Advanced Multi-Material Lightweight Design

25 downloads 0 Views 5MB Size Report
(Lutz Engelke, Trias Projektgesellschaft mbH, auto motor sport-Kongress 2010). ▫ Up to the year 2030 appr. 500 cities will exist with a population over a million ...
Advanced Multi‐Material Lightweight Design Thilo Bein Fraunhofer LBF on behalf of ERTRAC/EARPA

State of the Art and Challenges

OUTLINE



Introduction



Lightweight design for mobility 



Some examples from recent projects



Outlook & Summary

INTRODUCTION



In the year 2050 more than 9 bn. humans will live on earth.  (UN)



In the next 30 years 450 mill. Chinese people will live in cities,  which are not existing, yet.  (Lutz Engelke, Trias Projektgesellschaft mbH, auto motor sport‐Kongress 2010)



Up to the year 2030 appr. 500 cities will exist with a population  over a million citizens. 27 of them will be megacities. (8th world congress of network Metropolis ‐ World Ass. of Major Metropolises)

 Increasing demand on urban mobility

… with zero-emission ideally [www.wienweb.at]

CHALLENGES FOR FUTURE MOBILITY

Reduced emissions

Exhaust gas emissions

US Tier2 Bin5

EU 5 Sept2009

C0 CO22emission Emissionsdevelopment Development

Phase II Jan-2010

PM NOX

National Jan-2010

§

Phase III Jan-2013

160

CO HC

Price / availability of oil Limited Fuel

in g CO2/km

EU6 Sept-2014

2006

130

95

70

2012

2020

2025

Increasing traffic (passenger and transport) Until 2030 in the transport sector, the predicted increase of fuel demand totals 55 %

www.in-brasilien.de

[Source: Grotendorst, Continental, 2009]

Bild: AP

LIFE CYCLE FUEL EFFICIENCY  IMPROVEMENT BY LIGHTWEIGHT

Data from: Helms, LCA case studies – 2006

GLOBAL FUEL SAVINGS BY LIGHTWEIGHTING

Data from: Helms, LCA case studies – 2006

Lightweight design for mobility

CHALLENGES AND STRATEGIES OF  LIGHTWEIGHT DESIGN

Requirements in lightweight design

 Components and functions integration  New material and production technologies  Cost‐weight‐optimisation Source: M.Goede, VW Group Research

TREND TOWARDS MULTI‐MATERIAL DESIGN

Source: M.Goede, VW Group Research

MATERIAL MIX/TECHNOLOGY TO LOWER  VEHICLE WEIGHT 

 Steel intensive vehicle structure is cost effective  Aluminum and composites become more often used  Vehicle life cycle and end‐ of‐life‐vehicle have to be considered

C/D PASSENGER CAR BODY WEIGHT  COMPARISON

Source: Material Systems Laboratory – MIT

CONTRIBUTION OF VEHICLE SYSTEMS TO  TOTAL WEIGHT

 Body & chassis/suspension components are  loaded by fluctuating forces  Significant improvement on material & mass  efficiency can be generated only by managing  the stress vs. strength interference

SPECTRA DRIVEN DESIGN OPTIMIZATION 

The better the load characteristics are known, the better the design  can be shaped according to life time requirements

WELDED MAGNESIUM JOINTS UNDER FULLY  REVERSED LOADING



Fatigue data for die casted magnesium material AZ31



S/N curves for different welding processes

DURABILITY IMPROVEMENT BY SUPERIOR  WELDING QUALITY

Manufacturing quality as significant parameter for durability performance

DIE CAST MAGNESIUM ALLOYS  MRI‐4 AND AZ‐91

Material performance level depends on type of cyclic loading

SHAPING LIGHTWEIGHT BY MATERIAL &  DESIGN ALTERNATIVES

GHG EMISSION OF COMPLETE LIFE‐TIME  MUST BE CONSIDERED 

Source: M.Goede, VW Group Research

CO2‐PROFILES IN THE PRODUCTION PHASE

1387 kg CO2 eq

1325 kg CO2 eq

1982 kg CO2 eq

 The usage of hot formed steel (MQB‐measures) already reduces the CO2 emissions in the production phase. Break‐even: 0 km  The usage of aluminum leads to an increase in CO2 imissions in the production phase Source: M.Goede, VW Group Research

Some examples from recent projects

THE SEAM CLUSTER

Advanced high volume affordable lightweighting for future electric vehicles Coordinator: VW

Liaison Team C.R.F, VW, fka, ViF, LBF, B&W

Modeling and testing for improved safety of key composite structures in alternatively powered vehicles Coordinator: fka

Enhanced lightweight design by advanced lightweight materials

Coordinator: Fraunhofer LBF

Safe small electric vehicles through advanced simulation methodologies Coordinator: ViF

THE SEAM CLUSTER ‐ PARTICIPANTS 6 projects, 54 partners, 11 countries

THE SEAM CLUSTER ‐ CONCEPT

SELECTED RESULTS OF ALIVE Multi‐material design of a 4‐seated EV‐BiW

weight target of 200 kg. incl. battery case almost achieved Source: Volkswagen Group Research, K-EFFG/L, 2015

SELECTED RESULTS OF ENLIGHT

all weight targets met (‐20% compared to ALIVE)

SELECTED RESULTS OF epsilon Lightweight rear axle 2

1

1: main structure (CFK) 2: connection to frame articulation (metal) 3: wheel carrier (metal) 4: connection with Watt linkeage (metal)

T‐Igel

3 4

12 kg (‐37%)

Outlook & Summary

RECENT TRENDS

EU‐LIVE design contest winner CityFlexx by Robert Hahn

Airbus 3D‐printed motorcycle

EDAG Coocon concept car ‐ 3D‐printed

ASPECTS OF THE RISING COMPLEXITY

Development Processes and Methods

Number of Vehicle Categories

Development Partners

Individualisation / Infrastructure

Platforms and Module Strategy

Development-Sites

Markets Legal Requirements

Source: A. Ofenheimer, Virtual Vehicle

Number of Derivatives

Mechatronics (Car2X, Assistance Systems, Electrification…)

ASPECTS OF THE RISING COMPLEXITY High topics require strong interdisciplinary approaches Energy Management Sustainable green powertrain concepts Real world impact (fuel consumption, emissions, noise, ADAS…) Product decisions cause costs and development strategy Frontloading: decisions and feasibility validation in early phase Highly virtualized or mixed (virtual + real) approaches Determine chains of effects and interrelations  System view has to be regarded from the beginning Consequent Systems Engineering approach System relevant information aggregation Experiencing system requirements, interrelations, and functions Source: A. Ofenheimer, Virtual Vehicle

RESEARCH NEEDS DEFINED BY ERTRAC

 Affordable lightweight and efficient vehicles    

Smart functionalisation & hybrid materials Smart composites Recycling through a circular economy approach Cost‐efficient manufacturing (e.g. forming, casting, heat treatment,  joining, anti‐corrosion…) of lightweight vehicles  Novel vehicle concepts 

RESEARCH NEEDS DEFINED BY ERTRAC

 Digital breakthrough of automotive development and manufacturing  Additive manufacturing process for industrial vehicle production including  parts and tooling  Digitalization and optimisation of product & production process utilizing  virtual tools, big data and connectivity  Virtual testing for  virtual automotive certification

 Competitive automotive innovation cycles  The complete virtual vehicle design & manufacturing development process  In‐service innovation (update and upgrade) and predictive maintenance  Holistic implementation of energy and resource efficiency technologies

CONCLUSION  Population and economic growth create a huge demand for transportation  Energy is »driving« transportation engineering – searching for more sustainable and efficient concepts related to transport &  vehicles  Lightweight helps to improve energy efficiency especially for passenger cars and trucks  Materials and manufacturing are enablers to come up with the most cost efficient and robust lightweight solutions  Lightweight design needs sophisticated methods for data acquisition, data processing, material characterization & fatigue testing, as well as design & development

Thank you very much for your attention!

Suggest Documents