Advanced Control Methods for Power Electronics and ... - Grepes

3 downloads 97 Views 3MB Size Report
Advanced Control Methods for Power Electronics and Power Quality. 3. Modeling of Power Electronics Systems for simulation and control. 1) Identify the state ...
Advanced Control Methods for Power Electronics and Power Quality Fernando A. Silva, Sónia F. Pinto, Daniel Pestana, IST, V. Fernão Pires, Victor Antunes, ESTS, J. Dionísio Barros, UMadeira, Luis Redondo, Joaquim Monteiro, Paulo Gambôa, ISEL Ivo Martins, EST-UAlgarve, Jan Verveckken, KULeuven

Louvain-la-Neuve, February 2008

1

Advanced Control Methods for Power Electronics and Power Quality: contents ƒ CONTENTS: ƒ Switched state-space modeling for simulation and (non-linear) control ƒ Example 1: Single Stage Unity Power Factor Rectifiers ƒ Example 2: Three-phase Multilevel Converters for Power Quality Applications ƒ Example 3: Matrix Converters ƒ Example 4: Multilevel Digital Audio Power Amplifiers ƒ Example 5: High Voltage Generators For Plasma Ion Immersion Implantation, Electronic Marx Generators

ƒ Conclusion

Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

2

Modeling of Power Electronics Systems for simulation and control 1) Identify the state variables of the power electronics circuit; 2) a) Determine the conditions governing the switching cell states (semiconductor operation, topological restrictions, continuous/discontinuous mode), b) Select switching variables to represent all states of each switching cell; 3) Apply Kirchhoff’s laws and then combine all the required stages into a switched state-space model (system-level model); 4) Transform the obtained switched space-state model, to obtain controllability models and to design controllers for the power electronics system; 5) Implement the switched space-state model and power semiconductor switching signals with "SIMULINK" blocks (or suitable software); 6) Perform simulations, evaluate performance and compare to experimental results. Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

3

Example 1a): Single-Stage Buck-Boost Unity Power Factor Rectifiers (steps 1, 2 and 3) 1) State variables: is, vCf, iL0, VC0 ⎧⎪ 1 , iLo > 0 = ⎨ ⎪⎩ 0 , iLo ≤ 0

2) Switching variables: γ

β

iDo D1

3) Switched state-space model

Do

D3

io is

vs

Lf , Rf Cf

IGBT1

iLo

IGBT3

iCf

Lo

Ro Co VCo

D2 IGBT2

iCo

vLo

irec vC f D4

IGBT4

Fernando A. Silva ([email protected])

⎧ 1 , (switch1 and 4 are ON ) and ⎪ (switch 2 and 3 are OFF) ⎪⎪ = ⎨ 0 , all the switches are OFF ⎪− 1 , (switch 2 and 3 are ON ) and ⎪ ⎪⎩ (switch1 and 4 are OFF)

Vo

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Rf dis 1 1 is − vC f + vs = − dt Lf Lf Lf dvC f dt diLo dt dVCo dt

= = =

1 β is − iL Cf Cf o

β Lo

vC f −

1− β Co

Advanced Control Methods for Power Electronics and Power Quality

γ (1 − β )

iLo −

Lo

VCo

1 Vo Ro Co 4

Single-Stage Buck-Boost Unity Power Factor Rectifiers: Input current and output voltage control vs − R f is − vC f ⎡ ⎢θ = Lf ⎢ ⎢ R 1 ω β ⎡is ⎤ ⎢− f θ − is + Vs max cos(ωt ) − iLo ⎢θ ⎥ Lf C f Lf L f Cf ⎢ Lf d ⎢ ⎥ = ⎢ dt ⎢VCo ⎥ (1 − β ) iLo − io ⎢ ⎢ ⎥ ϑ = ⎢ Co ⎢⎣ϑ ⎥⎦ ⎢ 2 ⎢ β (1 − β ) R β (1 − β ) L f γ (1 − β ) β (1 − β f ⎢ is + VCo − θ− Lo Co Lo Co Lo Co Lo Co ⎣⎢

4. A) Controllability form of the switched state-space model

disref

(

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 1 dio ⎥ ⎥ vs − Co dt ⎦⎥

)

− i1 vs − R f is − vC f = 0 4. B) Control Laws S is = ∑ ki ei = (isref − is ) + ki1 dt Lf i =1 (sliding mode) 2

(

)

SVC = VCo ref − VCo + kv1 o

4. C) and D) Sliding mode Switching laws

⎧ 1 ⎪ = ⎨ 0 ⎪ ⎩− 1

β

(

,

Fernando A. Silva ([email protected])

dt

− kv1

(1− | β |) 1 iLo + kv1 io = 0 Co Co

S is < − ε

, − ε < S is < + ε ,

S is > + ε

)

SVC = VCo ref − VCo + kv1 o

dVCo ref

k

dVCo ref dt

− kv1

Vs 2 VCo Co

I s ref + kv1

Advanced Control Methods for Power Electronics and Power Quality

1 io = 0 Co 5

Buck-Boost AC-DC converter at near unity power factor: simulation and experimental results Vsmax = 60V, Rf=0.1 Ω, Lf=5mH, Cf=15μF, Lo=10mH, Co=5000μF 8 6

Vs is

Vs is

1 Voltage*10 [V] ; Current [A]

4 2 2 0 -2

Power factor (Vs-20V/Div) ( is-2A/Div)

-4 -6 -8 0.02

0.025

0.03

0.035

0.04

0.045 0.05 Time [s]

0.055

0.06

0.065

0.07

Experimental

Simulations 80 70

Voltage [V]

50

VCor

VCor VCo 1

60

2

40 30 20 10 0

0

0.2

0.4

0.6

0.8

1 1.2 Time [s]

1.4

1.6

1.8

VCo

Output voltage response (VCor-20V/Div) (VCo-20V/Div),

2

Source: PhD Vitor Pires Fernando A. Silva ([email protected])

Source: PhD Vitor Pires Advanced Control Methods for Power Electronics and Power Quality

6

Example 1b): Three - Phase Single - Stage Buck-Boost Rectifier Topologies Do iDo

Three-Phase Single-Stage ac/dc Buck-Boost Converter with Six Switches

S1 VS1 VS2 VS3

Ls , Rs

is1

iC

f1

iCo

iC

CF

LO

VO

CO

f2 i rec3

iC

CF

f3

S5

S4

+

S6

CF

iDo o

S1 Vs1

Three-Phase Single-Stage ac/dc Buck-Boost Converter with Four Switches and split inductor/capacitor

Vs2 Vs3

is1

is2 is3

_

iLo

irec2

Ls , Rs

is3

S3

irec1

Ls , Rs

is2

S2

io

Lf , Rf

S2

Lo1 ψo1

irec1 iC

Lf , Rf

f1

iC

VLo1 2

iC o 1 1 Co1

VC o 1

-

f2

load

Cf

C f1

Cf

V

C f2

iLo 2

irec3 iC

V

Do

irec2

Lf , Rf

Cf

iLo 2

io

f3

V

S3

S4

Lo2 ψ o2

C f3

Vo

+ VC o 2

V Lo 2 2

Co2

Do

Source: PhD Vitor Pires Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

7

L O A D

Experimental Results using sliding mode, PI and Fuzzy Logic DC voltage control 83

82

81

80

79

78

77 0.2

1 - Input source voltage (20V/Div), 2 - Input line current ( 2A/Div)

Input line currents (is1, is2, is3)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Rectifier output voltage response to load change

0.7

PI

83

82

81

80

79

PI

78

SMA

1 - Output voltage reference (10V/Div) 2 - Rectifier output voltage (10V/Div) Fernando A. Silva ([email protected])

77 0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

FLC Rectifier output voltage response to load change

Advanced Control Methods for Power Electronics and Power Quality

Source: PhD Vitor Pires

8

Example 1c): Single-stage isolated rectifier with high power factor (H. M.) iCI

vCI

Select switching variables:

d p1

⎧ ⎪1 ⎪ =⎨ ⎪0 ⎪⎩

(T1 ∨ D1 )on (T3 ∧ D3 )off (T3 ∨ D3 )on (T1 ∧ D1 )off

d p2

⎧ ⎪1 ⎪ =⎨ ⎪0 ⎪⎩

iS1

(T2 ∨ D2 )on (T4 ∧ D4 )off (T4 ∨ D4 )on (T2 ∧ D2 )off

T1

iS2

D1

T2

D2

n:1

+ CI

Write switched state model, function of switching variables:

A LA DA

T3

vA

vB

B T4

D4

D3

DB iLA

iLB

vs

iLo Lo

Co Ro

d d d d ir = (iLA + iLB ) = iLA + iLB dt dt dt dt v Lo vs − vo d p1 − d p 2 vCI − nvo d iLo = = = dt Lo Lo nLo

LB

vo vr ir

i −i d vo = Lo Ro dt Co Source: SPP Hugo Marques Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

9

Example 1c): Non-linear decision current mode control iCI

Define control variables and errors:

iS1 T1

eir = ir − ir _ ref eiLo = iLo − iLo _ ref

iS2

D1

T2

D2

n:1

+ CI

A LA

Analyze circuit dynamics:

DA

State

dp1

dp2

vAB

di LA dt

di LB dt

dir dt

di Lo dt

1 2 3 4

0 0 1 1

0 1 0 1

0 -VC VC 0

≥0 ≥0 ≤0 ≤0

≥0 ≤0 ≥0 ≤0

≥0 ≈0 ≈0 ≤0

0 >0 0

vB

B T4

D4

D3

LB DB

iLB

vs

iLo Lo

Co Ro vo

no

eir > 0

T3

vA

iLA

Devise a non-linear control decision process: yes

vCI

vr ir

iLA > iLB

yes

no

yes

no

dp1=1 dp2=1

dp1=0 dp2=0

dp1=1 dp2=0

dp1=0 dp2=1

Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

10

Example 1c): Power Factor and Output Voltage Control 1) POWER FACTOR CONTROL PCI = PI − Po vCI C I

2P d VI d VI 2 vCI = r r − Po ⇔ vCI = r r − o dt 2 dt CI CI

Input current amplitude linear control system: a) mathematical model; b) practical implementation

2) OUTPUT VOLTAGE: LINEAR CONTROL SYSTEM Since ir≈ir_ref and iLo≈iLo_ref, the equivalent circuit is i o

iLo_ref

iCO

Co R0

vo

v0 (s ) R0 = iLo _ ref (s ) sCo R0 + 1

PI controllers selected to impose a 2nd order dynamics with 0.7 damping Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

11

Example 1c): Results iR

iLA, iLB

v o

VCL iL0

Figure 6 - Controlled system Vo_ref step response. (Vo_ref : 100V to 150V at t = 1sec)

Figure 7 - Expanded scale of Figure 6 results

Figure 8 - Controlled system response to load step disturbance. (Ro : 6.15Ω to 12.3Ω at t = 1 sec). Source: SPP Hugo Marques

Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

12

Example 2: Three-phase neutral point clamped (NPC) converters io

i I1

iC1

S11 C1

UC1

S12 um1 D11

S21

I2

iC2 UC2

S13 C2

S31

S22

S32

D21

D31

um2

Udc

I3

S23

L

S33 D32

S14

S24

S34

~ us2

L

R

~

Us3

U23 i3

us1

Us2

U12 i2

R

um3

D22

I'2

i1

U31

D12

I'1

Us1

L

R

us3 ~

I'3

•3 level line to neutral voltages •5 level line to line voltages •UC1, UC2 need voltage balancing Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

13

Switched state-space model of three-phase NPC converters: Steps 1, 2 Step 1) State variables of the power converter: i1, i2, UC1, UC2 ⎧ 1 if (Sk1 ∧ Sk2 ) are ON ⎪ γ k (t ) = ⎨ 0 if (Sk2 ∧ Sk3 ) are ON ⎪- 1 if (S ∧ S ) are ON k3 k4 ⎩

Step 2) Select switching variables to each converter leg: io

Write voltages and currents as functions of γk

i I S11 1

iC1 C1

UC1

S12 um1 D11

I S21 2 S22 D21 um2

Udc iC2 UC2

S13 C2

S23

I3 S31

U31

i2

R

S33

L

S14

S24

S34 I'3

~

R

us2 ~

Us3

U23 i3

us1

Us2

um3

D12

Fernando A. Silva ([email protected])

L

U12

D31

D32

I'2

i1

S32

D22

I'1

Us1

L

R

us3 ~

Leg voltages: ⎧ U C1 if γ k = 1 ⎪ umk (t ) = ⎨ 0 if γ k = 0 ⎪- U ⎩ C 2 if γ k = −1 Leg currents: ⎧− i if γ k = 1 I k (t ) = ⎨ k if γ k ≠ 1 ⎩0 ⎧ i if γ k = −1 I 'k (t ) = ⎨ k ⎩0 if γ k ≠ −1

Advanced Control Methods for Power Electronics and Power Quality

14

Switched state-space model of three-phase NPC converters: end of step 2 Write voltages and currents depending on γk Leg Voltages:

u mk =

γk 2

(1 + γ k )U C1 + γ k (1 − γ k )U C 2 = Γ1kU C1 + Γ2kU C 2 2

Ik = −

Leg Currents

I 'k = − io

i I S11 1

iC1 C1

UC1

S12 um1 D11

S21

I2

iC2 UC2

S13

S32

D21

D31

C2

S23

S33 D32

S14

S24

S34

Fernando A. Silva ([email protected])

2

(1 − γ k )ik

i1

L

L

R

us1 ~ us2 ~

k (1 + γ k ) Γ = 1 k where: 2

γ Γ2k = k (1 − γ k ) 2

Us3

U23 i3

= −Γ2 k ik

γ

Us2

U12 i2

R

um3

D22

I'2

γk

(1 + γ k )ik = −Γ1k ik

Us1

U31

D12

I'1

2

I3 S31

S22

um2

Udc

γk

L

R

us3 ~

with Γ1k∈{0, 1}, e Γ2k∈{-1, 0}

I'3 Advanced Control Methods for Power Electronics and Power Quality

15

Step 3) Switched state-space model of threephase NPC converters in system coordinates Step 3) Apply Kirchhoff’s laws

DC side dynamics:

Considering voltage US=Ξ [UC1, UC2]T

AC side dynamics:

Switched statespace model in three phase coordinates:

Fernando A. Silva ([email protected])

⎡ Γ11 − d ⎡U C1 ⎤ ⎢ C1 =⎢ dt ⎢⎣U C 2 ⎥⎦ ⎢− Γ21 ⎢⎣ C 2

Γ12 C1 Γ − 22 C2 −

Γ13 C1 Γ − 23 C2 −

1 ⎤ ⎡ i1 ⎤ ⎢ ⎥ C1 ⎥ ⎢i2 ⎥ ⎥ 1 ⎥ ⎢i3 ⎥ C 2 ⎥⎦ ⎢⎣io ⎥⎦

⎡ Ξ11 Ξ12 ⎤ ⎡ 2Γ11 − Γ12 − Γ13 1 where Ξ = ⎢⎢Ξ 21 Ξ 22 ⎥⎥ = ⎢⎢− Γ11 + 2Γ12 − Γ13 3 ⎢⎣Ξ 31 Ξ 32 ⎥⎦ ⎢⎣− Γ11 − Γ12 + 2Γ13

U Sk = R ik + L

⎡ R ⎢−L ⎢ ⎡ i1 ⎤ ⎢ 0 ⎢ i ⎥ ⎢ 2 ⎥ ⎢ d ⎢ ⎢ i3 ⎥ = ⎢ 0 dt ⎢ ⎥ ⎢ ⎢U C1 ⎥ ⎢ − Γ11 ⎢⎣U C 2 ⎥⎦ ⎢ C1 ⎢ Γ21 ⎢− C 2 ⎣

0 −

R L

0 Γ12 C1 Γ − 22 C2 −

2Γ21 − Γ22 − Γ23 ⎤ − Γ21 + 2Γ22 − Γ23 ⎥⎥ − Γ21 − Γ22 + 2Γ23 ⎥⎦

dik + u sk dt 0 0

R L Γ13 − C1 Γ − 23 C2 −

Ξ11 L Ξ 21 L Ξ 31 L 0 0

Ξ12 ⎤ ⎡ 1 ⎥ ⎢− L L Ξ 22 ⎥ ⎡ i1 ⎤ ⎢ ⎥ ⎢ 0 L ⎥⎢ i ⎥ ⎢ Ξ 32 ⎥ ⎢ 2 ⎥ ⎢ ⎢ i ⎥+ 0 L ⎥⎢ 3 ⎥ ⎢ ⎥ U ⎢ 0 ⎥ ⎢ C1 ⎥ ⎢ 0 ⎥ ⎢⎣U C 2 ⎥⎦ ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎣ ⎦

Advanced Control Methods for Power Electronics and Power Quality

0 −

1 L

0

0 0 −

1 L

0

0

0

0

⎤ 0 ⎥ ⎥ 0 ⎥ ⎡u ⎤ ⎥ ⎢ s1 ⎥ u 0 ⎥⎢ s2 ⎥ ⎥ ⎢u ⎥ s3 1 ⎥⎢ ⎥ ⎥ i C1 ⎥ ⎣ o ⎦ 1 ⎥ C 2 ⎥⎦

16

Step 4) Non-linear controller design (n-Level Sliding Mode Control) 4.

A) Transform the switched state-space model into a controllability model d [xi,..., xm-1, xm]T = [xi+1, ..., xm, - ƒi(x) - pi(t)+bi(x) ui(t)]T dt

Define an error vector e=[exi,exi+1,...,exm]T state model, where exo= xor - xo d [exi,...,exm-1,exm]T=[exi+1,...,exm,+ƒi(e)+pei(t)- bei(e)ui(t)]T dt

4.

B) Sliding surface Control law

4.

S(e, t) =

∑o = i ko ex

C) Sliding mode stability

D) 2 level switching law ⎧ U be se S (e, t ) > +ε ui (t ) = ⎨ ⎩ − U be se S (e, t ) < −ε

Fernando A. Silva ([email protected])

o

=0

S(e, s) = exi (s+ωo)m-i

Reaching mode condition 4.

m

S(e, t) S&(e, t) < 0 d e =ƒ (e)+pei(t)-bei(e)ui(t) ⇒ ui(t) ≥ uieqmax ≥U d t xm i

n level switching law ⎧⎪U j +1 (t ) se S (e, t ) > +ε ∧ S& (e, t ) > +ε ∧ j < n U j (t ) = ⎨ ⎪⎩ U j −1 (t ) se S (e, t ) < −ε ∧ S& (e, t ) < −ε ∧ j > 1

Advanced Control Methods for Power Electronics and Power Quality

17

Step 4 A) Transform the switched state-space model of three-phase NPC converters to α,β coordinates Concordia Transformation

[C] =

⎡ 1 0 1 2 ⎢ ⋅ ⎢− 1 2 3 2 1 3 ⎢ −1 2 − 3 2 1 ⎣

Switched statespace model in α,β coordinates:

• nonlinear • time variant

[Xα, Xβ, X0]T=[C]-1[X1, X2, X3]T

2⎤ ⎥ 2⎥ 2⎥ ⎦

⎡ R ⎢−L ⎡ iα ⎤ ⎢ ⎢i ⎥ ⎢ 0 d ⎢ β ⎥ ⎢ = dt ⎢U C1 ⎥ ⎢⎢ − Γ1α ⎢ ⎥ C1 ⎣U C 2 ⎦ ⎢ ⎢ Γ2α ⎢− C 2 ⎣

Fernando A. Silva ([email protected])

0 R L Γ1β

− − −

C1 Γ2 β C2

Γ1α L Γ1β L 0 0

Γ2α L Γ2 β

⎤ ⎡ 1 ⎥ ⎢− L ⎥⎡ i ⎤ ⎢ ⎥⎢ α ⎥ ⎢ 0 L ⎥ ⎢ iβ ⎥ ⎢ ⎥ ⎢U ⎥ + ⎢ 0 ⎥ C1 ⎢ 0 ⎢ ⎥ ⎥ ⎣U C 2 ⎦ ⎢ ⎥ ⎢ 0 0 ⎥ ⎢⎣ ⎦

Advanced Control Methods for Power Electronics and Power Quality

0 −

1 L

0 0

⎤ 0 ⎥ ⎥ 0 ⎥ ⎡u sα ⎤ ⎥⎢ ⎥ 1 ⎥ ⎢u sβ ⎥ C1 ⎥ ⎢⎣ io ⎥⎦ 1 ⎥⎥ C 2 ⎥⎦

18

Step 4 A) Transform the NPC converter α,β switched state-space model to d,q coordinates Blondel-Park transformation (d,q)

State-space model in d,q coordinates:

• nonlinear • time invariant

[Xd, Xq]T=[D]-1[Xα, Xβ]T

⎡ R ⎢−L ⎡ id ⎤ ⎢ ⎢ i ⎥ ⎢ −ω d ⎢ q ⎥ ⎢ =⎢ Γ ⎢ ⎥ U dt C1 − 1d ⎢ ⎢ ⎥ C1 ⎣U C 2 ⎦ ⎢ ⎢ Γ2 d ⎢− C 2 ⎣

Fernando A. Silva ([email protected])

ω R L Γ1q

− − −

C1 Γ2 q C2

Γ1d L Γ1q L 0 0

cos ωt ⎣sen ωt

− sen ωt ⎤ cos ωt ⎥⎦

[D] = ⎡⎢

Γ2 d ⎤ ⎡ 1 ⎢− L L ⎥ Γ2 q ⎥ ⎡ id ⎤ ⎢ ⎥⎢ ⎥ ⎢ 0 L ⎥ ⎢ iq ⎥ ⎢ ⎥ ⎢U ⎥ + ⎢ 0 ⎥ C1 ⎢ 0 ⎢ ⎥ ⎥ ⎣U C 2 ⎦ ⎢ ⎥ ⎢ 0 0 ⎥ ⎢⎣ ⎦

Advanced Control Methods for Power Electronics and Power Quality

0 −

1 L

0 0

⎤ 0 ⎥ ⎥ 0 ⎥ ⎡u sd ⎤ ⎥ ⎢u ⎥ 1 ⎥ ⎢ sq ⎥ C1 ⎥ ⎢⎣ io ⎥⎦ 1 ⎥⎥ C 2 ⎥⎦

19

Step 4 A) Simplify the NPC converter α,β state model into a controllability model Supposing balanced UC1 and UC2 ( UC1≈UC2≈Udc/2 ) ⎡R ⎢L d ⎡iα ⎤ = − ⎢ ⎥ ⎢ dt ⎣iβ ⎦ ⎢0 ⎣

U Sα , β

⎡1 ⎤ 0 ⎥ ⎡u ⎤ ⎢ sα + ⎢L ⎢ ⎥ ⎥ 1 ⎣u sβ ⎦ ⎢0 ⎥ L⎦ ⎣

⎡1 ⎤ 0 ⎥ ⎡i ⎤ ⎢ α − ⎢L ⎥ ⎢ ⎥ R ⎣iβ ⎦ ⎢0 ⎥ L⎦ ⎣

1 ⎡ 1 − ⎡U sα ⎤ 2⎢ 2 = =⎢ ⎢ ⎥ 3 3⎢ ⎣U sβ ⎦ 0 ⎢⎣ 2

⎤ 0 ⎥ ⎡U ⎤ sα ⎢ ⎥ 1 ⎣U sβ ⎥⎦ ⎥ L⎦

1 ⎤ ⎡Λ ⎤ 1 ⎥ ⎢ 2 Λ ⎥ U dc = ⎡ Λ α ⎤ U dc ⎥ ⎢Λ ⎥ 3⎥ ⎢ 2⎥ 2 ⎣ β⎦ 2 − ⎢⎣ Λ 3 ⎥⎦ 2 ⎥⎦ −

2 1 1 2 1 1 2 1 1 Λ1 = γ 1 − γ 2 − γ 3 ; Λ 2 = γ 2 − γ 3 − γ 1 ; Λ 3 = γ 3 − γ 1 − γ 2 ; 3 3 3 3 3 3 3 3 3 T −1 T Λα , Λ β , Λ 0 = [C] [Λ1 , Λ 2 , Λ 3 ]

[

]

Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

20

Step 4 B) C) and D) Control laws, stability and switching laws for three-phase AC current control 4.

S (ei α , t ) = k i α (iαref − iα ) = k i α ei α = 0 S (ei β , t ) = k i β (i βref − i β ) = k i β ei β = 0

B) Control laws

⎡ ⎛& R 1 1 ⎞⎤ k i i u U + + − ⎡ S& (eiα , t )⎤ ⎢ iα ⎜⎝ αref L α L sα L sα ⎟⎠ ⎥ ⎥ ⎥=⎢ ⎢& R 1 1 ⎢⎣ S (eiβ , t )⎥⎦ ⎢k ⎛⎜ i& + i + u − U ⎞⎟⎥ ⎢⎣ iβ ⎝ βrref L β L sβ L sβ ⎠⎥⎦

4.

C) Sliding mode stability

4.

D) n level switching law (n=5)

⎧⎪S (eiα , β , t ) > ε ⇒ S& (eiα , β , t ) < 0 ⇒ U sα , β > (Li&α , βref + Riα , β + u sα , β ) ⎨ & ⎪⎩S (eiα , β , t ) < −ε ⇒ S (eiα , β , t ) > 0 ⇒ U sα , β < (Li&α , βref + Riα , β + u sα , β )

Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

21

Step 4 D) Switching laws for three-phase AC current control and space vectors (SV) ⎧ 1 if (Sk1 ∧ Sk2 ) are ON ⎪ γ k (t ) = ⎨ 0 if (Sk2 ∧ Sk3 ) are ON ⎪- 1 if (S ∧ S ) are ON k3 k4 ⎩

Ternary switching variables

3 converter legs ⇒ γ1, γ2, γ3 ⇒ 33 = 27 output voltage vectors io

i

I S11 1

iC1 C1

UC1

S12 um1 D11

S21

I2

S22

S32

D21

D31

um2

Udc iC2 UC2

S13 C2

I3 S31

S23

S33 D32

S14

S24

S34

Fernando A. Silva ([email protected])

L

L

~

R

us2 ~

Us3

U23 i3

us1

Us2

U12 i2

R

um3

D22

I'2

i1

U31

D12

I'1

Us1

L

R

us3 ~

I'3

Advanced Control Methods for Power Electronics and Power Quality

22

Step 4 D) Space vector table (three wire) r v

γ 1 γ 2 γ 3 S11 S12 S13 S14 S21 S22 S23 S24 S31 S32 S33 S34 um1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 0 0 0 -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 0 0 0 -1 -1 -1

1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Fernando A. Silva ([email protected])

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1

0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1

Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 0 0 0 0 0 0 0 0 0 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2

um2

um3

u12

u23

u31

uα/Udc

uβ/Udc

Udc/2 Udc/2 Udc/2 0 0 0 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 -Udc/2 0 0 0 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 Udc/2 0 0 0 -Udc/2 -Udc/2 -Udc/2

Udc/2 0 -Udc/2 -Udc/2 0 Udc/2 Udc/2 0 -Udc/2 -Udc/2 0 Udc/2 Udc/2 0 -Udc/2 -Udc/2 0 Udc/2 Udc/2 0 -Udc/2 -Udc/2 0 Udc/2 Udc/2 0 -Udc/2

0 0 0

0

0 -Udc/2 -Udc -Udc -Udc/2 0 0 -Udc/2 -Udc -Udc/2 0 Udc/2 Udc/2 0 -Udc/2 -Udc/2 0 Udc/2 Udc Udc/2 0 0 Udc/2 Udc Udc Udc/2 0

0,000 0,204 0,408 0,612 0,408 0,204 0,408 0,612 0,816 0,408 0,204 0,000 -0,204 0,000 0,204 0,000 -0,204 -0,408 -0,816 -0,612 -0,408 -0,204 -0,408 -0,612 -0,408 -0,204 0,000

0,000 0,354 0,707 0,354 0,000 -0,354 -0,707 -0,354 0,000 0,000 -0,354 -0,707 -0,354 0,000 0,354 0,707 0,354 0,000 0,000 0,354 0,707 0,354 0,000 -0,354 -0,707 -0,354 0,000

Udc/2 Udc/2 Udc/2 Udc Udc Udc Udc/2 Udc/2 Udc/2 0 0 0 -Udc/2 -Udc/2 -Udc/2 -Udc -Udc -Udc -Udc/2 -Udc/2 -Udc/2 0 0 0

Udc/2 Udc Udc/2 0 -Udc/2 -Udc -Udc/2 0 0 -Udc/2 -Udc -Udc/2 0 Udc/2 Udc Udc/2 0 0 Udc/2 Udc Udc/2 0 -Udc/2 -Udc -Udc/2 0

Advanced Control Methods for Power Electronics and Power Quality

23

Step 4 D) α, β space vectors (three-wire)

21

1,0 0,8

beta 16

3

0,6 20

4 17 ; 22 0,4 2;15 B 0,2 19 18 ;23 9 alfa 5;10 1;14;270 -1,0 -0,8 -0,6 -0,4 0,2 0,4 0,6 0,8 1,0 13 ;26 6;11 24 -0,4 8 -0,6 7 25 -0,8 12 -1,0

8 redundant vectors (from the load viewpoint) vectors in red discharge C1 (inverter operation) vectors in blue charge C1 (inverter operation) Fernando A. Silva ([email protected])

Advanced Control Methods for Power Electronics and Power Quality

24

Step 4 D) Switching law and α,β space vector selection Switching law: ⎧⎪(λαβ ) j +1 = (λαβ ) j +1 if S(eαβ , t) > ε ∧ S& (eαβ , t) > ε ∧ (λαβ ) j < 2 ⎨ ⎪⎩(λαβ ) j +1 = (λαβ ) j −1 if S(eαβ , t) < −ε ∧ S& (eαβ , t ) < −ε ∧ (λαβ ) j > −2

λβ \ λα

-2

-1

0

1

2

-2

25

25

12

7

7

-1

24

13;26

6;11

8

0

19

18;23

13;6 26;11 1;14;27

5;10

9

1

20

17;22

2;15

4

2

21

21

17;2 22;15 16

3

3

Fernando A. Silva ([email protected])

21

1,0 0,8

beta 16

3

0,6 20

4 17 ; 22 0,4 2;15 B 0,2 19 18 ;23 9 alfa 0 5;10 1;14;27 -1,0 -0,8 -0,6 -0,4 0,2 0,4 0,6 0,8 1,0 13 ;26 6;11 24 -0,4 8 -0,6 7 25 -0,8 12 -1,0

Advanced Control Methods for Power Electronics and Power Quality

25

Step 4 D) Switching law and α,β space vector selection with equalization of UC1 and UC2 Redundant vectors are used to balance UC1 and UC2.

(

Sliding mode control law

Switching law

S(eUc,t)=kU (UC1-UC2)=0

)

⎧IF S eU c , t > +ε U ⇒ Charge C 2 ⎪ ⎪ Zero vectors ⎨IF − ε U < S eU c , t < +ε U ⇒ if possible ⎪ ⎪⎩IF S eU c , t < −ε U ⇒ Charge C1

(

)

(

)

Example: IF UC1>UC2 ⇒ discharge C1 Upon the value of vector [ϒ1, ϒ2] =[(γ1 /2)(γ1+1)-(γ3/2)(γ3+1), (γ2 /2)(γ2+1)-(γ3/2)(γ3+1)]: •Pick-up vector from table 1, if inverter operation:

(UC1>UC2) (ϒ1 i1 +ϒ2 i2)>0 ->{2, 5, 6, 13, 17, 18}

•Pick-up vector from table 2, if rectifier operation: (UC1-UC2) (ϒ1 i1 +ϒ2 i2){10, 11, 15, 22, 23, 26}

Example: IF UC1>UC2 and λα= -1, λ β= -1 and inverter mode ⇒ vector 13 Table 5. Vectors as function of λα,β if UC1-UC2>0 in inverter mode, or if UC1-UC2

Suggest Documents