,000 41,000 310,000
1.000 3,000 7.000 2.400 4,500 1,100 5,000 2,200 3,400 3,500 500 500 650 90 910 20 90 110 320 760 900 40 400 160 1.110 46,000 27,500 16,500 900 3,000 1,550 1,800 2.000 13,000 71,000
0.0200 0.0385 0.3000 0.0167 0.0896 0.0380 0.0781 0.0833 0.1455 0.0583 0.1000 0.0383 0.1457 0.0379 0.0005 0.0490 0.0765 0.0511 0.0072 0.4444 0.0300 0.0235 0.0358 0.0133 0.1000 0.1172 0.5357 0.1296 0.1150 0.0333 0.0354 0.0306 0.0568 0.2350 0.1306
0.1429 0.2000 0.2593 0.2400 0.1552 0.0344 0.1667 0.2750 0.2429 0,2333 0.1000 0.0143 0.5000 0.0600 0.0674 0.0033 0.0750 0.0733 0.0337 0.1520 0.0783 0.0160 0.2000 0.1333 0.0925 0.2190 0.6875 0.1100 0.0692 0.0789 0.1292 0.3000 0.0833 0.2241 0.2290
1.61 1.10 0.26 2.08 -0.29 -0.55 0.69 -0.82 0.75 1.61 -0.18 -1.28 -1.05 -1.30 3.41 -3.22 -1.06 -0.74 0.58 1.34 2.01 -1.61 -0.07 2.08 0.80 1.00 -1.00 -0.06 -1.63 0.92 0.60 0.49 0.47 0.32 0.55
0.36 0.55 -0.41 0 59 0.84 0-45 0.06 2.01 -0.24 -0.22 0-18 0.29 2.28 1.76 1.40 0.53 i 04 1.10 0.97 -2.41 -1.06 1.22 1.79 0.22 -0.88 -0.37 1.25 -0.11 1.12 -0.05 0.69 1.79 -0.09 -0.37 0.01
460 2,000 1,000 3,500
Endnotes 1. James Schneider, "The Exponential Decay of Armies in Battle," Theoretical Paper No.1, (Fort Leavenworth, KS: School of Advanced Military Studies, 1985). 2. Ronald L. Johnson, "Lanchester's Square Law in Theory and Practice," Monograph, (Fort Leavenworth, KS: School of Advanced Military Studies, 1990). David 6. Chandler. The Campaigns of Napoleon, (New York:MacMillan Publishing Company, Inc., 1986), p.66-67, 454. 4. James G. Taylor, Modelling, (Arlington, Society of America, 1980),
Force-On-Force Va: Operations p. 5.
Attrition Research
5. This information was extracted from a TRADOC Analysis Command- Fort Leavenworth handout developed by TRAC-FT LVN Training Simulations Directorate, Ft. Leavenworth, KS, 1989. 6. Headquarters, TRADOC Analysis Command, of TRADOC Models, (Fort Leavenworth, KS: Analysis Command, 1988), Appendix A-i.
Inventory TRADOC
7. Trevor N. Dupuy, Numbers. (Fairfax, Va:HERO Books, 1785), p.
and
Prediction 4.
E. "Commentary on Frederick William Lanchester" World of Mathematics, IV , J. Newman, editor, York: Simon and Schuster, 1956), p. 2136. 9. Frederick W. Lanchester, War+are", Engineering 98, (1914), printed in The World of Mathematics, Simon and Schuster, 1956), p. 2144. 10.
Ibid,
p.
11.
Ibid,
p.2139.
War,
in The (New
"Mathematics in p. 422-423 (reIV, (New York:
21Z9
!2. Taylor, p. 31. Note that the equations throughout the paper will use variables R and B to represent the opposing forces in order to maintain consistency between the different models.
Lanchester "Present State of Ladislov Dolansky, 13. 12, Vol Research Operations Combat," of Theory p. 345. 1964), (Mar-Apr p.
23.
14.
Taylor,
15.
Johnson, p.
16.
Lanchester, p.
17.
Taylor,
IS.
Dolansky, p.
.9.
Taylor,
p.
p.
8-9. 2147.
31. 345.
24.
Lanchester-Type Ekchian. An Overview of 20. L. K. NR-041-519. Combat Models for Modern Warfare Scenarios, (Cambridge MA: Massachusetts Institute of Technology, March 1982), p. 7-14. 21. Taylor, p. ,.. The model of insurgency operations was extended by S. J. Dietchman in "A Lanchester Model of Guerilla Warfare," Operations Research 10, (1962), p. 818-827. 2
Schneider,
p.
23.
Taylor, p.
71.
24.
Ibid, p.
77
4.
.
25.5 Daniel A. Willard, Lanchester as Force in History: Analysis of Land Battles of the Years 1618-1905, (McLean, Va: Research Analysis Corporation, 1962), p. 4. 26. Ibid, modified presented
p. 11. The terms of the model have been to be consistent with the previously models use of Blue and Red forces.
27. James G. Taylor. Lanchester-Type Models of Warfare. Vol 2 (Monterey,CA: Naval Postgraduate School, 1980), p. 594. 28.
Willard, p.20.
"The 29. The data was taked from William A. Schmeiman, of Analysis Equations in the Use of Lanchester-Type (Atlanta: Dissertation, Engagments." Past Military Appendix B. Georgia Institute of Technology, 1967), 30.
Willard, p.
9.
31.
Schmeiman, p.
32.
Willard, p.
128.
20.
Historical Helmbold. L. Richard CORG-SP-128, Lanchester's Theory of Combat, Group, Research Operations VA: Combat p. 29.
and Data (Fair+ax, 1961),
and "The Loose Marble-Schneider, James J. 34. March 1989, the Origins of Operational Art," Parameters p. 90. .
Ibid.,
p.
65.
Empty the "The Theory of Schneider. J. James 36. Services United Royal of the Journal Battlefield," Institute for Defence Studies, Sept 1987, p. 37-41. 37.
Ibid.,
p.
38.
the The American Civil War and Edward Hagerman, 36. Indiana (Indianapolis: Warfare, of Modern Origins University Press, 1988) p. 16. In Men Wise, Preston and Sydney F. Richard A. 79. Interrelationships and Its A History of Warfare Arms: and Rinehart Holt, (Chicago: Western Society, with Winston, 1979) p. 244. 40.
Hagerman, p.
17.
41.
Preston and Wise, p.
42.
Schneider, p.
4'.
Hagerman, p.
249.
39. 10.
The Franco-Prussian Michael Howard, 44. York: Rouledge, 1988), p. 4.
War,
(New
1
of Course A Summary of the Hart Mahan, Dennis 45. Defense Attack and the Fortifications and Permanent 1863), p. 229-230 Works. (Richmond, VA: of Permanent Edward, "From Jomini to Dennis Hart quoted in Hagerman, The Evolution of Trench Warfare and the American Mahan: p. September 1967, Civil War History 13, Civil War," 212. 46. Hagerman, Edward, "From Jomini to Dennis Hart Mahan: The Evolution of Trench Warfare and the American Civil War," Civil War History 13, September 1967, p. 218. 47.
Preston and Wise, p.
254.
The American Civil 48. Edward Hagerman, Origins of Modern Warfare, p. 5. 49.
Ibid, p.
50.
Schneider, p.
3?. Waterloo to The Art of War: Indiana University Press, 1974),
The Future of War 52. Jean de Bloch, cal Economic and Political Relations, Peace Foundation, 1914), p. 18. 57.
McElwee, p.
54.
Schneider, Bloch, p.
the
254-254.
51. William McElwee, Mons, (Bloomington, IN: p. 25.
5.
War and
219. p.
39.
41.
in its Techni(Boston: World
BIBLIOGRAPHY Books and Published Works Chandler, David G. The Campaigns of Napoleon. New York: MacMillan Publishing Company, Inc., 1966 Clausewitz, Carl von. On War. Trans. Michael Howard and Peter Paret. Princeton, NJ: University of Princeton Press, 1976. Bodart, Gaston. 1618-1905. Vienna:
Hiltaer-historisches C. W. Stern, 1908.
Kreiqs
Lexicon
Bloch, Jean de. The Future of War in its Technical Economic and Political Relations. Boston: World Peace Foundation, 1914. K. An Overview of Lanchester-Type Combat Ekchian, L. Models for Modern Warfare Scenarios, NR-041-519. Cambridge, MA: Massachusetts Institute of Technology, March, 1982. DuPuY, Fairfax,
Numbers, Trevor N. Va:HERO Books, 1985.
Prediction
Hagerman, Edward. The American Civil Bloomington, IN: of Modern Warfare. Press, 1988.
and
War.
War and the Origins Indiana University
Headquarters, TRADOC Analysis Command. Inventory of TRADOC Models. Fort Leavenworth, KS: TRADOC Analysis Command, 1988 Helmbold, Robert L. Historical Data and Lanchester's Theory of Combat. CORG-SP-128. Fort Belvior, Va: Combat Oper-ations Research Group, 1 July 1961. Helmbold, Robert L. Lanchester Parameters for Some Battles of the Last Two Hundred Years, CORG-SP-122. Fort Belvior, Va: Combat Operations Research Group, 14 Feb 1961. Hines, William W. and Montgomery, Douglas C. Probability and Statistics in Engineering and Manaaement Science, 2d edition. New York: John Wiley & Sons, 1980. Karr, Alan F. Combat Process and Mathematical Models of Attrition, Paper P-1081. Arlington, Va: Institute for Defense Analyses, 1975.
Stochastic Attrition Models of Lanchester Karr, Alan F. Analyses, Institute for Defense Va, Arlington, Type, 1974. to Waterloo The Art of War: William. McElwee, Bloomington, IN: Indiana University Press, 1974.
Mons,
A Men in Arms: Preston, Richard A. and Wise, Sydney F. with Interrelationships its and Warfare of History Western Society, 4th edition. Chicago: Holt, Rinehart and Winston, 1979. Warfare, of Taylor, James G. Lanchester-Type Models School, Naval Postgraduate Monterey, Ca: Volume II. 160 Taylor, James Arlington, Va: 1980
Attrition Modelling. G. Force-On-Force Operations Research Society Of America,
Tiede, Richard kKS: Manhattan, 1 76.
V. On the Analysis of Ground Combat. Publishing, Military Affairs/Aerospace
An Willard, Daniel A. Lanchester As a Force in History: Analysis of Land Battles of the Years 1618-1905. McLean, Va: Research Analysis Corporation, 1962.
Periodicals to Verify Lanchester's Busse, James a. "An Attempt Equations." Developments in Operations Research (Vol 2). Ed. Benjamin Avi-Itzhak. New York: Gordon and Breach Science Publishers, 1971. Dolansky, Theory of 344-758.
Ladislav. Combat."
"Present State of the Lanchester Operations Research 12, (1964):
DuFuy, Trevor N. "The Lanchester Equations: Lanchester's Original Article with a Commentary by Trevor N. DuPuy." History, Numbers, and War. Fall 1977: 142-150. Fain, Janice B. "The Lanchester Equations and Historical Warfare," History, Numbers and War, Spring 1977, p. 74-52.
Hagerman, Edward. "From Jomini to Dennis Hart Mahan: The Evolution of Trench Warfare and the American Civil War," Civil War History 13, September 1967, p. 197-220. Helmbold, Robert L. "Some Observations on the Use of Lanchester's Theory for Prediction," Operations Research 12 (1964): 778-781. Lanchester, Frederick William. "Mathematics in Warfar-e," The World of Mathematics, v4. New York: Simon and Schuster, 1956. p. 2178-2148. Newman, J. The World of Mathematics, Vol Simon and Schuster, 1956. Schneider, James J. of Operational Art,"
IV.
New York,
"The Loose Marble--and the Origins Parameters, March 1989: 85-99.
Schneider, James J. "The Theory of the Empty Battlefield," Journal of the Royal United Services Institute for Defence Studies, Sept 1987: 37-44.
Papers and Unpublished
Works
Bigelman, Paul A. "An Analysis of a Lanchester-Type Combat Model Reflecting Attrition Due to Unit Deterioration and Ineffective Combatants," Thesis, Monterey, Ca: Naval Postgraduate School, March 1978. Farmer, William T. "A Survey of Approaches to the Modeliig of Land Combat," Thesis, Monterey, Ca: Naval Fostgraduate School, 1980. Johnson, Ronald L. "Lanchesters Square Law in and Practice." Monograph, Fort Leavenworth, KS: of Advanced Military Studies, March 1990.
Theory School
Schmieman, William A. "The Use of Lanchester Type Equations in the Analysis of Post Military Engagements." Dissertation, Atlanta, GA: Georgia Institute of Technology. Aug 1967. Schneider, James J. "The Exponential Decay of Armies in Battle," Theoretical Paper No.1, Fort Leavenworth, KS: School of Advanced Military Studies, 1985.