Advanced Local Fractional Calculus & Its Applications

5 downloads 0 Views 640KB Size Report
Jul 30, 2012 - Advanced Local Fractional Calculus & Its. Applications ... applied mathematics, engineering, and all other applied sciences. It is organized as follows: ...... http://www.apmaths.uwo.ca/~Mdav ison/_library/preprints/lfd2.pdf.
Xiao-Jun Yang

Advanced Local Fractional Calculus & Its Applications

World Science Publisher

Author Xiao-Jun Yang Department of Mathematics & Mechanics China University of Mining & Technology Xuzhou, Jiangsu, 221008, P. R. China Email: [email protected] First section: July 30 2012 ISBN-13: 978-1-938576-01-0 ISBN-10: 1938576012 Mathematics Subject Classification (2010): 28A80, 26A33, 26A99, 26B99, 39B99 © Copyright 2012 by Xiao-Jun Yang All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (World Science Publisher, New York, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper World Science Publisher is registered at Wyoming, US, and has branches in New York, London, and Hongkong (http://worldsciencepublisher.org).

This work is dedicated to my parents, brother, sister, brother-in-law, nephews, nieces, and friends.

The fifth symposium on fractional differentiation and its applications, May 14‐17, 1012, Hohai University, Jiangsu, P. R. China

Xiao-Jun Yang 2012.7

i

Preface This monograph is an invitation both to the interested scientists and the engineers. It presents a thorough introduction to the recent results of local fractional calculus. It is also devoted to the application of advanced local fractional calculus on the mathematics science and engineering problems. The author focuses on multivariable local fractional calculus providing the general framework. It leads to new challenging insights and surprising correlations between fractal and fractional calculus. This book is also suitable for advanced undergraduates and graduate students in pure and applied mathematics, engineering, and all other applied sciences. It is organized as follows: Chapter 1 discusses new challenging correlations between fractal and fractional topics. Chapter 2 is devoted to local fractional calculus of local fractional continuous function of one-variable (also called everywhere continuous but nowhere differentiable function or functions on cantor set). Chapter 3 presents the fundamental theory of local fractional partial derivatives and the method of fractal Lagrange multiplier for maxima and minima of local fractional continuous functions. Chapter 4 provides multiple local fractional integrals of local fractional continuous functions of multi-variable functions. Chapter 5 proposes local fractional line integrals, surface integrals and integral theorems, and gives a short introduction to tensors in fractal orthogonal candidate systems. Chapter 6 deals with local fractional calculus of variations. Chapter 7 is a new optimization method for finding the optimum solution of local fractional continuous differentiable functions. Chapter 8 derives local fractional functional derivative and local fractional Euler-Lagrange equation with local fractional derivative. Chapter 9 gives applications of local fractional calculus to mechanics. More than 295 references are listed and cited in the book, even if it cannot be a complete bibliography for this area of interest. Readers can find many other references related to this topic.

Xiao‐Jun Yang Shanghai 2012.7

ii

Acknowledgments There are several people to whom the authors are obliged for their help and support. Xiao-Jun Yang (CUMT, P. R. China) would like to express his thanks to Prof. H. M. Srivastava, Prof. A. M. A. El-Sayed, Prof. G. A. Anastassiou, Prof. R. P. Agarwal, Prof. S. S. Dragomir, Prof. S. Momani, Prof. J. A. T. Machado, R. R. Nigmatullin, Prof. A. D. Gangal, Prof. J. J. Trujillo, Prof. S. Saitoh, Prof. M. M. Meerschaert, Prof. J. Klafter, Prof. Manuel F. Silva, Prof. M. Kirane, Prof. E. M. Elsayed, Prof. F. Michal, Prof. J. J. Nieto, Prof. D. Baleanu, Prof. D. F. M. Torres, Prof. R. L. Magin, Prof. Akira Asada, Prof. V. E. Tarasov, Prof. M.K.Aouf, Prof. J. Hristov, Prof. H. Richard, Prof. Yasir Khan, Prof. S. Martin Ostoja, Prof. W. Chen, Prof. W. C. Tan, Prof. C. H. Kou, Prof. J. S. Duan, Prof. O. Duman, Prof. R. K. Raina, Prof. V. M. P. Velez, Prof. M. F. Rabbi, Prof. Y. D. Zhang, Prof. S. D. Purohit, Mr. Ken McCafferty, Dr. K. M, Kolwankar and Dr. H. Nasrolahpour for their help, exchange of information and the fruitful discussions. The author would also like to thank a number of friends who supported his work. Last but not least, the author is also thankful to his entire family for their understanding and support. Particular thanks from Prof. Feng Gao, Dr. Wei-Ping Zhong, Prof. Xiang-Chao Yin and Prof. Zheng-Zhu Dong to Prof. Wei-Hong Xie for his continuous encouragement in his graduate research life (2006-2009).

Xiao‐Jun Yang Shanghai 2012.7

iii

Contents Preface ......................................................................................................................................... i  Acknowledgments ...................................................................................................................... ii  Chapter 1 Preliminary Results.................................................................................................... 1  1.1 Theory of fractional sets ............................................................................................... 1  1.2 Real line number system .............................................................................................. 3  1.2.1 Real spaces on fractional sets ............................................................................ 3  1.2.2 Geometric representation of real line number ................................................... 5  1.2.3 Fractal field axioms ........................................................................................... 5  1.2.4 Fractal ordered field axioms .............................................................................. 6  1.2.5 Absolute value with real line numbers .............................................................. 6  1.3 Generalized point sets and intervals ............................................................................. 7 1.4 Generalized neighborhood ........................................................................................... 8 1.5 Generalized Lebesgue measure .................................................................................... 8  1.6 Generalized Hausdorff measure ................................................................................. 11  1.7 Generalized functions ................................................................................................. 13  1.8 Generalized Hausdorff dimension .............................................................................. 14  1.8.1 Generalized Hausdorff dimension ................................................................... 14  1.8.2 Operators of Hausdorff dimension of cantor sets ............................................ 14  1.8.3 Fractal orthogonal systems .............................................................................. 15  1.9 Generalized limit of functions .................................................................................... 17  1.10 Local fractional continuity of functions ................................................................... 19  1.11 Sub-functions............................................................................................................ 26  1.12 Special sub-functions ............................................................................................... 29  Chapter 2 Local Fractional Calculus of One-variable Function .............................................. 32  2.1 Introduction to local fractional calculus ..................................................................... 32  2.2 Historical development of local fractional calculus ................................................... 33  2.3 Local fractional derivative ......................................................................................... 36  2.4 Application of local fractional derivative ................................................................... 44  2.5 Local fractional integral and its existence .................................................................. 47  2 .6 Local fractional Taylor’s theorem ............................................................................. 59  2.6.1 Local fractional Taylor’s theorem ................................................................... 59  2.6.2 Local fractional Taylor’s series ....................................................................... 61  2.6.3 Local fractional Mc-Laurin’s series to elementary functions.......................... 62 

iv

2.7 Local fractional indefinite integral ............................................................................. 62  2.8 Local fractional differential equations ....................................................................... 64  2.9 The extended mean value theorem ............................................................................. 67  2.10 Local fractional improper integrals of first kind ...................................................... 68  Chapter 3 Local Fractional Partial Derivatives and Fractal Lagrange Multipliers Method ..... 71  3.1 Quadric fractal surfaces .............................................................................................. 71  3.2 Generalized function .................................................................................................. 72  3.3 Generalized limit ........................................................................................................ 73  3.4 Generalized local fractional continuity ...................................................................... 74  3.5 Local fractional partial derivative .............................................................................. 75  3.6 Local fractional partial derivative of higher order ..................................................... 76  3.7 The total local fractional differentials ........................................................................ 78  3.8 Local fractional derivative of composite function ..................................................... 82  3.9 Local fractional Jacobian determinant ....................................................................... 84  3.10 Local fractional Taylor expansion of multivariable functions ................................. 93  3.11 Cantor type fractal coordinates................................................................................. 95  3.11.1 Cantor type circle coordinates ....................................................................... 95  3.11.2 Cantor type cylindrical coordinates ............................................................... 96  3.11.3 Cantor type spherical coordinates ................................................................. 96  3.12 Change to orthogonal coordinates ............................................................................ 96  3.13 The nature of critical points for multivariable functions........................................ 102  3.14 Method of fractal Lagrange multipliers for maxima and minima .......................... 109  Chapter 4 Multiple Local Fractional Integrals of Functions on Cantor Set ........................... 114  4.1 Double local fractional integrals .............................................................................. 114  4.1.1 Double local fractional integrals ................................................................... 114  4.1.2 Fubini theorem of double local fractional integrals ...................................... 115  4.1.3 Fractal interpretation of double local fractional integrals ............................. 116  4.1.4 Properties of double local fractional integrals............................................... 117  4.2 Triple local fractional integrals ................................................................................ 118  4.2.1 Triple local fractional integrals ..................................................................... 118  4.2.2 Fubini theorem of triple local fractional integrals ......................................... 118  4.2.3 Fractal interpretation of triple local fractional integrals................................ 119  4.2.4 Properties of triple local fractional integrals ................................................. 119  4.3 Change of variables in multiple local fractional integrals........................................ 120  4.3.1 Change of variables in double local fractional integrals ............................... 120 

v

4.3.2 Change of variables in triple local fractional integrals ................................. 122  Chapter 5 Local Fractional Line Integrals, Surface Integrals and Tensors ............................ 126  5.1 Local fractional vector form ..................................................................................... 126  5.2 Local fractional derivative of vector functions ........................................................ 127  5.3 Properties of local fractional vector functions ......................................................... 128  5.4 Local fractional integral of a vector function ........................................................... 129  5.5 Local fractional scalar product and vector product of vectors ................................. 129  5.5.1 Local fractional scalar product of unit vectors .............................................. 130  5.5.2 Local fractional vector product of unit vectors ............................................. 130  5.6 Local fractional gradient and directional derivative ................................................ 131  5.6.1 Local fractional gradient ............................................................................... 131  5.6.2 Local fractional directional derivative .......................................................... 131  5.6.3 Properties of local fractional directional derivative ...................................... 132  5.6.4 Local fractional directional cosine ................................................................ 132  5.7 Local fractional Hamilton operator and Laplace operator ....................................... 134  5.7.1 Local fractional Hamilton operator ............................................................... 134  5.7.2 Operators of local fractional Hamilton operator ........................................... 135  5.7.3 Examples of operator of local fractional Hamilton operator......................... 136  5.7.4 Applications of local fractional Hamilton operator ....................................... 136  5.8 Local fractional line and surface integrals ............................................................... 137  5.8.1 Orientation of a fractal curve ........................................................................ 137  5.8.2 Local fractional line integrals ........................................................................ 137  5.8.3 Properties of local fractional line integrals ................................................... 138  5.8.4 Green's theorem in a fractal plane and related theorems............................... 139  5.8.5 Applications of Green's theorem in a fractal plane ....................................... 140  5.9 Local fractional surface integrals ............................................................................. 141  5.9.1 A parametric non-smooth surface .................................................................. 141  5.9.2 Local fractional surface integrals .................................................................. 143  5.9.3 Properties of local fractional surface integrals .............................................. 144  5.10 Local fractional volume integrals ........................................................................... 144  5.10.1 Local fractional volume integrals ................................................................ 144  5.10.2 Properties of local fractional volume integrals ........................................... 144  5.11 Divergence theorem of local fractional field and related theorems ....................... 145  5.11.1 Divergence theorem of local fractional field ............................................... 145  5.11.2 Green's first theorem and Green's second theorem in fractal domain ......... 146 

vi

5.11.3 Related theorems ......................................................................................... 147  5.12 Stokes' theorem of local fractional field and related theorems .............................. 147  5.12.1 Stokes' theorem of local fractional field...................................................... 147  5.12.2 Related theorems ......................................................................................... 149  5.13 Local fractional integral forms for gradient, divergence and curl .......................... 149  5.14 Applications of local fractional vector integrals to physics ................................... 151  5.14.1 Physical examples of local fractional line integrals .................................... 151  5.14.2 Physical examples of local fractional surface integrals .............................. 151  5.15 Tensors in fractal orthogonal coordinate systems .................................................. 153  Chapter 6 Local Fractional Calculus of Variations ................................................................ 172  6.1 A short review for local fractional Taylor expansion ............................................... 172  6.2 Local fractional variations of functions ................................................................... 175  6.3 Elementary theorems of local fractional calculus of variations ............................... 177  6.4 Local fractional calculus of variations ..................................................................... 179  Chapter 7 A New Optimization Method for Functions on Cantor Set ................................... 186  7.1 Local fractional single-variable optimization .......................................................... 186  7.2 Multivariable optimizations with no constraints ...................................................... 189  7.3 Multivariable optimizations with equality constraints ............................................. 200  7.3.1 Multivariable optimizations with one equality constraint ............................. 200  7.3.2 Multivariable optimizations with multiple equality constraints .................... 203  7.4 General optimization problems ................................................................................ 207  Chapter 8 Local Fractional Euler–Lagrange Equations ......................................................... 210  8.1 Local fractional functional derivatives ..................................................................... 210  8.1.1 Notation ......................................................................................................... 210  8.1.2 Properties of local fractional functional derivative ....................................... 211  8.1.3 Local fractional functional partial derivative ................................................ 212  8.1.4 Applications of local fractional functional derivative ................................... 213  8.2 A review of local fractional variations of functions ................................................. 214  8.3 Local fractional Euler-Lagrange equation ................................................................ 216  Chapter 9 Applications of Local Fractional Calculus to Mechanics ...................................... 221  9.1 The basic assumptions .............................................................................................. 221  9.2 Fractal surface forces and fractal body forces .......................................................... 222  9.3 The governing equations and the fractal boundary conditions................................. 222  9.4 Principle of virtual work for fractal media ............................................................... 224  9.4.1 Sufficient condition ....................................................................................... 224 

vii

9.4.2 Necessary condition ...................................................................................... 226  9.5 The principle of minimum potential energy in fractal medium ............................... 228  9.5.1 Total potential energy in fractal medium....................................................... 228  9.5.2 Local fractional functional of the total potential energy in fractal medium .. 229  9.6 The principle of minimum potential energy in fractal medium ............................... 231  9.7 The principle of minimum complementary energy in fractal medium .................... 238  9.7.1 The function of the total complementary energy in fractal medium ............. 238  9.7.2 The principle of minimum complementary energy in fractal media ............. 240  9.8 Path-independent J-integral theory of fractal fracture mechanics ............................ 245  9.8.1 Hypothesis of energy balance in fractal fracture mechanics ......................... 245  9.8.2 The J-integral formula in fractal fracture mechanics .................................... 245  9.9 The conservation of the J-integral in fractal fracture mechanics ............................. 247  9.10 Local fractional heat conduction equations in fractal medium .............................. 249  9.10.1 Fourier law of heat conduction in fractal medium ...................................... 249  9.10.2 Differential equation of heat conduction in fractal media ........................... 250  References ...................................................................................................................... 253  Index ............................................................................................................................... 271 

253

References [1] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1982. [2] J. Feder, Fractals, Plenum Press, New York, 1988. [3] K. Falconer, Fractal Geometry Mathematical Foundations and Applications, Wiley, 1990. [4] H. Xie, Fractals in rock mechanics, Balkema Publisher, Netherlands, 1993. [5] C. Tricot, Curves and Fractal Dimension, Springer-Verlag, New York, 1995. [6] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001. [7] M. L. Frame, B. B. Mandelbrot, Fractals, Graphics, and Mathematics Education, Mathematical Association America, Washington, 2002. [8] M. L. Lapidus, M. V. Frankenhuijsen, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, In: Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 2004. [9] J. L. Vehel, E. Lutton, Fractals in Engineering, Springer-Verlag, London, 2005. [10] X. J. Yang, Local Fractional Functional Analysis and Its Applications. Asian Academic publisher Limited, Hong Kong, 2011. [11] X. J. Yang, Local fractional integral transforms, Progress in Nonlinear Science, 4 (2011) 1-225. [12] G. S. Chen. A generalized Young inequality and some new results on fractal Space. Advances in Computational Mathematics and its Applications, 1 (1) (2012) 56-59. [13] X. J. Yang, Expression of generalized Newton iteration method via generalized local fractional Taylor series, Advances in Computer Science and its Applications, 1 (2) (2012) 89-92. [14] X. J. Yang, Local fractional calculus and its applications, Proceedings of FDA'12, The 5th IFAC Workshop Fractional Differentiation and its Applications,1-8, 2012. [15] G. Calcagni, Geometry of fractional spaces, Arxiv preprint arXiv:1106.5787, 2011. [16] G. Calcagni, Geometry and field theory in multi-fractional spacetime, Journal of High Energy Physics, 65 (1) (2012), DOI: 10.1007/JHEP01(2012)065. [17] X. J. Yang, Heat transfer in discontinuous media, Advances in Mechanical Engineering and its Applications, 1(3) (2012) 47-53. [18] D. P. Datta, S. Raut, A. Raychoudhuri, Ultrametric cantor sets and growth of measure, arxiv.org/abs/1002.3951v4, 2011. [19] S. Raut, D. P. Datta, Non-Archimedean scale invariance and cantor Sets, Fractals, 18 (1) (2010) 111-118. [20] S. Raut, D. P. Datta, Analysis on a fractal set, Fractals, 17 (1) (2009) 45-52.

254

[21] X. J. Yang, Local fractional Laplace’s transform based local fractional calculus, Communications in Computer and Information Science, 153 (2011) 391-397. [22] X. J. Yang, Z. X. Kang, C. H. Liu, Local fractional Fourier’s transform based on the local fractional calculus, In: Proc. of the 2010 International Conference on Electrical and Control Engineering, pp.1242-1245, 2010. [23] X. J. Yang, Research on Fractal Mathematics and Some Applications in Mechanics, M.S. thesis, China University of Mining and Technology, 2009. [24] X. J. Yang, Local fractional integral equations and their applications, Advances in Computer Science and its Applications, 1 (4) (2012) 234-239. [25] N. Castro, M. Reyes, Hausdorff measures and dimension on Rn, Proceedings of the American Mathematical Society, 125 (22) (1997) 3267-3273. [26] Q. L. Guo, H. Y. Jiang, L. F. Xi, Hausdorff dimension of generalized Sierpinski carpet, International Journal of Nonlinear Science, 2 (3) (2006) 153-158. [27] J. E. Hutchinson, Fractals and self similarity, Indiana University Mathematics Journal, 30 (1981) 713-747. [28] Z. Y. Wen, Mathematical Foundations of Fractal Geometry, Shanghai Scientific and Technological Education Publishing House, Shanghai, 2000. [29] A. Parvate, A. D. Gangal, Fractal differential equations and fractal-time dynamical systems, Pramana Journal of Physics, 64 (3) (2005) 389-409. [30] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line - I: formulation, Fractals, 17 (1) (2009) 53-81. [31] D. Mozyrska, Delfim F. M. Torres, Modified optimal energy and initial memory of fractional continuous-time linear systems, Signal Processing, 91 (3) (2011) 379-385. [32] A. Erdelyi, Higher transendental functions, McGrawHill, New York, 1955. [33] K. M. Kolwankar, A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6 (4) (1996) 505-513. [34] K. M. Kolwankar, Studies of fractal structures and processes using methods of the fractional calculus. PhD thesis, University of Pune, 1997. [35] K. M. Kolwankar, A. D. Gangal, Local fractional Fokker-Planck equation, Physical Review Letters, 80 (1998) 214-217. [36] K. M. Kolwankar, A. D. Gangal, Hölder exponents of irregular signals and local fractional derivatives, Pramana Journal of Physics, 48 (1) (1997) 49-68. [37] K. M. Kolwankar, J. L. Vehel, A time domain characterization of the fine local regularity of functions, Journal of Fourier Analysis and Applications, 8 (4) (2002) 319-334. [38] K. M. Kolwankar, A. D. Gangal, Local fractional derivatives and fractal functions of several variables, arxiv.org/ abs/physics/9801010v1, 1998.

255

[39] K. M. Kolwankar, A. D. Gangal, Local fractional calculus: a calculus for fractal space-time Fractals: Theory and Applications in Engineering (Delft: Springer), 1999. [40] K. M. Kolwankar, J. L. Vehel, Measuring functions smoothness with local fractional derivatives, Journal of Fractional Calculus and Applied Analysis, 4 (3) (2001) 285-301. [41] K. M. Kolwankar, Fractals and differential equations of fractional order, Indian Institute of Science, 78 (4) (1998) 275-291. [42] K. M. Kolwankar, Decomposition of Lebesgue-Cantor devil's staircase, Fractals, 12 (4) (2004) 375-380. [43] K. M. Kolwankar, Brownian motion of fractal particles: Levy flights from white noise, arXiv:cond-mat/0511307v1, 2005. [44] A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives, Journal of Mathematical Analysis and Applications, 270 (1) (2002) 66-79. [45] Y. Chen, Y. Yan, K. Zhang, On the local fractional derivative, Journal of Mathematical Analysis and Applications, 362 (2010) 17-33. [46] T. S. Kim, Differentiability of fractal curves, Communications of the Korean Mathematical Society, 20 (4) (2005) 827-835. [47] G. C. Wu, K. T. Wu, Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets, Chinese Physical Letters, 29 (6) (2012) 060505. [48] X. Wang, Fractional Geometric Calculus: Toward A Unified Mathematical Language for Physics and Engineering, In: Proceedings of FDA'12, The 5th IFAC Workshop Fractional Differentiation and its Applications, 1-6, 2012. [49] A. Carpinteri, B. Chiaia, P. Cornetti, Static-kinematic Duality and the Principle of Virtual Work in the Mechanics of Fractal Media, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 3-19. [50] A. Carpinteri, P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media, Chaos, Solitons, Fractals, 13 (1) (2002) 85-94. [51] A. Carpinteri, B. Chiaia, P. Cornetti, On the mechanics of quasi-brittle materials with a fractal microstructure, Engineering Fracture Mechanics, 70 (16) (2003) 2321-2349. [52] A. Carpinteri, B. Chiaia, P. Cornetti, The elastic problem for fractal media: basic theory and finite element formulation, Computers and Structures, 82 (6) (2004) 499-508. [53] A. Carpinteri, B. Chiaia, P. Cornetti, A fractal theory for the mechanics of elastic materials, Materials Science and Engineering: A, 365 (1-2) (2004) 235-240 [54] A. Carpinteri, B. Chiaia, P. Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus, ZAMM - Journal of Applied Mathematics and Mechanics, 84 (2) (2004) 128-135. [55] A. Carpinteri, P. Cornetti,A. Sapora, Static-kinematic fractional operators for fractal and non-local solids, ZAMM - Journal of Applied Mathematics and Mechanics, 89 (3) (2007) 207-217.

256

[56] A. Carpinteri, P. Cornetti, A. Sapora, et al, Fractional calculus in solid mechanics: local versus non-local approach, Physica Scripta, T136 (2009) 014003. [57] A. Carpinteri, P. Cornetti, K. M. Kolwankar, Calculation of the tensile and flexural strength of disordered materials using fractional calculus, Chaos, Solitons, Fractals, 21(3) (2004) 623-632. [58] A. Carpinteri, P. Cornetti, A. Sapora, A fractional calculus approach to nonlocal elasticity, The European Physical Journal - Special Topics, 193 (1) (2011) 193-204. [59] H. Bensoudane, C. Gentil, M. Neveu, The local fractional derivative of fractal curves, 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, pp.422-429, 2008. [60] T. A. Salman, Fractional calculus and non-differentiable functions, Research Journal of Applied Sciences, 4 (1) (2009) 26-28. [61] Mounir Zili, On the mixed fractional Brownian motion, Journal of Applied Mathematics and Stochastic Analysis, ID 32435 (2006) 1-9. [62] X. Li, C. Essex, M. Davison, A local fractional derivative, In: Proceedings of the first Symposium on fractional Derivatives and Their Applications American Society of Mechanical Engineering, pp. 1242-1245, 2003. [63] X. Li, M. Davison, C. Essex, On the Concept of Local Fractional Differentiation, http://www.apmaths.uwo.ca/~Mdav ison/_library/preprints/lfd2.pdf. [64] G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a, Applied Mathematics Letters, 18 (7) (2005) 739-748. [65] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions, Applied Mathematics Letters, 22 (2009) 378-385. [66] G. Jumarie, Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order, Applied Mathematics Letters, 19 (9) (2006) 873-880. [67] G. Jumarie, Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor's series of non differentiable functions, Chaos, Solitons, Fractals, 32 (3) (2007) 969-987. [68] G. Jumarie, Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function, Journal of Applied Mathematics and Computing, 32 (2) (2010) 329-351. [69] G. Jumarie, An approach to differential geometry of fractional order via modified Riemann-Liouville derivative, Acta Mathematics Sinica, 2012, DOI:10. 1007/s10114-012-0507-3. [70] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Mathematical and Computational Applications, 51 (2006) 1367-1376. [71] G. Jumarie, Probability calculus of fractional order and fractional Taylor’s series application to Fokker–Planck equation and information of non-random functions, Chaos, Solitons, Fractals, 40 (3) (2009) 1428-1448.

257

[72] G. Jumarie, Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution, Journal of Applied Mathematics and Computing, 24 (2007) 31-48. [73] N. Faraz, Y. Khan, H. Jafari, et.al., Fractional variational iteration method via modified Riemann–Liouville derivative, Journal of King Saud University - Science, 23(4) (2011) 413-417. [74] Yasir Khan, Q. Wu, Naeem Faraz, A. Yildirim, M. Madani, A new fractional analytical approach via a modified Riemann–Liouville derivative, Applied Mathematics Letters, 25 (10) (2012) 1340-1346. [75] Z. B. Li, J. H. He, Fractional complex transform for fractional differential equations, Mathematical and Computational Applications, 15(5) (2010) 970-973. [76] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Physics Letters A, 376 (4) ( 2012) 257-259. [77] R. Almeida, D. F. M. Torres, Fractional variational calculus for nondifferentiable functions, Computers and Mathematics with Applications, 61 (10) (2011) 3097-3104. [78] G. C. Wu, Adomian decomposition method for non-smooth initial value problems, Mathematical and Computer Modelling, 54 (9-10) (2011) 2104-2108. [79] A. B. Malinowska, M. R. S. Ammi, Delfim F. M. Torres, Composition functionals in fractional calculus of variations, Communications in Fractional Calculus, 1 (2010) 32-40. [80] A. Golbabai, K. Sayevand, Analytical treatment of differential equations with fractional coordinate derivatives, Computers and Mathematics with Applications, 62 (3) (2011) 1003-1012. [81] M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative, International Journal of Physical Sciences, 7(15) (2012) 23172326. [82] Pradip Roul, Numerical solutions of time fractional degenerate parabolic equations by variational iteration method with Jumarie-modified Riemann–Liouville derivative, Mathematical Methods in the Applied Sciences, 34 (9), 2012, DOI: 10.1002/mma.1418. [83] Bin Lu, The first integral method for some time fractional differential equations, Journal of Mathematical Analysis and Applications, 2012, Doi.org/10.1016/j.jmaa.2012.05.066. [84] J. Weberszpil, C. F. L. Godinho, A. Cherman, J. A. Helayël-Neto, Aspects of the Coarse-Grained-Based Approach to a Low-Relativistic Fractional Schrödinger Equation, arxiv.org/abs/ 1206.2513v3, 2012. [85] A. Parvate, A. D. Gangal, Calculus on fractal subsets of real line- II: Conjugacy with ordinary calculus, Pune University Preprint, 2004. [86] A. Parvate, S. Satin, A. D. Gangal, Calculus on fractal curves in Rn, arxiv.org/abs/0906.0676v2, 2010. [87] R. Carrol, On quantum potential, Application Analysis, 84 (11) (2005) 1117-1149. [88] C. Thale, Further remarks on mixed fractional Brownian motion, Applied Mathematical Sciences, 3 (38) (2009) 1885 -1901.

258

[89] J. Juniper, Deliberations on different forms of fractional calculus, http://e1.newcastle.edu.au/ coffee/pubs/ wp/ 2007/07-19.pdf, 2007. [90] F. B. Adda, J. Cresson, About non-differentiable functions, Journal of Mathematical Analysis and Applications, 263 (2001) 721-737. [91] F. B. Adda, J. Cresson, Quantum derivatives and the Schrödinger equation, Chaos, Solitons, Fractals, 19 (2004) 1323-1334. [92] J. Cresson, Non-differentiable variational principles, Journal of Mathematical Analysis and Applications, 307 (1) (2005) 48-64. [93] F. Gao, X. J. Yang, Z. X. Kang, Local fractional Newton’s method derived from modified local fractional calculus, In: Proc. of the 2th Scientific and Engineering Computing Symposium on Computational Sciences and Optimization, pp. 228-232, 2009. [94] X. J. Yang, F. Gao, The fundamentals of local fractional derivative of the one-variable non-differentiable functions, World SCI-TECH R&D, 31(5) (2009) 920-921(in Chinese). [95] X. J. Yang, L. Li, R. Yang, Problems of local fractional definite integral of the one-variable non-differentiable function, World SCI-TECH R&D, 31(4) (2009) 722-724 (in Chinese). [96] X. J. Yang, F. Gao, Fundamentals of local fractional iteration of the continuously nondifferentiable functions derived from local fractional calculus, Communications in Computer and Information Science, 153 (2011) 398-404. [97] X.

J.

Yang,

Local

fractional

partial

differential

equations

with

fractal

boundary

problems,Advances in Computational Mathematics and its Applications, 1 (1) (2012) 60-63. [98] X. J. Yang, M. K. Liao, J. W. Chen, A novel approach to processing fractal signals using the Yang-Fourier transforms, Procedia Engineering, 29 (2012) 2950-2954.

[99] M. K. Liao, X. J. Yang, Q. Yan, A new viewpoint to Fourier analysis in fractal space, In Proc: AMAT 2012, accepted. [100] W. P. Zhong, X. J. Yang, F. Gao, A Cauchy problem for Some local fractional abstract differential equation with fractal conditions. In Proc: AMAT 2012, accepted. [101] X. J. Yang, The discrete Yang-Fourier transforms in fractal space, Advances in Electrical Engineering Systems, 1 (2) (2012) 78-81. [102] X. J. Yang, A short introduction to Yang-Laplace Transforms in fractal space, Advances in Information Technology and Management, 1(2) (2012) 38-43. [103] X. J. Yang, Fast Yang-Fourier Transforms in fractal space, Advances in Intelligent Transportation Systems, 1 (1) (2012) 25-28. [104] X. J. Yang, Local fractional Fourier analysis, Advances in Mechanical Engineering and its Applications, 1 (1) (2012) 12-16. [105] X. J. Yang, Generalized sampling theorem for fractal signals, Advances in Digital Multimedia, 1 (2) (2012) 88-92.

259

[106] X. J. Yang, Local fractional kernel transform in fractal space and its applications, Advances in Computational Mathematics and its Applications, 1 (2) (2012) 86-93. [107] X. J. Yang, Local fractional integral equations and their applications, Advances in Computer Science and its Applications, 1 (4), (2012) 234-239. [108] X. J. Yang, F. R. Zhang, Local fractional variational iteration method and its algorithms, Advances in Computational Mathematics and its Applications, 1 (3) (2012) 139-145. [109] X. J. Yang, Y. Zhang, A new successive approximation to non-homogeneous local fractional Volterra equation, Advances in Information Technology and Management,1 (3) (2012) 138-141. [110] X. J. Yang, Picard’s approximation method for solving a class of local fractional Volterra integral equations, Advances in Intelligent Transportation Systems, 1 (3) (2012) 67-70. [111] X. J. Yang, Generalized local fractional Taylor’s formula with local fractional derivative, Journal of Expert Systems, 1 (1) (2012) 26-30. [112] X. J. Yang, A short note on local fractional calculus of function of one variable, Journal of Applied Library and Information Science, 1 (1) 1-13. [113] X. J. Yang, Y. Zhang, A new Adomian decomposition procedure scheme for solving local fractional Volterra integral equation, Advances in Information Technology and Management, 1 (4) (2012) 158-161. [114] X. J. Yang, The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems, Prespacetime Journal, accepted, 2012. [115] X. J. Yang, Local fractional Fourier series representations of local fractional continuous signals in fractal space, finished, 2011. [116] X. J. Yang, A short introduction to local fractional complex analysis, arXiv:1106.3011 [math-ph] , 2011. [117] X. J. Yang, Applications of local fractional calculus to engineering in fractal time-space: Local fractional differential equations with local fractional derivative, arXiv:1106.3010 [math-ph] , 2011. [118] X. J. Yang, Fractional trigonometric functions in complex-valued space: Applications of complex number to local fractional calculus of complex function, arXiv:1106.2783 [math-ph] , 2011. [119] X. J. Yang, A new viewpoint to the discrete approximation: discrete Yang-Fourier transforms of discrete-time fractal signal, arXiv:1107.1126 [math-ph] , 2011. [120] W. P. Zhong, F. Gao, Application of the Yang-Laplace transforms to solution to nonlinear fractional wave equation with local fractional derivative. In: Proc. of the 2011 3rd International Conference on Computer Technology and Development, ASME, pp.209-213, 2011. [121] W. P. Zhong, F. Gao, X.M. Shen, Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Advanced Materials Research, 461 (2012) 306-310.

260

[122] Y. Guo, Local fractional Z transform in fractal space, Advances in Digital Multimedia, 1 (2) (2012) 96-102. [123] G. S. Chen, Local fractional Mellin transform in fractal space, Advances in Electrical Engineering Systems, 1 (1) (2012) 89-94. [124] G. S. Chen, The local fractional Stieltjes transform in fractal space, Advances in Intelligent Transportation Systems, 1 (1) (2012) 29-31. [125] G. S. Chen, Mean value theorems for local fractional integrals on fractal Space, Advances in Mechanical Engineering and its Applications, 1 (1) (2012) 5-8. [126] G. S. Chen, Local fractional improper integral on fractal space, Advances in Information Technology and Management, 1 (1) (2012) 4-8. [127] Steve Anglin, Fractional Complex Variables: Strong Local Fractional Complex Derivatives (LFCDs) Of Non-Integer Rational Order, Create Space, 2012. [128] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos, Solitons, Fractals, 28 (2006) 923-929. [129] W. Chen, H. G. Sun, X. D. Zhang, Dean Koro, Anomalous diffusion modeling by fractal and fractional derivatives, Computers and Mathematics with Applications, 59 (2010) 1754-1758. [130] W. Chen, X. D. Zhang, D. Korosak, Investigation on fractional and fractal derivative relaxationoscillation models, Communications in Nonlinear Science and Numerical Simulation, 11 (2010) 3-9. [131] A. S. Balankin, B. E. Elizarraraz, Hydrodynamics of fractal continuum flow, Physical Review E, 85 (2) (2012) 025302 (R). [132] A. S. Balankin, B. E. Elizarraraz, Map of fluid flow in fractal porous medium into fractal continuum flow, Physical Review E, 85 (5) (2012) 056314. [133] H. G. Sun, W. Chen, Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence, Science in China Series E: Technological Sciences, 52 (3) (2009) 680-683. [134] O. Enacheanu, D. Riu, N. Retiere, Fractional order and fractal modelling of electrical networks, Fractional Differentiation and its Applications, 2 (1) (2006) 10.3182/20060719-3-PT-490 2.00 072. [135] J. H. He, A new fractal derivation, Thermal Science, 15 (2011) 145-147. [136] J. A. T. Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus, Fractional Calculus and Applied Analysis, 13 (3) (2010) 329-334. [137] J. A. T. Machado, V. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus, Fractional Calculus and Applied Analysis, 13 (4) (2010) 447-454. [138] J. A. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation, 16 (3) (2011) 1140-1153.

261

[139]R. Goreno, F. Mainardi, Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1 (2) (1998) 167-192. [140]R. Goreno, F. Mainardi, Random walk models approximating symmetric space fractional diffusion processes, Problems in Mathematical Physics, 121 (2001) 120-145. [141]F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010. [142]R. Goreno, E. A. Rehim, Discrete models of time-fractional diffusion in a potential well, Fractional Calculus and Applied Analysis, 8 (2) (2005) 173-200. [143]W. C. Tan, W. X., Pan, M. Y. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, International Journal of Non-Linear Mechanics, 38 (5) (2003) 645-650. [144]A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in spacetime-dependent force fields beyond the fractional Fokker-Planck equation, Physical Review E, 77 (2008) 036704. [145]F. Liu, I. Turner and V. Anh, An unstructured mesh finite volume method for modeling saltwater intrusion into coastal aquifers, Journal of Applied Mathematics and Computing, 9 (2002) 391-407. [146]H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, 118 (2001) 1-52. [147]H. M. Srivastava, R. K. Saxena, Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel, Journal of Integral Equations And Applications, 17 (2005) 199-217. [148]H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Applied Mathematics and Computation, 211 (2009) 198-210. [149]R. N. Kalia, H. M. Srivastava, Fractional calculus and its applications involving functions of several variables, Applied Mathematics Letters, 12 (5) (1999) 19-23. [150]Z. Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms and Special Functions, 21 (2010) 797-814. [151]B. Baeumer, M.M. Meerschaert, J. Mortensen, Space-time fractional derivative operators, Proceedings of the American Mathematical Society, 133 (8) (2005) 2273-2282. [152]R. K. Raina, H. M. Srivastava, A certain subclass of analytic functions associated with operators of fractional calculus, Computers and Mathematics with Applications, 32 (7) (1996) 13-9. [153]R. K. Raina, On certain classes of analytic functions and applications to fractional calculus operators, Integral Transforms and Special Functions, 5 (3-4) (1997) 247-260. [154]R. R. Nigmatullin, Fractional integral and its physical interpretation, Theoretical and Mathematical Physics, 90 (3) (1992) 242-251.

262

[155]R. S. Rutman, On physical interpretations of fractional integration and differentiation. Theoretical and Mathematical Physics, 105 (3) (1995) 1509-1519. [156]Z. G. Yu, F. Y. Ren, J. Zhou, Fractional integral associated to generalized cookie-cutter set and its physical interpretation, Journal of Physics A, 30 (1997) 5569-5577. [157]F. B. Adda, Geometric interpretation of the fractional derivative, Journal of Fractional Calculus, 11 (1997) 21-52. [158]I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, arxiv.org/abs/math/0110241v1, 2001. [159]I. Podlubny, Fractional Differential Equations, Academic Press, San Diego CA, 1999 [160]M. M. Meerschaert, D. A. Benson, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Physical Review E, 65 (2002) (4) 1103-1106. [161]M. M. Meerschaert, D.A. Benson, B. Baeumer, Multivariable advection and fractional dispersion, Physical Review E, 59 (5) (1999) 5026-5028. [162]L. Vázquez, Fractional diffusion equation with internal degrees of freedom, Journal of Computational Mathematics, 21 (4) (2003) 491-494. [163]A. Kilbas, T. Pierantozzi, J. J. Trujillo, L. Vázquez, On the solution of fractional evolution equations, Journal of Physics A, 37 (2004) 3271-3283. [164]H. Jafari, V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, Journal of Computational and Applied Mathematics, 196 (2) (2006) 644-651. [165]S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advection-dispersion equation, Numerical Methods for Partial Differential Equations, 24 (6) (2008) 1416-1429. [166]S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Physics Letters A, 365 (5-6) (2007) 345-350. [167]F. Mainardi, G. Pagnini, R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Applied Mathematics and Computation, 187 (1) (2007) 295-305. [168]R. W. Ibrahim, S. Momani, On the existence and uniqueness of solutions of a class of fractional differential equations, Journal of Mathematical Analysis and Applications, 334 (2007) 1-10. [169]M. Kirane, S. A. Malik, Profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Analysis: Theory, Methods, Applications, 73 (12) (2010) 3723-3736. [170]J. S. Duan, Time- and space-fractional partial differential equations, Journal of Mathematical Physics, 46 (1) (2005) 13504-13511. [171]J. J. Nieto, D. O. Regan, Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10 (2009) 680-690.

263

[172]R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods and Applications , 72 (2009) 2859-2862. [173]J. J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Applied Mathematics Letters, 23 (2010) 1248-1251. [174]C. Cuevas, J. de Souza, Existence of S-Asymptotically W-periodic solutions for fractional order functional Integro-Differential Equations with infinite delay, Nonlinear Analysis Series A: Theory, Methods and Applications, 72 (2010) 1683-1689. [175]B. L. Guo, Z. H, Huo, Global well-posedness for the fractional nonlinear schrodinger equation, Communications in Partial Differential Equations, 36 (2) (2011) 247-255. [176]Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation, Computers and Mathematics with Applications, 59(5) (2010) 1766-1772. [177]V. E. Tarasov, G. M. Zaslavsky, Fractional Ginzburg–Landau equation for fractal media, Physica A, 354 (2005) 249-261. [178]V. E. Tarasov, Fractional hydrodynamic equations for fractal media, Annals of Physics, 318 (2) (2005) 286-307. [179]J. Hristov, Approximate solutions to fractional sub-diffusion equations: The heat-balance integral method, The European Physical Journal-Special Topics, 193 (2011) 229-243. [180]Y. Zhang, Particle-tracking simulation of fractional diffusion-reaction processes, Physical Review E, 84 (6) (2011) 066704 [181]Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Advances in Water Resources, 32 (4) (2009) 561-581. [182]Y. Zhang, Moments for Tempered Fractional Advection-Diffusion Equations, Journal of Statistical Physics, 139 (5) (2010) 915-939. [183]G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005. [184]C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls Fundamentals and Applications, Springer, New York, 2010. [185]Y. Q. Chen, A new IIR-type digital fractional order differentiator, Signal Processing, 83 (11) (2003) 2359-2365. [186]Y. Q. Chen, K. L. Moore. Analytical stability bound for a class of delayed fractional order dynamic systems, Nonlinear Dynamics, 29 (2002) 191-200. [187]Y. Li, Y. Q. Chen, I. Podlubny, Mittag–Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (8) (2009) 1965-1969.

264

[188]I. Podlubny, Fractional-order systems and fractional-order controllers, Report UEF-03-94, Slovak Academy of Sciences, Institute of Experimental Physics, Kosice, Slovakia, November 1994, 18 pages. [189]I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis, 3 (4) (2000) 359-386. [190]J. A. Tenreiro Machado, Fractional dynamics of a system with particles subjected to impacts, Communications in Nonlinear Science and Numerical Simulation, 16 (2011) 4596-4601. [191]M. F. Silva, J. A. Tenreiro Machado, A. M. Lopes, Fractional order control of a hexapod robot, Nonlinear Dynamics, 38 (2004) 417-433. [192]L. Yuan, O. P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, Journal of Vibration and Acoustics, 124 (2) (2002) 321-324. [193]C. Li, G. Chen, Chaos in the fractional order Chen system and its control, Chaos, Solitons, Fractals, 22 (3) (2004) 549-554. [194]C. Li, G. Chen, Chaos and hyper chaos in the fractional-order Rössler equations, Physica A, 341 (1) (2004) 55-61. [195]G. J, Lu, G. Chen, A note on the fractional-order Chen system, Chaos, Solitons, Fractals, 27 (3) (2006) 685-688. [196]Q. Yang, Novel Analytical and Numerical Methods for Solving Fractional Dynamical Systems, Ph. D. Thesis, Queesland University of Technology, Australia, 2010. [197]R. R. Nigmatullin, Dielectric relaxation phenomenon based on the fractional kinetics: theory and its experimental confirmation, Physica Scripta, T136 (2009) 014001. [198]R. Hilfer, On fractional relaxation, Fractals, 11 (2003) 251-257. [199]R. Hilfer, Foundations of fractional dynamics, Fractals, 3(3) (1995) 549-556. [200]F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons, Fractals, 7 (9) (1996) 1461-1477. [201]R. L. Magin, T. J. Royston, Fractional-order elastic models of cartilage: A multi-scale approach, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 657-664. [202]K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, New York, 1974. [203] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993. [204]A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. [205]A. Akira, Fractional calculus and regularized residue of infinite dimensional space , Mathematical Methods in Engineering, 1 (2007) 3-11. [206]A. Akira, Fractional Calculus and Gamma Function, Kyoto University Research Information Repository, 169 (2010) 17-38.

265

[207]A. Akira, Fractional calculus and infinite order differential operators, Yokohama Mathematical Journal, 55 (2) (2010) 129-147. [208]G. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 371 (1) (2002) 461-580. [209]A. Carpinteri, F. Mainardi (Editors), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, New York, 1997. [210] V. Kiryakova, Generalized fractional calculus and applications, Logman Scientific and Technical, Harlow, 1994. [211] G. A. Anastassiou, Fractional Differentiation Inequalities, New York, Springer, 2009. [212]G. A. Anastassiou, O. Duman, Fractional trigonometric Korovkin theory in statistical sense, Serdica Mathematical Journal, 36 (2010) 121-136. [213]F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, Journal of Computational and Applied Mathematics, 118 (1-2) (2000) 283-299. [214]J. A. Tenreiro Machado, And I say to myself: and Applied Analysis, 14 (4) (2011) 635-654.

“What a fractional world!”, Fractional Calculus

[215]S. Das, Functional Fractional Calculus, Springer-Verlag, Berlin, 2008. [216]V. E. Tarasov, Continuous medium model for fractal media, Physics Letters A, 336 (2-3) (2005) 167-174. [217]X. R. Li, Fractional Calculus, Fractal Geometry, and Stochastic Processes, Ph.D. Thesis, University of Western Ontario, 2003. [218]T. J. Osler, Fractional derivatives and Leibniz rule, The American Mathematical Monthly, 78 (6) (1971) 645-649. [219] J. J. Truiljo, M. Rivero, B. Bonilla, On a Riemann-Liouvill generalize Taylor’s formula, Journal of Mathematical Analysis and Applications, 231 (1999) 255-265. [220] J. D. Munkhammar, Fractional calculus and the Taylor–Riemann series, Undergrad Journal Mathematics, 2005. [221] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Applied Mathematics and Computation, 186 (1) (2007) 286-293. [222]Amphon Liangprom, Kamsing Nonlaopon, On the convolution equation related to the diamond Klein-Gordon operator, Abstract and Applied Analysis, ID 908491, Doi:10.1155/2011/908491, 2011. [223]R. Almeida, A. B. Malinowska, Delfim F. M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, Journal of Mathematical Physics, 51 (3) (2010) 033503. [224] T. Odzijewicz, Delfim F.M. Torres, Fractional calculus of variations for double integrals, Balkan Journal of Geometry and Its Applications,16 (2) (2011) 102-113.

266

[225]V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011. [226]Ming-Fan Li, Ji-Rong Ren, Tao Zhu, Fractional vector calculus and fractional special function, arxiv.org/abs/1001. 2889v1, 2010. [227]M. J. Lazo, Gauge invariant fractional electromagnetic fields, Physics Letters A, 375 (41) (2011) 3541-3546. [228] R. Herrmann, Fractional calculus: An Introduction for Physicists, World Scientific, Singapore, 2011. [229]R. Herrmann, Gauge invariance in fractional field theories, Physics Letters A, 372 (34) (2008) 5515-5522. [230]E. Goldfain, Fractional field theory and physics beyond the standard model, Prespacetime Journal, 3 (5) (2012) 435-458. [231] M. S. El. Naschie, The theory of Cantorian spacetime and high energy particle physics (an informal review), Chaos, Solitons, Fractals, 41 (2009) 2635-2646. [232] J. H. He, S. K. Elagan, A First Course in Functional Analysis, Asian Academic Publisher, Asian Academic Publisher Ltd, Hongkong, 2011. [233] L. Nottale, Fractal space-time and microphysics, World Scientific, Singapore, 1993. [234] L. Nottale, Scale relativity, fractal space-time and quantum mechanics, Chaos, Solitons, Fractals, 4 (1994) 361-388. [235] A. M. A. El-Sayed, Abstract differential equations of arbitrary (fractional) orders, In: Proceedings of Equadiff 9 Conference on Differential Equations and Their Applications, Brno, 25-29, pp. 93-99, 1997. [236] A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Analysis: Theory, Method and Applications, 33 (2) (1998) 181-186. [237] A. M. A. El-Sayed, W. G. El-Sayed, O. L. Moustafa, On some fractional functional equations, Pure Mathematics and Applications, 6 (4) (1995) 321-332. [238] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. Journal of Mathematical Analysis and Applications, 272 (2002) 368-379. [239] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, Journal of Physics A, 40 (2007) 6287-6303. [240] D. Baleanu, J. J. Trujillo, On exact solutions of a class of fractional Euler-Lagrange Equations, Nonlinear Dynamics, 52(4) (2008) 331-335. [241]R. Almeida, A. B. Malinowska, Delfim F. M. Torres, Fractional Euler-Lagrange Differential Equations via Caputo Derivatives, In: Fractional Dynamics and Control, Springer, New York, 2012, Part 2, 109-118. [242] M. A. E. Herzallah, D. Baleanu, Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations, Nonlinear Dynamics, 58 (1-2) (2009) 385-391.

267

[243] T. M. Atanacković, S. Konjik, S. Pilipović, Variational Problems with Fractional Derivatives: Euler-Lagrange Equations, Journal of Physics A, 41 (2008) 095201. [244] M. A. E. Herzallah, D. Baleanu, Fractional Euler–Lagrange equations revisited, Nonlinear Dynamics, 69 (3) (2012) 977-982. [245] D. Baleanu, S. Muslih, Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Physica Scripta, 72 (2-3) (2005) 119-121. [246] A. B. Malinowska, Fractional variational calculus for non-differentiable functions, arxiv.org/abs/1201.6640v1, 2012. [247] S. S. Antman, J. E. Osborn, The principle of virtual work and integral laws of motion, Archive for Rational Mechanics and Analysis, 69 (3) (1979) 231-262. [248] A. S. Saada, Elasticity: Theory and Applications, Robert E. Krieger Publishing, Florida, 1989. [249] L. J. Segerlind, Applied Finite Element Analysis, Wiley, New York, 1976. [250] T. M. Atanackovic, M. Janev, S. Pilipovic, D. Zorica, Complementary variational principles with fractional derivatives, Acta Mechanica, 223 (4) (2012) 685-704. [251] G. P. Srivastava, R. A. H. Hamilton, Complementary variational principles, Physics Reports, 38 (1) (1978) 1-83. [252]J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations, Proceedings of the Royal Society A, 465 (2009) 2521-2536. [253]M. Ostoja-Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries, Acta Mechanica, 205 (2009) 161–170. [254] J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35 (1968) 379-386. [255] B. Budiansk, J. R. Rice, Conservation laws and energy-release rates, Journal of Applied Mechanics, 40 (1973) 201-203. [256] J. R. Rice, Mathematical Analysis in the Mechanics of Fracture, Chapter 3 of Fracture: An Advanced Treatise (Vol. 2, Mathematical Fundamentals) (ed. H. Liebowitz), Academic Press, New York, pp. 191-311, 1968. [257] D. C. Drucker, J. R. Rice, Plastic deformation in brittle and ductile fracture, Engineering Fracture Mechanics, 1 (1970) 577-602. [258] K. Kishimoto, S. Aoki, M. Sakata, On the path independent integral-J, Engineering Fracture Mechanics, 13 (4) (1980) 841-850. [259]A. Yavari, S. Sarkani, E. T. Moyer, The mechanics of self-similar and self-affine fractal cracks, International Journal of Fracture, 114 (2002) 1-27. [260]A. Yavari, S. Sarkani, E. T. Moyer, On fractal cracks in micropolar elastic solids, Journal of Applied Mechanics, 69 (2002) 45-54.

268

[261]G. P. Cherepanov, A. Balankin, V. S. Ivanova, Fractal fracture mechanics-a review, Engineering Fracture Mechanics, 57 (1997) 135-203. [262]A. B. Mosolov, Mechanics of fractal cracks in brittle solids, Europhysics Letters, 24 (8) (1993) 673. [263]F. M. Borodich, Fractals and fractal scaling in fracture mechanics, International Journal of Fracture, 95 (1-4) (1999) 239-259. [264]H. Xie, Effects of fractal crack, Theoretical and Applied Fracture Mechanics, 23 (3) (1995) 235-244. [265] R. V. Goldshtein, A. B. Mosolov, Cracks with fractal surfaces, Akademiia Nauk SSSR, Doklady, 319 (4) (1991) 840-844. [266]A. B. Mosolov, Fractal J-integral in fracture, Soviet Technical Physics Letters. 17 (1991) 698-700. [267]A. Yavari, K. G. Hockett, S. Sarkani, The fourth mode of fracture in fractal fracture mechanics, International Journal of Fracture, 101 (4) (2000) 365-384. [268]A. Yavari, S. Sarkani, E. T. Moyer, On fractal cracks in micropolar elastic solids, ASME Journal of Applied Mechanics, 69 (1) (2002) 45-54. [269] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (B) Basic Research, 133(1) (1986) 425-430. [270] Y. Z. Povstenko, Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses, Journal Thermal Stresses, 31 (2) (2008) 127-148. [271] Y. Z. Povstenko, Thermoelasticity based on fractional heat conduction equation, in: Proc. 6th Int. Congress Thermal Stresses, 2 (2005) 501-504. [272] Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stresses, Journal Thermal Stresses, 28 (1) (2005) 83-102. [273] K. Davey, R. Prosser, Analytical solutions for heat transfer on fractal and pre-fractal domains, Applied Mathematical Modelling, DOI:/10.1016/ j.apm.2012. 02.047, 2012. [274] J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Mathematical Proceedings of the Cambridge Philosophical Society, 43 (1947) 50-67. [275] T. M. Shih, A literature survey on numerical heat transfer, Numerical Heat Transfer, 5 (4) (1982) 369-420. [276] B. C. Choi, S. W. Churchill, A technique for obtaining approximate solutions for a class of integral equation s arising in radiative heat transfer, International Journal of Heat and Fluid Flow, 6 (1) (1985) 42-48. [277] M. Dehghan, The one-dimensional heat equation subject to a boundary integral specification, Chaos, Solitons, Fractals, 32 (2) (2007) 661-675.

269

[278] Y. Ioannou, M. M. Fyrillas, C. Doumanidis, Approximate solution to Fredholm integral equations using linear regression and applications to heat and mass transfer, Engineering Analysis with Boundary Elements, 36 (8) (2012) 1278-1283. [279] S. Nadeem, N. S. Akbar, Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method, Communications in Nonlinear Science and Numerical Simulation, 14 (11) (2009) 3844-3855. [280] A. M. Wazwaz, M. S. Mehanna, The combined Laplace-Adomian method for handling singular integral equation of heat transfer, International Journal of Nonlinear Science, 10 (2010) (2) 248-252. [281] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, 360 (1) (2006) 109-113. [282] B. Raftari, K. Vajravelu, Homotopy analysis method for MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall, Communications in Nonlinear Science and Numerical Simulation, 17(11) (2012) 4149-4162. [283] A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, International Communications in Heat and Mass Transfer, 36 (7) (2009) 757-762. [284] H. Aminikhah, M. Hemmatnezhad, A novel effective approach for solving nonlinear heat transfer equations, Heat Transfer-Asian Research, 2012, DOI: 10.1002/ htj.20411. [285] N. Simões, A. Tadeu, J. António, W. Mansur, Transient heat conduction under nonzero initial conditions: A solution using the boundary element method in the frequency domain, Engineering Analysis with Boundary Elements, 36 (4) (2012) 562-567. [286] S. Soleimani, D. Domiri Ganji, E. Ghasemi, M. Jalaal, Bararnia, Meshless local RBF-DQ for 2-D heat conduction: A comparative study, Thermal Science, 15 (1) (2011) S117-S121. [287] A. Rajabi, D. D. Ganji, H. Teherian, Application of homotopy-perturbation method to nonlinear heat conduction and convection equations, Physics Letters A, 360 (2007) 570-573. [288] A. Majumdar, Microscale heat conduction in dielectric thin films, ASME Transactions, Journal of Heat Transfer, 115 (1) (1993) 7-16. [289] M. Lewandowska, L. Malinowski, An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides, International Communications in Heat and Mass Transfer, 33 (2006) 61- 69. [290] S. M. Zubair, M. A. Chaudhry, Heat conduction in a semi-infinite solid due to time-dependent laser source, International Journal of Heat and Mass Transfer, 39 (14) (1996) 3067-3074. [291] R. B. Bird, W. Steward, E. N. Lightfood, Transport Phenomena, Wiley, New York, 1960. [292] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, New York, 1984. [293] E. L. Cussler, Diffusion: Mass Transport in Fluid Systems, Cambridge University Press, Cambridge, 1984.

270

[294] R. Taylor, R. Krishna, Multicomponent Mass Transfer, Wiley, New York, 1993. [295] D. Y. Tzou, Macro- to Microscale Heat Transfer, Taylor & Francis, Washington, 1997.

271

Index The fractional sets of sets, 2 Real spaces on fractional sets, 3 Fractal field axioms, 5 Fractal ordered field axioms, 6 Generalized Lebesgue measure, 8 Generalized Hausdorff measure, 11 Generalized Hausdorff Dimension, 14 Local fractional continuity, 20 Local fractional derivative, 36 The higher-order derivative, 40 Local fractional Rolle’s theorem, 40 Local fractional Fermat’s Theorem, 44 Local extreme value, 44 Increasing/Decreasing test, 45 Local fractional integral, 47 Local fractional integration by parts, 56 Local fractional Taylor’s theorem, 59 Local fractional Taylor’s series, 61 Local fractional Mc-Laurin’s series, 62 Local fractional differential equations, 64 Quadric fractal surfaces, 71 Cantor type ellipsoid, 71 Cantor type cone, 71 Cantor type cylinder, 71 Cantor type circle, 72 Cantor type sphere, 72 Cantor type hyperboloid of one sheet, 72 Cantor type hyperboloid of two sheets, 72 Cantor type elliptic Paraboloid, 72 Cantor type hyperbolic Paraboloid, 72 Local fractional partial derivative, 75 Local fractional partial derivative of higher order, 76 Local fractional partial differential equations, 77 Local fractional Laplace’s equation, 77 Local fractional wave equation, 77 Local fractional Jacobian determinant, 84 Local fractional Taylor expansion of multivariable functions, 93 Cantor type circle coordinates, 95 Cantor type cylindrical coordinates, 96 Cantor type spherical coordinates, 96 Critical point of multivariable functions, 106 Method of fractal Lagrange multipliers for maxima and minima, 109

272

Double local fractional integrals, 114 Triple local fractional integrals, 117 Fubini theorem of double local fractional integrals, 115 Fubini theorem of triple local fractional integrals, 118 Local fractional vector form, 126 Local fractional integral of a vector function, 129 Local fractional scalar product of unit vectors, 130 Local fractional vector product of unit vectors, 130 Local fractional gradient, 131 Local fractional directional derivative, 131 Local fractional Hamilton operator, 134 Local fractional line integrals, 137 Green's theorem in a fractal plane, 139 Local fractional surface integrals, 141 Local fractional volume integrals, 144 Divergence theorem of local fractional field, 145 Green's first theorem in fractal domain, 146 Green's second theorem in fractal domain, 146 Stokes' theorem of local fractional field, 147 Local fractional Kronecker delta symbol, 154 Fractal summation convention, 155 E-fractal-Permutation symbol, 155 Generalized local fractional Kronecker delta, 157 Fractal distance squared between two points, 161 Generalized fractal coordinates, 163 Conjugate sub-metric tensor, 166 Fractal Riemann space, 168 Geometry in fractal Riemann space, 168 Fractal orthogonal coordinate tensors, 169 Local fractional calculus of variations, 172 Local fractional single-variable optimization, 186 Multivariable optimizations with no constraints, 189 Multivariable optimizations with equality constraints, 200 General optimization problems, 210 Local fractional functional derivatives, 210 Local fractional functional partial derivative, 212 Local fractional functional differential equation, 213 Local fractional functional Laplace’s equation, 214 Local fractional functional wave equation, 214 Local fractional Euler-Lagrange equation, 216 Principle of virtual work for fractal media, 224 The principle of minimum potential energy in fractal medium, 231 The principle of minimum complementary energy in fractal medium, 238 The J-integral formula in fractal fracture mechanics, 245 The conservation of the J-integral in fractal fracture mechanics, 247

273

Fourier law of heat conduction in fractal medium, 249 Differential equation of heat conduction in fractal media, 250