Jul 2, 2018 - CO'c4. O. Od0~. 01%-U,. - n omr. L r. Mo0t r4 ,.4 r4 .-4. C; 8-~ 8-. 4 4 r. C. U; L ..... INr- v O ul oO~ rcoq. NrN % c. ,c. No cN m- u o -Ooa. I10. I -. 0.
AFGL-TR- 88-0067 ENVIRONMENTAL RESEARCH PAPERS. NO. 999
*,
-. p
N
,
High Resolution Infrared Spectroscopy of Carbon Dioxide and Nitrous Oxide at Elevated Temperatures MARK P. ESPLIN WILLIAM M. BAROWY RONALD J. HUPPI LAURENCE S. ROTHMAN GEORGE A. VANASSE
•I"
.
S %S, ,
11 March 1988
Approved for public rloeor
; distribution unlimited.
-7-
( OPTICAL PHYSICS DIVISION
JUL 271988
PROJECT 2310
AIR FORCE GEOPHYSICS LABORATORY HANSCOM I-
AFB, MA 01731
W
-WU
L-W
7.
AL-X
1W'
V
VI
I
-
16. -
-I~Nr Pur
ILIvw197
-SV W~W
W
Unclassified SECURITY CLASSIFICATION OF THIS PAGE Form Approved OM No. 704-0188
REPORT DOCUMENTATION PAGE a REPORT SECURITY CLASSIFICATION
Ib RESTRICTIVE
MARKINGS
Unclassified 3.
2a. SECURITY CLASSIFICATION AUTHORITY 2b. DECLASSIFICATION
DISTRIBUTION IAVAILABILITY OF REPORT
Approved for public release; Distribution unlimited.
DOWNGRADING SCHEDULE
S. MONITORING ORGANIZATION REPORT NUMBER(S)
4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AFGL- TR-88-0067
ERP, No. 999 6a. NAME OF PERFORMING ORGANIZATION
7a. NAME OF MONITORING ORGANIZATION
6b OFFICE SYMBOL
(if applicable)
Air Force Geophysics Laboratory Laboraory
_Air Force Geophysics Laboratory
OPI
7b. ADDRESS(City, State, and ZIP Code)
6c. ADDRESS (City, State, and ZIP Code)
Hanscom AFB Massachusetts
Hanscom AFB Massachusetts
01731
Ba. NAME OF ,jNDNG, SPONSORING ORGANIZAr ON
9 PROCUREMENT INSTRUMENT
8b OFFICE SYMBOL (If applicable)
01731-5000 IDENTIFICATION NUMBER
10. SOURCE OF FUNDING NUMBERS
5c. ADDRESS (Cry, State, and ZIP Code)
PROGRAM
PROJECT
TASK
IWORK
ELEMENT NO.
NO
NO
jACCESSION NO
61102F
2310
UNIT
12
Gi
'1 T!TLE (Include Security Classification)
!2
High Resolution Infrared Spectroscopy of Carbon Dioxide and Nitrous Oxide at Elevated Temperatures William M. Barowy , Ronald J. Huppi', PERSONAL AUTHOR(S) Mark P. Esplin, Laurence S. Rothman and George A. Vanasse 13b. TIME COVERED 3 FROMI Oct 85 TO
13a TYPE OF REPORT
Scientific Report 16. SUPPLEMENTARY NOTATION
*
14. DATE OF REPORT (Year, Month, Day)
15. PAGE COUNT
1
Dec 1988 March 11 70 *Stewart Radiance Laboratory, Utah State University
This research was partially supported under Contract F19628-83-C-0056 with Stewart 01730 Radiance Laboratory. Utah State University, 139 Great Road, Bedford, MA
>1W,
17. FIELD
COSATI CODES SUB-GROUP GROUP
-
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Interferometer
N 0
2 Molecular constants
High Resolution
High temperatures
19 ABSTRACT (Continue on reverse if necessary and identify by block number)
The AFGL High Resolution Interferometer has been used in conjunction with a high temperature absorption cell to ma~ke spectral measurements on CO
2
and N 2 0.
This
study includes the identification of over 11, 000 molecular transitions belonging to 7 different rotation-vibration bands of CO 2 and over 4100 lines belonging to 18 bands Many of the high J transitions for these bands have not been observed of N 0. previously. A weighted least-squares-fit technique was then used to obtain new effective
molecular constants for each of these bands.
20 DISTRIBUTION IAVAILABILITY OF ABSTRACT SAME AS RPT 0 OU'ICASSIFIED/UNLIMITED
*
22a
NAME OF RESPONSIBLE INDIVIDUAL
George A. OForm 1473, JUN 86
%
%,,.e.
_V
5%*
Vanass
21. ABSTRACT SECURITY CLASSIFICATION
Unclassified
DTIC USERS O
22b. TELEPHONE (Include Area Code)
(617) 377-3656 Previous editions are obsolete.
22c OFFICE SYMBOL
AFGL/OPI SECURITY CLASSIFICATION OF THS "AGE
Unclassified
0
Preface
The autaors would like to thank Denise Ivaldi for her help in preparing the -.
manuscript and Charles P. Dolan, Jr. for preparing the figures. This work was supported by the Air Force Office of Scientific Research (AFOSR) as part of AFGL Task 2310G1.
OI~
A,!cesinn For
0tAk
iii 1 Scil
iii-~
~ ~
i~X'j. A.
A.~A
~
;
\J
Contents *
1.
INTRODUCTION
I
2.
THEORETICAL BACKGROUND
2
3.
MEASUREMENTS PERFORMED
4
4.
THE EXPERIMENTAL SETUP
5
4. 1 4. 2 4.3 4.4 5.
6.
Reference Laser Beamsplitter Filter Wheel Data Acquisition System
7 9 10 10
N 2 0 MEASUREMENTS
12
5. 1 5.2 5.3
14 15 16
Treatment of the Data Data Analysis Software Results and Discussion
CONCLUSION
26
REFERENCE APPENDIX A:
27 N20 Line Position Listing
02
-
0
N Ii.4.
.
~
29
Illustrations
I.
Reference Laser Pressure Enclosure
2.
Design of Optical Filter Wheel
11
3.
N 0 Energy Level Diagram Showing Observed 2 rotation- Vibration Bands
17
4.
Comparison of Measured Line Positions With Those Computed Using Toth's and Guelachvili's Constant for the 1110e -0110e Band
21
5.
Comparison for the 0200 - 0000 Band
22
6.
Comparison for the 1200 - 0200 Band
23
7
Comparison for the 2000 +- 1000 Band
24
-.
Comparison for the 1001
23
.p.
- 0001 Band
76
Tables
1.
Summary of Results of High Temperature Studies
2.
Experimental Conditions for N 20, 6a = 0.006 cm-
13
3.
Observed N 2 0 Bands
18
4.
Effective Molecular Constants
19
!vi
0
'V
S%
*
vi
5
0
..
2 -.
High Resolution Infrared Spectroscopy of Carbon Dioxide and Nitrous Oxide at Elevated Temperatures
1. INTRODUCTION 9are minor constituents of the terrestrial atmosphere, they play leading roles in several current atmospheric problems. Both CO and N 0 are greenhouse gases, and while it is known that the atmospheric 2 2, -2- the impact of these trends on global concentrations of both gases is increasing;-In addition '1.4,5 to being a greenhouse is not yet adequately understood. temperature A in ozone chemistry. 14 gas, N 2 0 plays an indirect part In addition to the direct knowledge gained by studying the high temperature spectra of gases, these studies help increase the general understanding of the Although both/b.0
and
(Received for publication 2 March 1988) 1. Hudson, R.D. and Reed, E.I. (1979) The Stratosphere: Present and Future NASA Report 1049 2. Weiss, R.F. (1981) The temporal and spatial distribution of tropospheric 86(C8):71P5-7!95. nitrous oxide, J. Geophys. Res., 3. Wang, W. C., Yung, Y. L., Lacis, A. A. , Mo, T., and Hansen, J. E. (1976) Greenhouse effects due to man-made perturbations of trace gases, Science. 194(No. 4266):685-690. 4. Crutzeti, P.J. (1971) Ozone production rates in an oxygen, hydrogen, nitrogenoxide atmosphere, J. Geophys. Res., 76:7311-7327. World Meteorological Organization, Global Ozone Research and Monitoring Project, WMO Report No. 16 (1985).
0..
*5.
0
7.6
i, sics ot" moiecules." Heating a molecule makes possible the observations of molecular transitions originating from highly excited notation-vibration states. 'ihese observations can then be used to characterize the shape of the mclecula " potential function at increasing distances from the minimum of the potential function. The infrartd spectra of linear molecules like CO and N 0 are composed of 9 vibration bands made up of a number of nearly equally spaced rotation lines., high temperatures,
there is a great deal of overlapping of these bands.
lapping causes two main problems. spectrum becomes very high,
First, the line density in the experimental
requirinig high spectral resolution.
Soverlapping masks the regular structure of each band, ,-ent.
At
This over-
Second,
this
complicating line assicu-
To assign lines, it is very helpful to have wide continuous spectral coverace
so that entire band systems can be observed.
'A Fourier Spectrometer is ideally
suted to tne studv of high temperature gases since it meets both of these needs by , ro"iding iiyh resolution over a wide spectral region.
-
The AF(;I. high resolution Fourier Spectrometer has been used to carry out an wnuoing sttdv of atmospheric gases at elevated temperatures.
This report sim-
.. arizes the results that have been obtained during the present reporting period. >opctra were recorded of N9O and three different isotopic species of CO, in several dfferent wavelength regions. ten
The observed lines in the experimental spectra were
identified with individual molecular transitions for as many molecular transi-
tions as possible (over 12, 000 transitions).
The final step was to use a least-squares
fit to calculate new effective molecular constants.
2. THEORETICAL BACKGROUND
1. rom a fundamental point of view, CO properties. electronic '
.
2
and N20 possess similar physical
2
Both CO 2 and N 0 are linear, triatomic molecules.
2
62
They are iso-
and have a nuclei of nearly equal charge and mass. Only the electronic ground state of either molecule is significantly populated in the present experiment, vet its configuration plays an important role in determining the rotation-vibration energy levels.
This occurs through the coupling of the electronic spin or orbital
angular momentum to the motion of the nuclei. state of both (0 are zero,
in the ground electronic
and N 2 0 the net orbital and spin angular momenta of the electrons
so there is no net electronic angular momentum to couple with the motion
of the nuclei.
6.
2
However,
There is a Fermi resonance between the bending mode,
2V12,
and
Bowens-Jenkins, P. E., Cooper, D.L., and Richards, W.G. (1985) Ab initio computation of molecular similarity, J. Phys. Chem., 89(No. 11).
2
-
>
%
%
0
-
the symmetric stretching mode, and
v1' in both molecules. Coriolis interactions 8 interaction Coriolis The molecules. both for occur also I-type doubling
occurs because as the mrolecile rotates,
the asymmetric stretching mode V3 be-
comes coupled with the bending mode v 2 " For vibrational bands where the doubling interaction occurs, levels; an "e"
each rotation-vibration energy level splits into two
level with a symmetric wave function, and an "f" level with an anti-
symmetric wave function. .
1- type
The degeneracy of the e and the f energy levels is
removed bv the rotation of the molecule. In several respects,
however,
CO
differs from N 0.
between the two moulecules is the symmetry.
CO
2
where the Nc) structure is asymmetric N-N-O. greatly affect the nature of the spectra.
The main difference
has a symmetric structure
-C-()
These symmetry differences
Due to the symmetry of the CO
transitions involving the symmetry stretch mode,
P1,
molecule,
are not dipole allowed.
In
addition, alternating lines are missing from rotation-vibration transitions (they have zero statisti'al 0
tw,ht).
if both of the oxygen atoms in the CO
2
molecule are
not of equal mass, the symmetry of the molecule is broken and the character of the spectrum becomes more like that of N 0. This study covered both the sym12162 131602 12C1802 metric isotopic species 12C 1 0 1 and C10 and the asymmetric 12 16 18 13 16 18 13 16 17
species
C
010,
0
0, and
C
0
0.
The rotation-vibration energy term values, T(v, J), of a linear molecule can be expressed as a power series in J(J+ 1),
J) = G Sv -v,B v J(J+ i) where Gv
,
B
,
-
that is
2 D v [J(J+ 1)]2 + H v [J(J+
)]
3
+ L V[J(J+ 1)]
and so on, are effective molecular constants.
4
(1)
Each line in the
experimental spectra corresponds to the transition between a pair of rotationvibration states.
For those bands where 1-type doubling occurs (Q > 0) two sets
of effective molecular constants are used, one for the e levels and the other for the f levclz. The notation of the vibrational states that were used for N 2 0 and CO ent. *
7.
*
For CO
.
2
the AFGL notation
was used.
Tidwell, E.D., Plyler, E.K., and Benedict, W.S. (1960) Vibration-rotation bands of N 2 0, J. Opt. Soc. Am., 50(Na. 12):1243. .
..
For N20 the notation was vIv2IV 3
is differ-
lerzberg, G. (1945) Molecular Spectra and Molecular Structure, Van Nostran Reinhold, New York.
Vol.
II,
McClatchey, R.A., Benedict, W.S., Clough, S.A., Burch, D.E., Calfee, Fox, K., Rothman, L.S., and Garing, J.S. (1973)AFCRL-Atmospheric Absorption Line Parameters Compilation, AFCRL-TR-73-0096, AD 762904.
3
L..
%.,.
.1
.
.
.
FH.F.,
In the AFGL notation the vibrational states are identified by v 1 v 2 1v
3
r,
where "r"
is the ranking index assigned to each member of a Fermi resonating group of levels.
When a state is not involved in Fermi resonance,
r = 1 and the AFGL
notation is essentially the same as the notation used for N20. is present the ranking index,
r, is appended to the quantum numbers of the inter-
acting state with the highest v .
For example,
the AFGL notation for the two states
10 0 and 02 00, which are highly mixed by Fermi resonance,
%
When Fermi resonance
is 10001 and 10002.
3. MEASUREMENTS PERFORMED
The Air Force Geophysics Laboratory high resolution interferometer was used in conjunction with a high temperature absorption cell to make the spectral measurements.
The N 0 and CO
22
heated to temperatures up to 800K. S
samples that were used in the study were The N 2 0 spectra were taken in the 8 Am
region using a N 20 sample of natural isotopic abundance.
The CO
2
spectra were
taken in the 2. 8 Atm and 4. 3 pm regions. Three different isotopic samples of CO •13 C, 2 C a sample enriched in ,ere used, a sample of natural isotopic abundance, -ind one enriched in 180. As parts of this work have been completed, the results have been incorporated into two previous AFGL Technical Reports. 10, 11 Table 1 •
gives a summary of where these results, including line positions, can be found for each molecule and spectral region. These results have also been published in The Journal of Molecular Spectroscopy. In addition, the information on line position of CO 2 have been incorporated into the 1986 edition of the AFGL HITRAN 14
10.
i.
Esplin, M. P.. Sakai, H., Rothman, L. S., Vanasse, G.A., Barowy, W. M., and Huppi, R. J. (1986) Carbon Dioxide Line Positions in the 2.8 and 4.3 Micron Regions at 800 Kelvin, AFGL-TR-86-0046, ADA 173808. Barowy, W.M., Esplin, M.P., Vanasse, G.A., and Huppi, R. J. (1987) Medium- and Long-Wave Infrared Absorption Spec'tra J" Carbon Dioxide
and Nitrous Oxide at 800K,
AFGL-TR-87-0016,
ADA 179430.
12.
Esplin, M. P., and Rothman, L. S. (1983) Spectral measurements of high temperature isotopic carbon dioxide in the 4. 3 pm-region, J. Mol. Spectrosc., 116:351.
13.
Esplin, M.P., and Rothman, L. S. (1986) Spectral measurements of high temperature isotopic carbon dioxide in the 4.5- and 2. 8-pm regions, J. Mol. Spectrosc., 100:193. Rothman, L.S., Gamache, R. R., Goldman, A., Brown, L. R. Toth, R. A., Pickett, H. M., Poynter, R. L., Flaud, J. -M, Camy-Peyret, C., Barbe, A., Husson, N., Rinsland, C.P., and Smith, M.A.H. (1987) the HITRAN database: 1986 edition, App. Opt., 26:4058.
14.
4
LL
Table 1.
Number of Bands
Molecule
14
N
16~ 9
60
2C 60
Il 16 02 13
Summary of Results of High Temperature Studies
,
Wavelength Region (4im)
8
19
4.3
A.GL-TR-86-0046
1.5
4.3
AFGL-TR-86-0046
4.4
\FGL-TR-86-0046
4.03
TR-86-0046
185 12 16 .?43AFG,12 C18 C80.\FGI-TP-86-0046 5 12
C
0
18
,
)
12C 160 180
5
4.4
AFGL-TR-87-0016
13
1
4.4
AFGL- TiI-86-0046
16022. "16012 C 0 2
10
2. 7
AFGL-TR-86-0046
12C 16(
10
2.8
AFGL-TR-86-0046
2.8
AFGL-TR-86-0046
C 160170
16
12
II.
16
Fhis report
18
00
C
Where Results Reported
C
18
2
22
ADA 173808 ADA 179430
4. THE EXPERIMENTAL SETL
The experimental apparatus consists of an infrared source, a high temperature absorption cell and the AFGL high resolution interferometer. was used as the source of the infrared energy. used has been described previously.
A Nernst glower
The high temperature cell that was
The central one-meter section of this cell
can be heated to 800K and is triple passed using the Pfund configuration. total absorption path of the cell is 3. 5 meters,
15.
3 meters of uniform high
Dalton, W. S. , and Sakai, H. (1980) Absorption cell for the infrared 19:2413. spectroscopy of heated gas, Appl. Opt., 5
The
temperat'.
; and 1/4 meter oL, each end of the cell where the temperature: drops to
near A-,oient.
Significant features of the AI'CGL High Resolution tnterferometer
irc.ude the use of cat's eve retvo-reflectors,
%
step and integrate insteau of con-
tinUOUS carriage motion, and a digital demodulation and integration scheme. The primary advantage of cat's eve retro-reflectors over flat mirrors is that cat's evPs are insensitive to tilt making it much easier to maintain alignment as the interferometer is scanned.
A cat's eve retro-reflectur' a,-,o latera!l% displaces
input and output beams making it possible to access both output beams. The optical signals from these two beams are complernentary and so it is possible to se 'w, detectors and operate them in a push-pull mode thus canceling out common mrode Using dual detectors also helps to reduce the effects of nonlinear 16 The two Cu:Ge detectors of the AFGL high resolution interferometer" detectors. errors.
are mounted in the same liquid helium dewar.
Using only one dewar reduces cool-
It also helps match the conditions experienced ing costs and increases convenience. bv the twro detectors making the common mode rejection work better. In our ipparatus the infrared beam is chopped before entering the high tempera-
*
ture absorption cell. integrated digitallh.
The infrared signals are then detected,
demodulated,
and
The digital data system allows for fast settling time after a
step, but long integration time during data taking.
It is also used to compensate
(W, small amounts of chopper jitter ind slight phase variations between the two complementary infrared channels. Several components of the experimental apparatus have been reworked during 10, 11 Previously, the maximum usable wavelength of the this reporting period. interferometer was about 7 4 m,
but by installing a KBr beamsplitter and Ge:(iu
detectors the usable wavelength coverage has been extended to approximately 20 pkm.
In addition to
The infrared source chamber was also totally rebuilt.
these modifications,
others are underway to increase the accuracy,
and ease of use of the interferometer.
reliability,
These additions include a new stabilized
reference laser, an improved KBr benrmsplitter,
a remotelv operable filter wheel,
and a new data sYstem.
16.
(iuelachvili, G. (1986) Distortion free interferograms in Fourier transform 25:4644. spectroscopy with nonlinear detectors, Appl. Opt.
'pi !
°p.
...................................................... !~. 6 %%
-
4.1 Reference Laser
..
A nek stabilized reference laser, a Laboratory for Science Model 220, has been installed in the interferometer. than 50 kHz /dav.
It has a long-term frequency drift of less
Long-term stability is particularly important for use with a
step and integrate interferometer like the AFGL high resolution interferometer where each spectral scan can rauire up to 15 hours.
If the potential stability of
the laser is to be realized, the laser must be maintained in a controlled environment. In addition to controlling the physical environment for the laser, retroreflections of the laser beam must also be controlled. The laser head of the Laboratory for Science Model 220 laser is physically separate from the power supply and most of the other electronics.
It is only the
laser head that must be placed in a controlled environment. The interferometer is operated in a vacuum, but the laser must be kept at atmospheric pressure so the laser head was placed in a pressurized enclosure and cables routed to the
-A
exterior of the vacuum chamber where the rest of the electronics were located. The previous reference laser also needed to be maintained at atmoxspheric pressure, but due to different mechanical designs of the two lasers it was not possible to place the new laser in the old laser enclosure; thus it was necessary to design and construct a new laser enclosure.
The design of this enclosure is given in Figure 1.
The long term stability of the laser is very sensitive to maintaining the laser h
-bond
at a fixed temperature.
an elevated temperature.
To do this, we maintain the laser head packaging at
This presents a problem because the pressure enclosure
must provide adequate ventilation to prevent temperature buildup.
The laser head
can be cooled by circulating air through the enclosure if extreme caution is used to ensure that the air flow is larminar. Passing the laser beam through a turbulent airflow would introduce fluctuation in the laser beam and turbulent air around the laser head would interfere with the operation of the laser cavity length servo.
I:.: • Ir "
%
0)
-A,
-
-
--
4Q-
ID
or
my
U
U
-
z
n
,...-.
An additional complication arises since the reference laser uses transverse
Z.eeman stabilization. reflected radiation.
This method o)f stabilization is very susceptible to retroCareful design was needed to insure that retro-reflected
energv from the interferorneter did not reenter the laser. An interferometer 1ie the Al-GL High Resolution Interferometer that uses cat's eye retro-reflectors is ."sceptible
Backscattered radiation
to backscatte red radiation problems.
comes prtmrilv from the cat's evc secondary where the laser beam is brought to a >',1s.
\ smll prticle of dust or surface imperfection on the secondary can
easil, scatter ,:onsiderable light back into the laser.
.-
We have found that a neutral
"_ensit'v filter provided adequate isolation from backscattered radiation. Passing the beam through a neutral densitv filter reduces backscattered radiation since the light that is backscattered has to pass through the filter twice while the desired -tput beam only p'asses trr'ouclh the filter once. Savitn
n attenuation o ' 10 will reduce
Hence, a neutral density filter
the backscattered
by a factor (f
radiation
100.
The new laser is more poweful than the old laser, so the reduction in intensiY by
*
tactur of 10 is not a serious problem.
If it proves necessary in the future,
'ery much hiuher levels of isolation can be accomplished by passing the laser beam throuh a:polrizer and a quarterwave plate. 4.2 Beamsplitter
•"
Fhe KBr beamsplitter used in the AFGL High Resolution Interferometer to perform the N.0 measurements had some deficiencies and so has now been rep!ced. It had been in storage for a number of years and had lost some of its flatness, alth, ,igh it performed satisfactorily in the longer wavelength regions used for the N,2 U measurements.
'.
In addition,
the beamsplitter coating was such
that the RT product of the beamsplitter was low in the 4 jAm region.
The coatings
on the old beamsplitter consisted of a single layer of germanium. The germanium coatig was thicker on the portion of the beamsplitter used for the infrared than for rhe reference laser. The new beamsplitter uses different coating materials
?' 0
for the two regions. The most serious problem with the old beamsplitter was that the germanium coating used for the reference laser was excessively absorbing. S',.,'as
The absorption
high enough to make the beamsplitter appear more like a metallic than a The difference between an interferometer using a metallic
dielectric beamsplitter.
beamsplitter and a dielectric beamsplitter is the phase between the two beams. A ith a metallic beansplitter the outputs of the two beams are in phase while with a 17 dielectric beamsplitter they are complementary. With a dielectric beamsplitter.
I
17.
Mertz,
[.. (165) Trnnsformation in Optics,
John 'liley.
OA.
New York.
.
0z
-',?
I
%
,%.,
.
since the signals from the two detectors are complementary,
%%
it is possible to
:perate the electronics in a push-pull mode resulting in common-mode
rejection.
"Aith the old KBr beamsplitter it was possible to operate the infrared detectors in a complementary manner, but not the laser reference detectors.
With the new
beamsplitter it will be possible to operate both the infrared and the laser reference 6
detectors in a complementary mode. 4.3 Filter Wheel Although a .Michelson Interferometer can cover a very wide wavelength range, the photon noise produced at each spectral interval is spread through the entire spectrum.
Hence,
higher signal-to-noise ratios are attained if the wavelength
range of the input radiation is limited with an optical filter.
-
Since this optical
filter is located inside the interferometer enclosure, it was necessary to deflate the vibration isolation pads and bring the interferometer enclosure to atmospheric
0
pressure to change this optical filter.
Since the AFGL High Resolution Interferom-
.eter is a slow scanning instrument (up to 15 hours),
Sinstrument
is extremely critical.
the long-term stability of the
More consistent results are obtained if the
mntrferometer is allowed to equilibrate for several days after having been opened.
-S.I
fence changing the optical filter resulted in several days of lost opportunity to take data.
To get around this problem a six posi+ion filter wheel has been installed
in the interferometer vacuum enclosure that can be operated from outside of the vacuum tank.
The design of this filter wheel is shown in Figure 2.
4.4 Data Aquisition System A new data svstem is currently being implemented using an IBM AT compatible computer to replace the old system which was based on an outdated PDP 8/e computer. With the PDP 8/e system, only data acquisition and control of the interferometer were performed locally, and all subsequent processing of the data was perfcrmed using a Control Data mainframe computer.
With the new system, much
more of the processing of the data will be possible locally.
The ability to perform
quick-look" checks on the data before transferring it to the mainframe will be particularly valuable.
Given the rapid progress in the computer industry,
in the
near future it should be possible to obtain a microcomputer with sufficiently high performance to perform the entire data processing on a microcomputer.
10
1% .
01 I"
V0%I
% % '% ,-%N V %-.N . ,
N
0
)
_ -'.
''
"The
.. :
.for :a
" .,tthe 40 ¢-.:quired ,.'. •
.
Design of Optical Filter Wheel
main advantages of using an IBM PC for an interferometer controller are
use as a programmable controller than an IBM PC computer.
The PDP 8/e is
synchronous machine with a very simple non-intrusive operating system.
With
PDP 8 /e, the computer is never servicing an interrupt when a time critical operation is in progress. Also since the PDP 8/e is synchronous, the time reto perform each instruction is always the same, making it possible to perform timing by using the speed of the computer instructions themselves.
."IB.N
•
Figure 2.
low costs and the flexibility made possible by the large number of available hardware and software options. However in many ways, the PDP 8/e was better suited
0 : , ,'
'
PC on the other hand,
With an
since the time required to perform a given operation
is not constant, the computer cannot be counted on to perform time critical operations without the aid of additional hardware. (In principle it is possible to turn off
the interrupt on the IBM PC, but since the operating system 'ind the hardware of
the computer are very closely integrated this is iiot a very,, satisfactory solution. the manufacturers of the d;ta These disadvantages are largely ovcrcome b',' acquisition systems supplying complete data acquisition subsystems instead of For example, the MetraByte Dash- 16 just simple analog to digital converters. board used in the new data acquisition system includes, in addition to the analog to digital converters,
timing and logic circuits as well as the necessary software
drives to use them. The new data acquisition and control software is written in FORTRAN 77, in contrast to the old PDP 8/e system which was written in absolute loaded assembly language. efficiently,
Assembly language programs in general tend to use the hardware more but they are also much more dependent on the details of the hardware.
The reason we have been using a PDP 8ie long after it has become ouzoi te is because of the high manpower cost required to rewrite the data acquisition and control program to make use of new hardware.
It should be relatively easy to
modify the new system to keep up with advances in hardware.
The ease of
programming in a higher level language and the availability of commercially available graphics and mathematical software, also makes it practical to write
"-'
software which is considerably easier to use and much more capable.
2.O MEASUREMENTS
Spectra were measured at several different temperatures and pressures to facilitate the line assignment process and to maximize the number of spectral lines measured under optimum conditions.
.f
After checking each of these spectra for
consistency, they were co-added to obtain one spectrum for each temperature and The experimental conditions under which spectra were measured and pressure. the number of experimental spectra taken are listed in Table 2.
Measurements of
the spectrum ot the empty absorption cell were interspersed between the N 0 spectra.
These empty cell measurements were used to determine the 100 percent
transmission levels. The maximum retardation of the interferometer for all -1I spectra was 83 cm, resulting in a resolution of 0. 006 cm
%%." 'a
.
12
a,.'
"%
'pZ
Table
2.
Experimental Conditions for N 20,
a6 = 0.006 cmof
VNumber
Pressure
Temperature
Spectra 2
300K
1.0 Torr
2
473K
2.3 Torr
2
473K
9.0 Torr
2
800K
4.0 Torr
2
800K
15.
Torr
Additional spectra not included in Table 2 were the first obtained at 800K; however, few absorption features were observed. first samples run at 800K.
it appears plausible that the high temperatui'e N 2 0 was
reacting with the walls of the cell. further loss of N 2 0,
As these were spectra of the
Residue from the initial reactions prevented
enabling successful recording of the interferograms that
Vfollowed. The spectra were calibrated using an internal calibration technique.
Toth has
publihed apape18 published a paper 1in which he reports the analysis of room temperature N2 0
spectra that were taken using the high resolution Fourier spectrometer located in the McMath solar telescope facility at the Kitt Peak National Observatory.
Since
his data were taken at room temperature the lines that he observed do not extend to as high rotational states (J values) as in this work.
The calibration was per-
formed by adjusting the wavelength scale of the observed spectra until, on the average,
the observed line positions for the low J lines matched the values obtained
by Toth. During the calibration process it was noted that there were some systematic between the positions of strong and weak lines in spectra taken at high
* •shifts
temperatures.
This effect is presently being investigated, but is probably due to
non-uniform illumination of the detectors causing a slightly asymmetric instrumental line shape. *
Evidence to support this conclusion is that the quality of the infrared
has been observed to be much poorer at the higher temperatures than at room
.beam
temperature.
18.
The primary cause of this beam degradation was probably due to the
Toth, R.A. (1986) Frequencies of N 20 in the 1100 to 1440 cm 3:1263. J. Opt. Soc. Am.,
rxl 13
%0
region.
distortion of the mirrors in the absorption cell as the cell was heated.
Even for
1fundamental where this effect was most noticeable, the cm 0007 0. error was only
5.1 Treatment of the Data The line assignments for each band were performed b
starting at low J, where
Toth's molecular constants were valid, and working to high .1. assignments had been made,
After the line
data from all the different temperatures and pressures
were combined into a single data set and a final weighted least-squares-fit was performed to obtain new effective molecular constants. were identified in the experimental spectrum, squares-fit,
due to line merging problems.
Although over 4100 lines
only 3454 were used in the least-
Many of the remaining lines were
slightly affected by the presence of close-by spectral lines.
These slightly merged
lines were included in the least-squares fit, but with reduced weighting.
Each
band was fit independently without making any attempt to combine the information from the various bands into a single global self-consistent set of energy levels for the N 2 0 molecule. In order that this weighted least- squares-fitting procedure could be used,
it
was necessary that an estimate of the uncertainty of each experimental line be made.
The weight assigned each spectral line was the reciprocal of the expected
uncertainty squared. V
of each line were:
The factors that went into calculating the expected uncertainty
the random experimental noise in the spectrum, line asymmetry,
abnormal width of spectral lines, and inconsistencies of line positions compared to other lines in the same band.
The total uncertainty for each line was defined as
the square root of the sum of squares of the individual uncertainties. details of the methods used to determine the were described in a previous report. 10 -"
Further
weights for the least-squares-fits
The most noticeable effect of using a weight for each spectral line was to substantially reduce the uncertainty in the spectroscopic constants as predicted by the least-squares-fitting program.
However, the spectral line positions calculated
using the resulting constants were found to be quite insensitive to the values of the weights chosen.
This indicates that the effects of line merging on the position
of spectral lines were essentially random for the high temperature spectra con*
sidered in this study.
14
5.2 Data Analysis Software Even though the data analysis software had been used in analyzing asymmetric species of CO
2
that have similar structure to N 20 it was still necessary to modify
the software to take into account that N 2 0 is less "harmonic oscillator like" than CO 2 . The energy expansion in terms of G, B, D, and H doesn't work as well, so it was neccsary to include an additional term, L. This is partly due to the fact that Coriolis perturbation plays a larger role with N 2 0 than it does with CO 2 . Adding L's to the fitting program made it necessary to change the format of the molecular constant data files and the formats of all the subsequent programs that use these molecular constant files. In working with the least-squares-fitting program it became apparent that because of numerical instabilities adding L's was more involved than just adding The3 relative size - 18of the constants that
an additional term to the fitting function.
were being fitted ranged from the order of 103 for G to 10-
for L.
This large
variation in the size of the fitted parameters created problems with numerical roundoff in the inversion of the matrix that was used to obtain least-squares-fit to molecular constants. It was found that the numerical stability of the molecular constants was considerably improved by scaling the constants and including their order of magnitude into the fitting equation.
Therefore in the numerical matrix
inversion and in the determination of the constants all the constants were of nearly
the same magnitude.
If it would have been necessary, additional least-squares
techniques could have been used to reduce the numerical instabilities further. In addition to changing the software to include L's, several other changes were made to make the software easier to modify in the future. One of these changes was to convert the programs from Control Data Corporation FORTRAN IV to generic FORTRAN 77. Converting to FORTRAN 77 also eliminated the inconvenience of being tied to a single computer.
e
There are many advantages in using more than one computer to perform data analysis. The computer work was performed partly on an IBM-PC compatible and
-,
partly with a Control Data Corporation (CDC) mainframe computer.
Due to the more
convenient operating environment and better editors, it was found to be more productive to perform program editing as well as much of the program development on an IBM-PC compatible. However, most of the actual data analysis was per* Oformed
using the CDC mainframe due to faster execution speeds and larger disk storage size.
An additional advantage of using two computers, with different word
sizes and which handle floating point calculation differently, is the ability to quickly detect numerical roundoff in the algorithms that are being used.
The same calcula-
tion can be run on both computers and the results compared, thus checking for numerical roundoff.
a,
15
..
..
' /- .
5.3 Results and Discussion The 1," rotation-vib ration bands of N._()for which molecudar constants were
,btained are indicated on the energy level diagram of -igure 3.
The ratge of
P and R lines used in the least-squa req fits, the total number of lines, and the rms er-or for e ch band is given in Table 3. The effective molecular tuiitants which were obtained are given in Table 4. The line position, observed minus calculated, and expected uncertainty of each line used in the least-squares-fit %oixen in the appendix.
re
These constants are effective molecular constants and so
should not be expected to accurately represent the internal structure of the N2) molecule.
The purpose of these effective constants is to provide a means of reproducing, within the experimental accuracy, the position of spectral lines over the range of ,Jvalues covered by the measurements !see Tal e 3). There are . 2reat many interactions between different vibrational states for u-e ",() molecule.
The effects of these interactions are accounted for by allowing the different t-ffective molecular constants to float freely in the least-squares-fit of each band. SMIolecular
constants obtained in this manner are not self-consistent.
Lor example,
the molecular constants obtained for the vibrational state 1110 from the 1l1 I - 0110 bnd a-e not consistent with those obtained from the 1310 - 1110 band. An interesting bbservation that becomes apparent from studying both CO, and N.)0 is that the interactions between levels not involved in Fermi resonances are much stronger for N20 than for CO 9 . These interactions result in N 2 0 being less "harmonic oscillator like" than CO 2 . The effects of these interactions can be seen in Table 4 in the magnitude of the inconsistencies of effective molecular con4
stants determined from different bands and from the extremely large values for L's which are obtained for some bands. Each band was fit twice, once using L's and once without.
The spectroscopic
constants (L' for the upper state and L" for the lower state) were included in the final least-squares fit only when their inclusion markedly improved the quality of the fit ka reduction in the rms error of more than 20 percent) and the uncertainties
•
in L were smaller than the value of L for both the upper and the lower states. Occasionally, an exception was made for bands where 1-type doubling was present S'S
(bands where I > 0). If the e levels indicated the need of an L and the f levels did not, for consistency L's were used for both sets of levels.
0
16
%0
%01
21 10
122n
2000
20220)
12
01031
I...
.
2(0
.
2
0130
[
(T7T *()
p,. 0;
%-
Rotation Vibra
on
10 0-
G 03
.,
-
0r00
10
1-'
1
0% m
ii
17
l[ [1
-
1
Table 3.
Transition
a.
-
*
* %
N
V
)bserved -N-) Bands
Band Center " (cm 1)
Range of Measurement
Number of Lines
RMS Error x10, cm-i
1 3 3 3
1000 ll10e lll0f *.0200 0310e 0310f 1200 1200 1220e 1220f 2000 0400 0420e 0420f 1310e 1310f 1310e 1310f 1330e 1330f 0530e 0530f 2110e
0000 0110e OllOf 0000 0110e OllOf 0200 1000 0220e 0220f 1000 0200 0220e 0220f 0310e 0310f lll0e 1ll0f 033 0e 0330f 0330e 0330f lll0e
1284.9027 1291.4978 1.291.4978 1168.1319 1160.2973 1160.2973 1293.8641 1177.0927 1297.0542 1297.0542 1278.4359 1154.4403 1153.3767 1153.3767 1297.1481 1297.1481 1165.9488 1165.9488 1301.8082 1301.8082 1147.1321 1147.1321 1285.5881
P'105-R(104) P( 90)-R(100) P( 94)-R( 95) P( 83)-R( 82) ?( 73)-R( 73) P( 75)-R( 66) P( 89)-R( 88) P( 64)-R( 62) P( 83)-R( 83) ?' 89)-R( 86) P( 93)-R( 90) ?( 63)-R( 68) P( 59)-R( 59) P( 65)-R( 64) ?( 83)-R( 84) P( 86)-R( 80) P( 58)-R( 54) P( 60)-R( 55) P( 86)-R( 81) P( 81)-R( 81) P( 53)-R( 59) P( 50)-R( 60) P( 86)-R( 84)
205 181 176 156 137 132 162 104 155 147 157 113 101 102 125 124 60 61 136 142 74 130
3 5 9 7 5 5 9 8 8 9 13 14 5
2110f 1001 1400 1420e
IllOf 0001 0400 04 20e
1285.5881 1257.0628 1298.3692 1300.4682
F( P( P( P(
77) 68) 64) 65)
124 100 85 87
4 6 7 9
l420f
0420f
1300.4682
P( 75)-R( 64)
98
9
84)-R( 77)-R( 57)-R( 59)-R(
74
4
3 3 5 7
ao
0
.
3
Io
-a-------
-
nr
'-
vw
wrrw
~
T~r~.-'
%~
-'fl~-~~
a'
.
9-,~-,=,
~
-g
U-t-U--
-ufE>~
-:
%
il
C
0_c___
I
LO 0
O 0
1-4 L
r-
N 0
(n
-N
C) o
r4
7,
-r
r
'
H
-4
~.
N.
.
r
-
c
nLc
4 .
.*
.
)
.J
4
0m
4c
-
or
.
qp14r *
0O
o
o
D
,'
NC4-4 .
.
T
-r
'
N
.~
.
n -
o
-- HN .
LC) qT
I
1-1 00I)(
c
q
.~
oLnC
omv
w
o
)140L)r -
.'
(n
(
Ic0
0C
om
r-r
-4 w
Ic
I
Lc)
0a -4- n
r
..
C)
Nn
N
H
.~
N
1.
.
.
.j
,"
14
N .j
L)c
0
.j
N
HN
.j
.j
4
.j
.j
N .j
.j
4-
~~-4 x.
*
C
CO
Njr: LN (
-n
4l
r,
-
-
MM
0"
-1
4O
NN -1
C;U' Li' Lf N~-
IN
'4.
Tr
1i C.
-
-
N
I
or40O
n0r
%0Na
.
~co
.
mN O~co
NN
-tN'
QL
ie~n0 I
1--iN~c
-N
0,a %
v-NNwr m n CNcl-4 en N )00 Cy Lr 40 N
(N V~e N H-
ommqr o Ili o%0r Z )L om Or 'H0 I (-
N-'C-4N-44
U)~O(
.
HH
H-4
NN 0
411~ 4NN ?N
0mM
a:u
NNNn
H0r-4
- i-C
T
NNCN-
tD r-
1-4 N
IT*
-W~ -T~ -IT
N
.
N'c wj
.
.
NH OC
mv
-v
4
wj
.
0cr 00
D'
0 0?~~mco o r oO 40" f DL l I Dqrr 44r-
r4 0
4-
-W~ vj
N r
l -4
rn r-
N
.
~(
?Nn0O~O MO
.
r-
r-
1 4
r-100
1-1 -4HH44
N
-4
IW
4
vj
Tj
H
qM
r-
m
r-
00o
4 1-4 r -'4
-4 r-4
*j
Nj qj.
wj
.*.
rj
.
OC COC vvo
wj
~
co
4 4N N vj
.
00 l
4 NNC
CC 0
tnm
CO
-4 -4
4 -'4
4-4 ' A
N(1e-q.-i
N00
0
19 %
-
-vC On co O r o1 D )0 OZ0
N -I0 owr ,L
C ONcm
" z
wD
.
0(
4-4 14 1.4
0
j
-
.
Oc -
ITj
.
J *
Nr
0 4 r-4 u'n U) .-
jj'N~N~Nj
%
(ON?(
IM0
)-4,
Nd co C 0,-4
0
0
-4NC- -4 -44 -
-
4
a0
4
K
-1-4
H -4
"00N
N N
4-
N
-
q-4
-Jw-o
One of the most common w tv,s to deal
.w-ith
small interactions between rotition-
vibration states is through the use of contact transformations.
.Assuming that thi
tecnnique is valid, the two sets of spectros( :pic constants that occur for bands 19 where I -type cloubling occurs are not independent. For these bands, several of the spectroscopic constants for the e and the f sets of levels should be constrained to be equal. a function of 1.
This interdependence between sets of rotational constants is
When 1
constrained to be equal. ',,'e
rotational constants B so on.
1, the vibrational term values G hen
= '2,in addition to having G
and Bf should be equal.
When
should be
equal to G,
the
I= 3, then D e = D I;
These constraints seemed to work very well for the
in this study,
and G
()()
and
bands considereu
but for N () they seemed to be causing some problems with the tits.
2
tine of th- things that will be investigated as part of future efforts is whetier tnese
c.nstraints should be dropped for N.2(). The residual to the least-square-s-fits are plotted in --igures 4-8 for severi. rot 0
- tition-vi-:aton bands.
The NO line positions calculated using the molecular
constants reported by other researchers are also indicated on these ",'0 18 same plots. -or low lines, the N2L) 0 positions of noth Guelachvili 2and Toth are within the experimental error of the results presented in this report, but at higher J the
!reasurements start to diverg2e. ind Toth
T'his result is not surprising since both (Guei chvili
i:sed room temperature absorption cells.
Of the two rreasurements Toth's
is the most recent and covers , larger number of rotation-vibration bands. line positions reported by Toth arc
The
iiso in better agreement with the values
reported in this study than are Guelachvilis line positions. Although .'oth's low values are very accurate, the,,, cannot be used to extrapolate the position of
A.,
the high J lines observed in this study. * '[to
predict the position of the high J lines, as 0.05 c,
A riat, G.
-I.
For example if Toths constants were used the error would sometimes be js large
(see iigure 8).
,
And N iels en, 1l. f t.
195 8)ib
ra tional I1-tyvpe doubling anid
resonance in linear polvatomic molecules, 20.
J. Mol.
Spectrosc. ,
I -ty-pe
2:152.
Guelachvil, G. (1982) Absolute N,() wavenumbers between 1118 and 1343 cm by Fourier transform spectrnscopy, Can. J. Phys., 60: 1334.
02
-20 % %
NI ..
3
0
0.0
,,0
SPBANC
0M
-n
*~ 0.01
MzJ-
R BRANCH
+MEASURED VALUES
+20
QToth -~-Guelachvili
-3. 02
-0.03
-0.
-NGeacvl N_
3
""-
-
Figure 4.
0 .0
Comparison -,.0 of Measured Line Positions With Those
Computed Using Toth's and Guelachvili's Constants for the 1110e 01Ie Band -4-.o
-2
0 '
o
."
,.
1
0
,
,yq
I
4
W%
2.05
',%1
E
,- ,0
Guelachvili
M=-J P BRANCH M=Jl R BRANCH
S0,o3
HEASUREO VALUES
02
Toth
0.01 /M 3.
•
-S(i
-30
-IC
10
30
50
-0.01 %, *
-0. 02
-0.03 -0. 04
-0.05
Figure 5.
Z2"2
~22
Comparison for the 0200
0000 Band
70
+
90
-
-WWVWw-f
Irv vrw
v
T,
r
f
vw
ywv
a
v
0.05
0. 0~4 0,03
M=-J P BRANCH M=J+I R BRANCH
0. 02
+ MEASURED VALUES
0.01
/
Toth
E -0.02 (n
' ,,,
-0.03
-o
-0.04 -0.05
Figure 6.
Conparison for the 1200
23 I
-
0200 Band
-
V.'-w V-
~0.05
.
M~=-J PR BRANCH BRANCH *MEASURED VALUES
8o E,.-
-M=J.l,4
Nm
""'-.
uo. 03
+
+
ft
0. 02 '5..
L "
1
ft0.0
/
,---tQoo'
8"
-60
-,0
-20
-. 02
20
40
30
0(
-a0.03 -0.0
-0.01
loth,
*
-- 0
-0
-igu0
7.~
0
-20aionfrh
200
+-
000Ba0
.. ft.
-0.01
244
%% -p
,p4. -'f,.24 ,t,.,
0.05
loth
"0.04
H=-J P BRANCH ~M=J.R BRANCH
--
+
0.3
MEASURED VALUES
, 0. 02
-0.01
.A
A+ ~-80+
60~
*+
-40
-2
0
++
201+
0.1
+ 4~0
+80
-0.02 -0.03
0
-0.04
-0, 05
Figure 8.
Comparison for the 1001
%'2
.,
, ,
25
-
0001 Band
+
0
-+,..+.,,.
,
+-
... '+= ..
+
,-
+cr y++
-
N.. V -
fl
nn +
l
+.'t
-
Irsru I
,
l
:n, II ++ -*'
w=+
nJ +
tJ
+:
=r:-
0
6. CONCLUSION During the period covered bv this report ain extensive study has been m:ade on CO
2
and N 20 using the AFGL High Resolution Interferometer in conjunction with a
high temperature absorption cell.
This study includes the identification of o.er
lines belonging to 78 different rotation-vibration bands and over 4100 N 2 0 lines belonging to 18 bands. .Manyof the high J lines for these bands have 11, 000 CO
2
not been observed previously.
A weighted least-squares-fit technique was then
used to obtain effective molecular constants for each of these bands.
These
effective molecular constants predict the position of spectral lines originating from excited rotational states with an accuracy considerably greater than those previously available. -.
The CO
2
data have already been incorporated into the 1986
edition of the AFGL HITRAN molec,lar database.
14
The N9f
data as well as the
CO, data will be incorporated into an AFGL high temperature database that is presently being compiled. In addition to providing data for the AFGL databases this extensive data makes it possible to come to several other interesting conclusions. obtained using room temperature CO
Molecular constants
and N 0 are not adequate for predicting the 2 2 position of spectral lines observed at high temperatures even when the room 2
temperature measurements are extremely accurate.
The interaction between levels
not involved in Fermi resonances are much stronger fr *
~
.% 262
I. hg. ,26
0
N 20 than for CO
interactions make N120 less "harmonic oscillator like' than CO 2 .
.
These
+' n+ I i
"I~r
%
References 1.
Hudson, ii.D. and Reed, E. 1. (197 9) The Stratosphere: NASA Report .049.
2.
W eiss, R.F. (1981) The temporal and spatial distribution of tropospheric nitrous oxide, J. Geophys. Res., 86(C8):7185-7195. Wang, W. C., Yung, Y. L. ,Lacis, A. A., Mo, T. ,and Hansen, J. E. (1976)
3.
Present and F utu re,
Greenhouse effects due to man-made perturbations of trace gases, Science, Report9 194(No. 4266):685-690.
*roNASA .. 4. 5.
Crutzen, P. J. (197 1) Ozone production rates in an oxygen, hydrogen, nitrogenoxide atmosphere, J. Geophys. Res., 7R6:7311-7327. World Meteorological Organization, Global Ozone Research and Monitoring
Prjet WMO ReotNo. 16 (1985). . Bowens-Jenkins, P.E., Cooper, D. L. , and Richards, W.G (1985)Ab initio computation of molecular similarity, J. Phys. Chem., 89(No. 11). 7. Tidwell, E.D. , Plyler, E.K., and Benedict, W.S. (1960) Vibration- rotation bands of N20, J. Opt. Soc. Am, 50(No. 12):1243. 8. 9. 6.
0
Herzberg, G. (1945) Molecular Spectra and Molecular Structure Vol. II, ideVan Nostran Reinhold, New York. McClatchey, R.A., Benedict W.S., Clough, S.A., Burch, D.E., Calfee, R.F., BFox, K , Rothman, L.oS., and Gaing, J.S. (1973) AFCRL-Atmospheric Absorption Line Parameters Compilation, AFCRL-TR-73-0096, AD 762904.
10. 8.
Esplin, M.P., Sakai, H., Rothman, L.S., Vanasse, G.A., Barowy, W.M., and Huppi, R.J. (1986) Carbon Dioxide Line Positions in the 2.8 and 4. 3 Micron Regions at 800 KeVin,-AGL-TR-86-0046, ADA 173808.
11.
Barowy, W. M., Esplin, M.P ., Cnass, .A., and Huppi, R. (1987) C. Medium- and Long-Wave Infrared Absorption Spectra of arbon Dioxide and
•*
Nitrous Oxide at 800 12.
,
AFGL-TR-87-0016,
ADA 179430.
Esplin, M. P., and Rothman, L. S. (1983) Spectral measurements of high temperature isotopic carbon dioxide in the 4. 3-jim region, J. Mol. Spectrosc., 100:193.
27
References
N
13.
Esplin, M. P., and Rothman, L.S. (1986) Spectral measurements of high temperature isotopic carbon dioxide in the 4. 5- and 2. 8-tim regions, J. Mol Spectroscopy, 116:351.
14.
Rothman, L.S., Gamache, R.R.., Goldman, A., Brown, L. R., Toth, R.A., Pickett, H.M., Poynter, R.L., Flaud, J.-M, Camy-Peyret, C., Barbe, A., Husson, N., Rinsland, C.P., and Smith, N. A.H. (1987) The HITRAN database: 1986 edition, Appl. Opt., 26:4058.
15.
Dalton, W.S., and Sakai, H. (1980) Absorption cell for the infrared spectroscopy of heated gas, Appl. Opt., 19:2413.
16.
Guelachvili, G.
(1986) Distortion free interferograms
spectroscopy with nonlinear detectors,
Appl. Opt.,
in Fourier transform 25:4644.
17.
Mertz,
18.
Toth, R.A. (1986) Frequencies of N 20 in the 1100 to 1440 cm J. Opt. Soc. Am., 3:1263.
19.
Amat, G., and Nielsen, H.H. (1958) Vibrational 1-type doubling and I -type resonance in linear polyatomic molecules, J. Mol. Spectrosc., 2:152.
20.
Guelachvili, G. (1982) Absolute N 2 0 wavenumbers between 1118 and 1343 cm by Fourier transform spectroscopy, Can. J. Phys., 60:1334.
L.
(1965)
Transformations in Optics,
4.' '..
2
28
''p
John Wiley,
New York. -
I region,
Appendix A
. i *
.4.-.
a.
.
-a ..
--
~N
2
o Line Position Listing
-
-.
~
i~
PI
1
I
M I
I
I
u
I
I
NW
M(n
, f-n .w ms'
L)
I
z
a% 0
0
ICI
C
IlN004 N
I
I.
I
.
0
4 -4-4t-.-4t-4t
I CAI
r.I
N
U;J
4
04
I UN I
o
rT '*.r
'r
mv' 0.
-4
f
"
qwUl'
Io
r-
wl
0
m
m
CNJr0c
aL
4-
I
I %D I I
C
-
a
o II oIIcc 1
-
1011
1I C
o
41
-
Nv (- I .Lr
-I
I
I
p...I
.
-
NJ
14 C4 N
0 l
.
0 -
4
1
-4IQO
-0
~
IINmmm C Nmn
a
(
;
I4'
04.-4 0CJ4
NNMf4MC
TMW0
C
4
'
N14
nrq-
J('J C'I CNC'J1
9
t
-
C
r4141 0rIH
Mr4MV0
J-4
-4r414-14--4
"-
-
4-
-
?N
0
4 I n
I R
I CD I
Dr
O7%(
0
N('I
M0Tt
IlNr
IT
%
O0 (7
-r
(
n
T n\0U
-
OC
4 -4-4
-4
I
I CD 1 N
I
-4 -4-4 14 -4 -f
I3
I r-
-4 -4 -4 -4-4 -44
(%0 4N IO -I
-4-4
0
-44-4
QI-C I In
-4 -4
4
4-4
3%0
H 4
wtwIVIV1
I
Ln0
Nl LI
(1
v
fn a0v-4 I
0)0
NWN
V
Nl N 4
r-
W
N
N
-
4t4t4r
C
I Nii
0
14~.--4 m N-~-%0Nm
r-4 %0O.-4 %D .4 .f i i44I
V
N
V
(% N
N
V
N N
~N
V
rI
4I
N
4
N
enII
0 kD r-
aN
M N
N
N
-
-
.(n
4
4 N4
4
-4I
NN N N "
v
-
4I--4
V
NM 4 N
N
NO~ N
Nw N
41I4
0
N N- N
4v%0r
-,
4r4
1-4U14~
N
M
M M N
N
"
"
D%
N .rr
V
N
N
N 4r
4.%
N N
N 4
1N
4
-
N
rN N
N N
N
N
4
4
N
N- N
N
N
-
i
N- -4 N4 -
N
-
4
4
4
4-
II N",4:
N
N
4
C-4 N 4
N
%04
N It
-
0
r
N 4-
.
'0(1
N- N
0
N I
Ny-,-NjC4N(
N N0'0 0m %00awmM0r
N N
N
w.
wNr
w-
-
r
A -
q
0N
N N 4r4r4
0
,4a
,r
4
e
mwN
~(
Ul N I
N -
,44N
-
4r
4
N
N
N
4
q0
J
Nc 0
r-4 0
W0 (n
N
,4rt
31
6
N
-
4
D0 0%
-
M
No w n4vm0NaL
N
I4
W
N
-4 a
1
-r4N
NI
N r-4
4
4r4
0
r-N 4 4~ N4
4
4
N
N
-
-
4
'-d
N N,
C
N
(n
M M M
fn
14
v
0= oi r-4 0
Ul m
0
1I'
I
I II
I
N -4000m
(n I~I
*
t
I
WW
N
N
N
N0N
,r
o
N %D N
NNq Na'
VNaMM ,r
N o
Mq D
0Z,
m0 0 1
- n
%w (
4-
- rL
-4
IY
I
'v
N
CD0 v 0
m
0
m~
L
4
vLn Ln Cq1a1.
--I
m
m~
4
-4-
4
0
tD Ir eIt(~
n
0
D O-4
4
0
00Wc
ON do m N
C14 co0 c L)c
co fl
ON
Cn
(C) na
-4
--
~( -
4
,
4 iq-
4C
I Ch Q
4
-4r4
-i
.-4 N
-4
-4
-I
-4
4 -q
rf
r4
n
4 r4r-4
N
a%
1 s4 4 4
r4
L
t
a%0
4-4
-4
0
D
,a
N0
N N N N
m
.4
14
-4
-4
ti
-4m
l
a OI
%%-4
NL
-4-4
O
4r-4 -
r4
0
m
N110v-4N0
N N -4 -4 Co(A0 -5zr
~
04,
a; 4
-f1-
N N N iN -144-4-4-4r 4C4M -r
N
~ rq
0m0 F
m
4
~
n0
-
0d
Dr -r
N
VN
-4-4 -4 %0
-
,c
oc
-
.5.
~%
4
cc
Tt)..30c
oc
I
-
-4N N w0L In14r
Vr400
-4 r44
4-4
4
o
0 I
Or
-4 -4 r4
4
I
4N -4 mtnN
D
I4NvNwwNa0m0L r-
~oa
jN -4 -4-40-4
C- 14
~
00r
r) Ln LL N
4
N
4
-1 -Ln1
-
vr
vm
~~32 *
4
a0 C4N
~v
,mL ,0
4MI
4 r4 -4
I
~
wNr 0-
-4 4
0
c
I
~
-4 :4
nv-
444-4
,r
-4
iI
1440
NNN
WI .r
-r M-
fnv-4 II
v0
I4
N. 1--4r-4
l
~ ~~
-4-4
Na NNenNNN
I-
f
4NN
-4 .--
NY
-4 0
4N m-
-4 r,
0
(7% 0% cc
00
a
N N N
-44444
4-'j
wz0r N e -4
ko
-4
-4-4N n
1n( 1-4
',*'eN,-40 CN
-w(
-4
%C"-
-W en
,
N
ou nu
N
)
0
00mwqr
C4N N
4N m ,
r-
0cN C.) Ch r-
0 0
-
-4
Dr
r4N -4
a
IN
Go
..
-
4
O(%0 0(N(
(
ma O -4 -4-4
0-4-4
-4 -4-14--4 4(4f Nm
I
c,
4c N(na
-4
o c 4
Dcoco 4
r-4
-A
4-4-14-14-14-4 -4 WL 0 a
r %M(1(
0C
4
3'4C
l 0
T.
Lro
"T
Lc)
CO-
0
r
04
n
VL
-c
11
'
-T-
T
v-
nm0K
I0 101 I
I
z14
'
-I
-4 -4
O Zl r,
01-4
4-
;1Ill
9C
N0
r)-4m
1
4
a1
z
IN4
-
4-
c
4-
4
4
)-
-
-iN
N4 z
-
4
r
0
NI
3
-4
~
f
r-
w r4 -4
-
-
nr
)
;1;
CN
v
e:-4q
a% 0 NN
_
oa
NNNNMc
n
ko O
CNl
('
4
-m04
r-
-
D
NNN
.
o4f
I 41
LD0U
I
TL
,Cj0 coNNN
r
;N,1
O
-
)Nr
Nom U~
tn
,C I
l'?l~l4
4Nf
lII
Ul0L
cI co1- o
)
4r4-
4-
N q-4
-4-
w4-4-
0
A
%
N
U
-
4-
I
I .0 U
I
-T
N
-4 0
-4
II4 Z 0
-4
0
14
1
-
I
nk
I:
I
I
4
r4r
4r4
%Dme
N (N 0
0W
4.*
4
Ir4r4N Lo
-1 .-
W
0e
D
N(r-
-
Wr-
4r-
4
-44 m N r% (n No-
m
d4 W -4
M
-4 -
4r4
(1
I
fn 04V0 I
4
4
I4 I
14O
r-
M0
4
4r4
0L
WM
4
-
4
-
U
4
-
4r4r4
nNNI
-
D
4
n
I
N
r4
r-
-
r-4
-4
4 -
-
nen
w
. -4
-
N
, r-4
4r4r4
"(4r
4
-4r-4.-
-
4r
4r
nmr
)(
-
4
4 1144-
-
4e
1
)zwr
nw0ZNwr-L
-4
NNM0
g 4il
11 4I4II-
3
4-
-
4
4-
4-
4-
(
- n
c"
fn~ fn (n
m
IT
-I
-T
-W
-4 N
vf
'T
v,
4-
-f-4 -4
4-4
U
44.
1
N 4
4
I
4 V-4-4 4N 4N
rlr-
0
0
N - C-
-
-40
Nr
4-4
'.o
'o.0 . '.0D '.0 '.0 '.
Nr'.er4
(.N cmJ
v
C1
,L
4WW0iDVr
-4-4
0'c O~0 (N f (N O en.-0
ID CN (7
W
4 N
4
'0
-1 -
-NN
4
LO
-4NNN
ID
-4o-4 -4
-4
Ul
I
4-4
W 4M 0" NI
L
tr U,
4'A
I
Nr
C-4 141
tN
U,
I
r
-T
44-
nLn Ur
IIi4-4 I
M UZ
-W
-4 -4-4
4
4 ---
0
a
~~14
M0 '.N M- 0
CD 0- 0
0
0
N
14C1I 1- Nii
ON''0
*4
-,'V -4
-4
-4
(a0
-4
nCnMtn .-4 M -4
, r4 -T 0
Mr -4 1-4
-
% %
0
1-4 04
% %%.,
-4 -.4 .4
-4 -4
4 r-4 q4
-14-4
NN"C4NC4C
NNN(
4 V* It
n --4
0- -4 0
'-4
0 0
M
r
r.
-0
N N
MN -4
-440
%D.0
-4
-4
N N
44 r
'.4
0
-4-4
r
CN(V0 (N, N 4 00 C14 II(4N(4C qNNNNNr
4
NV V
C14N -4 -4
qN -4
-1
04
~
Ny 0-4 (N fl- r.
N
C3 -4
-4
1
-'4 .4
-4
0
4 1-4.4
-'4 -4.4
4
V
r-
4,-4 4-4.4
-4
u
I
I
U Ir4 I
I
a%1
II
CO~ wJOD
IrI
I
101 I
-~C
1 COI r-
I
I
I
to I I I I;0 I
101 10
I IoITL
I
C41
I
lelf
-4
~~
~
al
nv
-L
L
~- .
vo 101 I qr I
I-
I
I
I
r.
O v
Ln
N ON
-r,
4
- D
O
4
-4X r
,
%C
; i4 -4
4 -4 r-4
1- -40
-
OW '
M
4
C 4-
1
(- r w r(0 r010 0N N ' .r IawmvNr N L DW l m WI0 '%.vNa lO ru 0-44a NU;
c
n
-4 N
I
I
1
ONa
.
-4-4-4
I I. 1
NA
qa O
-
0~
4%D0wN
~
. .
0-
4
c
0r
%k
~ .~
N N N NflN N - 14141414 0
-
0 0 W.I~ rC0-4N
NMVL
I
n14o0
INIV0
MO0
NN 1~-4f-
I I4
i-4
%44~
%M
0)
N
14N nIDr
0;
CN0O4
9~
(AO
-01-4
-1
r-4
I
I I III
nrawv
ciI
1 0a1
N
z-
% -f
r- LO -
-4
.
ITN
-
I 04 -4 -4 -4- -4o
4
ONLL C
tr
c
-4
1l'0 wLflL - o~~)(jO
LnNLn zw N
~
I 0 1 0 I
-T~J nti "a
Ln~ c00 W z
0 (O
MeI
n
r-41
r-
N -4
0
NI
COf CLU~I
DO
DC
-W
m~
m
In
Ap~
1- lwN
r
%D a
k 0 N-4
o-
-
-
4
lN -4
-4 -4
-4
_4.
-4 r3 (N r4 N N (N (N (N (N r(N
~
- n0mN14( I N N
,wq
~ aww0-4zN ONNr
-4r
0-v0r-N
1 -4.44
14 1-41
-4-4 4~
-4
-4
7%
4,4
-4
4 -4
D-r
4-4 1-4 (N (N N CN( 4
4-4
4
4
-4
a4
"
nmq
Tq
.4
-
nr 11
4
4r 11
4
c
-4-1-4
-4-4
(nen
4
-4
4
l0O 4-
-
00 -.
q -4-
-4 "e
nf
r-4-4
-T-
r-4 -4-
4-
( iL (N
4
4
T- I
-4
(N
-4-4
1-I114
. -4 4
,4
4- D- ---
-T N-
"
--(nr
4)-
L
wL
-
O n at0 (NN((((((( DL 000vI
" -4 l-
0
D04
I-4
~C)N-.
-4
(-4
(
-4
O
-
4
r
-4
(
1-4 -4
4
a% (NJL
-4-4---4-4
111
-q
-4-
% fn01
*1
(N (N4 (N 4--
1--
D0
l-4
11
J,
(N -.
-
-4
r-I -4
,c -N0N( 4C1q
-I-4
7IrU
14 0 C
-4
00
W-71
-
-a
4
LI
t
Wr4L)C n
(N 4 (N (N (N (N
(N (N 4 -4 -4
-4
4
,.
,r r c0
r
400
(N (N N C4
-4-4-4
--
N
C" ff
nN1qw n
0
wN
en ()
~4
-
-4
N m ON m 0~
m r
0L
l14a
o'T
l
o nr
-
,
%W N0I
N
-% N
4e
L
0 N NN -- 4N(Nc (
4v
M N n W 4V 36A D -
oc
400L
fn -
nUl0U'o
mNv0 0 N
0wN
0 0 0
, Nr
-
C4MN
v
0(
oti
4 n-4M
C
o~
0 v LOCm -T
0(
D0r40
'T(NO nNa
nNc
n Nc
N -4 -4 -4 -4~
N
-
T%0e
mL
(N
NNN r-4-4-4r-
(
CN N
NN N r-4 -4 -4
- -4
r 4O .-
"r0
Lf
a)
r-O 0
-4 -4
enme ne -4 -4 -4 -4-14
r-
-ID
V
-4
-4-4
-4
0N
r-
NN -4 -4
N -4
w0
mVLO(nVV nnN N
N
-4-4
%
% t
V
4
%Dr
-4-4
rI
rI
Z
c
4
14444
444
N
(
LnVN0c
ON
I.0%DW 0
OU) nLnV ITVflm M
N --
t
4,
4-4-4
-4 -4-4-4-4
-4
4-4-4
N
N
NNN"NN
-44
-4
-4
CN n
M
N -4-4
40 0
N r,
4r
-4-4-4
N
-4 a -4 I
elU,)r -
C.VV nmN N NNNN N -.
44-4-14
37
4
UN L, r4-4 I II
0 M4 I I
V- Ufl U,
r.
N
N NNNN
-4
-4-1-4
NN
-4 -4
'-4
a%
%0
Io %D0V N
N N
NNN -4 -4-
0 .4
-4r-4 r-4 N 1-44-4
IT m -4 14 .
n
-I
c,
C%,~~O O V ON N
-4
-4 -4-4
;c
N
n1-
4
r-
0% -Nr 99;;aN%4r
-1
0
~ ~r-
I
N
V
OVO ;44;r
0%N
NC' m 0 a COq." w III
V
-
r4
1-
47
%
N
n0z 4~~~~~~~~ 99(
-4
^4
~
nI OO
-
-4
-4
Ln
MI4L
UlNwV
-4
r-. c
0-Oui - 1.
m
d) 0
N1
00 ko
ON-
7-0
40
.4I
I 14
r-
-4
-4"q
-4
r-4
N
V
IOVaU n
-4 N 0C -4
7 rjN
U,
N 14
m
o40-40
-4
-4r4
C1
N N
-4
-4-14
I I u
I I
N-
NI
e21r-4~L~ 0 -
I'O
(NCI 00
Il
4
017L
I I
14 f-
tI
I I I~I W,
I a..-.1
(N I
(
a% ID~aI '.0 aoI k '0
101 1 I0 1 I
I IlIII I
I4
I r- IIn
(N.
I I
I InIN I
Ti
I -4I I n
a
I
1 u I a
-4
1
r
- c
r4
I1I
10
I
I I4
I.0I
I
I
I
(N
N
r-
-4
N
I0~
4
-
",L
D-
r
~-
(n C.4C v
4m
.tn Ln N n r' r4 f01r-4~ 4
-4
-
.4
N ..
L 7. r-4
~ ov%( oO
o% -
4-4
3 N(NNNN f41
( 4 l
1
1
1
lr4-
N
Dw
ar
LUtl W I 4 114
-4
0
r 00'
,r
I
Nf~
0
L
( N Ifm0I
-
a
-r
(NNN 4 4r4 I
NN
n
0Lntnr4vC(~ ,mO N a ro -4
-4
We
(N
D
~
4-
N
4 -
41)r
.- '0 a;. a;~O..N(N 1; ( NO r-~ r- r-r
-
,00
)U)-r
q
q -
4N 4JN 4c((
cl
NCN N
4
1
r
J
r- . 3A L ( -40L coa% rC .
m0UtLnLn vt
00~
4r-r-
I
(N
N(N(N
4 -
10 N
-4
TL)I
I
C
, vr 14~ON~( (Lc M r-4
o
o I
r4-
flL
%D~O. .jC. r.4 u 1-4 N (n qT
n
D
r- c
0-q
4-
Cn %0
- nm 1
or
l
1-
C1c4 N 1N IN
0or-
0M t
lr
fl
I4
r-r-.e-4 -
O
" 4N 4 N (1N r4-4 r4
N
,0
I3II
-
49q
r,
I
N (NN
ID oI r C-
U)
(00 'I
)vL
coc -L
INC N I 4 I 1I)e
IT Io z
Io
(N
.-
4U)L
I I-
cc
(N
14
CI-4 or
o I I I i.0I
I
(
O
(NI
0
(
ov
-I r-4.4~
C14 N
(n LCLLU4U 0
I
0I
am% c'04dr,
.4vI
enI
In
II I In
m
Io I
m0
*-4-4
- 1
-4 -4
I~ I
oc
0
1OWu. 1O I I I 1 0 1
I 1.
-
(N
c
Nr-
r4-4
4
-4
-4
-
d0.4
Avlmm m -4 (N-4r
-NN N4
N
N
(N
rn (" C-
l(N
0ot
,v
)
(N
4~~~-
a) N
.4.
v
aI
(N eni m4
l
(~nen
4
.
-
-
0
%
r
%
~o r,
-
-
0
-
r-
rI~.0
co
c - N 0~0 co
N
. -4 .-4
N
nu
n 00
0Io.
4
Na 1- -4
04
N r4-
4
4
.-co
N 0~
4
N r
4
4
n
V
-
C14
v
1-4
n C7
C In L rn CO-4
T
-
CON aN
r
-4~ ,4 VN
r,
N -4
u T In
%
N-4
n (11 (N N(C
0'.N r, (N(N N N N (N
to c
v
oe
N -4
N NN r4-4-4
q
N
00
r-
(N 0 ( I
0o w
0
0
-4
0oaN 0"LL'
a
N
N v
14n'.N
N
N
'0 %D. . N
?.
nC-4
1-4 L "c n r v w m
-4 I0 I
InNV 0 t-NNj(7
4 a% W (N N NN NN N -4 -4 (N(N N(N N N N N L
d
1--4 mv
c
40N
-4 cmeq0 -4
N 1414
I4 -4
-4-
0
co
00
N N -4-4
N -4
Me -4-4
vN
CN
w
-1
N o
N -4
N 4
~~~~~~~
ne
N
(N 1-4
-4
e
4 f-4
N
'%
-0 4.4L 4r
(-40
(Ot
-4
(
lr
00
a
4 w I % L w o
l
-,4-
4
N -4
NN
t
-4
%tnN
,
-44
WO40C00-4-4.-4en
-
-4'
Nl m O Ln
0O
N U, D
004 co
(N(N(N N(C4N N(N -4-4-4I-4 1.4 4 -4
1-4
-4
L NN rI -
n
o
0
V
v-V n
N
-4-
140
40
N''a co
~
%D r,
4
a
N(NN - -
44
D'4 -4 r% -O4
-
1N C14 4rI
-4n-r-4 n
(N
~
u al uIvn m 4
I
(N
14
~N
Nmmn (
0 N -4
'0N
n(
mI
0o %0 '0 '0
r.
r-~ m
-4
nr
TLC I -n
(n
O' -4
-4
ler)vv (n
n
.c .
~
)k
44-4-4-
-
-
N
CNN -4 -4
%r
0.'0rcim
w0rN
-4-
V) Ln U) Ll tLn Ln Ln
-4
oc
N
N
4)w
C
%DU
l.I vIn
-(4 N4
en m4
Lr
r-4
Ul U)LO
Wv
i-4
(11r C o
c
Tq
r,N vON
(
~
wq
-C
l'
lrn m (n (n
-4 N
lwl
N
ITr X)4
.-.
4q
(n
-4
-4 0 a% mr-
In
-O0
rn en (n
In 0"a( v
N -4
0 InN co
NN N'
'.0(m "
-4- 4
-4
cn
-4 00 W
m
-1 N N r40 c WN0 aU t NNN
*wLCU' N
-4-4 Nd(n
-4
I
w Ln NN
U)
N N
.-4
-4 m r-
-4 Ln
-
144.44
coNNr
'00d1 000
N00
9
-4-4 -4 0
0 0
0 0
N N
0 0ON
N14N
N
N N NN
nv
-wo0
39
%0
00'a;
-
or
.
r
.
I U -WI I
4o I I
I
NI I
-.
I4
4~
f
I
I
EnI
v %I w 0
1091 CI N l I -4 t4I
D
I V) I II4 Q I 1I. 1
0
1
.
LIa -4
0
C1 1
N N
ull
en Wm
r4
v
4
~~
rl~~ vO
ID(1
r.
l
Ym
%"
-4
rIN1410
4L Ln0
N
*~~~~~~NI
4
4
NN .- 4-
-
1
1
1 ID
1
I
I
11
V-1 -1 m
-I
I4-
M I 411
I4
N
n
O
C
NN
NNN.-4-4
4
4
n%
-Nr
4 4 -4 r N0
4
1
I
40I
IC
or
NNm4
-44,-m
.MM0M=wr
.
.I
en(In%
-0
C 7
c
-
Dcor
Nci
)%
N NC
q0
DU
4--
4cie
I.
%4 a
LgI O C
Ic 4
-4
I
-c
4
1
0
-
o -0l W t4ML
10u
r- imQ
11-4-w
I
4WII
m%
4I
- NmNl
Nvom4L
F-4
I 4 10 Il c 1 In .-4. -4 IrM I I -4 r4r4
N N
4
C% r-r 0N coI~I nf4
-r
I
0
-
4
1I0
~I
LC)~~
"e 4 -4-I
-
OV0-4NC'N.-
ed-
I Ln I II I tn 1 %D I AI I IDO
Ul~~~
o 0
~
IC I-l-4
-
Ow
I3
I-
,
(7
r
r4' -4
m
a r4 rI NC
-O '
4
I-1
-4
I01 I~ I
-
C 4NN-4-4-
N0
II l I
%Dt
r
w 0
LO
-
414r
wm140Nm
Io I
0
OO0-
3
q
-4-4
-
n
-I -4
N
c
4
-4
-4%Dr.O-ON-4 M -TI~
N
-44
~
N
4 a N
0
M
-4 M0
W
n0Nm
r4-4 -4
.4 '
r
M V Nr-4 -44
4
w4 %D v4-
N
N %
q% n
o
LN NN
Lo N
m~ r% o'
ri
nu
o w~ oC N
o
Di
-
,
r-
c'.~
3
-4~f '0
0
000
0
11
1
~
N0r-
N 4-4r4 r--4
iNm(
n
ClNN M
N 4
-4-
m0
4- N N 4 -4 4-4-4
N
r
4 -4-4-4-4
1
q 1
"
Cl0 M4U
-4 4-r
4--4
I
I
-4
4- 4-4-4
Or-
vrwn
0
I
r-N
I
-
W
4-r4- 4-q-4
I
o
tn 0
-4
N N N N N -4 r-4r4 r4--4
-4
N
,
N CY N
-44-4
l
44
4
4-r4
4
m
-4
NNN 4
-
4-r4-4-r4- 4
lm -4
1 -11
-4
-
M~~oc'-r-r~~-
4- 4"4-r4-r44
MN
0 M
NNN 14-4-4
.4r
~
lrl
10
a0
NO'i.-4ClN 4L
nm -4
-4
M 3
M lNMWlI nN
ell4CM-M0N MNmlNU1V)
-4-4-4-4NN4-4-44
N N N N N -4 4 -4 r4 -4
N4o
1-4
I
3
i Ln w. v4 m
-
-I 44
II
0000000
N
4M
4-4-4-r4
.40NNw vN0v--M
-40U3
3
0v
OMnn
-4 4
..--
N
31
M MNl~NClMNNMMLnl
-L
rv
3 o4
N4 N4 N4 N4 N -4 -4 r4-
N-4
N
II
I
o
-NNN ,-4
I
4 mNoN
N
m
II
-wN
NNNNNNNNNNNNNNN -4 -4-04-4
4 -I4-4-444
-4
-4
4- 4-4
r-4 -4
4-4
-4-4-
4
%
%
441
%
1
N r-4
M M M* MI M
O
C
L
r-coaNz
I n
r- W
n
00
a
O IT 010
v v TrlMN0c %
-.
O 00 O
O
0
Tv 1T
-
4
v11v
40\ ON
4q
4
44
-
4 r-
4ML Io
-4Mr
nL
0wL
-o- v1 -W
NN0O.
RrC
1Narrar
D
mqT1
-4
coOzM
D (3N4
.mMMr
4
1-
N
'T aN
%
n 1-4O
-4
4,4 4 4
N M M4NII N
44
-4 - 1
4 -4-4
4
4
4
4
aN
M zc -4 0
aaODcor-IDDa)-TO
O
r
4
4
4 4
orc
44
I
-4r4
1O0-4
4
w -4o
4-4-4
42
%
N04-
4W
4-
U
fl
v
a1 Otnr ,0
rI
1I
)in
()-4Or-l.N
M-r1v
M4 N
CO'
)U
N m rr-rimi
0
-
nu)
M
r-
--
NLlaL
T- 1
w
-
Nr
-I
0
0
'T
qTN
~
-4 00
~
r
o ,7 0 U) z N qT m m
N
~I
-
N
I I*I
tn 1
a
CD
i ( Nq %q -L)( w ( )0 4 i N ( oa c oZL -r4r nL -e I q0 lm (1c n0 nr- 0 CI 1 a 0 a 0 1a)0%0nenN0C 0D qN ifn
a
-4
0
o
IIII O ian Inar I r2I
CDa -m
mo a
a'
0
a
-
-
q0r
0L)14I
4Lf-4 ell-4
-
-4
v
N-T %0C '.f N
a
-4
r.* ovNNN
*N
r
aN
a0 an aca
aI
a a
n
nc
C40
fn (n e ( -4r
1-4 - -
I
n
a
m mJ4
414 -4
r
N
a
-4
0 4C (na o J
L or-CDi a Mo 40 0 -
~ %
4
~ %~
**
r4
a
a
a
i
a
- . oa a5r aD% a
a-
4 4 -~4
4
r4
4r-4
4
44-4
4 r
m'c4 co.~~ 0
a4a4
, rm(
r,
, 4Nw m0 wI
w
a; r1
i
r-4
m
r-
nWI,0
rA 4
4
a
oao43
4 -
M0 4NMV0% 4-
~
-
4 - 4 4 -4-
ao
IaMa 1
q
nNN-
- 4 a a nr aocic a%
mvmmvm
mN4~a 'mr~Ca4.4wLnN0% N
a
n
44 4 4 4 r4-If-4 -4-f4 -4 4 4 -4 -4 4 4-4
a
I4
an0
a
aa
I4
aO
a4 --
a4
aiao
a
0L
a4O o~tn 0 W00Mr- Nr,04 -4%D-4L%0 rn a M~u IZL 40wr n 40w%
a4
aN
a% 4 0
r0 v r- 41 Ln0r
%c
r4-
-
r-4-~ chc4c4c
m
a r-
co
W
4-
-4
1
04N 4NNN
n~
V
Ln
N
N
N
N
w m Oi N1 N
N
r,04N tI
-TN
--TO
4
--T-4
4 -414-4
-4-4-4
rlrrmwwwwmmmmmmmc
-4-
-4-4
-4
1-
N
444"
-4
0 -4 0
(n
Cn
LO r,
-4 0
-4
-T N
.-4 N
44-
-4
-4
-4 I
JN-4
~
-4
rm
-4-4
44-
-4
L)
n
m~ m
N
~
I
~
M N I I
1
1-1N
-4
-4
4-
N -
-4-f I
0
N
N N
N
N
N
m
-4 -4
N
4 -4
r-40
-4~D-4 I I
I
en
N
m(.1N
o
r-
T
4 -4 r
-4
-4-4
4N
-4
m
Oi7 0 C en
-4 I
M N I I
I
I
N -1-4 -4-
m
4
-f
n
r, I
N
N
r
N
-4-4-4-4
fnvI
N
-
N
-I
ln0
n
vm
a-"
vNN
m v
"O LO r-k
N4 N
N -4 I I
.T
-4
-4
-4 N
4-
-4
M-4.
N-
NNN - -4 -4
N
14
r, l
e
NNa;N -4
n
-4
-4-4
TI
NN N N -4- 4 -4 -4
LO n
n -4 m1 N
oVr -
N
,0
-4
-4N
0000
r.
nC N,
O
C1N -4
NN
-4 - 4 -4 NN 44-4 -4 r-
-4-4 I4I
T MMrr
rn
0
v in In f
0000000-4 N NNr4N NN "N -4 -4 -4 -1-4 -4
N
-14-4
NN
0.r(4V-4 I
a-4
m
w
w v
-4n NNWN4N
-- 4 4-4 -4 -4-4-4
,
m~J(n
rq.V
~o~a~aooooo
-4
4000l
-4
-.
N Mi
rvI C%
44
0%
-4 -4 "
I
-4-4
(n
rn
v
-1-0-4-4
4~r ;' c4 -4-4
Ul
m
0
n-Ir(: O
,nM0nXO n000
-4-44-4
wj Or' 0
V
-- 4 4 -4 4-4 -4 -4-14-414-14 14-4 -44
N
r,
,o
vm NN Nn(
-4- NN
(n
N
n
n
-4
I
-4-O-4
Nl N
(I
q
0r
4NMVr0-4
-
4
-1(
n
V W nN
,4-44-4
0
4-1 -0 44-4
n)N I
-4-
I
-4 (n
4 4N
,4 -4-r-4 -- 4 -4-14-4
-4
-4
4
0-
W-
Z0n
N
N.-4
-4
-4
4-4
4-4-4
niTTI in) LL'
4 -4 -4
nU)nr
-
-,~~-R
60r
0
-4
0'1i-4 0
41
c .J 0
I' 10c I1 Lo
Io
I
-0
ON n M0aOr-
0
0
In
-- 4 -4
-4 LtC4 4
J)
~4
-
-
-I404
A
4
0 da4 LC0
'-1rI
:.4 -4
C4 en4 N
14.4.4N
0~
1-
1-4
I
-~~
a)
CN
-
0
(
~ -.
1
4 -4
4 -
-4 -4
-4r4141414
11
4
1-4
-4
-4
rL)
In
I"
4-
- mL)C -4
4(Nr-f
45
~~~~
7%e -. e
*
N
IJ0
N
I
C
1N
NN4 r-
-4
m
I()
r4 m v
1
-41a0
m 000en0-0
1 0 1 0
4
NQIL
IT0N
C ("101n(n
1
I.
I4
r--4-N4
4-4-4
4V
r
co
1
ITr
N
N
aI CI C (n
I
"fl4
CO
1 0-4N I 0)
N I In
NLrAw N V
I0 1 U0
4 4 .414
-
NCN
V Lo 1-
I Ln m
7
n
T0
Cj N
I
0
.-
14N-
m
N
N
01
-1 q-4 I II NNC
NN
N.9
C
1
mf 0
0
0r
4 10
-4 0I
rn o m o en -4
-4
0 V-4
z
IN
0
-4
00Q-
a\ Z 00-4
4
~ II
-4I1 C0O o
e
fn4
Iq 0 1~UI
17
D 000
-4 00
ocoa
V
0
a~
LtD
-44 4
V0 D V I
101
C'.4 m
C14' I
4
m
en cl
0
0
0
0
I
I N
~t t m mI i
00
I
I
-4
-4
4
r
o
0r
N
--
INI Il
S,
N
%D '
M
a
0
r-4 N CNeI
4 -4 4 4-4 , -4 N NNN NCA CNC
-4 D N
4
oNII00
In
l-4oI
DI
O~ q
Io
co
r- CO
N -vLn
V
I
I
I
1-4
ru
I -
mV
WL
N
-M0
V0'
4
A
W' wv.r,, ,JWTrJWVpW
rO.W
-.
.w.,
It"
R
I
rII% o
-
- - -
--
- N
-
1-
L-' - -
- --
r"
ar
wW - a
-
CV--
-TV
1.
N
14
~ N1-
-4 LO
v~ (n
r
-
w~ 0
14 N~ en -T
-,.-'
Oi0
m~
r-
''
N1U1\
1.4 NN
N
-4
-
-
V
0r
ON0
-4 4
-4
-0 il4~(N0
nC4
m1- r-
v 4
Nl N
N~ N
N
w,
fn v
ONu"'0~
(n 0
.r
u,
rz
ON
0v
.4 N-
w
(n
rq N
N~ f
()
~10
*
0 0
04
0N
Ln 00
'r
a Lfl N~~~~ 4
C
I1(
0 n 4
-4
4-4
r,
O 1
0n
NON
(nI co
.4
nI I-
'.
1-4
N
oN
N'.L; co " "(N -4
-4
eNr
~ ~ ~ 1--4
U),%
*--4
-4
n
4
r, 4
'-4N v
(1
-4o
(1 vLn'ONd
-MC
-4
N
(t r ND N -
1L ND N
-4I1
I
wN
N
q-f --
00 0 0
11 I
~44 N4 w UN1C 4
Mi~ 0
4
(1
r
co
a O
~
(1
1
-1 '-1 N
N
NN
N
NN
-4
rNr -4.
0 44 .
N
NN
N
-
4
N4r II
Io
O0.
-4
1 0; N ID o0LnU N NN NN -4 -4-
(14 N
-4 -4 N C 1 X L O n N NN
~ ~
4
L~%
NV4
. r-
4
N- Nq N
n
N40
N
04 14 1
(1
NvC
-4N14
1 NN
IN
-Tlf V4L4. V~.O. n04 V~~f -4r 44 NrN'o0v44LX -
-- "-4 -1-1
L
O 1 4 \0 D 0. N NNr4N C1 -4-14-4-41-4 -4
11
0
s N
rn e
N
N
l
11-
r.
0
CN-N
n
(
T
4(1N4N40~LflflNNfl~~(1(1.O.4 1
n
1
n41 U
m
r-4
rN
N
ONN~ 0, C"N( () r
1N4C") . c c o r- r N N N N NC4N 4 -4-4-4-4-4-4-1 141. 4 -4 4
coco c
0
0
NOO 4-
N
N
N
00L N1
(11 (
I
I a
l (n
O-.N0
fn (1
4
Lfl-..- 4
4 N
N
N N
vN(
C14
el
r
I4
I
NN %4f(
r-s-4-N
4N4-4N-N-4-N-----
N
N
N
N
N
N1111((( f%144 IN N
46
%S
V"J
(1
NNNNN
444
-4
-0
M dCi 0
-4
N' fn -q LOi %0 LnLnLf
L 0
'T. -T
U
r-
X
(
) LCn Ufl lC
0
-~ N' -1 .7 Lfl "0 r-
Iw
"0c
Z0 Z0 '0
'0o
. .7 rn~~r*
cc
N
CD
a
O
CN O
4
ON ON
-(nciI
N
17.-
Ii
N Q
zN
N
--
4 fl
z
1
C
NN.
L
Nco
-4
1-
N
N
N(
n
4C
tIN1 ONc
,D
'
.
11 11
C' -f 0 r qT
4-
%
P7
-4
?' 10
1
-q
L
4m
DL
"' N
p
CN N
NJN(-4C' 1-
N
a-
a4
-4
-4
-4
-4
L0 ID LO N
-4
1
I
-4-4
-1-4
0 qT 10 10
-
.4
1 7
1
"
0 .
---
0U
NL
c f)-T
4C
We
lc
(1O
OM )m0N'
-O''
4 p-
0 TU
4 -
o
n c
4 -
_
,
T
I
-
14
o
4W
-
4-4
-4
4
"0'-0
'T~
-44
N0 C%--
c
rn
1-
na
N-T T
a %
r
14
D
N1
-4r f
N
,
14(
c
-T
T%
V (%
-r
4 n
n
1 f
C
-a
4
N
NI ' a
f"
-
qr
4
44
r-
-1
4-4-4
r-4
-4rr
-4 e
0
w(nmqT0 n
-4
C
--
w7 1-4 n M NID 4--N MN-
-4
.r
I
-44
-r
4r
0
n
1
-.
Dc
ir
4
'
%r
0a% Ln047N m rl
c
oNr
.7o
-- 4
1-4
-4
N 4o% 0
I
zN
14
0 C)c
-4
-4
.4
-0
Z
M
f
o.0 '
1-1(Lcl
or
-4
U 7
(\J
r4
n0'0
4
30
% l
xaCC N %r
-I
z'
0a%(7 44--T
-
N 0
-
o
n-
'
n
N-4
COr
-4--4
'0
-4
Nr
-4~O
-
%c
r-
L
II0IoaC
-
%a
-4 CN (n
m
0
O14r
0z
3L l
r-
4N
.-1 1-4
-4
4X
r-
na
-r)a
4
r,
a
-T
0
N
n I
-
0-T
I
0
D(
NI
INI
r-
- ,a
-41-
p
(I-
(n00c N oNc
n
40C
J
N
NN
X d0 0
r-
r,
Nj~
-
O
4co% CJN
'I- un Z. r--
r-
n
n
o-Tr
-4
NN L)NL
~NC-
1
-L)
1
-
II
n
U-.-
Z0
0.4n~
N -rr 4ma14m-
-
0
W C
'0 Z0
q
N r4r4 0
M c
( ;(
91 1-4~1.
-%
uqrr
co0
~ r r. r'
r
-Sr~P
- '.
-
r
-
h-
r r-4
-
.
t:
a
,..
wN
co''rmvu-
W. WVwis
o 00
~ ~
Ln
1
I I
I 1 1
1
1 C'
I
I~o I
1
1
Ir
X)
N
4i
L)L
1L)
l
-4
lCN ( 4 4 -4
o
-4 -4
-
4
4 4.
4 -4 -4
-
-
N-4 1.
-4 -4Ne
4-
-I4
4
-
35 I-
w
In
mIONmI
Dr
N~ a
-
-A-"I
(n44- 14
w
~4-4
-4 1-4
-
.nk14a
Nr
~-44
-4
0
ri
Ca
.- 4
-4 -4
r
14
N
II ILI
o
k
4
4
r
I
I
NiI
,
,-
m
jr
n
nr
nS.0
7-zc
co0
,r4~
.
I
4C
M
n-
nX
1
V..4 r,
I4
.n
0c
0n
Io
cIn 04 I4
*n
101 IL
z
;V
LO
-I -4I -4
~
~
4 I
~
r4
r
I I0j
^
-
M C
I 1Ioc
I
Ir
10
-1 r-4
o
-
o
-4
4 -4 rI _4 r-
N
4m
0
r0 m
(n,1
-4
N*
,r
4
-d
4
,r
q -
4
Do
4ffl
-
,-~4
-4 -1
-c
4
4
4
O
N 44 n
N 0
-4 v
'Z-I _:
zn
-4-
"rN-
I
In
4
C) 'T -4 "n
Lov c-s
o .1
-4
I4 Ln . c o
4-
n
9o
ow
4
n
4
41
%0I
-44 1I4-4
.-
(n~ co
N
I In
-4 r-
-
-
"
-4
IN) 011N n v -01 919 14 -1-
-l
nN-
rrc
Io Ia-411 4-
n.r
I
-4
Nr Nl Nr 0)
-T 'D
xt
%C
Na''
- - 4
J
TN-
- S)7-a
-4
-4
-4
'
~
0a
C
nN 0
'
-4
-44-4
~
-
0
r4'
0
r--~ n co
NfL)
N'r-
co
- oT4nN
4
-
z
00
N
m
)r N-
N" (N
r-
N
N
- -4
C141-
1-
r-4
r-4
( N
1
-1
n
4-4N
1
-4
P
10 r-
X
-
4
-4-4-
14r"
-
14
--1
Cl 0
--
'
-4
-4-a%
-44 -4
U)
ON
I
-
-4
4 -41
-
-4 -4
-
-4
4
NiI
I (n
C'a
w w
-4 -1--4
--
'-
-4
-44
4-1
(N I
-O
N
(n
-4 -40aall0
I
4--4r"-In
1- 1
N C" N
-44-4
4
I
n
"-4
-4 I I
I-4(
-4
-
0a'-4UrD--U)
1' Ln \0a-4
- a111x
-4
-4
N
'0
rr
)1
1-
14-4
r-LS)IDr" I
'
1-
14141r4
DNwNI Nn
-
-4
r
-4
en
4
0
Nr-
I
r-4
-4 1-
0-4-
4
'0> N
I
4 -4
N
N -
1-4
.-
-4r-4
r-4
-4r4 t70
-4-
4
r
'0N-)0
L)c
L0
4
-
-4 Nr
-
-4
w
nL
C) f f LlLl'
f
1-4
1-
Nl N
Or
(
14r4-4
" "
0
J
TC)--1I
0
: ' lj
n a
-4 r-4 -4 -~4
I-
n
~
f
r414
p
o Ln
4
-1
-4 r4
"T n
49
4- 4ra
(N
-4
-4
-4-q-4
-
4
'M
-4 (
4 -
1-44 -
4
4
I-
r-
N
a(N( -40
0--40
-4 -4
-
4
- ' -4 (N4
Ntden' I-LO~ tl
r-
Wn Mn '0
-0 '0
u
I\
I
C'
I
CN ON ON (n CO N NN 4I4
~~
.~
I
11
1 0o IIII
Iq I. 0
(n
q
I
r- r m oa
M -
(n
-4
I4 II
I I7
I In
N)
r-r-
0
0
N
Il D r-
00 'IT
c
-
N dL4
N4
o
-4~f
~
-4 n
1-4
0r-1iNNz (0 00 C \D-
r- tL
a-4
0
r-
0~ .
e-
n
-4
04 r-
a% -4
%
N r
m
rNn
4r4mr
N
NI
OL) 0-
oL
4 .
.
.
.' .I
0
r- Nfn
-CDL
n
0
N%
CQ-4 Nr
dm PIC 414
-
4-
I 14
10
-4M1 .
1I
1
No~ N I0'
N31
IxI)
-4
1-41
N 4-
n
a -c N 0 0 rr1 nn
(n
I-
I-
o
Lc N -4-4
-4 n
m=
NC N
1-
N0r
r C4 N1
co Cl , o n n()
0)
1
I I I 01'' I = f CI
i
a
Ln
-
r
N
NNNCN( 4
-
.
o
o Z
Lr
C 017
10N
I
r)
-
(n-rmLn
-
0
-4xT
z
-4
a
I
Il
0
D
M
W
M
LO
NON1
C
O NN~ D P~tZ0~
In
% .~~~
4-4-
I
4
-1
2
-4
4
1~ u
-.
4NC
4a
ZZ'
0
C4N 0
a
0
C0 (3
nc
N(
(N
N
0
(z
zl
(N
-
-
-4r
Ac
N
N
t-
co
-T
W(n
.
0
o
-
l .
~
nk ,3
, .
.
C
.
40(N0
10150
N N
% %
'1-
- -
-. -' -.
.
~
-,t
US
C.
----
.
M w-
T
W.M.09
Pfl. RW RM RJ1
py'
X4 O-
(N
-4 -4
q
IT r,
>Cx
00
-44 -44
X
--
4
-
4-4--4
-4-1-4 --
4 -4
-4
'n T(1 7 -
o'
-4
-
-4
-4
c
-4
-4-
N
4-
rLL0
(
-4
-4o CN co
-4
1-4-C4
7
4I
14
-4
1
1I
-T0 -4- X
-
'
r-4
N
-- 4-I-~
N
oN)r 4444----
N-C
n4--4
L
o
z
r-
-4
a\444---
LfI NI~1
~
Q
.4c
-4~~n
n
-
~
o1
a;a
nN CO
-
NNN
~N0
4
~
( N C4 C CN N N
~
C N0
N
NCfl~
I
N 1-4II
rN
(N
40
r
Z -
-4 -
W (3)
14 14
w
-
1
x
4
-
~~ ~ ~~
CN 1I?11r
l
In
,c
-71#
4
-
4
~
)rlc
(N
CN
N
-4O~ - ,
L Ul
N
-1
~
r-4 4
-4. I
~ ,
"
~
l
~
(
N
-4-4a u n.
N(
-:fl
%
U0
-
-
~ ~
IL ' znfiL TN
0'n- LA -
"f
4
0Nn
-4
-
mf
-
-4
1
a\
Lf T
-4e
1-
0
-4
r0-O~
1-4 1-
~ ~ nr ~ ~ ~- ~ ~ -
1
4
-4
MN
n
O
NCNNr
~
I
I~~-
'Tq(NZC)
-
.- 4
a l
1'0
-4-4
Vfl
I)INco zfn
-T w
r-r
-4
N
.4
-A Z MI
-.
r R1.~
-v
4
I
~V, SW' "'-
w
q~w
I.lwwww
I
ON %D z
co
0
fn
C
1-
14 fn co0 r,14C en IIIr r re
co
I4
I~ -4
4-
r (n-4
(N-
I D Ln
t
q0 1-~4 1-4
r-
040
-T 0 N a L (N03 L 0a I() N4
oL
-T
(1
1-)
(N0 (1
N3
,T
1-
O1f
en -
-
4
1
-4
- n
1
3
(N
N
(N
N.
r-c -N
'0(1 N -4I-4 (N en
-T Z
0
r, N \D
a
-44
~
U)~~( .~~~~~
TL
4N4 -403 -4 4
~
fLn -CO0 0 P- NM o IDN( %0 C*
.- 4
NN
I
(N
r4I I 1 101 11(
(N
0
IN I4
NLf-T
Z -T N( r
N
-4
nLn
n
m enI -4
.- 4in
-4
a%1 na
o ' C
I 1
1
I
I
I
'010
1 E I I 01c INU 1-410N1- 1
-4
1-
u)
L(
N
I
(N
(NNC
VLC OrCOa 0 C'.0r -r% (N
-4CV.
I
I l
I Q) I IH IU4
044
4
c('
(1)
I
0
n
O-*' 4
I Iq
I
o
I(3 -
n f r n
I4 I4
l
(N(NN(N( (NN(N
44.
N
L4C4n 0% (n
~~
(n (1I N4N (n C
I I
u
CN
N(N
S -4
a%4-4
-4r
N
I I
-4
1-
(N 1-
1-4
N
I I
M 1
Cn
N14
1-4IT ID 1
1-4 1 4
1
I
C I
-4
M cn (n -l en n d)
r"
u
I
-4-
CN
'TIr- IT IT-T W101
zLil(
o
N4
co0 In
N
(n(
LflN( 1.
r,
-4 1-4 14.
-4~
N-c41
co
L (n m
-40 1~(
N~
Cr (4
-4
m N \ NO' 0~N N-4 NN NN N
IN1
en4
4
.-
04
C
z 4N
c
1r
-4
I0
~
I I
aNL r4(
La If I
I
)LIL
n
I
IT 1I
IO I
1
(
-4
1-401-
I4
l
I ID
1
I
I
I%
1 4C1 I.
I
I52
%.
VL
%4I
ZI
a -4N
~
V --
N
1-
1-4
r400J)4r N
N a~
0CN
-4L)
N I
C4 10-
fn
I
N
o
-4 Io
1
'
N
T iLn ID
-
rn -'(
N4
(,I
M'
-4
N
-
-
l
W1 '
V
IQ I
'-4 o
Ioi))L
f
L
r-
(IN' cc
' CC
mmmm00w -
--
-
N
4
-4
4
~4-4
C 1 OC~ N
IT-W
Ln
-4-14 -4
-4
-4
aN
'
X'
LC) Lf
nLnjU")
In0
-0 C N
0-4
I
N
10
30 --
~I
4
-
4
Lfl
r
com
1-4
1-4 -4
-4
4 r-4 1-
4
v -oCr, -
o co 0C0 NN
C. -4
C (7' I Lf4 N
N
xC. z0 N
-.
-
N
nININ
N
N
0-4
-
WN
0
iN
S
WI
-4 14-14-14-4 -4-4 -4 -4-4-4-4-4-44-4-4-4-4-4-4-
-4
N
N
-4-4-4
-4-
4-4
-4
-4
N
NI
N
0
-- 1N
m
NN
NN -4
3(
N
-4-4-14
4
-
N)14%
-
I
N
-4
-4
nr4
()CL
a'4
(N
-4-
53
N
N
N
el' (-I
rN-V
r
N
W-4
can-'
'0
MN a
N v
-4-14
0
DL
N
-4
N
w
N
ON 0
o0
k
N
rVN a wa
~TC.NL~ a U0L
P'0
4-4
a'
-4f'0-4
o
oNO
N-4-4-4
0M
-
4-4-4q -4-14-4-0-414
r-4 14 -4 4-4
-4
-
o
k
am
4C.N 1-4 en LC -4N -4 r-4
00 0
'1 -4
~M
X ID qq
fn
oI-
~
-1-4
1-NN -.4
I
1-4
I
-
I
a'
rLO
-4
%O-
mr-
I
-.-
CNr
a'
a')
4'
fl
-e
o% -4
-4r-(
-4
4
N-. (7%
nTr
"Im
-14-14 -4
oL
r
0
TO
-4
(N
I
-
a'
-4
'-4
0N
-4
-4
-4
-4
v
c
-
-4--4
ON CDrL
4
CN(
-4
-4
-4
-4
r-4 LO o
r1
oO COa'N
v-
-T-
v -4
-4r
N-4
r-)' 00 0
z
N
r-
ID
4'-4
4
N4
N,
~
~?~3
0\ON ( a 3)
-~'
-4-4-4-4
--
NC14-4-4N.
a'
v
-4 -444-4
-4-4n
4
-4
-4
N
NN~~~
S
4
-444444
4444
r
Drr
o
N
co -
-4444--4
-4
-~----
"
v-4 Lc)al r.
In
z-a~~
-Q
m' 0
w
(n
vNC1
co
om N
r-
m CaC'z0)-4c
vN-4-4
~
~ CC
'-
m(
0
rN
--
a
N e-N4N1-4
-4N N
co r.0 N-4C~r-
a' N
N rn -T L cr -. m' 0 N C'J N N (N Nq N Nq N
w
-41.4- .- 4
a
LCX)
m
r-
i '0
'Tr - ,4-. 4-4
M
f)
l
Cl
n
en~
-4 -4
-4 -44
(1
fn
M1
-4
q
T
V
-
-4
I
-
IN
14-4l
4
i
co.
m (N
m
-n
-4 r-
-4
14 1
-14
10
100"0
.4~
1 -4-4
ICI
0
.4
cwm 0. r-
I
I
u
I
IN I
%D M
N'
(' (4
I
k
I I 11 o
0,
C
~
cOo4
I1
-4
a
(N
-4
-4-
n0
-
r--
naC4II
~
I-
d0
0
0N
-4
m ON ONION0M
(N
-C4
N
'L'
"
-4
nN
CN -41. r4
o
a
1-
(n
(3
U)'0t (n
~
N~~~
~~
0
v
0
4~
o0
0 (N N -4---4
r-
n I
rI
('4 V'-4 0-
r40
Iq
IT10. 4(
-0L
00c
I4
:Q~~ II 0
1
a 0 n m I 4 410
U:- M (I m 4-
-
I
I
-4( n
o en
IUIC4Oa U
7 L
n 0
0
I,
Io 1( Z-
4
4
I1.-. N Ir
0mNL
4Nm 4
' Or-4r-4
III
vIIor
54
I
I
4
n -4-4 )
4)
k
T
-c
;
14C
N0~ N-4
IQ
I-
r) -' r)400
-
, Dr% N -4 c 0X~ 0 (7% -4-4C v e00 00
N
I-
- IIm(n( 4 4r4-
1
en IT0U)a('4('
kO
I((
I
N0
Drc
t
-M n
Ir1
('4(-4 4I
1-4
4NmI
C, (N
II m I (n
c
04 0
%a c
1
-4
14
.4
('4
n4
1I n
I It (n
a
ON
0
000Dcm
4
n
Nvk
I I
rI 0 N
4
a%
r4
~
00
10 1
1
S.vCD
N
N
-4 -4~ -4 - r-
%0I
Io
Io
(O
CD N' N
-4
0
~
I
I
.
4( w
-1 -4
-IT
C
LN ra ic
ciar
I
.-
NIDco
N
co 0
-4 0ui
14 .co 0 00
-
44
-4
C11101
C%csao
1rI-
0O f 0
nU nL 0~~~~~~~
~-4
C
1
-
-410-4
-4
oCN0r '
*1,
-
-4
N~
I
N -4
(N (N (N (N (N
n(N
-
a
-4
Nf L0
(n
,
0w
4-
11
4-
0-4 -4 m N ( (N (N (N (N en
%0 co -n 4
D
(N
-
4
14
N o 0)N LA'0
-1
i- -4 4
n
00
cr co Ln rfl r-( a
N
nLANu
-1-4-4
-4
A. -r
-4
N
I 4-
(4-4
(N
tn L (n
N
)N-
-
4
(
-4
-4
N
'IT t)
-4-
0-4
4 LC 0 V fn
-4
00 a
a4
a%
wmm -
NC4z
-
-4
r.-
(
-4
O'4 LA
N
ONNm
0 -4 CV 4? Dr
r
"444----44m----44m--
C MO' i
a0
(
q
N n
-D4QzID10 n
-1-4
N
4-
4-4 -4.- 4-4
00
4( 9N
N
-4-4
,
4v4
nr,-
0
c
l
fn
0
14 _; CI (I
(N r..
-4 -4
4-14
4-4
14
c f"N LA
-,a(
'rlC-LA ('4
-r
Ln 0
N(vN O'i en (N -
N
-4-4-4Nm
m
((O -r
-1--4
q
4l
4
-4
-- 4
r
N (N (N (N4(N (Nr(N
%(
-W
owwxwmr
(n r,
v~ 4 z~ rl Ln
m4 ON-a4co-4-4-4-4n-4-4
(oNLAI
(-4 n
o
(N
N 14z
4- 4-
-C -4-4-
-, c-4
zN
I1-4
II
(N 4
(N
n
nL
-14-4-4-41-4
-4
-4-4
4%-4
-4 co
,
r-
4r4r4
3
oq
o
-4-4 w1- kD r-II.-4
0
DMnNr
-L
4N (- (N (N (N(r4N (N (N (N((4
-
en 0l M 1.
'
or
D0Wv\
-
" 4
IN
%c
I4m U)r n0N,
0
-4
4
4P4rq
n. (N (N T Nf 0I-4 'p I I
-
-
(r4N
(N
Ar4r4r4ren 4? (N) 11
v
n00W(
e
-4
n(n
4rIV V) 1--4
rI
m~ cn C11
(1
N4
4
mA 1
Nn LO
1.4
I I
m
-0
(N (N
'0
,k
L (n
r-4w
D
a
Nwm
N (N N (N N (N (N (N (N (N (N (N (N (N (N (N (N (N - -4 -4
-4 -
44-4
-4
-4-4-1-------
(-N (N (N (N N (N (N (N (N (N
414
-4--j-
n* M
n' M( n
55
4N
4
0 N
-4 4
I
I
I
Mrr- OC
0
M
o
14-4
(n en( en en
-4
-4-4
-4
W4 V4 W? V? V4 V
0
4
-
-4 -4 N fn -4-44
I
-w
(N N
mn
-
00 1-4
(N (N (N (N N (N N
-
Vnr-N
r
4 (N
W
4
(N(N(N %0 N k N (V
I
o
I1
. 0 4N
m
r4 N (N (N (N (N (N -4-
W
4-
V
444
V
V Ln Ln L
v
r-
4NmvL
-
CO'c4
O
n
C14
r-4
. LAfor 00000001.
-V c
r. %a
.0 0-4'j-k0o N'~ r-
M
0
C%D
NN
M
NI-l-N CI
N~-
Ln tn N
C
4
414
-
4
4
'rJ
n L) )
I
r, '0tn~ w
N N N'
N N N N~
.-4
q
N
-4 -4 NI
~N N.-('4
Ca
r
(n
r.a' N N
-wvu cN0Da
)
000;
T v-W lwlwv
.4
-4 0 C
Lnw
-4
4-
-D
Mo0t 01%-U,
r
%(%
M
-.4 4rA4.4
ng
I4
-
r-
(1
N C'(JN N
NN
N
rI
.
U; L
-w
N oOn -
C% r Nd k
d4a%O r-Ln
NNN
00
4
~
O %
.-4 m
-
fn1
N
C4
r
~v. 0
L
omr
-44
r-4I 4v0%
Ln
4
'I-
Od0~
C; 8-~ 8-.
r4 ,.4 r4 .-4
m
4N
0
C~j('r4
-4f
1-
rw
) i mm n n n 56U
n )
%D
F
-~~~0
r
.r'..Wnr
I
C
-414
Lu.aa0 0 Ln
If 1
-4
-4 -4
-4
I
-
4r,
--
IV
0
0
4
-
-4
4-
-
14 s-% r-,
=,
N i
yww 10
-~
w~WW
IQ
l I
i I
I
I
I
I
-1~-4
I WI
a.
IN 0 ("C%
UffItr -4 1. -4 -I
I-
I4 1
r-.4
1
0
O
l1flf 44
14-4
4
4
q
10c1("01 I rlI IIfl In
I
44.-4 .-4
-4.-4
I
-4
-4r4
-4
414
~ -4
enIr4Nq
c
-4 q
" n
n
1
.IOLO( VIO1-
z
-4 4
o
1-4 4r41
o
co Ii
14
o0JDC'D
f 0
4 4 N N ci 4-4 4 -4 1
1 -
4.41-4
-4i1-
r44 C'n(N NI
40 00f O c ' Mr-e'In OC ( 00 r MaocLOe CO r~-4 %0
N'C'
O
o1
Me mON
. C
1-
~
00 -4
a
a
N
,r-r
-4 -4r-4 -4-4 -4-4- 4-4-4 r4 -1 - 41-4 14 1-4
ma -4-44
4-4(
COI Cn
(1%0 III
T
.-4
.ON
1O
n
-
NV-' M' 4 en
. .-4
NCVL 4 -44.I 4 -4-4 (
o D(nm (
I;
101 a4 In
II
4.-4
1-
w0 r.' (a'L0 -4 om Na 0 -( C n 0 0 Nw 0 q wLf
) CLfl) -
c
r 1--4I
4 14
'JL - , 4-4- 4 -4
-
I
II u 1e~ I 1
If ID
1-
Of
Ln U' 1-I -4 4 4
n00% -
Mr
,
a L 14 11 4 rl M(11(n l N'0 N0N ' N ' 4 -4 4r-4 r- r 4 -4 -4 4-4 -4-4 -4 -4 4-4 4-4 -
co
4 r
Ln
1 1 en
0
N(n% 1ar-a
-
Nm1
C
-4
r~0~C r- co 14C -4 -4
r--4
0
I
o
--
IT 0 m
enJ v-4 a (I
IM I
0
14
a'aN
~
)
a' Lfn -4 14f
N
r014C'J'
I
v
-
aM' t*-
v0
1
-
n
-L
n140U
oNwn-
-4I -44 I
U5.rp 1-.
1
qI
IUI
,
0)lp0
00 %
I,
I r -,
n(
mI
.
0
r-
N
.
n
or
nfn
NNNN
oGo
mc -4N n qTa -4 Ne
4( CV-4 co .O a
Slf
1 leor -c 44 N N 4
'O4 r144-4
00
-4
CN
1
a0IDI~
N -i
4
IfI
C-4N
I 0, NJ.-4(~I S(Ir Q Lf)ON O co r, ro LfO cnr0 m tnr%C,4 v l 0 U CO N0N n M c r3m -4 an acoQ C3; (1 a a; C; 4 1 o c a%0 r. r, ao0 4 D r- c -4 14 4 4-1 4 - -4 -
a'
a% .0
-4
In
4
4
-
1
-4 -4-4
r- co0-14F
N0 v
CI
-4 -4 -4
-4
-4
o o N -r-4
QInr v
00O -
n oc M~~~~ N-
.
cIO
f
I
N 4
ON 14
(A (1 1- 1--
1
(
.$
-4
.-
I
I-
44
-4--4
-. -4 -4 -4 -4-4-4-4 4 -4
-
- -
r, r- co 00l
Ic
I
CN
N
r0o C
rNT
-
4
' (ON n~4 LC)ooa N-4a'CN
o
IIQ
1-4
04
I~ I
n C IT I
N
.-4
14
r4
; 1-4a'
0
V
cC
cC
1-4 1
a'4
N
coUl ON
N4I Hc -4
NrN%
c w4 -wC~T
N
m
I
,c
a'a
I
I l I I aI
I
I10 I C
I
I% I
I,
~
m)vx
N~I
I e 14q10
1 14)1I
I
IT -
.
I-
I-
I-
III
I
I-
u o nui4
00 N
I
Inc11 Iq
No cN -w a' v-~t2 via
c
Io I4
4
r4 D
a'4
~v
Inn
I I I
ar a%c -44~I NN
0 (4
~~~
4
IT a'
1-4 -4
'a'0
I.
a'
4 -4N
v ulO oO~ rcoq
00
4N~I~~ N~a
a'nM 0
4101
o =
I-
mn
ON
r
IMQc 0
f
3
CN
O 4 V-
1
I
c Io0
Q a% N kD kD r,
mN
0
I I r4I 101 IW I
m N
N
-
o
N4a
I a
Cc 00 r.C
o0
r-4
r-a
~41
I- 1
0nOc cC 04 -4I
(ON
r
)I
I
r,
I
1
In 14 Ia NN N Nc I
0N n rN-4.4n . -4 Ln fn 4 M0zr N -4
ON Ir n I -4' Nrc4Or caa0
1
1
c'cC4 Nl
N -4 04
N
cora N
1
1r0I1 I I~ -T1(1 1 .0 1 IflI 1 1 10
n01
r-4'
a' 0N
L 4t1r
I I I
41
-4- N
N~~~I 4
N I
1~
N
~
4-4
No 0 0 (11rN c-q
NN
I10
-Ooa
I
I.~I-58
INrI -
-r. '--r' ~yp-u.p-
er
'rirsfliWV
V
rwU
W71l
MP.xm-j~
'l
.
- w'x
"rEP4Vrw
".'
~JX
L
%.M M71 u,
W"UA
WV V=vr
urr
,
1-
ZN
---
- 0-
I-N co
-
I
m'
J
=
-
-
NC
1-) I'DN
C1
rl
-
--
-I
'T
-
.
N
'T
N
D
Ln o(It
1
X) Lfl
C
N
nC
N
o
I
4-
m
4
ON Cdm'
r-4 -4 -
mI
1-4
1-
n
-
n-
D
-4
CN -4
LT N
Ln
L C14 w
-
T -. .
1-
-)(-If-
(1r
I
0
rr
-
II
r-
m
-
I'-
.
-n
.
. o10I
11
4 _4 -4
m
-4
- I-rn, . ..
) .
-
-4
3
C
-r:1,0 "c
-
-4
-4-
en
X
-
%-
. "NC
-
r
--'
o
nN0r
r In -
(I
I
a%
-4
r. --
n
(
1
I
N
-D
--
"
r,
_4
0
"
-
-
I N 1 N NII
N
--
.0
(O N
NN- NN
Nn(
~
'.
PNn
r-
-
f,
D r- M
M-
1
40 C
1
-II -4
-1-
ui
-4o
-
-l4
14r
(N4-4-N4(,1-4-n
rnc
-4
en
-I
ITN'IT
-4-4 -4
C-
N .
.
LO
N
w" .
~4
~
N >
.
.
m
,C
LN-
L
n
.
.
*4r-4
N
-4
N
-TS
-I
-4-4
-1-4
-MM
.
.NZ
.
1-4
4
-4
or
4
j
59
.4
0"L
S
r'wvririr.r
wUsu
I.
W
W
-iJ
ww Wh
IY
1
~
,4
4
A
'
q
4 -4
.
1,I
o
-40
4
f-4
. 1
(N
.M. 0
c
enmr)0
(Nc
Na (3-4
a N0
-f-4
-
-
CI V
~~~1 '0
4
(D (N ko(v
(N(N(0 aNt r.-
m
-
T
0r
N
N
,-q t
N4NNN r-
-4
-41 N 1.
IDr
4'.
N
(NqTM
4I
Nc
1
-4.4.4
,-
N
N
1-
4 1-
q-4
fnA~A'~ -T v
T
v
an
i
I,
V-
i
(
(
%q
7
0% 4 0
cor
1.
m -
-
oU
I
10~-40
f
r-0 N
~Nr-0-'.L
O
.44-~
.- 4.- m
0i
a1 00 ON~-- Ch ON'ON
(N N N rN
(N
(4N
4
1-
.-4 -.1
4
41
n
-c )U
)U-L)X
OL
(N(Nr mm
U
0
-W
-
-
-
or DI
NLA
I
LLA
N0
11.
N~0
.4 co
Lf
(
(N
r-4
14
pa D%
0
1-4 ,N
.
L
Nr
co 0
NN 4
Nr
0c
co
No LAL 4Nml% % .
-
Ln -40r-
)q 0-
ID
OD
U) I
1-4.-
1
4Nnq r N4
1
-
C
414141
LLI n
00
r4 0
N~0
(N
I 0I
0LA LA
-
I-
nL IU nL
nL
ou
-
(
nr
i
f
1 -4 4 0.0 ID-O
,4
Aqc
q
.- 4 4
(N-4N(
LNf ')
1
-I
.-4
N
07
-4
Na 00
0(
U)r
oa p. T
O
L0A
.n
(N W0
-n
m
(NdNANANL0NN.L(NLC
I
w
.4
4 -4 -4i -Oc4
NN N 1414
o
N(n a%
0L
N N(
)
mN I.rI-CI 0
(N
~
mNN\I m.0
4
ITel
MM
C 0C
w
r4 .3%
-4N CNNNN
4-4'O
-4
i
-4
(71
( .C.-4N
a
NNNN((( vN(N(N(N(N(NNmN(N(N(N (N
ov
m~(
co
r-4
R
-4c'),ON ODLn
mmtnm(nmLA
1-
IU
N(N- m
*~~~-
%
41 4
-4LA4 -'4 NNvL L
a%
4 In
-T
v -Tt
0C -4
-)
m
iON 4 a IN
O-4
0
,-
r-
f-
?
N0m.4
44'
(7%-4
c
v
-
k
-4
rD -
ID
J( %0
L Cq-4 L-44 1-
r41
INNC
,-4 A
-
N~-4 n
co
f
f
Ir-X)N 0 L
mr
0CV~( ,-r-4"
s
-4
qT (n-0r-'DNoNAC 0
0
,a
lll'
4
(N~60
-4
-4
nZ 0nzr N. r-
-~~~~
'-rrrrrw
-4
enn,
aN 0
-r
an
,
I v
I
N
enxrV -W Lo L
%
I W
qr a%U
O tr
4-
44-
r
Il
I~r10 O 1
1'
1--410 -4
II
0
Nr3
o
%
1
-4
0 I
I
- 4
I
V
(N
I
wN
0
r-
4
-~~~
Ln
c
oI
I
-.4 -4-
.-
0 04
WI In
0
C
r- L4m
I
IT
I
-
aI4.4'I
OnIN( NNNNI O
(N
m a% oI
1N11
I
I~
0~
n~n
0~
-44 -4~In-' 4 4 N
O~'61
~ r
~%.
%
'
~
N0
'
~
1 4 -4
lUI
I
N '
O
O.Rra
-
D-
'
-44
1.4
W'
L~O
"
-4
I
% t-
O 0r '
-4r r4N
U~~I
aN wN Mf Im w 4 II~-4
1-4O~ Lnv0I
I U1'0(
In
-4
W wIr-. N0
..
(n.wOr
NI
IV
~ ~~
Wmwww
rrrr
01
oe
a0 r-~-
4-43
M 0 0 0 0 M r
C%
(14 (V N Cl -4r
10
%1 1 .0 1
-
CZ 0~ 14 r4 (N -
r,
I
-I , c
a
v~
IU
In
a
( 444.
4
1
'0C
-
--
IX14~.-
n.4
0
WrWV
-4-.4--4 r-
4r4-
1 It000 IL
1-
U
.I
.
1-
,I
n
14n v0
nI
-..
C-4 Cn
%~~3
NrI
O
't
f4S0
l P
C) "
In '.0 C- m -40 -4(
r0-00rl14 I'lC)
00 ZN -W
N
-C
N
0-
SLIn '.0 r-xC
.4
1
1.0
0
-r,
N0
1
-4-
-
-4r4
-I
I'l-
-
M -I
nJZ0
no w co 3
U Lfl .0 'Orr- 1'-
-4(
C) C) -4 1
-4
--
I
n
CO c Lr)
.-
(N -4
14-14
r-:4flm ra N
(N
00
V r'
0l -7-r
A
-ITx
'
D'UJ
nI Ir
W
Nr,
-4-4
-4
.
In
r N
.-4
N
14-4 -44
a
62
N((N -4
(N(N
-4-4
--
-4
r
-4-N
-. 4-4
14 14 14
0
0~ r, -4
4(zN N
m (N
w0
-111
In(r-4r
1 -4 f
-4 1-4-4
0;
-4
N0 o
co
7
-4
00 N)
(N
(
-4 -4
C0 lD0) (N
-4U '
O0 co U
(
c
-T .IN
0
C
dCOD N
40~r
C
rN N N N 14 -4 -4 -4
N
(N N(N(N(N%
(N
14
-4
1-4
-4
4
(
144N
(NN 1-4
-4
-4
) C4 a%.=%(mN
'
00004
-r'Lt r:
(N N N N(N N N 14 r-4 -4--4
0CJ
-
00l)(
-4
- -4
(
~
'
C-40
(14 NCN
r-
r-
C
14 (Nj (N (N (Ni (N
-4
-4-4 -4-14-4
l
C (N
14
N
oL
Nmr r,
f
C,
x
r--m
1-4 fn C4( 1
-4
-4
1-4 0
M
14N
-4
IN.
.
r
r-4-4
(N (N (N
N N'JN N
e
4-4-4
.4
(N
1-44
ICD I4N(n
>L
"0" -nr
4
-4
0-4
-4444
-
n
n~(~N
NNC1N N CN (vNNj(1(14N N -I -4 -4 1 -4 444444-4-4
D
-
C
N
r-
-4-4-4 co0
r-.0r--4
,4 Ci
zl
T
N
(N
r- C(N
-4
r-
4
CN 14
'n
c
1 14-4
44-4Z
(N, n
nc
wr
r-~( N~ a
(N
%
0 -4
x~ m
c4z
-4 -
ON~' i'. "
MJ
lz .
T
nr
fl z0
-4fl.
1
1
-l c 41
4
-4 n
n-4-4
7
-q* 0rC
O'
No.7c
C
-4-14-4
CD
-1
D
"
(
n
co
(N
-4
x
-
i.
N
-4
N'? co
100
) 0?
f
c
'T
co
C
N
?A zA
f-i
f-~
63