2 CHAPTER 20. Aldehydes and Ketones. DO YOU REMEMBER? Before you go
on, be sure you understand the following topics. If necessary, review the ...
Aldehydes and Ketones
20 20.1 Introduction to Aldehydes and Ketones
DID YOU EVER WONDER . . .
20.2 Nomenclature
why beta-carotene, which makes carrots orange, is reportedly good for your eyes?
20.3 Preparing Aldehydes and Ketones: A Review
T
his chapter will explore the reactivity of aldehydes and ketones. Specifically, we will see that a wide variety of nucleophiles will react with aldehydes and ketones. Many of these reactions are common in biological pathways, including the role that beta-carotene plays in promoting healthy vision. As we will see several times in this chapter, the reactions of aldehydes and ketones are also cleverly exploited in the design of drugs. The reactions and principles outlined in this chapter are central to the study of organic chemistry and will be used as guiding principles throughout the remaining chapters of this textbook.
klein_c20_001-056v1.4.indd 1
20.4 Introduction to Nucleophilic Addition Reactions 20.5 Oxygen Nucleophiles 20.6 Nitrogen Nucleophiles 20.7 Mechanism Strategies 20.8 Sulfur Nucleophiles 20.9 Hydrogen Nucleophiles 20.10 Carbon Nucleophiles 20.11 Baeyer-Villiger Oxidation of Aldehydes and Ketones 20.12 Synthesis Strategies 20.13 Spectroscopic Analysis of Aldehydes and Ketones
30/04/10 16.46
2
CHAPTER 20
Aldehydes and Ketones
DO YOU REMEMBER? Before you go on, be sure you understand the following topics. If necessary, review the suggested sections to prepare for this chapter: UÊ À}>À`ÊÀi>}iÌÃÊ-iVÌʣΰȮÊÊ
UÊ ,iÌÀÃÞÌ
iÌVÊ>>ÞÃÃÊ-iVÌʣӰή
UÊ "Ý`>ÌÊvÊ>V
ÃÊ-iVÌʣΰ£ä® 6ÃÌÊÜÜܰÜiÞ«ÕðVÊÌÊV
iVÊÞÕÀÊÕ`iÀÃÌ>`}Ê>`ÊvÀÊÛ>Õ>LiÊ«À>VÌVi°
20.1 Introduction to Aldehydes and Ketones Aldehydes (RCHO) and ketones (R2CO) are similar in structure in that both classes of compounds possess a C5O bond, called a carbonyl group: Carbonyl Group
O R
O H
R
An aldehyde
R
A ketone
The carbonyl group of an aldehyde is flanked by one carbon atom and one hydrogen atom, while the carbonyl group of a ketone is flanked by two carbon atoms. Aldehydes and ketones are responsible for many flavors and odors that you will readily recognize: O
H3CO
O
O
O H
HO
H
H Vanillin (Vanilla flavor)
Cinnamaldehyde (Cinnamon flavor)
(R )-Carvone (Spearmint flavor)
Benzaldehyde (Almond flavor)
Many important biological compounds also exhibit the carbonyl moiety, including progesterone and testosterone, the female and male sex hormones. O
OH H
H H
H
H
O
H
O Progesterone
Testosterone
Simple aldehydes and ketones are industrially important; for example: O H
O H
Formaldehyde
H3C
CH3
Acetone
Acetone is used as a solvent and is commonly found in nail polish remover, while formaldehyde is used as a preservative in some vaccine formulations. Aldehydes and ketones are also used as building blocks in the syntheses of commercially important compounds, including pharmaceuticals and polymers. Compounds containing a carbonyl group react with a large variety of nucleophiles, affording a wide range of possible products. Due to the versatile reactivity of the carbonyl group, aldehydes and ketones occupy a central role in organic chemistry.
klein_c20_001-056v1.4.indd 2
30/04/10 16.46
20.2
3
Nomenclature
20.2 Nomenclature Nomenclature of Aldehydes Recall that four discrete steps are required to name most classes of organic compounds (as we saw with alkanes, alkenes, alkynes, and alcohols): 1. 2. 3. 4.
Identify and name the parent. Identify and name the substituents. Assign a locant to each substituent. Assemble the substituents alphabetically.
Aldehydes are also named using the same four-step procedure. When applying this procedure for naming aldehydes, the following guidelines should be followed: When naming the parent, the suffix “-al” indicates the presence of an aldehyde group: O H Butane
Butanal
When choosing the parent of an aldehyde, identify the longest chain that includes the carbon atom of the aldehydic group: The parent must include this carbon atom
Parent=Octane
H
O
Parent=Hexanal
When numbering the parent chain of an aldehyde, the aldehydic carbon is assigned number 1, despite the presence of alkyl substituents, U bonds, or hydroxyl groups: Correct
H
1
O
2
3
4
Incorrect 5
6
H
7
OH
7
O
6
5
4
3
2
1
OH
It is not necessary to include the locant in the name, because it is understood that the aldehydic carbon is the number 1 position. As with all compounds, when a chirality center is present, the configuration is indicated at the beginning of the name; for example: O H Cl (R)-2-chloro-3-phenylpropanal
A cyclic compound containing an aldehyde group immediately adjacent to the ring is named as a carbaldehyde: O H
Cyclohexanecarbaldehyde
klein_c20_001-056v1.4.indd 3
30/04/10 16.46
4
CHAPTER 20
Aldehydes and Ketones
The International Union of Pure and Applied Chemistry (IUPAC) nomenclature also recognizes the common names of many simple aldehydes, including the three examples shown below: O H
O
O H
H3C
Formaldehyde
H
H
Acetaldehyde
Benzaldehyde
Nomenclature of Ketones Ketones, like aldehydes, are named using the same four-step procedure. When naming the parent, the suffix “-one” indicates the presence of a ketone group: O
Butane
Butanone
The position of the ketone group is indicated using a locant. The IUPAC rules published in 1979 dictate that this locant be placed immediately before the parent, while the IUPAC recommendations released in 1993 and 2004 allow for the locant to be placed immediately before the suffix “-one”: O 1
2
3
4
5
6
7
3-heptanone or heptan-3-one
Both names above are acceptable IUPAC names. IUPAC nomenclature recognizes the common names of many simple ketones, including the three examples shown below: O O H3C
O CH3
CH3
Acetone
Acetophenone
Benzophenone
Although rarely used, IUPAC rules also allow simple ketones to be named as alkyl alkyl ketones. For example, 3-hexanone can also be called ethyl propyl ketone: O C Ethyl propyl ketone
SKILLBUILDER 20.1 NAMING ALDEHYDES AND KETONES LEARN the skill
*ÀÛ`iÊ>ÊÃÞÃÌi>ÌVÊ1* ®Ê>iÊvÀÊÌ
iÊvÜ}ÊV«Õ`\
O
SOLUTION STEP 1 `iÌvÞÊ>`Ê>iÊÌ
iÊ «>Àḭ
/
iÊwÀÃÌÊÃÌi«ÊÃÊÌÊ`iÌvÞÊ>`Ê>iÊÌ
iÊ«>ÀḭÊ
ÃiÊÌ
iÊ}iÃÌÊV
>ÊÌ
>ÌÊVÕ`iÃÊÌ
iÊV>ÀLÞÊ}ÀÕ«]Ê>`ÊÌ
iÊÕLiÀÊÌ
iÊ V
>ÊÌÊ}ÛiÊÌ
iÊV>ÀLÞÊ}ÀÕ«ÊÌ
iÊÜiÃÌÊÕLiÀÊ«ÃÃLi\
8 7 2
4
1 3
9 6
5
O 3-nonanone
klein_c20_001-056v1.4.indd 4
30/04/10 16.46
20.2
5
Nomenclature
iÝÌ]Ê`iÌvÞÊÌ
iÊÃÕLÃÌÌÕiÌÃÊ>`Ê>ÃÃ}ÊV>ÌÃ\ STEP 2 `iÌvÞÊ>`Ê>iÊÌ
iÊ ÃÕLÃÌÌÕiÌð STEP 3 ÃÃ}Ê>ÊV>ÌÊÌÊi>V
Ê ÃÕLÃÌÌÕḭ
STEP 4 ÃÃiLiÊÌ
iÊ ÃÕLÃÌÌÕiÌÃÊ >«
>LiÌV>Þ° STEP 5 ÃÃ}ÊÌ
iÊVw}ÕÀ>ÌÊ vÊ>ÞÊV
À>ÌÞÊViÌiÀð
4,4-dimethyl
8
7 2
4
1 3
9 6
5
6-ethyl
O
>Þ]Ê>ÃÃiLiÊÌ
iÊÃÕLÃÌÌÕiÌÃÊ>«
>LiÌV>Þ\ÊÈiÌ
Þ{]{`iÌ
ÞÎ>i°Ê ivÀiÊ VVÕ`}]ÊÜiÊÕÃÌÊ>Ü>ÞÃÊV
iVÊÌÊÃiiÊvÊÌ
iÀiÊ>ÀiÊ>ÞÊV
À>ÌÞÊViÌiÀðÊ/
ÃÊV«Õ`Ê `iÃÊ iÝ
LÌÊ iÊ V
À>ÌÞÊ ViÌiÀ°Ê 1Ã}Ê Ì
iÊ ÃÃÊ vÀÊ -iVÌÊ x°Î]Ê Ì
iÊ RÊ Vw}ÕÀ>ÌÊ ÃÊ >ÃÃ}i`ÊÌÊÌ
ÃÊV
À>ÌÞÊViÌiÀ\
R O
/
iÀivÀi]ÊÌ
iÊV«iÌiÊ>iÊÃÊ(R)-6-ethyl-4,4-dimethyl-3-nonanone.
PRACTICE the skill 20.1 ÃÃ}Ê>ÊÃÞÃÌi>ÌVÊ1* ®Ê>iÊÌÊi>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`Ã\ O
O H
(a)
Br Br
O
(b)
(c) O
O
H H
(d)
APPLY the skill
20.2
(e) À>ÜÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊi>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`Ã\
>® S®Î]Î`LÀ{iÌ
ÞVÞV
iÝ>iÊ Ê L®Ê Ó]{`iÌ
ÞΫiÌ>i V® R®ÎLÀLÕÌ>> 20.3 *ÀÛ`iÊ>ÊÃÞÃÌi>ÌVÊ1* ®Ê>iÊvÀÊÌ
iÊV«Õ`ÊLiÜ°Ê iÊV>ÀivÕ\Ê/
ÃÊV«Õ`Ê
>ÃÊÌÜÊV
À>ÌÞÊViÌiÀÃÊV>ÊÞÕÊw`ÊÌ
i¶®° O
20.4
«Õ`ÃÊÜÌ
ÊÌÜÊV>ÀLÞÊiÌiÃÊ>ÀiÊ>i`Ê>ÃÊ>>iÊ`iÃÆÊvÀÊiÝ>«i\ O
O
2,3-butanedione
/
iÊV«Õ`Ê>LÛiÊÃÊ>Ê>ÀÌwV>Êy>ÛÀÊ>``i`ÊÌÊVÀÜ>ÛiÊ««VÀÊ>`ÊÛiÊ Ì
i>ÌiÀÊ««VÀÊÌÊÃÕ>ÌiÊÌ
iÊLÕÌÌiÀÊy>ÛÀ°ÊÌiÀiÃÌ}Þ]ÊÌ
ÃÊÛiÀÞÊÃ>iÊV«Õ`ÊÃÊ >ÃÊÜÊÌÊVÌÀLÕÌiÊÌÊL`ÞÊ`À°Ê >iÊÌ
iÊvÜ}ÊV«Õ`Ã\ O
(a)
O
O
O
(b)
O
(c)
O
O
need more PRACTICE? Try Problems 20.44–20.49
klein_c20_001-056v1.4.indd 5
30/04/10 16.46
6
CHAPTER 20
Aldehydes and Ketones
20.3 Preparing Aldehydes and Ketones: A Review In previous chapters, we have studied a variety of methods for preparing aldehydes and ketones, which are summarized in Tables 20.1 and 20.2, respectively. TABLE 20.1 A SUMMARY OF ALDEHYDE PREPARATION METHODS COVERED IN PREVIOUS CHAPTERS
TABLE 20.2 A SUMMARY OF KETONE PREPARATION METHODS COVERED IN PREVIOUS CHAPTERS
REACTION
REACTION
SECTION
"Ý`>ÌÊvÊ*À>ÀÞÊV
ÃÊ £Î°£äÊ Ê OH O Ê PCC Ê CH2Cl2 R H ÊR 7
iÊÌÀi>Ìi`ÊÜÌ
Ê>ÊÃÌÀ}ÊÝ`â}Ê>}iÌ]Ê«À>ÀÞÊ>V
ÃÊ >ÀiÊÝ`âi`ÊÌÊV>ÀLÝÞVÊ>V`ðÊÀ>ÌÊvÊ>Ê>`i
Þ`iÊ ÀiµÕÀiÃÊ>ÊÝ`â}Ê>}iÌ]ÊÃÕV
Ê>ÃÊ*
]ÊÌ
>ÌÊÜÊÌÊvÕÀÌ
iÀÊ Ý`âiÊÌ
iÊÀiÃÕÌ}Ê>`i
Þ`i°
SECTION
"Ý`>ÌÊvÊ-iV`>ÀÞÊV
ÃÊ £Î°£äÊ Ê OH O Ê Na2Cr2O7 Ê H2SO4, H2O R R R R Ê ÊÊÛ>ÀiÌÞÊvÊÃÌÀ}ÊÀÊ`ÊÝ`â}Ê>}iÌÃÊV>ÊLiÊÕÃi`ÊÌÊ Ý`âiÊÃiV`>ÀÞÊ>V
ðÊ/
iÊÀiÃÕÌ}ÊiÌiÊ`iÃÊÌÊ Õ`iÀ}ÊvÕÀÌ
iÀÊÝ`>̰ "âÞÃÃÊvÊiiÃÊ °£Ê ÊR R R R 1) O3 Ê O O Ê 2) DMS R R R R Ê Ê/iÌÀ>ÃÕLÃÌÌÕÌi`Ê>iiÃÊ>ÀiÊVi>Ûi`ÊÌÊvÀÊiÌið
"âÞÃÃÊvÊiiÃÊ °£Ê Ê H H H ÊH 1) O3 Ê O O 2) DMS ÊR R R R Ê Ê"âÞÃÃÊÜÊVi>ÛiÊ>Ê 5 Ê`ÕLiÊL`°ÊvÊiÌ
iÀÊV>ÀLÊ >ÌÊLi>ÀÃÊ>Ê
Þ`À}iÊ>Ì]Ê>Ê>`i
Þ`iÊÜÊLiÊvÀi`°
V` >Ì>Þâi`ÊÞ`À>ÌÊvÊ/iÀ>ÊÞiÃÊ £ä°nÊ Ê O Ê H2SO4, H2O Ê HgSO4 CH3 R R Ê Ê/
ÃÊ«ÀVi`ÕÀiÊÀiÃÕÌÃÊÊ>Ê>ÀÛÛÊ>``ÌÊvÊÜ>ÌiÀÊ >VÀÃÃÊÌ
iÊUÊL`]ÊvÜi`ÊLÞÊÌ>ÕÌiÀâ>ÌÊÌÊvÀÊ>Ê iÌ
ÞÊiÌi°
Þ`ÀLÀ>Ì"Ý`>ÌÊvÊ/iÀ>ÊÞiÃÊ £ä°nÊ Ê H 1) R2B H Ê R 2) H2O2, NaOH ÊR O Ê ÊÞ`ÀLÀ>ÌÝ`>ÌÊÀiÃÕÌÃÊÊ>Ê>Ì>ÀÛÛÊ>``ÌÊvÊÜ>ÌiÀÊ>VÀÃÃÊ>ÊUÊL`]ÊvÜi`ÊLÞÊÌ>ÕÌiÀâ>ÌÊvÊ Ì
iÊÀiÃÕÌ}ÊiÊÌÊvÀÊ>Ê>`i
Þ`i°Ê
Ài`i À>vÌÃÊVÞ>ÌÊ £°ÈÊ Ê O O Ê Ê R Cl R Ê AlCl Ê 3 Ê À>ÌVÊÀ}ÃÊÌ
>ÌÊ>ÀiÊÌÊÌÊÃÌÀ}ÞÊ`i>VÌÛ>Ìi`ÊÜÊÀi>VÌÊ ÜÌ
Ê>Ê>V`Ê
>`iÊÊÌ
iÊ«ÀiÃiViÊvÊ>ÊiÜÃÊ>V`ÊÌÊ«À`ÕViÊ >Ê>ÀÞÊiÌi°
CONCEPTUAL CHECKPOINT 20.5 `iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ>V
iÛiÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\
OH
O
O
OH O
H
(a)
(b) H
O
O
(d)
klein_c20_001-056v1.4.indd 6
(c)
O
O H
(e)
(f)
30/04/10 16.46
20.4
Introduction to Nucleophilic Addition Reactions
7
20.4 Introduction to Nucleophilic Addition Reactions The electrophilicity of a carbonyl group derives from resonance effects as well as inductive effects: Resonance
Induction -
O
d-
O
O
+
d±
One of the resonance structures exhibits a positive charge on the carbon atom, indicating that the carbon atom is deficient in electron density (I+). Inductive effects also render the carbon atom deficient in electron density. As a result, this carbon atom is particularly electrophilic and is susceptible to attack by a nucleophile. Molecular orbital calculations suggest that nucleophilic attack occurs at an angle of approximately 107° to the plane of the carbonyl group, and in the process, the hybridization state of the carbon atom changes (Figure 20.1). 107° angle –
Nuc
Nuc
R
¡
O
FIGURE 20.1 7
iÊ>ÊV>ÀLÞÊ}ÀÕ«ÊÃÊ >ÌÌ>Vi`ÊLÞÊ>ÊÕVi«
i]Ê Ì
iÊV>ÀLÊ>ÌÊÕ`iÀ}iÃÊ >ÊV
>}iÊÊ
ÞLÀ`â>ÌÊ>`Ê }iiÌÀÞ°
– O
R
R
R
sp 2 (Trigonal planar)
sp 3 (Tetrahedral )
The carbon atom is originally sp2 hybridized with a trigonal planar geometry. After the attack, the carbon atom is sp3 hybridized with a tetrahedral geometry. In recognition of this geometric change, the resulting alkoxide ion is often called a tetrahedral intermediate. This term appears many times throughout the remainder of this chapter. In general, aldehydes are more reactive than ketones toward nucleophilic attack. This observation can be explained in terms of both steric and electronic effects: 1.
Steric effects. A ketone has two alkyl groups (one on either side of the carbonyl) that contribute to steric hindrance in the transition state of a nucleophilic attack. In contrast, an aldehyde has only one alkyl group, so the transition state is less crowded and lower in energy.
2.
Electronic effects. Recall that alkyl groups are electron donating. A ketone has two electrondonating alkyl groups that can stabilize the I+ on the carbon atom of the carbonyl group. In contrast, aldehydes have only one electron-donating group: O
O
R d± R
R d± H
A ketone has two electron-donating alkyl groups that stabilize the partial positive charge
An aldehyde has only one electron-donating alkyl group that stabilizes the partial positive charge
The I+ charge of an aldehyde is less stabilized than a ketone. As a result, aldehydes are more electrophilic than ketones and therefore more reactive. Aldehydes and ketones react with a wide variety of nucleophiles. As we will see in the coming sections of this chapter, some nucleophiles require basic conditions, while others require acidic conditions. For example, recall from Chapter 13 that Grignard reagents are very strong nucleophiles that will attack aldehydes and ketones to produce alcohols: OH
O 1) MeMgBr
R
klein_c20_001-056v1.4.indd 7
R
2) H2O
R
R
Me
30/04/10 16.46
8
CHAPTER 20
Aldehydes and Ketones
The Grignard reagent itself provides for strongly basic conditions, because Grignard reagents are both strong nucleophiles and strong bases. This reaction cannot be achieved under acidic conditions, because, as explained in Section 13.6, Grignard reagents are destroyed in the presence of an acid. The Grignard reaction above follows a general mechanism for the reaction between a nucleophile and a carbonyl group under basic conditions (Mechanism 20.1). This general mechanism has two steps: (1) nucleophilic attack followed by (2) proton transfer.
MECHANISM 20.1 NUCLEOPHILIC ADDITION UNDER BASIC CONDITIONS Nucleophilic attack O
Proton transfer -
O
O
-
Nuc
H
OH
H
Nuc The carbonyl group is attacked by a nucleophile, forming a tetrahedral intermediate
Nuc
The tetrahedral intermediate is protonated upon treatment with a mild proton source
Aldehydes and ketones also react with a wide variety of other nucleophiles under acidic conditions. In acidic conditions, the same two mechanistic steps are observed, but in reverse order—that is, the carbonyl group is first protonated and then undergoes a nucleophilic attack (Mechanism 20.2).
MECHANISM 20.2 NUCLEOPHILIC ADDITION UNDER ACIDIC CONDITIONS Proton transfer O
Nucleophilic attack +
H
-
O
H A
OH
Nuc
Nuc The carbonyl group is first protonated, rendering it even more electrophilic
The protonated carbonyl group is then attacked by a nucleophile
In acidic conditions, the first step plays an important role. Specifically, protonating the carbonyl group generates a very powerful electrophile: +
O
H
H O
O
H¬A
·
+
Very powerful electrophile
It is true that the carbonyl group is already a fairly strong electrophile; however, a protonated carbonyl group bears a full positive charge, rendering the carbon atom even more electrophilic. This is especially important when weak nucleophiles, such as H2O or ROH, are employed, as we will see in the upcoming sections. When a nucleophile attacks a carbonyl group under either acidic or basic conditions, the position of equilibrium is highly dependent on the ability of the nucleophile to function as a leaving group. A Grignard reagent is a very strong nucleophile, but it does not function as a leaving group (a carbanion is too unstable to leave). As a result, the equilibrium so greatly favors products that the reaction effectively occurs in only one direction. With a sufficient amount of nucleophile present, the ketone is not observed in the product mixture. In contrast, halides are
klein_c20_001-056v1.4.indd 8
30/04/10 16.46
20.5
9
Oxygen Nucleophiles
good nucleophiles, but they are also good leaving groups. Therefore, when a halide functions as the nucleophile, the equilibrium actually favors the starting ketone: O
HO Cl
R
R
+ HCl
R
R
Once equilibrium has been achieved, the mixture consists primarily of the ketone, and only small quantities of the addition product. In this chapter, we will explore a wide variety of nucleophiles, which will be classified according to the nature of the attacking atom. Specifically, we will see nucleophiles based on oxygen, sulfur, nitrogen, hydrogen, and carbon (Figure 20.2). Oxygen Nucleophiles
Sulfur Nucleophiles
O
S
H
H
H
Nitrogen Nucleophiles
Hydrogen Nucleophiles
Carbon Nucleophiles
H
H
RMgBr
-
H Al
N
H R
H
H -
H
C
N
O R FIGURE 20.2 6>ÀÕÃÊÕVi«
iÃÊÌ
>ÌÊV>Ê >ÌÌ>VÊ>ÊV>ÀLÞÊ}ÀÕ«°
H
H
S
S
H
H
H
N H O
O
R
H
H R
Ph + H Ph P C Ph H
-
B H H
The remainder of the chapter will be a methodical survey of the reactions that occur between the reagents in Figure 20.2 and ketones and aldehydes. We will begin our survey with oxygen nucleophiles.
CONCEPTUAL CHECKPOINT O
20.6 À>ÜÊ>ÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊ Ài>VÌÃÊLiÜ\
HO
O
HO Cl
1) EtMgBr
+ HCl
2) H2O
(a)
(b)
20.5 Oxygen Nucleophiles Hydrate Formation When an aldehyde or ketone is treated with water, the carbonyl group can be converted into a hydrate: O
HO OH
+
H2O Hydrate
The position of equilibrium generally favors the carbonyl group rather than the hydrate, except in the case of very simple aldehydes, such as formaldehyde: O H3C
HO OH CH3
+
H2O
+
H2O
H3C
CH3
99.9%
O H
HO OH H
H
H
> 99.9%
klein_c20_001-056v1.4.indd 9
30/04/10 16.46
10
CHAPTER 20
Aldehydes and Ketones
The rate of reaction is relatively slow under neutral conditions but is readily enhanced in the presence of either acid or base. That is, the reaction can be either acid catalyzed or base catalyzed, allowing the equilibrium to be achieved much more rapidly. Consider the base-catalyzed hydration of formaldehyde (Mechanism 20.3).
MECHANISM 20.3 BASE-CATALYZED HYDRATION Nucleophilic attack -
-
O H
Proton transfer O
O
OH
H
H
H
H
OH
H
OH
The carbonyl group is attacked by hydroxide, forming a tetrahedral intermediate
H
H
OH
The tetrahedral intermediate is protonated by water to form the hydrate
In the first step, a hydroxide ion (rather than water) functions as a nucleophile. Then, in the second step, the tetrahedral intermediate is protonated with water, regenerating a hydroxide ion. In this way, hydroxide serves as a catalyst for the addition of water across the carbonyl group. Now consider the acid-catalyzed hydration of formaldehyde (Mechanism 20.4).
MECHANISM 20.4 ACID-CATALYZED HYDRATION Proton transfer
Nucleophilic attack
H H
O
+
O+
H
O
H
H
O
O
OH
H
H
H
OH
H
H
H
H
Proton transfer
H
H
H O+
H
H
OH
H The carbonyl group is protonated, rendering it more electrophilic
The protonated carbonyl group is attacked by water, forming a tetrahedral intermediate
The tetrahedral intermediate is deprotonated by water to form the hydrate
Under acid-catalyzed conditions, the carbonyl group is first protonated, generating a positively charged intermediate that is extremely electrophilic (it bears a full positive charge). This intermediate is then attacked by water to form a tetrahedral intermediate, which is deprotonated to give the product.
CONCEPTUAL CHECKPOINT 20.7 ÀÊÃÌÊiÌiÃ]Ê
Þ`À>ÌiÊvÀ>ÌÊÃÊÕv>ÛÀ>Li]ÊLiV>ÕÃiÊ Ì
iÊiµÕLÀÕÊv>ÛÀÃÊÌ
iÊiÌiÊÀ>Ì
iÀÊÌ
>ÊÌ
iÊ
Þ`À>Ìi°ÊÜiÛiÀ]Ê Ì
iÊiµÕLÀÕÊvÀÊ
Þ`À>ÌÊvÊ
iÝ>yÕÀ>ViÌiÊv>ÛÀÃÊvÀ>ÌÊ vÊÌ
iÊ
Þ`À>Ìi\Ê*ÀÛ`iÊ>Ê«>ÕÃLiÊiÝ«>>ÌÊvÀÊÌ
ÃÊLÃiÀÛ>̰
klein_c20_001-056v1.4.indd 10
O F3C
HO OH CF3
+
H2O F3 C
CF3
> 99.99%
30/04/10 16.46
20.5
11
Oxygen Nucleophiles
Acetal Formation The previous section discussed a reaction that can occur when water attacks an aldehyde or ketone. This section will explore a similar reaction, in which an alcohol attacks an aldehyde or ketone: O
+
[H+]
2 ROH
BY THE WAY
RO OR
+
H2O
Acetal
7
iÊÌ
iÊÃÌ>ÀÌ}ÊV«Õ`Ê ÃÊ>ÊiÌi]ÊÌ
iÊ«À`ÕVÌÊV>Ê >ÃÊLiÊV>i`Ê>ʺiÌ>°»Ê AcetalÊÃÊ>ÊÀiÊ}iiÀ>Ê ÌiÀ]Ê>`ÊÌÊÜÊLiÊÕÃi`Ê iÝVÕÃÛiÞÊvÀÊÌ
iÊÀi>`iÀÊ vÊÌ
ÃÊ`ÃVÕÃð
In acidic conditions, an aldehyde or ketone will react with two molecules of alcohol to form an acetal. The brackets surrounding the H+ indicate that the acid is a catalyst. Common acids used for this purpose include para-toluenesulfonic acid (TsOH) and sulfuric acid (H2SO4): O S
O OH
HO
S
O
OH
O
p-toluenesulfonic acid (TsOH)
Sulfuric acid
As mentioned earlier, the acid catalyst serves an important role in this reaction. Specifically, in the presence of an acid, the carbonyl group is protonated, rendering the carbon atom even more electrophilic. This is necessary because the nucleophile (an alcohol) is weak; it reacts with the carbonyl group more rapidly if the carbonyl group is first protonated. A mechanism for acetal formation is shown in Mechanism 20.5. This mechanism has many steps, and it is best to divide it conceptually into two parts: (1) The first three steps produce an intermediate called a hemiacetal and (2) the last four steps convert the hemiacetal into an acetal:
MECHANISM 20.5 ACETAL FORMATION Proton transfer
O
+
Nucleophilic attack
H
+
O
H A
Proton transfer
H O
OH
A
R
OH
H O+ The carbonyl group is protonated, rendering it more electrophilic
The alcohol attacks the protonated carbonyl to generate a tetrahedral intermediate
R
OR
The tetrahedral intermediate is deprotonated to form a hemiacetal
Hemiacetal +
H A
H + H O
Proton transfer The OH group is protonated, thereby converting it into an excellent leaving group
OR Loss of a leaving group Proton transfer
OR
A
Nucleophilic attack
H + R O
OR Acetal
klein_c20_001-056v1.4.indd 11
H
O R
–H2O
+
R
Water leaves to regenerate the C“ O double bond
O
OR The intermediate is deprotonated, generating an acetal
The second molecule of the alcohol attacks the C“ O double bond to generate another tetrahedral intermediate
30/04/10 16.46
12
CHAPTER 20
Aldehydes and Ketones
Let’s begin our analysis of this mechanism by focusing on the first part: formation of the hemiacetal, which involves the three steps in Figure 20.3. FIGURE 20.3 /
iÊÃiµÕiViÊvÊÃÌi«ÃÊÛÛi`Ê ÊvÀ>ÌÊvÊ>Ê
i>ViÌ>°
Proton transfer
Nucleophilic attack
Proton transfer
Notice that the sequence of steps begins and ends with a proton transfer. This will be a recurring pattern in this chapter. Let’s focus on the details of these three steps: 1.
The carbonyl is protonated in the presence of an acid. The identity of the acid, HA+, is most likely a protonated alcohol, which received its extra proton from the acid catalyst:
H
+
A
H
H O+ R
2.
The protonated carbonyl is a very powerful electrophile and is attacked by a molecule of alcohol (ROH) to form a tetrahedral intermediate that bears a positive charge.
3.
The tetrahedral intermediate is deprotonated by a weak base (A), which is likely to be a molecule of alcohol present in solution.
Notice that the acid is not consumed in this process. A proton is used in step 1 and then returned in step 3, confirming the catalytic nature of the proton in the reaction. It is important to remember the specific order of these three steps, as we will soon encounter many other reactions that begin with the same three steps. These three steps are typical of reactions involving acid-catalyzed nucleophilic attack. Now let’s focus on the second part of the mechanism, conversion of the hemiacetal into an acetal, which is accomplished with the four steps in Figure 20.4. FIGURE 20.4 /
iÊÃiµÕiViÊvÊÃÌi«ÃÊÌ
>ÌÊ VÛiÀÌÊ>Ê
i>ViÌ>ÊÌÊ>Ê >ViÌ>°
Proton transfer
Loss of a leaving group
Nucleophilic attack
Proton transfer
Notice, once again, that the sequence of steps begins and ends with a proton transfer. A proton is used in the first step and then returned in the last step, but this time there are two middle steps rather than just one. When drawing the mechanism of acetal formation, make sure to draw these two steps separately. Combining these two steps is incorrect and represents one of the most common student errors when drawing this mechanism: Loss of a leaving group
+
OH2 OR
+ ROH
An SN 2 process cannot occur at this substrate
¡
Nucleophilic attack
These two steps cannot occur simultaneously, because that would represent an SN2 process occurring at a sterically hindered substrate. Such a process is disfavored and does not occur at an appreciable rate. Instead, the leaving group leaves first to form a resonance-stabilized intermediate, which is then attacked by the nucleophile in a separate step. The equilibrium arrows in the full mechanism of acetal formation indicate that the process is governed by an equilibrium. For many simple aldehydes, the equilibrium favors formation of the acetal, so aldehydes are readily converted into acetals by treatment with two equivalents of alcohol in acidic conditions: O H
H
+ 2 EtOH
[H+]
EtO
OEt
H
H
+ H2O
Products are favored at equilibrium
klein_c20_001-056v1.4.indd 12
30/04/10 16.46
20.5
13
Oxygen Nucleophiles
However, for most ketones, the equilibrium favors reactants rather than products:
BY THE WAY /
ÃÊÌiV
µÕiÊiÝ«ÌÃÊiÊ
@ÌiiÀ½ÃÊ«ÀV«i]ÊÜ
V
Ê Ü>ÃÊVÛiÀi`ÊÊÞÕÀÊ}iiÀ>Ê V
iÃÌÀÞÊVÕÀÃi°ÊVVÀ`}Ê ÌÊiÊ
@ÌiiÀ½ÃÊ«ÀV«i]Ê vÊ>ÊÃÞÃÌiÊ>ÌÊiµÕLÀÕÊÃÊ Õ«ÃiÌÊLÞÊÃiÊ`ÃÌÕÀL>Vi]Ê Ì
iÊÃÞÃÌiÊÜÊV
>}iÊÊ>Ê Ü>ÞÊÌ
>ÌÊÀiÃÌÀiÃÊiµÕLÀÕ°
O H 3C
EtO
+
[H ]
+ 2 EtOH
CH3
OEt
H 3C
CH3
+ H2O
Reactants are favored at equilibrium
In such cases, formation of the acetal can be accomplished by removing one of the products (water) via a special distillation technique. By removing water as it is formed, the reaction can be forced to completion. Notice that acetal formation requires two equivalents of the alcohol. That is, two molecules of ROH are required for every molecule of ketone. Alternatively, a compound containing two OH groups can be used, forming a cyclic acetal. This reaction proceeds via the regular seven-step mechanism for acetal formation: three steps for formation of the hemiacetal followed by four steps for formation of the cyclic acetal: OH OH
OH
O
O
3 steps
OH
O
4 steps
Hemiacetal
O
+
H2O
Cyclic acetal
The seven-step mechanism for acetal formation is very similar to other mechanisms that we will explore. It is therefore critical to master these seven steps. To help you draw the mechanism properly, remember to divide the entire mechanism into two parts, where each part begins and ends with proton transfers. Let’s get some practice.
SKILLBUILDER 20.2
DRAWING THE MECHANISM OF ACETAL FORMATION O
LEARN the skill
EtO
À>ÜÊ >Ê «>ÕÃLiÊ iV
>ÃÊ vÀÊ Ì
iÊ vÜ}Ê ÌÀ>ÃvÀ>Ì\
OEt
[H2SO4] excess EtOH –H2O
SOLUTION
STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊ iViÃÃ>ÀÞÊvÀÊ
i>ViÌ>Ê vÀ>̰
/
iÊ Ài>VÌÊ >LÛiÊ ÃÊ >Ê iÝ>«iÊ vÊ >V`V>Ì>Þâi`Ê >ViÌ>Ê vÀ>Ì]Ê Ê Ü
V
Ê Ì
iÊ «À`ÕVÌÊ ÃÊ v>ÛÀi`Ê LÞÊ Ì
iÊ ÀiÛ>Ê vÊ Ü>ÌiÀ°Ê /
iÊ iV
>ÃÊ V>Ê LiÊ `Û`i`Ê ÌÊ ÌÜÊ «>ÀÌÃ\ÊÊ £®ÊvÀ>ÌÊvÊÌ
iÊ
i>ViÌ>Ê>`ÊÓ®ÊvÀ>ÌÊvÊÌ
iÊ>ViÌ>°ÊÀ>ÌÊvÊÌ
iÊ
i>ViÌ>Ê ÛÛiÃÊÌ
ÀiiÊiV
>ÃÌVÊÃÌi«Ã\ Proton transfer
Nucleophilic attack
Proton transfer
7
iÊ`À>Ü}ÊÌ
iÃiÊÌ
ÀiiÊÃÌi«Ã]Ê>iÊÃÕÀiÊÌÊvVÕÃÊÊ«À«iÀÊ>ÀÀÜÊ«>ViiÌÊ>ÃÊ`iÃVÀLi`Ê Ê
>«ÌiÀÊÈ®]Ê>`Ê>iÊÃÕÀiÊÌÊ«>ViÊ>Ê«ÃÌÛiÊV
>À}iÃÊÊÌ
iÀÊ>««À«À>ÌiÊV>ÌÃ°Ê ÌViÊ Ì
>ÌÊiÛiÀÞÊÃÌi«ÊÀiµÕÀiÃÊÌÜÊVÕÀÛi`Ê>ÀÀÜð The tail of this arrow should be placed on a lone pair
Don’t forget the positive charges +
O
H H O
+
O
Et
Et
Don’t forget the second curved arrow that shows release of the proton
klein_c20_001-056v1.4.indd 13
H
H O
H
HO
+
O
Et
O
H
HO
OEt
Et
Hemiacetal
30/04/10 16.46
14
CHAPTER 20
Aldehydes and Ketones
ÜÊi̽ÃÊvVÕÃÊÊÌ
iÊ>ÃÌÊvÕÀÊÃÌi«ÃÊvÊÌ
iÊiV
>Ã]ÊÊÜ
V
ÊÌ
iÊ
i>ViÌ>ÊÃÊVÛiÀÌi`ÊÌÊ>Ê>ViÌ>\
STEP 2 À>ÜÊÌ
iÊvÕÀÊÃÌi«ÃÊ iViÃÃ>ÀÞÊÌÊVÛiÀÌÊ Ì
iÊ
i>ViÌ>ÊÌÊ>Ê >ViÌ>°
Proton transfer
Loss of a leaving group
Proton transfer
Nucleophilic attack
"ViÊ>}>]ÊÌ
ÃÊÃiµÕiViÊvÊÃÌi«ÃÊLi}ÃÊÜÌ
Ê>Ê«ÀÌÊÌÀ>ÃviÀÊ>`Êi`ÃÊÜÌ
Ê>Ê«ÀÌÊ ÌÀ>ÃviÀ°Ê7
iÊ`À>Ü}ÊÌ
iÃiÊvÕÀÊÃÌi«Ã]Ê>iÊÃÕÀiÊÌÊ`À>ÜÊÌ
iÊ``iÊÌÜÊÃÌi«ÃÊÃi«>À>ÌiÞ]Ê >ÃÊ`ÃVÕÃÃi`Êi>ÀiÀ°ÊÊ>``Ì]Ê>iÊÃÕÀiÊÌÊvVÕÃÊÊ«À«iÀÊ>ÀÀÜÊ«>ViiÌ]Ê>`Ê>iÊ ÃÕÀiÊÌÊ«>ViÊ>Ê«ÃÌÛiÊV
>À}iÃÊÊÌ
iÀÊ>««À«À>ÌiÊV>ÌÃ\ The tail of this arrow should be placed on a lone pair
H
+
HO
OEt
H H O+ Et
Don’t forget the positive charges +
OEt
H O
H
Et O O
–H2O
H
EtO
+
O
Et
Et
O
EtO
H
OEt
Et
Acetal
Don’t forget the second curved arrow that shows release of the proton
PRACTICE the skill 20.8 À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\ O
MeO
OMe
O
[H2SO4] excess MeOH
OEt [TsOH] excess EtOH
–H2O
(b)
(a) EtO
O
O
OEt
MeO
OMe
[TsOH] excess MeOH
[H2SO4] excess EtOH
–H2O
–H2O
(c)
APPLY the skill
OEt
–H2O
(d)
20.9
À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\
HO
OH
O
[H2SO4]
O O
–H2O
(a)
O
HO OH [H2SO4]
–H2O
O
O
(b) 20.10
*Ài`VÌÊÌ
iÊ«À`ÕVÌÊvÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\ O
O [H2SO4] excess MeOH –H2O
?
(a)
HO
OH
[H2SO4] –H2O
?
(b)
need more PRACTICE? Try Problems 20.57, 20.62, 20.67
klein_c20_001-056v1.4.indd 14
30/04/10 16.46
20.5
Acetals as Protecting Groups
HO
Acetal formation is a reversible process that can be controlled by carefully choosing reagents and conditions:
15
Oxygen Nucleophiles
O
OH +
[H ] –H2O
O
O
As mentioned in the previous section, acetal forH2O mation is favored by removal of water. To con+ [H ] vert an acetal back into the corresponding aldehyde or ketone, it is simply treated with water in the presence of an acid catalyst. In this way, acetals can be used to protect ketones or aldehydes. For example, consider how the following transformation might be accomplished: O
O
O OR
OH
?
This transformation involves reduction of an ester to form an alcohol. Recall that lithium aluminum hydride (LAH) can be used to accomplish this type of reaction. However, under these conditions, the ketone moiety will also be reduced. The problem above requires reduction of the ester moiety without also reducing the ketone moiety. To accomplish this, a protecting group can be used. The first step is to convert the ketone into an acetal: O
O
O OR
HO
O
O OR
OH [H+] –H2O
Notice that the ketone moiety is converted into an acetal, but the ester moiety is not. The resulting acetal group is stable under strongly basic conditions and will not react with LAH. This makes it possible to reduce only the ester, after which the acetal can be removed to regenerate the ketone: The three steps are summarized below: O
O
O OR
1) [H+], HO
OH
OH , –H2O
2) LAH 3) H3O+
CONCEPTUAL CHECKPOINT 20.11 *À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\ O
20.12
O
*Ài`VÌÊÌ
iÊ«À`ÕVÌîÊvÀÊi>V
ÊÀi>VÌÊLiÜ\
O
O H3O+
(a) (a) O
O
O
?
OMe OMe
H3O+
?
H3O+
?
(b)
OH O
(c)
Ph Ph
O O
(b)
klein_c20_001-056v1.4.indd 15
O
O O
O
(c)
OH
O
H3O+
?
O
(d)
H H
30/04/10 16.47
16
CHAPTER 20
Aldehydes and Ketones
MEDICALLYSPEAKING Acetals as Prodrugs Ê
>«ÌiÀÊ£ÊÜiÊiÝ«Ài`ÊÌ
iÊVVi«ÌÊ vÊ «À`ÀÕ}Ãp«
>À>V}V>ÞÊ >VÌÛiÊ V«Õ`ÃÊ Ì
>ÌÊ >ÀiÊ VÛiÀÌi`Ê LÞÊ Ì
iÊ L`ÞÊ ÌÊ >VÌÛiÊ V«Õ`Ã°Ê >ÞÊ ÃÌÀ>Ìi}iÃÊ >ÀiÊ ÕÃi`Ê Ê Ì
iÊ `iÃ}Ê vÊ «À`ÀÕ}Ã°Ê "iÊ ÃÕV
Ê ÃÌÀ>Ìi}ÞÊ ÛÛiÃÊ >Ê>ViÌ>ÊiÌÞ° ÃÊ >Ê iÝ>«i]Ê yÕV`iÊ ÃÊ >Ê «À`ÀÕ}Ê Ì
>ÌÊ VÌ>ÃÊ >Ê >ViÌ>Ê iÌÞ]Ê >`Ê ÃÊ Ã`ÊÊ>ÊVÀi>ÊÕÃi`ÊvÀÊÌ
iÊÌ«V>ÊÌÀi>ÌiÌÊ vÊiVâi>Ê>`ÊÌ
iÀÊÃÊV`ÌðÊ
-Ê
>ÃÊ ÃiÛiÀ>Ê «ÀÌ>ÌÊ vÕVÌÃ]Ê VÕ`}Ê «ÀiÛiÌ}Ê Ì
iÊ>LÃÀ«ÌÊvÊvÀi}ÊÃÕLÃÌ>ViÃÊÌÊÌ
iÊ}iiÀ>ÊVÀVÕ>Ì°Ê /
ÃÊvi>ÌÕÀiÊ«ÀÌiVÌÊÕÃÊvÀÊ
>ÀvÕÊÃÕLÃÌ>ViÃ]ÊLÕÌÊÌÊ>ÃÊ«ÀiÛiÌÃÊLiiwV>Ê`ÀÕ}ÃÊvÀÊ«iiÌÀ>Ì}Ê`ii«ÊÌÊÌ
iÊðÊ/
ÃÊ ivviVÌÊÃÊÃÌÊ«ÀÕVi`ÊvÀÊ`ÀÕ}ÃÊVÌ>}Ê"Ê}ÀÕ«ÃÊÌ
>ÌÊ V>ÊÌiÀ>VÌÊÜÌ
ÊL`}ÊÃÌiÃÊÊÌ
iÊýÃÊÃÕÀv>Vi°Ê/ÊVÀVÕÛiÌÊ Ì
ÃÊ«ÀLi]ÊÌÜÊ"Ê}ÀÕ«ÃÊV>ÊLiÊÌi«À>ÀÞÊVÛiÀÌi`ÊÌÊ >Ê>ViÌ>°Ê/
iÊ>ViÌ>Ê«À`ÀÕ}ÊÃÊV>«>LiÊvÊ«iiÌÀ>Ì}ÊÌ
iÊÃÊ ÀiÊ `ii«Þ]Ê LiV>ÕÃiÊ ÌÊ >VÃÊ Ì
iÊ "Ê }ÀÕ«ÃÊ Ì
>ÌÊ L`Ê ÌÊ Ì
iÊ Ã°Ê "ViÊ Ì
iÊ «À`ÀÕ}Ê Ài>V
iÃÊ ÌÃÊ Ì>À}iÌ]Ê Ì
iÊ >ViÌ>Ê iÌÞÊ ÃÊ ÃÜÞÊ
Þ`ÀÞâi`]ÊÌ
iÀiLÞÊÀii>Ã}ÊÌ
iÊ>VÌÛiÊ`ÀÕ}\
O
O O O
O HO
O
H F
Acetal moiety is removed
O
HO OH
H
H Fluocinonide
F
O
+
O OH
O
H Active drug
O F
F /Ài>ÌiÌÊ ÜÌ
Ê yÕV`iÊ ÃÊ Ã}wV>ÌÞÊ ÀiÊ ivviVÌÛiÊ Ì
>Ê `ÀiVÌÊÌÀi>ÌiÌÊÜÌ
ÊÌ
iÊ>VÌÛiÊ`ÀÕ}]ÊLiV>ÕÃiÊÌ
iÊ>ÌÌiÀÊV>ÌÊ Ài>V
Ê>ÊvÊÌ
iÊ>vviVÌi`Ê>Ài>ðÊ
Stable Hemiacetals In the previous section, we saw how to convert an aldehyde or ketone into an acetal. In most cases, it is very difficult to isolate the intermediate hemiacetal: O
RO + 2 ROH
Favored by the equilibrium
OH
∆
RO + ROH
OR
∆
+ H2O
Hemiacetal
Acetal
Difficult to isolate
Favored when water is removed
For ketones we saw that the equilibrium generally favors the reactants unless water is removed, which enables formation of the acetal. The hemiacetal is not favored under either set of conditions (with or without removal of water). However, when a compound contains both a carbonyl group and a hydroxyl group, the resulting cyclic hemiacetal can often be isolated; for example:
klein_c20_001-056v1.4.indd 16
30/04/10 16.47
20.6
O
17
Nitrogen Nucleophiles
OH
O
[H+]
HO Cyclic hemiacetal
This will be important when we learn about carbohydrate chemistry in Chapter 24. Glucose, the major source of energy for the body, exists primarily as a cyclic hemiacetal: OH
OH
HO
O
∆
HO H
O
HO HO OH OH
OH
OH
Glucose (Open-chain)
Glucose (Cyclic hemiacetal)
CONCEPTUAL CHECKPOINT O
HO
20.13 À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>Ì\
[H2SO4]
OH
20.14 «Õ`Ê Ê
>ÃÊ iVÕ>ÀÊ vÀÕ>Ê nH£{"Ó°Ê 1«Ê ÌÀi>ÌiÌÊÜÌ
ÊV>Ì>ÞÌVÊ>V`]ÊV«Õ`ÊÊÃÊVÛiÀÌi`ÊÌÊÌ
iÊ VÞVVÊ
i>ViÌ>°Ê`iÌvÞÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊV«Õ`ʰ
HO
O
O
[H+]
Compound A
20.6 Nitrogen Nucleophiles Primary Amines In mildly acidic conditions, an aldehyde or ketone will react with a primary amine to form an imine: O
N H
[H+]
CH3
H
CH3NH2
Imines are compounds that possess a C5N double bond and are common in biological pathways. Imines are also called Schiff bases, named after Hugo Schiff, a German chemist who first described their formation. A six-step mechanism for imine formation is shown in Mechanism 20.6. It is best to divide the mechanism conceptually into two parts (just as we did to conceptualize the mechanism of acetal formation): (1) The first three steps produce an intermediate called a carbinolamine and (2) the last three steps convert the carbinolamine into an imine:
klein_c20_001-056v1.4.indd 17
30/04/10 16.47
18
CHAPTER 20
Aldehydes and Ketones
MECHANISM 20.6 IMINE FORMATION Nucleophilic attack
Proton transfer
O
+
O
+
H A
H
H
Proton transfer
H N
OH
R
OH
A
H
H
N
N
+H
The amine attacks the protonated carbonyl to generate a tetrahedral intermediate
The carbonyl group is protonated, rendering it more electrophilic
R
The tetrahedral intermediate is deprotonated to form a carbinolamine
R Carbinolamine
Proton transfer +
H A
Loss of a leaving group
Proton transfer H + R N
R N
A
–H2O
The OH group is protonated, thereby converting it into an excellent leaving group
H + H O H N
Imine
The intermediate is deprotonated, to generate an imine
Note: There is experimental evidence that the first two steps of this mechanism (protonation and nucleophilic attack) more likely occur either simultaneously or in the reverse order of what is shown above. Most nitrogen nucleophiles are sufficiently nucleophilic to attack a carbonyl group directly, before protonation occurs. Nevertheless, the first two steps of the mechanism above have been drawn in the order shown (which
FIGURE 20.5 /
iÊÃiµÕiViÊvÊÃÌi«ÃÊÛÛi`Ê ÊvÀ>ÌÊvÊ>ÊV>ÀL>i°
R
Water leaves, forming a C“N double bond
only rarely occurs), because this sequence enables a more effective comparison of all acid-catalyzed mechanisms in this chapter and also unifies the rationale behind proton transfers, as we will discuss in Sections 20.6 and 20.7. Interested students can learn more from the following literature references: 1. J. Am. Chem. Soc., 1974, 96(26), 7998–09 2. J. Org. Chem., 2007, 72(22), 8202–8215
Nucleophilic attack
Proton transfer
Proton transfer
Let’s begin our analysis of this mechanism by focusing on the first part: formation of the carbinolamine, which involves the three steps in Figure 20.5. Notice that these three steps are identical to the first three steps of acetal formation. Specifically, this sequence of steps involves a nucleophilic attack that is sandwiched between proton transfer steps. The identity of the acid, HA+, is most likely a protonated amine, which received its extra proton from the acid source: N H
+
A
H
+
N
H
R
Once the carbinolamine has been formed, formation of the imine is accomplished with three steps (Figure 20.6). Notice again that this reaction sequence begins and ends with proton transfers. FIGURE 20.6 /
iÊÃiµÕiViÊvÊÃÌi«ÃÊÌ
>ÌÊ VÛiÀÌÊ>ÊV>ÀL>iÊÌÊ>Ê i°
klein_c20_001-056v1.4.indd 18
Proton transfer
Loss of a leaving group
Proton transfer
30/04/10 16.47
20.6
19
Nitrogen Nucleophiles
Rate
The pH of the solution is an important consideration during imine formation, with the rate of reaction being greatest when the pH is around 4.5 (Figure 20.7). If the pH is too high (i.e., if no acid catalyst is used), the carbonyl group is not protonated (step 1 of the mechanism) and the carbinolamine is also not protonated (step 4 of the mechanism); so the reaction occurs more slowly. If the pH is too low (too much acid is used), most of the amine molecules will be protonated: H
0
1
2
3
4
5
6
7
H
H
pH
H
H
N
R
FIGURE 20.7 /
iÊÀ>ÌiÊvÊiÊvÀ>ÌÊ>ÃÊ>Ê vÕVÌÊvÊ«°
O+
+
N
R
H
H
H NOT a nucleophile
A nucleophile
Under these conditions, step 2 of the mechanism occurs too slowly. As a result, care must be taken to ensure optimal pH of the solution during imine formation.
SKILLBUILDER 20.3 DRAWING THE MECHANISM OF IMINE FORMATION LEARN the skill
À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>Ì\ Et N
O [H2SO4] EtNH2 –H2O
SOLUTION /
iÊÀi>VÌÊ>LÛiÊÃÊ>ÊiÝ>«iÊvÊiÊvÀ>̰Ê/
iÊiV
>ÃÊV>ÊLiÊ`Û`i`ÊÌÊ ÌÜÊ«>ÀÌÃ\Ê£®ÊvÀ>ÌÊvÊÌ
iÊV>ÀL>iÊ>`ÊÓ®ÊvÀ>ÌÊvÊÌ
iÊi° À>ÌÊvÊÌ
iÊV>ÀL>iÊÛÛiÃÊÌ
ÀiiÊiV
>ÃÌVÊÃÌi«Ã\ Proton transfer
Nucleophilic attack
Proton transfer
7
iÊ `À>Ü}Ê Ì
iÃiÊ Ì
ÀiiÊ ÃÌi«Ã]Ê >iÊ ÃÕÀiÊ ÌÊ «>ViÊ Ì
iÊ
i>`Ê >`Ê Ì>Ê vÊ iÛiÀÞÊ VÕÀÛi`Ê >ÀÀÜÊÊÌÃÊ«ÀiVÃiÊV>Ì]Ê>`Ê>iÊÃÕÀiÊÌÊ«>ViÊ>Ê«ÃÌÛiÊV
>À}iÃÊÊÌ
iÀÊ>««À«À>ÌiÊÊ V>ÌÃ°Ê ÌViÊÌ
>ÌÊiÛiÀÞÊÃÌi«ÊÀiµÕÀiÃÊÌÜÊVÕÀÛi`Ê>ÀÀÜð The tail of this arrow should be placed on a lone pair STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊ iViÃÃ>ÀÞÊÌÊvÀÊ>Ê V>ÀL>i°
O
H
+
Don’t forget the positive charges +
O
H N H Et
Don’t forget the second curved arrow that shows release of the proton
klein_c20_001-056v1.4.indd 19
H
H H
H H
N Et
H
HO
+
N
Et
H
N
H
HO
N
Et
Et
Carbinolamine
30/04/10 16.47
20
CHAPTER 20
Aldehydes and Ketones
ÜÊ i̽ÃÊ vVÕÃÊ Ê Ì
iÊ ÃiV`Ê «>ÀÌÊ vÊ Ì
iÊ iV
>Ã]Ê Ê Ü
V
Ê Ì
iÊ V>ÀL>iÊ ÃÊ VÛiÀÌi`ÊÌÊ>Êi°Ê/
ÃÊÀiµÕÀiÃÊÌ
ÀiiÊÃÌi«Ã\ Proton transfer
Loss of a leaving group
Proton transfer
"ViÊ>}>]ÊÌ
ÃÊÃiµÕiViÊvÊÃÌi«ÃÊLi}ÃÊÜÌ
Ê>Ê«ÀÌÊÌÀ>ÃviÀÊ>`Êi`ÃÊÜÌ
Ê>Ê«ÀÌÊ ÌÀ>ÃviÀ°Ê>iÊÃÕÀiÊÌÊ«>ViÊÌ
iÊ
i>`Ê>`ÊÌ>ÊvÊiÛiÀÞÊVÕÀÛi`Ê>ÀÀÜÊÊÌÃÊ«ÀiVÃiÊV>Ì]Ê >`Ê>iÊÃÕÀiÊÌÊ«>ViÊ>Ê«ÃÌÛiÊV
>À}iÃÊÊÌ
iÀÊ>««À«À>ÌiÊV>ÌÃ\ The tail of this arrow should be placed on a lone pair STEP 2 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊ iViÃÃ>ÀÞÊÌÊVÛiÀÌÊÌ
iÊ V>ÀL>iÊÌÊ>Ê i°
Don’t forget the positive charges
H N
HO
H H
Et
+
+
H
H N H
O
H N
H + Et N Et
Et H
–H2O
Et
N
N
H
Et
Imine
Don’t forget the second curved arrow that shows release of the proton
PRACTICE the skill 20.15 À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\ O
Et
N
O
N
[ TsOH] MeNH2
[ TsOH] EtNH2
–H2O
–H2O
(a)
APPLY the skill
(b)
20.16
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\ O [H+] NH3
–H2O
(a) 20.17
? [H+]
NH2
H
20.18
O
[H+] –H2O
(b)
?
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>iVÕ>ÀÊÀi>VÌÃ\ O
(a)
NH2
–H2O
O
?
[H+]
NH2
(b)
–H2O
?
`iÌvÞÊÌ
iÊÀi>VÌ>ÌÃÊÌ
>ÌÊÞÕÊÜÕ`ÊÕÃiÊÌÊ>iÊi>V
ÊvÊÌ
iÊvÜ}ÊiÃ\ N
N
(a)
N
(b)
(c)
need more PRACTICE? Try Problems 20.72, 20.86
Many different compounds of the form RNH2 will react with aldehydes and ketones, including compounds in which R is not an alkyl group. In the following examples, the R group of the amine has been replaced with a group that has been highlighted in red:
R
OH
[H+] HO–NH2
O R
–H2O
R
R
An oxime
klein_c20_001-056v1.4.indd 20
[H+] H2N–NH2
O
N R
R
–H2O
N R
NH2
R
A hydrazone
30/04/10 16.47
20.6
LOOKING AHEAD
21
Nitrogen Nucleophiles
When hydroxylamine (NH2OH) is used as a nucleophile, an oxime is formed. When hydrazine (NH2NH2) is used as a nucleophile, a hydrazone is formed. The mechanism for each of these reactions is directly analogous to the mechanism of imine formation.
Þ`À>âiÃÊ>ÀiÊÃÞÌ
iÌV>ÞÊ ÕÃivÕ]Ê>ÃÊÜiÊÜÊÃiiÊ ÊÌ
iÊ`ÃVÕÃÃÊvÊÌ
iÊ 7vvÃ
iÀÊÀi`ÕVÌÊ >ÌiÀÊÊÌ
ÃÊV
>«ÌiÀ°
PRACTICALLYSPEAKING Beta-Carotene and Vision iÌ>V>ÀÌiiÊ ÃÊ >Ê >ÌÕÀ>ÞÊ VVÕÀÀ}Ê V«Õ`Ê vÕ`Ê Ê >ÞÊ À>}iVÀi`Ê vÀÕÌÃÊ >`Ê Ûi}iÌ>LiÃ]Ê VÕ`}Ê V>ÀÀÌÃ]Ê ÃÜiiÌÊ «Ì>ÌiÃ]Ê «Õ«Ã]Ê >}iÃ]Ê V>Ì>Õ«iÃ]Ê >`Ê >«ÀVÌÃ°Ê ÃÊ iÌi`ÊÊÌ
iÊV
>«ÌiÀÊ«iiÀ]ÊLiÌ>V>ÀÌiiÊÃÊÜÊÌÊLiÊ }`Ê vÀÊ ÞÕÀÊ iÞiÃ°Ê /Ê Õ`iÀÃÌ>`Ê Ü
Þ]Ê ÜiÊ ÕÃÌÊ iÝ«ÀiÊ Ü
>ÌÊ
>««iÃÊÌÊLiÌ>V>ÀÌiiÊÊÞÕÀÊL`Þ°ÊiÊvÀ>ÌÊ«>ÞÃÊ>Ê «ÀÌ>ÌÊÀiÊÊÌ
iÊ«ÀViÃð
ı-carotene
iÌ>V>ÀÌiiÊ ÃÊ iÌ>Lâi`Ê Ê Ì
iÊ ÛiÀÊ ÌÊ «À`ÕViÊ ÛÌ>ÊÊ>ÃÊV>i`ÊÀiÌ®\
OH Vitamin A (Retinol)
6Ì>Ê Ê ÃÊ Ì
iÊ Ý`âi`]Ê >`ÊiÊvÊÌ
iÊ`ÕLiÊL`ÃÊ Õ`iÀ}iÃÊ ÃiÀâ>ÌÊ ÌÊ «À`ÕViÊ££cisÀiÌ>\
OH This bond undergoes isomerization
This group is oxidized 11-cis-retinal
/
iÊÀiÃÕÌ}Ê>`i
Þ`iÊÌ
iÊ Ài>VÌÃÊ ÜÌ
Ê >Ê >Ê }ÀÕ«Ê vÊ>Ê«ÀÌiÊV>i`ʫîÊÌÊ «À`ÕViÊ À
`«Ã]Ê Ü
V
Ê «ÃÃiÃÃiÃÊ>ÊiÊiÌÞ\
H
O
H2N–Protein
11-cis-retinal
H
O
H
N
Protein
Rhodopsin
ÃÊ`iÃVÀLi`ÊÊ-iVÌʣǰ£Î]ÊÀ
`«ÃÊV>Ê>LÃÀLÊ>Ê«
ÌÊvÊ}
Ì]ÊÌ>Ì}Ê>Ê«
ÌÃiÀâ>ÌÊvÊÌ
iÊcisÊ`ÕLiÊL`Ê ÌÊ vÀÊ >Ê transÊ `ÕLiÊ L`°Ê /
iÊ ÀiÃÕÌ}Ê V
>}iÊ Ê }iiÌÀÞÊ ÌÀ}}iÀÃÊ>ÊÃ}>ÊÌ
>ÌÊÃÊÕÌ>ÌiÞÊ`iÌiVÌi`ÊLÞÊÌ
iÊLÀ>Ê>`ÊÌiÀ«ÀiÌi`Ê>ÃÊÛð
klein_c20_001-056v1.4.indd 21
Ê `iwViVÞÊ vÊ ÛÌ>Ê Ê V>Ê i>`Ê ÌÊ º}
ÌÊ L`iÃÃ]»Ê >Ê V`ÌÊ Ì
>ÌÊ «ÀiÛiÌÃÊ Ì
iÊ iÞiÃÊ vÀÊ >`ÕÃÌ}Ê ÌÊ `ÞÊ ÌÊÊ iÛÀiÌð
30/04/10 16.47
22
CHAPTER 20
Aldehydes and Ketones
CONCEPTUAL CHECKPOINT 20.19 *Ài`VÌÊÌ
iÊ«À`ÕVÌÊvÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\
20.20 `iÌvÞÊÌ
iÊÀi>VÌ>ÌÃÊÌ
>ÌÊÞÕÊÜÕ`ÊÕÃiÊÌÊ>iÊi>V
ÊvÊ Ì
iÊvÜ}ÊV«Õ`Ã\
[H+]
O
HO–NH2 –H2O
(a)
?
N
OH
N
(a) O
NH2
(b)
[H+]
?
H2N–NH2 –H2O
(b)
Secondary Amines
R
R N
O
In acidic conditions, an aldehyde or ketone will react with a secondary amine to form an enamine:
[H+]
Enamines are compounds in which the nitrogen lone pair is delocalized by the presence of an adjacent C5C double bond. A mechanism for enamine formation is shown in Mechanism 20.7
R N
H
R
An enamine
MECHANISM 20.7 ENAMINE FORMATION Proton transfer
Nucleophilic attack +
O
H
O
+
R
H N
OH
R
H¬A
Proton transfer
OH
A
H N
N
R The carbonyl group is protonated, rendering it more electrophilic
The amine attacks the protonated carbonyl to generate a tetrahedral intermediate
+
R
R
R
The tetrahedral intermediate is deprotonated to form a carbinolamine
Carbinolamine
Proton transfer
H¬A
Loss of a leaving group
Proton transfer R
R N
A
Enamine
The intermediate is deprotonated to generate an imine
R + R N
–H2O
Note: There is experimental evidence that the first two steps of this mechanism (protonation and nucleophilic attack) more likely occur either simultaneously or in the reverse order of what is shown above. Most nitrogen nucleophiles are sufficiently nucleophilic to attack a carbonyl group directly, before protonation occurs. Nevertheless, the first two steps of the mechanism above have been drawn in the order shown (which
Water leaves and a C“N double bond forms
The OH group is protonated thereby converting it into an excellent leaving group
H + H O
H
klein_c20_001-056v1.4.indd 22
+
N
R
R
only rarely occurs), because this sequence enables a more effective comparison of all acid-catalyzed mechanisms in this chapter and also unifies the rationale behind proton transfers, as we will discuss in Sections 20.6 and 20.7. Interested students can learn more from the following literature references: 1. J. Am. Chem. Soc., 1974, 96(26), 7998–09 2. J. Org. Chem., 2007, 72(22), 8202–8215
30/04/10 16.47
20.6
23
Nitrogen Nucleophiles
This mechanism of enamine formation is identical to the mechanism of imine formation except for the last step: R + H N
R N
[H+]
RNH2
RNH2
O
An imine
R
R + R N
R N
H
[H+]
R2NH
R2NH
An enamine
The difference in the iminium ions explains the different outcomes for the two reactions. During imine formation, the nitrogen atom of the iminium ion possesses a proton that can be removed as the final step of the mechanism. In contrast, during enamine formation, the nitrogen atom of the iminium ion does not possess a proton. As a result, elimination from the adjacent carbon is necessary in order to yield a neutral species.
SKILLBUILDER 20.4
DRAWING THE MECHANISM OF ENAMINE FORMATION Et
LEARN the skill
O
À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊÌ
iÊvÜ}ÊÀi>VÌ\
Et N
[H2SO4] Et2NH –H2O
SOLUTION /
iÊÀi>VÌÊ>LÛiÊÃÊ>ÊiÝ>«iÊvÊi>iÊvÀ>̰Ê/
iÊiV
>ÃÊV>ÊLiÊ`Û`i`ÊÌÊ ÌÜÊ«>ÀÌÃ\Ê£®ÊvÀ>ÌÊvÊÌ
iÊV>ÀL>iÊ>`ÊÓ®ÊvÀ>ÌÊvÊÌ
iÊi>i° À>ÌÊvÊÌ
iÊV>ÀL>iÊÛÛiÃÊÌ
ÀiiÊiV
>ÃÌVÊÃÌi«Ã\ Proton transfer
Nucleophilic attack
Proton transfer
7
iÊ `À>Ü}Ê Ì
iÃiÊ Ì
ÀiiÊ ÃÌi«Ã]Ê >iÊ ÃÕÀiÊ ÌÊ «>ViÊ Ì
iÊ
i>`Ê >`Ê Ì>Ê vÊ iÛiÀÞÊ VÕÀÛi`Ê >ÀÀÜÊÊÌÃÊ«ÀiVÃiÊV>Ì]Ê>`Ê>iÊÃÕÀiÊÌÊ«>ViÊ>Ê«ÃÌÛiÊV
>À}iÃÊÊÌ
iÀÊ>««À«À>ÌiÊÊ V>ÌÃ°Ê ÌViÊÌ
>ÌÊiÛiÀÞÊÃÌi«ÊÀiµÕÀiÃÊÌÜÊVÕÀÛi`Ê>ÀÀÜð Don’t forget the positive charges
The tail of this arrow should be placed on a lone pair STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊ iViÃÃ>ÀÞÊÌÊvÀÊ>Ê V>ÀL>i°
O
N
+
+
H
O
H N Et Et
Don’t forget the second curved arrow that shows release of the proton
klein_c20_001-056v1.4.indd 23
H H
N Et
Et
HO
Et
Et N+ Et
H
N
Et
HO
N Et
Et
Carbinolamine
30/04/10 16.47
24
CHAPTER 20
Aldehydes and Ketones
ÊÌ
iÊÃiV`Ê«>ÀÌÊvÊÌ
iÊiV
>Ã]ÊÌ
iÊV>ÀL>iÊÃÊVÛiÀÌi`ÊÌÊ>Êi>iÊ Û>Ê>ÊÌ
ÀiiÃÌi«Ê«ÀViÃðÊ"ViÊ>}>]ÊÌ
ÃÊÃiµÕiViÊLi}ÃÊ>`Êi`ÃÊÜÌ
Ê«ÀÌÊÌÀ>ÃviÀÃ\ Proton transfer
Loss of a leaving group
The tail of this arrow should be placed on a lone pair
Don’t forget the positive charges
H
Et STEP 2 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊ iViÃÃ>ÀÞÊÌÊVÛiÀÌÊÌ
iÊ V>ÀL>iÊÌÊ>Ê i>i°
HO
N Et
Et
+
H H N Et
Et + N
N Et
H O
+
Proton transfer
Et H
H
–H2O
Et
Et N
Et N
Et
Et
Enamine
Don’t forget the second curved arrow that shows release of the proton
PRACTICE the skill 20.21 À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\ Et
Et N
O [TsOH]
–H2O
(a)
[H2SO4]
O
Et2NH
N
Et2NH –H2O
(b) N
O [H2SO4]
Me2NH –H2O
(c)
APPLY the skill
20.22
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÀi>VÌÃ\ O
[H+] N –H2O
(a)
20.23
H
H N
?
O [H+] –H2O
(b)
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>iVÕ>ÀÊÀi>VÌÃ\ NH O
[H+] –H2O
H
O
?
(a) 20.24
? [H+]
N
–H2O
?
(b) `iÌvÞÊÌ
iÊÀi>VÌ>ÌÃÊÌ
>ÌÊÞÕÊÜÕ`ÊÕÃiÊÌÊ>iÊi>V
ÊvÊÌ
iÊvÜ}Êi>iÃ\ N N
(a)
N
(b)
(c)
need more PRACTICE? Try Problem 20.72
klein_c20_001-056v1.4.indd 24
30/04/10 16.47
20.6
25
Nitrogen Nucleophiles
Wolff-Kishner Reduction At the end of the previous section, we noted that ketones can be converted into hydrazones. This transformation has practical utility, because hydrazones are readily reduced under strongly basic conditions: NNH2
H H KOH/H2O heat
A hydrazone
(82%)
This transformation is called the Wolff-Kishner reduction, named after the German chemist Ludwig Wolff (University of Jena) and the Russian chemist N. M. Kishner (University of Moscow). This provides a two-step procedure for reducing a ketone to an alkane: N
O
NH2 H H
[H+] H2N¬NH2
KOH / H2 O
–H2O
heat
+ N2 (80%)
The second part of the Wolff-Kishner reduction is believed to proceed via Mechanism 20.8.
MECHANISM 20.8 THE WOLFF-KISHNER REDUCTION Proton transfer
H
Proton transfer H
N N
H
H
N-
-
OH
N
N H
N
H
H N
N
Proton transfer
-
OH
Proton transfer H H
O
The intermediate is protonated
-
One of the protons is removed, forming a resonance-stabilized intermediate
H
H
O
H
The carbanion is protonated, generating the product
H -
Loss of a leaving group
Another proton is removed
H N
-
N
Nitrogen gas is expelled, generating a carbanion
Notice that four of the five steps in the mechanism are proton transfers, the exception being the loss of N2 gas to generate a carbanion. This step warrants special attention, because formation of a carbanion in a solution of aqueous hydroxide is thermodynamically unfavorable (significantly uphill in energy). Why, then, does this step occur? It is true that the equilibrium for this step greatly disfavors formation of the carbanion, and therefore, only a very small number of molecules will initially lose N2 to form the carbanion. However, the resulting N2 gas then
klein_c20_001-056v1.4.indd 25
30/04/10 16.47
26
CHAPTER 20
Aldehydes and Ketones
bubbles out of the reaction mixture, and the equilibrium is adjusted to form more nitrogen gas, which again leaves the reaction mixture. The evolution of nitrogen gas ultimately renders this step irreversible and forces the reaction to completion. As a result, the yields for this process are generally very good.
CONCEPTUAL CHECKPOINT 20.25 *Ài`VÌÊÌ
iÊ«À`ÕVÌÊvÊÌ
iÊÌÜÃÌi«Ê«ÀVi`ÕÀiÊLiÜ]Ê>`Ê`À>ÜÊ>Ê iV
>ÃÊvÀÊÌÃÊvÀ>Ì\
O 1) [H+], H2N–NH2, –H2O 2) KOH / H2O, heat
?
20.7 Mechanism Strategies Compare the mechanistic steps for the formation of acetals, imines, and enamines (Figure 20.8). Each of the mechanisms has been divided into two parts, and in all cases, the first part consists of the same three steps. In addition, even the second part of each mechanism begins with the same first two steps (proton transfer followed by loss of a leaving group). In other words, these three mechanisms are identical until the fifth step, in which water is lost (loss of a leaving group), shown in red in Figure 20.8. Rather than viewing these reactions as three separate, unrelated reactions, it is best to view them as nearly identical with different endings. Acetal formation has one additional nucleophile attack, giving a total of seven steps. In contrast, imine formation and enamine formation do not exhibit a nucleophilic attack during the second part of the mechanism, giving a total of only six steps. FORMATION OF HEMIACETAL Proton transfer
Nucleophilic attack
Proton transfer
FORMATION OF ACETAL
FORMATION OF CARBINOLAMINE Proton transfer
Nucleophilic attack
Proton transfer
Nucleophilic attack
Proton transfer
Nucleophilic attack
Proton transfer
FORMATION OF IMINE Loss of a leaving group
Proton transfer
FORMATION OF CARBINOLAMINE Proton transfer
Loss of a leaving group
Proton transfer
Proton transfer
FORMATION OF ENAMINE Proton transfer
Loss of a leaving group
Proton transfer
FIGURE 20.8 ÊV«>ÀÃÊvÊÌ
iÊÃiµÕiViÊvÊÃÌi«ÃÊvÀÊ>ViÌ>]Êi]Ê>`Êi>iÊvÀ>̰
In each of these mechanisms, there are four proton transfer steps. In order to draw the mechanism correctly, it is critical to draw these proton transfers properly. To do so, it will be helpful to remember the following rules that dictate when and why proton transfers occur in acid-catalyzed conditions: s 4HECARBONYLGROUPSHOULDBEPROTONATEDBEFOREITISATTACKED4HISGENERATESAMORE powerful electrophile, and it avoids formation of a negative charge that would occur if the nucleophile attacked the carbonyl directly.
klein_c20_001-056v1.4.indd 26
30/04/10 16.47
20.7
Mechanism Strategies
27
s !VOIDFORMATIONOFTWOPOSITIVECHARGESONASINGLEINTERMEDIATE4HISTYPEOFINTERMEDIate will generally be too high in energy to form. s 4HELEAVINGGROUPSHOULDBECOMENEUTRALWHENITLEAVES$ONOTEXPELHYDROXIDEASA leaving group; rather, it should first be protonated so that it can leave as water. s !TTHEENDOFTHEMECHANISM APROTONTRANSFERISUSEDTOFORMANEUTRALPRODUCT The four rules above correspond with each of the four proton transfers, respectively. These four rules can be consolidated into one master rule that defines when and why proton transfer steps are utilized: In acidic conditions, all reagents, intermediates, and leaving groups should either be neutral (no charge) or bear one positive charge. All of the proton transfers in the mechanism occur in order to fulfill this requirement. Acetals, imines, and enamines can be converted back into ketones by treatment with excess water under acid-catalyzed conditions: RO
OR
H3O+
R N
R
O
H3O+
R N H3O+
Each of the reactions above is called a hydrolysis reaction, because in each case bonds are cleaved by treatment with water. These three reactions are essentially the reverse of the reactions we have seen. The following procedure should be used in drawing the mechanisms for the above hydrolysis reactions: 1.
Begin by drawing all of the intermediates without any curved arrows. For example, suppose that we want to draw the mechanism for hydrolysis of an acetal to form a ketone: RO
OR
H3O+
O
We did not learn the mechanism for this reaction; however, we did learn the mechanism for acetal formation. Think about the first intermediate in acetal formation (a protonated carbonyl), and then draw that intermediate as the last intermediate of the hydrolysis reaction: OR
+
H
O
O
OR The last intermediate should be a protonated carbonyl
Continue working backward until you have drawn all of the intermediates. 2.
Then, working forward, draw the curved arrows that are necessary to transform each intermediate into the next intermediate. At each stage, make sure you are following the master rule for proton transfers in acid-catalyzed conditions.
The skill of being able to draw the reverse of a known mechanism is incredibly important and will be used again for other reactions in the remaining chapters of this book. The following example illustrates this procedure.
klein_c20_001-056v1.4.indd 27
30/04/10 16.47
28
CHAPTER 20
Aldehydes and Ketones
SKILLBUILDER 20.5
DRAWING THE MECHANISM OF A HYDROLYSIS REACTION
LEARN the skill
*À«ÃiÊ>ÊiV
>ÃÊvÀÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>Ì\
O
O
O H3O+
+ HO
OH
SOLUTION /
ÃÊÃÊ>Ê
Þ`ÀÞÃÃÊÀi>VÌÊÊÜ
V
Ê>ÊVÞVVÊ>ViÌ>ÊÃÊ«ii`ÊÌÊvÀÊ>ÊiÌi°Ê7iÊÌ
iÀivÀiÊ iÝ«iVÌÊÌ
iÊiV
>ÃÊÌÊLiÊÌ
iÊÀiÛiÀÃiÊvÊ>ViÌ>ÊvÀ>Ì°Ê i}ÊLÞÊVÃ`iÀ}Ê>ÊvÊÌ
iÊ ÌiÀi`>ÌiÃÊÛÛi`ÊÊ>ViÌ>ÊvÀ>Ì\
OH +
H +
HO
O
HO
H
First intermediate
Ketone
O
Acetal
LOOKING BACK vÊÞÕÊii`ÊÌÊ «Ã
ÊÞÕÀÊ>ÀÀÜ «ÕÃ
}ÊÃÃ]Ê}Ê ÌÊ-iVÌÊȰn°
klein_c20_001-056v1.4.indd 28
O
O
+
O
O
H
O
O
Acetal
7iÊ Ã«ÞÊ `À>ÜÊ >Ê vÊ Ì
iÃiÊ ÌiÀi`>ÌiÃÊ Ê ÀiÛiÀÃiÊ À`iÀÊ ÃÊ Ì
>ÌÊ Ì
iÊ wÀÃÌÊ ÌiÀi`>ÌiÊ >LÛiÊ
}
}
Ìi`®ÊLiViÃÊÌ
iÊ>ÃÌÊÌiÀi`>ÌiÊvÊÌ
iÊ
Þ`ÀÞÃÃÊiV
>Ã\
OH
O
+
O
+
H
OH
OH
OH
H
+
O
H
O
Hemiacetal
STEP 1 À>ÜÊ>ÊÌiÀi`>ÌiÃÊ vÀÊ>ViÌ>ÊvÀ>ÌÊÊ ÀiÛiÀÃiÊÀ`iÀ°
O
+
+
O
OH
OH
H
O
O
OH
H
O
+
O
HO
O
Hemiacetal
HO
+
O
H
O
O
Last intermediate
Ketone
H
Þ`ÀÞÃÃÊvÊÌ
iÊ>ViÌ>ÊÕÃÌÊÛÛiÊÌ
iÃiÊÌiÀi`>ÌiÃ]ÊÊÌ
iÊÀ`iÀÊÃ
ÜÊ>LÛi°ÊvÊ>ÞÊ vÊÌ
iÊÌiÀi`>ÌiÃÊ
>ÃÊ>Êi}>ÌÛiÊV
>À}i]ÊÌ
iÊÞÕÊ
>ÛiÊ>`iÊ>ÊÃÌ>i° 7Ì
ÊÌ
iÊÌiÀi`>ÌiÃÊ«>Vi`ÊÊÌ
iÊVÀÀiVÌÊÀ`iÀ]ÊÌ
iÊw>ÊÃÌi«ÊÃÊÌÊ`À>ÜÊÌ
iÊÀi>}iÌÃÊ >`ÊVÕÀÛi`Ê>ÀÀÜÃÊÌ
>ÌÊÃ
ÜÊ
ÜÊi>V
ÊÌiÀi`>ÌiÊÃÊÌÀ>ÃvÀi`ÊÌÊÌ
iÊiÝÌÊÌiÀi`>Ìi°Ê i}ÊÜÌ
ÊÌ
iÊ>ViÌ>]Ê>`ÊÜÀÊvÀÜ>À`ÊÕÌÊÀi>V
}ÊÌ
iÊiÌi°Ê/
ÃÊÀiµÕÀiÃÊÌ
>ÌÊ ÞÕÀÊ>ÀÀÜ«ÕÃ
}ÊÃÃÊ>ÀiÊÊ}`ÊÃ
>«i° >iÊ ÃÕÀiÊ ÌÊ ÕÃiÊ ÞÊ Ì
iÊ Ài>}iÌÃÊ Ì
>ÌÊ >ÀiÊ «ÀÛ`i`]Ê >`Ê LiÞÊ Ì
iÊ >ÃÌiÀÊ ÀÕiÊ vÀÊ «ÀÌÊÌÀ>ÃviÀðÊÀÊiÝ>«i]ÊÌ
ÃÊ«ÀLiÊ`V>ÌiÃÊÌ
>ÌÊÎ"+ÊÃÊ>Û>>Li°Ê/
ÃÊi>ÃÊÌ
>ÌÊ HÎ"+ÊÃ
Õ`ÊLiÊÕÃi`ÊvÀÊ«ÀÌ>Ì}]Ê>`ÊÓ"ÊÃ
Õ`ÊLiÊÕÃi`ÊvÀÊ`i«ÀÌ>Ì}°Ê ÊÌÊ ÕÃiÊ
Þ`ÀÝ`iÊÃ]Ê>ÃÊÌ
iÞÊ>ÀiÊÌÊ«ÀiÃiÌÊÊÃÕvwViÌʵÕ>ÌÌÞÊÕ`iÀÊ>V`V>Ì>Þâi`ÊV`Ìðʫ«V>ÌÊvÊÌ
iÃiÊÀÕiÃÊ}ÛiÃÊÌ
iÊvÜ}Ê>ÃÜiÀ\
30/04/10 16.47
20.7
OH
OH
O
O
O
O
+
O H
+
O
+
OH
H
+
H
29
Mechanism Strategies
H H
H
O
H
O
HO
O
O
O
H
H
H
Acetal
Hemiacetal
H
STEP 2 À>ÜÊÌ
iÊVÕÀÛi`Ê>ÀÀÜÃÊ >`ÊiViÃÃ>ÀÞÊÀi>}iÌÃÊ vÀÊi>V
ÊÃÌi«ÊvÊÌ
iÊ iV
>ð
+
O H
H
OH H O
+
O
HO
+
O
O
HO
H
+
OH
H
H
Ketone
ÌViÊÌ
iÊÕÃiÊvÊiµÕLÀÕÊ>ÀÀÜÃ]ÊLiV>ÕÃiÊÌ
iÊ«ÀViÃÃÊÃÊ}ÛiÀi`ÊLÞÊ>ÊiµÕLÀÕ]Ê>ÃÊ Ìi`ÊÊ«ÀiÛÕÃÊÃiVÌð
PRACTICE the skill 20.26 *À«ÃiÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê
Þ`ÀÞÃÃÊÀi>VÌÃ\ EtO
O
OEt H3
O+
O
H3O+
20.27
+
N
+ MeNH2 O
O
(d)
APPLY the skill
(b)
H
O
H3O+
(c)
O H3O+
+ 2 EtOH
(a)
N
N
H
HO
OH
*À«ÃiÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊÌ
iÊÀi>VÌÊLiÜ\ O
O
N
[H2SO4]
OH H2N
HO
Hint: ÌÊÃÊÌÊiViÃÃ>ÀÞÊÌÊ«iÊÌ
iÊ>ViÌ>ÊÌÊ>ÊiÌiÊÇÊÃÌi«Ã®ÊvÜi`ÊLÞÊVÃ}ÊÌ
iÊ iÊÈÊÃÌi«Ã®°ÊÊ«>ÕÃLiÊiV
>ÃÊV>ÊLiÊ`À>ÜÊÜÌ
ÊviÜiÀÊÌ
>Ê£ÎÊÃÌi«Ã°Ê-Ì>ÀÌÊÜÀ}ÊÜÌ
ÊÌ
iÊ>ViÌ>ÊÕÃ}ÊÌ
iÊÃÌi«ÃÊiViÃÃ>ÀÞÊÌÊ«iÊ>Ê>ViÌ>®]Ê>`ÊÊvÀÊ>ÊÌiÀi`>ÌiÊÌ
>ÌÊV>ÊLiÊ>ÌÌ>Vi`ÊLÞÊÌ
iÊ>Ê}ÀÕ«°Ê>iÊÃÕÀiÊÌÊ>Û`Ê`À>Ü}Ê>Ê-NÓÊ«ÀViÃÃÊ >ÌÊ>ÊÃÌiÀV>ÞÊ
`iÀi`ÊÃÕLÃÌÀ>Ìit need more PRACTICE?
klein_c20_001-056v1.4.indd 29
Try Problem 20.65
30/04/10 16.47
30
CHAPTER 20
Aldehydes and Ketones
The Medically Speaking box below provides two examples of hydrolysis reactions that are exploited in drug design.
MEDICALLYSPEAKING Prodrugs Methenamine as a Prodrug of Formaldehyde À>`i
Þ`iÊ
>ÃÊ>ÌÃi«ÌVÊ«À«iÀÌiÃÊ>`ÊV>ÊLiÊi«Þi`ÊÊ Ì
iÊÌÀi>ÌiÌÊvÊÕÀ>ÀÞÊÌÀ>VÌÊviVÌÃÊ`ÕiÊÌÊÌÃÊ>LÌÞÊÌÊÀi>VÌÊ ÜÌ
Ê ÕVi«
iÃÊ «ÀiÃiÌÊ Ê ÕÀi°Ê ÜiÛiÀ]Ê vÀ>`i
Þ`iÊ V>Ê LiÊÌÝVÊÜ
iÊiÝ«Ãi`ÊÌÊÌ
iÀÊÀi}ÃÊvÊÌ
iÊL`Þ°Ê/
iÀivÀi]Ê Ì
iÊÕÃiÊvÊvÀ>`i
Þ`iÊ>ÃÊ>Ê>ÌÃi«ÌVÊ>}iÌÊÀiµÕÀiÃÊ>ÊiÌ
`Ê vÀÊ ÃiiVÌÛiÊ `iÛiÀÞÊ ÌÊ Ì
iÊ ÕÀ>ÀÞÊ ÌÀ>VÌ°Ê /
ÃÊ V>Ê LiÊ >VV«Ã
i`ÊLÞÊÕÃ}Ê>Ê«À`ÀÕ}ÊV>i`ÊiÌ
i>i\ N N
N
iÌ
i>iÊÃÊ«>Vi`ÊÊëiV>ÊÌ>LiÌÃÊÌ
>ÌÊ`ÊÌÊ`ÃÃÛiÊ >ÃÊÌ
iÞÊÌÀ>ÛiÊÌ
ÀÕ}
ÊÌ
iÊ>V`VÊiÛÀiÌÊvÊÌ
iÊÃÌ>V
ÊLÕÌÊ `Ê`ÃÃÛiÊViÊÌ
iÞÊÀi>V
ÊÌ
iÊL>ÃVÊiÛÀiÌÊvÊÌ
iÊÌiÃÌ>ÊÌÀ>V̰ÊiÌ
i>iÊÃÊÌ
iÀiLÞÊÀii>Ãi`ÊÊÌ
iÊÌiÃÌ>ÊÌÀ>VÌ]Ê Ü
iÀiÊ ÌÊ ÃÊ ÃÌ>LiÊ Õ`iÀÊ L>ÃVÊ V`ÌÃ°Ê "ViÊ ÌÊ Ài>V
iÃÊ Ì
iÊ >V`VÊ iÛÀiÌÊ vÊ Ì
iÊ ÕÀ>ÀÞÊ ÌÀ>VÌ]Ê iÌ
i>iÊ ÃÊ
Þ`ÀÞâi`]Ê Àii>Ã}Ê vÀ>`i
Þ`i]Ê >ÃÊ Ã
ÜÊ >LÛi°Ê Ê Ì
ÃÊ Ü>Þ]Ê iÌ
i>iÊÃÊÕÃi`Ê>ÃÊ>Ê«À`ÀÕ}ÊÌ
>ÌÊi>LiÃÊ`iÛiÀÞÊvÊvÀ>`i
Þ`iÊ Ã«iVwV>ÞÊ ÌÊ Ì
iÊ ÕÀ>ÀÞÊ ÌÀ>VÌ°Ê /
ÃÊ iÌ
`Ê «ÀiÛiÌÃÊ Ì
iÊÃÞÃÌiVÊÀii>ÃiÊvÊvÀ>`i
Þ`iÊÊÌ
iÀÊÀ}>ÃÊvÊÌ
iÊL`ÞÊ Ü
iÀiÊÌÊÜÕ`ÊLiÊÌÝV°
N Methenamine
CONCEPTUAL CHECKPOINT
/
ÃÊV«Õ`ÊÃÊ>ÊÌÀ}iÊ>>}ÕiÊvÊ>Ê>ViÌ>°Ê/
>ÌÊÃ]Êi>V
Ê V>ÀLÊ>ÌÊÃÊViVÌi`ÊÌÊÌÜÊÌÀ}iÊ>ÌÃ]ÊÛiÀÞÊÕV
ÊiÊ >Ê >ViÌ>Ê Ê Ü
V
Ê >Ê V>ÀLÊ >ÌÊ ÃÊ ViVÌi`Ê ÌÊ ÌÜÊ ÝÞ}iÊ >ÌðÊÊV>ÀLÊ>ÌÊÌ
>ÌÊÃÊViVÌi`ÊÌÊÌÜÊ
iÌiÀ>ÌÃÊ"Ê ÀÊ ®ÊV>ÊÕ`iÀ}Ê>V`V>Ì>Þâi`Ê
Þ`ÀÞÃÃ\ Z
O
Z H3O+
R
R
R
20.28 ÃÊÃ
ÜÊ>LÛi]ÊiÌ
i>iÊÃÊ
Þ`ÀÞâi`ÊÊ>µÕiÕÃÊ >V`ÊÌÊ«À`ÕViÊvÀ>`i
Þ`iÊ>`Ê>>°Ê À>ÜÊ>ÊiV
>ÃÊ Ã
Ü}ÊvÀ>ÌÊvÊiÊiVÕiÊvÊvÀ>`i
Þ`iÊÌ
iÊÀi>}ÊwÛiÊiVÕiÃÊvÊvÀ>`i
Þ`iÊ>ÀiÊi>V
ÊÀii>Ãi`ÊÛ>Ê>ÊÃ>ÀÊ ÃiµÕiViÊ vÊ ÃÌi«Ã®°Ê /
iÊ Àii>ÃiÊ vÊ i>V
Ê iVÕiÊ vÊ vÀ>`i
Þ`iÊÃÊ`ÀiVÌÞÊ>>}ÕÃÊÌÊÌ
iÊ
Þ`ÀÞÃÃÊvÊ>Ê>ViÌ>°Ê/Ê}iÌÊ ÞÕÊÃÌ>ÀÌi`]ÊÌ
iÊwÀÃÌÊÌÜÊÃÌi«ÃÊ>ÀiÊ«ÀÛ`i`ÊLiÜ\
R
H
N
Z“ O or N
>V
Ê vÊ Ì
iÊ V>ÀLÊ >ÌÃÊ Ê iÌ
i>iÊ V>Ê LiÊ
Þ`ÀÞâi`]Ê Àii>Ã}ÊvÀ>`i
Þ`i\ N H3O+
N
N
O
+
H
N
N N
N
H
N
/
iÊiÊiÌÞÊÃÊÕÃi`ÊÊÌ
iÊ`iÛi«iÌÊvÊ>ÞÊ«À`ÀÕ}Ã°Ê iÀiÊÜiÊÜÊiÝ«ÀiÊiÊÃÕV
ÊiÝ>«i° /
iÊV«Õ`ÊLiÜ]ÊL>LÕÌÞÀVÊ>V`]ÊÃÊ>Ê«ÀÌ>ÌÊ iÕÀÌÀ>ÃÌÌiÀ\ O
OH
H
O N
OH
a
H2O
/
iÊ V«Õ`Ê iÝÃÌÃÊ «À>ÀÞÊ Ê Ì
ÃÊ VÊ vÀ]Ê Ü
V
Ê V>ÌÊ VÀÃÃÊ Ì
iÊ «>ÀÊ iÛÀiÌÊ vÊ Ì
iÊ L`LÀ>Ê L>ÀÀiÀ°Ê *À}>L`iÊ ÃÊ >Ê «À`ÀÕ}Ê `iÀÛ>ÌÛiÊ ÕÃi`Ê ÌÊ ÌÀi>ÌÊ «>ÌiÌÃÊ Ü
Ê iÝ
LÌÊÌ
iÊÃÞ«ÌÃÊvÊ>Ê`iwViVÞÊvÊL>LÕÌÞÀVÊ>V`\
b g
N N
Formaldehyde
Imines as Prodrugs
H
+
+ 4 NH4 H
H2N
N
+
N
+
6
N
H
N
N
O
NH2
F
g-aminobutyric acid
Ê `iwViVÞÊ vÊ Ì
ÃÊ V«Õ`Ê V>Ê V>ÕÃiÊ VÛÕÃÃ°Ê `ÃÌ iÀ}Ê L>LÕÌÞÀVÊ >V`Ê `ÀiVÌÞÊ ÌÊ >Ê «>ÌiÌÊ ÃÊ ÌÊ >Ê ivviVÌÛiÊ ÌÀi>ÌiÌ]Ê LiV>ÕÃiÊ Ì
iÊ V«Õ`Ê `iÃÊ ÌÊ Ài>`ÞÊ VÀÃÃÊ Ì
iÊ L`LÀ>ÊL>ÀÀiÀ°Ê7
ÞÊ̶ÊÌÊ«
ÞÃ}V>Ê«]ÊÌ
iÊ>Ê}ÀÕ«Ê ÃÊ«ÀÌ>Ìi`Ê>`ÊÌ
iÊV>ÀLÝÞVÊ>V`ÊiÌÞÊÃÊ`i«ÀÌ>Ìi`\ H N+
H H
klein_c20_001-056v1.4.indd 30
O -
O
Progabide
Cl /
iÊ V>ÀLÝÞVÊ >V`Ê
>ÃÊ LiiÊ VÛiÀÌi`Ê ÌÊ >Ê >`i]Ê >`Ê Ì
iÊ >Ê}ÀÕ«Ê
>ÃÊLiiÊVÛiÀÌi`ÊÌÊ>ÊiÊ
}
}
Ìi`®°ÊÌÊ «
ÞÃ}V>Ê«]ÊÌ
ÃÊV«Õ`ÊiÝÃÌÃÊ«À>ÀÞÊ>ÃÊ>ÊiÕÌÀ>ÊV«Õ`ÊÕV
>À}i`®]Ê>`ÊÌÊV>ÊÌ
iÀivÀiÊVÀÃÃÊÌ
iÊL`LÀ>ÊL>À-
30/04/10 16.47
20.8
ÀiÀ°Ê"ViÊÊÌ
iÊLÀ>]ÊÌÊÃÊVÛiÀÌi`ÊÌÊL>LÕÌÞÀVÊ>V`ÊÛ>Ê
Þ`ÀÞÃÃÊvÊÌ
iÊiÊ>`Ê>`iÊiÌiÃ\ OH
31
*À}>L`iÊÃÊÕÃÌÊiÊiÝ>«iÊÊÜ
V
ÊÌ
iÊiÊiÌÞÊ
>ÃÊLiiÊ ÕÃi`ÊÊÌ
iÊ`iÛi«iÌÊvÊ>Ê«À`ÀÕ}°
O N
F
Sulfur Nucleophiles
NH2
hydrolysis
O H2N
OH
Cl
20.8 Sulfur Nucleophiles In acidic conditions, an aldehyde or ketone will react with two equivalents of a thiol to form a thioacetal: O
[H+]
+ 2 RSH
RS
SR + H2O
Thioacetal
The mechanism of this transformation is directly analogous to acetal formation, with sulfur atoms taking the place of oxygen atoms. If a compound with two SH groups is used, a cyclic thioacetal is formed: O +
S
[H+]
HS
S
SH
+ H2O
Cyclic thioacetal
When treated with Raney nickel, thioacetals undergo desulfurization, yielding an alkane:
S
S
R
R
H
Raney Ni
H
R
R
Raney Ni is a spongy form of nickel that has adsorbed hydrogen atoms. It is these hydrogen atoms that ultimately replace the sulfur atoms, although a discussion of the mechanism for desulfurization is beyond the scope of this text. The reactions above provide us with another two-step method for the reduction of a ketone: O
H 1) [H+],HS
H
SH
2) Raney Ni
This method involves formation of the thioacetal followed by desulfurization with Raney nickel. It is the third method we have encountered for achieving this type of transformation. The other two methods are the Clemmensen reduction (Section 19.6) and the Wolff-Kishner reduction (Section 20.6).
klein_c20_001-056v1.4.indd 31
30/04/10 16.47
32
CHAPTER 20
Aldehydes and Ketones
CONCEPTUAL CHECKPOINT 20.29 *Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊÀi>VÌÊLiÜ\
20.30 À>ÜÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊÌ
iÊVÞVVÊV«Õ`ÊÌ
>ÌÊÃÊ«À`ÕVi`ÊÜ
iÊ>ViÌiÊÃÊÌÀi>Ìi`ÊÜÌ
Ê£]ΫÀ«>i`Ì
ÊÊÌ
iÊ «ÀiÃiViÊvÊ>Ê>V`ÊV>Ì>ÞÃ̰
O 1) [H+], HS
SH
2) Raney Ni
(a)
?
O HS Acetone
O 1) [H+], HS
H
2) Raney Ni
(b)
SH
SH
1,3-propanedithiol
?
20.9 Hydrogen Nucleophiles When treated with a hydride reducing agent, such as LAH or sodium borohydride (NaBH4), aldehydes and ketones are reduced to alcohols: 1) LAH 2) H2O
O R
OH
R
R
R
NaBH4, MeOH
These reactions were discussed in Section 13.4, and we saw that LAH and NaBH4 both function as delivery agents of hydride (H−). The precise mechanism of action for these reagents has been heavily investigated and is somewhat complex. Nevertheless, the simplified version shown in Mechanism 20.9 will be sufficient for our purposes.
MECHANISM 20.9 THE REDUCTION OF KETONES OR ALDEHYDES WITH HYDRIDE AGENTS Nucleophilic attack
Proton transfer -
O
O
H
R
R H
H
-
Al
H
R Lithium aluminium hydride (LAH ) functions as a delivery agent of hydride ions (H –)
H
O
O
H
H
R
R The resulting tetrahedral intermediate is protonated to form an alcohol
H
R
H
In the first step of the mechanism, the reducing agent delivers a hydride ion, which attacks the carbonyl group, producing a tetrahedral intermediate. This intermediate is then treated with a proton source to yield the product. This simplified mechanism does not take into account many important observations, such as the role of the lithium cation (Li+). For example, when
klein_c20_001-056v1.4.indd 32
30/04/10 16.47
20.10
LOOKING BACK
33
Carbon Nucleophiles
12-crown-4 is added to the reaction mixture, the lithium ions are solvated (as described in Section 14.4), and reduction does not occur. Clearly, the lithium cation plays a pivotal role in the mechanism. However, a full treatment of the mechanism of hydride reducing agents is beyond the scope of this text, and the simplified version above will suffice. The reduction of a carbonyl group with LAH or NaBH4 is not a reversible process, because hydride does not function as a leaving group. Notice that the mechanism above employs oneway arrows (rather than equilibrium arrows) to signify that the reverse process is insignificant.
Þ`À`iÊV>ÌÊvÕVÌÊ>ÃÊ >Êi>Û}Ê}ÀÕ«ÊLiV>ÕÃiÊ ÌÊÃÊÌÊÃÌÀ}ÞÊL>ÃV°Ê -iiÊ-iVÌÊǰn°®
CONCEPTUAL CHECKPOINT 20.31 *Ài`VÌÊ Ì
iÊ >ÀÊ «À`ÕVÌÊ vÀÊ i>V
Ê vÊ Ì
iÊ vÜ}Ê Ài>VÌÃ\ O
1) LAH
2) H2O
(a)
?
20.32 7
iÊ ÓÊ iÃÊ vÊ Liâ>`i
Þ`iÊ >ÀiÊ ÌÀi>Ìi`Ê ÜÌ
Ê Ã`ÕÊ
Þ`ÀÝ`i]Ê>ÊÀi>VÌÊVVÕÀÃÊÊÜ
V
Ê£ÊiÊvÊLiâ>`i
Þ`iÊÃÊÝ`âi`Ê}Û}ÊLiâVÊ>V`®ÊÜ
iÊÌ
iÊÌ
iÀÊiÊvÊ Liâ>`i
Þ`iÊÃÊÀi`ÕVi`Ê}Û}ÊLiâÞÊ>V
®\ O
O H
O
OH H
OH
1) NaOH
H
2) H3O+
H
NaBH4,
MeOH
(b)
?
/
ÃÊÀi>VÌ]ÊV>i`ÊÌ
iÊ >ââ>ÀÊÀi>VÌ]ÊÃÊLiiÛi`ÊÌÊ VVÕÀÊÛ>ÊÌ
iÊvÜ}ÊiV
>Ã\ÊÊ
Þ`ÀÝ`iÊÊÃiÀÛiÃÊ>ÃÊ >ÊÕVi«
iÊÌÊ>ÌÌ>VÊÌ
iÊV>ÀLÞÊ}ÀÕ«ÊvÊLiâ>`i
Þ`i]Ê }iiÀ>Ì}Ê>ÊÌiÌÀ>
i`À>ÊÌiÀi`>Ìi°Ê/
ÃÊÌiÌÀ>
i`À>ÊÌiÀi`>ÌiÊÌ
iÊvÕVÌÃÊ>ÃÊ>Ê
Þ`À`iÊÀi`ÕV}Ê>}iÌÊLÞÊ`iÛiÀ}Ê>Ê
Þ`À`iÊÊÌÊ>Ì
iÀÊiVÕiÊvÊLiâ>`i
Þ`i°ÊÊÌ
ÃÊ Ü>Þ]ÊiÊiVÕiÊÃÊÀi`ÕVi`ÊÜ
iÊÌ
iÊÌ
iÀÊÃÊÝ`âi`°
O 1) LAH
2) H2O
(c)
?
>® 1Ã}ÊÌ
iÊiÝ«>>ÌÊ>LÛi]Ê`À>ÜÊÌ
iÊiV
>ÃÊvÊÌ
iÊ
>ââ>ÀÊÀi>V̰
O 1) NaBH4
2) MeOH
(d)
L® 7
>ÌÊÃÊÌ
iÊvÕVÌÊvÊÎ"+ÊÊÌ
iÊÃiV`ÊÃÌi«¶
?
V® 7>ÌiÀÊ>iÊÃÊÌÊÃÕvwViÌÊÌÊ>VV«Ã
ÊÌ
iÊvÕVÌÊvÊ Ì
iÊÃiV`ÊÃÌi«°Ê Ý«>°
20.10 Carbon Nucleophiles Grignard Reagents When treated with a Grignard reagent, aldehydes and ketones are converted into alcohols, accompanied by the formation of a new C–C bond: O
H3C
OH O
OH 1) CH3MgBr
1) CH3MgBr 2) H2O
H
2) H2O
H
CH3
Grignard reactions were discussed in more detail in Section 13.6. The precise mechanism of action for these reagents has been heavily investigated and is fairly complex. The simplified version shown in Mechanism 20.10 will be sufficient for our purposes.
klein_c20_001-056v1.4.indd 33
30/04/10 16.47
34
CHAPTER 20
Aldehydes and Ketones
MECHANISM 20.10 THE REACTION BETWEEN A GRIGNARD REAGENT AND A KETONE OR ALDEHYDE Nucleophilic attack
Proton transfer -
O
O
H
R
R
R -
R
R
O
H
H
R
R
The Grignard reagent functions as a nucleophile and attacks the carbonyl group
LOOKING BACK
O
R
R
The resulting tetrahedral intermediate is protonated to form an alcohol
Grignard reactions are not reversible because carbanions generally do not function as leaving groups. Notice that the mechanism above employs one-way arrows (rather than equilibrium arrows) to signify that the reverse process is insignificant.
>ÀL>ÃÊÀ>ÀiÞÊvÕVÌÊ >ÃÊi>Û}Ê}ÀÕ«ÃÊLiV>ÕÃiÊ Ì
iÞÊ>ÀiÊ}iiÀ>ÞÊÃÌÀ}ÞÊ L>ÃV°Ê-iiÊ-iVÌÊǰn°®
CONCEPTUAL CHECKPOINT 20.33 *Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÊi>V
ÊÀi>VÌÊLiÜ\ O
20.34 `iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ>VV«Ã
Êi>V
ÊvÊ Ì
iÊÌÀ>ÃvÀ>ÌÃÊLiÜ\ OH
2) H2O
(a)
Me
?
1) EtMgBr
OH
(a) O H
1) PhMgBr 2) H2O
(b)
OH
?
OH
(b)
O
O
O
(c)
1) PhMgBr 2) H3O+
? Cyannohydrin Formation When treated with hydrogen cyanide (HCN), aldehydes and ketones are converted into cyanohydrins, which are characterized by the presence of a cyano group and a hydroxyl group connected to the same carbon atom: O
HCN
HO CN
A cyanohydrin
This reaction was studied extensively by Arthur Lapworth (University of Manchester) and was found to occur more rapidly in mildly basic conditions. In the presence of a catalytic amount of base, a small amount of hydrogen cyanide is deprotonated to give cyanide ions, which catalyze the reaction (Mechanism 20.11).
klein_c20_001-056v1.4.indd 34
30/04/10 16.47
20.10
Carbon Nucleophiles
35
MECHANISM 20.11 CYANOHYDRIN FORMATION Nucleophilic attack
Proton transfer -
O
C
O
OH
N
H C
N
CN The cyanide ion functions as a nucleophile and attacks the carbonyl group, forming a tetrahedral intermediate
CN
The tetrahedral intermediate is protonated, generating a cyanohydrin
In the first step, a cyanide ion attacks the carbonyl to produce a tetrahedral intermediate. This intermediate then abstracts a proton from HCN, regenerating a cyanide ion. In this way, cyanide functions as a catalyst for the addition of HCN to the carbonyl group. Rather than using a catalytic amount of base to form cyanide ions, the reaction can simply be performed in a mixture of HCN and cyanide ions (from KCN). The process is reversible, and the yield of products is therefore determined by equilibrium concentrations. For most aldehydes and unhindered ketones, the equilibrium favors formation of the cyanohydrin: O
HO CN
KCN, HCN
H3C
CH3
R
R 78%
O
HO CN H
H
KCN, HCN
88%
HCN is a liquid at room temperature and is extremely hazardous to handle because it is highly toxic and volatile (b.p. = 26°C). To avoid the dangers associated with handling HCN, cyanohydrins can also be prepared by treating a ketone or aldehyde with potassium cyanide and an alternate source of protons, such as HCl: O
KCN, HCl
HO CN
Cyanohydrins are useful in syntheses, because the cyano group can be further treated to yield a range of products. Two examples are shown below: N HO
1) LAH
C
2) H2O
R
H
HO R
NH2 H O
H3O
+
HO
C OH
heat
R
H
In the first example, the cyano group is reduced to an amino group. In the second example, the cyano group is hydrolyzed to give a carboxylic acid. Both of these reactions and their mechanisms will be explored in more detail in the next chapter.
klein_c20_001-056v1.4.indd 35
30/04/10 16.47
36
CHAPTER 20
Aldehydes and Ketones
CONCEPTUAL CHECKPOINT 20.35 *Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀÊi>V
ÊÀi>VÌÊLiÜ\ O
1) KCN, HCN 2) LAH
3) H2O
(a)
20.36 `iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ>VV«Ã
Êi>V
ÊvÊ Ì
iÊÌÀ>ÃvÀ>ÌÃÊLiÜ\ OH
?
OH
O OH
(a) O
OH H
1) KCN, HCl
2) H3O+, heat
OH
?
NH2
(b)
(b)
PRACTICALLYSPEAKING Cyanohydrin Derivatives in Nature Þ}`>ÊÃÊ>Ê>ÌÕÀ>ÞÊVVÕÀÀ}ÊV«Õ`ÊvÕ`ÊÊÌ
iÊ«ÌÃÊvÊ >«ÀVÌÃ]ÊÜ`ÊV
iÀÀiÃ]Ê>`Ê«i>V
ið vÊ}iÃÌi`]ÊÌ
ÃÊV«Õ`ÊÃÊiÌ>Lâi`ÊÌÊ«À`ÕViÊ>`iÌÀi]Ê >Ê VÞ>
Þ`À]Ê Ü
V
Ê ÃÊ VÛiÀÌi`Ê LÞÊ iâÞiÃÊ ÌÊ Liâ>`i
Þ`iÊ>`Ê Ê}>Ã]Ê>ÊÌÝVÊV«Õ`\ OH HO OH
O
HO
O
HO OH
/
ÃÊ>ÃÌÊÃÌi«Ê}iiÀ>ÌÊvÊ Ê}>îÊÃÊÕÃi`Ê>ÃÊ>Ê`iviÃiÊiV
>ÃÊLÞÊ>ÞÊëiViÃÊvÊ«i`iðÊ/
iÊ«i`iÃÊ>Õv>VÌÕÀiÊ >`Ê ÃÌÀiÊ >`iÌÀi]Ê >`Ê Ê >Ê Ãi«>À>ÌiÊ V«>ÀÌiÌ]Ê Ì
iÞÊ ÃÌÀiÊ iâÞiÃÊ Ì
>ÌÊ >ÀiÊ V>«>LiÊ vÊ V>Ì>Þâ}Ê Ì
iÊ VÛiÀÃÊ vÊ >`iÌÀiÊÌÊLiâ>`i
Þ`iÊ>`Ê °Ê/ÊÜ>À`ÊvvÊ«Ài`>ÌÀÃ]Ê>Ê«i`iÊÜÊÝÊÌ
iÊVÌiÌÃÊvÊÌ
iÊÌÜÊV«>ÀÌiÌÃÊ >`ÊÃiVÀiÌiÊ Ê}>ð
OH
O O
OH C
O C
H
N
N
+
HCN Toxic
Amygdalin
Mandelonitrile
Benzaldehyde
Wittig Reaction Georg Wittig, a German chemist, was awarded the 1979 Nobel Prize in Chemistry for his work with phosphorous compounds and his discovery of a reaction with enormous synthetic utility. Below is an example of this reaction, called the Wittig reaction (pronounced Vittig): O
H Ph -+ C P Ph H Ph H
C
H
This reaction can be used to convert a ketone into an alkene by forming a new C–C bond at the location of the carbonyl moiety. The phosphorus-containing reagent that accomplishes this transformation is called a phosphorane, and it belongs to a larger class of compounds called ylides. An ylide is a compound with two oppositely charged atoms adjacent to each
klein_c20_001-056v1.4.indd 36
30/04/10 16.47
20.10
37
Carbon Nucleophiles
other. The phosphorane above exhibits a negative charge on the carbon atom and a positive charge on the phosphorous atom. This ylide does, in fact, have a resonance structure that is free of any charges: H -C
+
P
H
Ph
H
Ph Ph
H
Ph C
P
Ph Ph
However, this resonance structure (with a C5P double bond) does not contribute much character to the overall resonance hybrid, because the p orbitals on C and P are vastly different in size and do not effectively overlap. A similar argument was used in describing S5O bonds in the previous chapter (Section 19.3). Despite this fact, the phosphorus ylide above, also called a Wittig reagent, is often drawn using either of the resonance structures shown above. A mechanism for the Wittig reaction is shown in Mechanism 20.12.
MECHANISM 20.12 THE WITTIG REACTION Nucleophilic attack H
O
-+
Ph
C P Ph H Ph
Nucleophilic attack
-
Rearrangement
Ph
O
Ph C + Ph P
BY THE WAY
Ý«iÀiÌ>ÊiÛ`iViÊ ÃÕ}}iÃÌÃÊÌ
>ÌÊÌ
iÊ ÌiÀi`>ÌiÊLiÌ>iÊÃÊÞÊ vÀi`ÊÊÌi`ÊV>ÃiðÊÊ Ì
iÀÊV>ÃiÃ]ÊÌÊ>««i>ÀÃÊÌ
>ÌÊ Ì
iÊ7ÌÌ}ÊÀi>}iÌÊ>ÞÊÀi>VÌÊ ÜÌ
ÊÌ
iÊV>ÀLÞÊV«Õ`Ê Ê>ÊQÓ³ÓRÊVÞV>``ÌÊ «ÀViÃÃ]Ê`ÀiVÌÞÊ}iiÀ>Ì}Ê Ì
iÊÝ>«
ë
iÌ>i°Ê/
iÊ iV
>ÃÊvÀÊÌ
ÃÊÀi>VÌÊ ÃÊÃÌÊÕ`iÀÊÛiÃÌ}>̰
P
Ph Ph
C
H
O
+ Ph
P
–
+
Ph
Ph
H H An Oxaphosphetane
A lone pair on the oxygen atom functions as a nucleophile and attacks the phosphorus atom in an intramolecular attack
The oxaphosphetane decomposes to produce an alkene and triphenylphosphine oxide
The Wittig reagent is a carbanion and can attack the carbonyl group in the first step of the mechanism, generating an intermediate called a betaine (pronounced “bay-tuh-een”). A betaine is a neutral compound with two oppositely charged atoms that are not adjacent to each other. The negatively charged oxygen atom then attacks the positively charged phosphorous atom in an intramolecular nucleophilic attack, generating an oxaphosphetane. This compound then rearranges to give the alkene product. Wittig reagents are easily prepared by treating triphenylphosphine with an alkyl halide followed by a strong base: Ph Ph
P Ph
Triphenylphosphine
klein_c20_001-056v1.4.indd 37
H
C
H H A Betaine The Wittig reagent functions as a nucleophile and attacks the carbonyl group, forming a tetrahedral intermediate
Ph
O
1) CH3I 2) BuLi
Ph Ph Ph
+-
P
H
C
H
Wittig reagent
30/04/10 16.47
38
CHAPTER 20
Aldehydes and Ketones
The mechanism of formation for Wittig reagents involves an SN2 reaction followed by deprotonation: Ph Ph
Ph
H3C I
P
Ph
+
P
Ph
Ph
H C
-
H
+
Ph
CH3CH2CH2CH2 Li
Ph
+-
P
C
Ph
H
H H
Triphenylphosphine
Since the first step is an SN2 process, the regular restrictions of SN2 processes apply. Specifically, primary alkyl halides will react more readily than secondary alkyl halides, and tertiary alkyl halides cannot be used. The Wittig reaction is useful for preparing mono-, di-, or trisubstituted alkenes. Tetrasubstituted alkenes are more difficult to prepare due to steric hindrance in the transition states. The following exercise illustrates how to choose the reagents for a Wittig reaction.
SKILLBUILDER 20.6
PLANNING AN ALKENE SYNTHESIS WITH A WITTIG REACTION
LEARN the skill
`iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ«Ài«>ÀiÊÌ
iÊV«Õ`ÊLiÜÊÕÃ}Ê>Ê7ÌÌ}ÊÀi>VÌ\
SOLUTION i}ÊLÞÊvVÕÃ}ÊÊÌ
iÊÌÜÊV>ÀLÊ>ÌÃÊvÊÌ
iÊ`ÕLiÊL`°Ê"iÊV>ÀLÊ>ÌÊÕÃÌÊ
>ÛiÊLiiÊ>ÊV>ÀLÞÊ}ÀÕ«]ÊÜ
iÊÌ
iÊÌ
iÀÊÕÃÌÊ
>ÛiÊLiiÊ>Ê7ÌÌ}ÊÀi>}ḭÊ/
ÃÊ}ÛiÃÊ ÌÜÊ«ÌiÌ>ÊÀÕÌiÃÊÌÊiÝ«Ài\ STEP 1 1Ã}Ê>ÊÀiÌÀÃÞÌ
iÌVÊ >>ÞÃÃ]Ê`iÌiÀiÊÌ
iÊ ÌÜÊ«ÃÃLiÊÃiÌÃÊvÊ Ài>VÌ>ÌÃÊÌ
>ÌÊVÕ`ÊLiÊ ÕÃi`ÊÌÊvÀÊÌ
iÊ 5 Ê L`°
H
H O
O
Ph3P
PPh3
+
Method 1
+
Method 2
i̽ÃÊV«>ÀiÊÌ
iÃiÊÌÜÊiÌ
`ÃÊLÞÊvVÕÃ}ÊÊÌ
iÊ7ÌÌ}ÊÀi>}iÌÊÊi>V
ÊV>Ãi°Ê,iV>ÊÌ
>ÌÊ Ì
iÊ7ÌÌ}ÊÀi>}iÌÊÃÊ«Ài«>Ài`ÊLÞÊ>Ê-NÓÊ«ÀViÃÃ]Ê>`ÊÜiÊÌ
iÀivÀiÊÕÃÌÊVÃ`iÀÊÃÌiÀVÊv>VÌÀÃÊ`ÕÀ}ÊÌÃÊ«Ài«>À>̰ÊiÌ
`Ê£ÊÀiµÕÀiÃÊÌ
iÊÕÃiÊvÊ>ÊÃiV`>ÀÞÊ>ÞÊ
>`i\ X 1) PPh3
Ph3P
2) BuLi
2° Alkyl halide
klein_c20_001-056v1.4.indd 38
30/04/10 16.47
20.10
Carbon Nucleophiles
39
LÕÌÊiÌ
`ÊÓÊÀiµÕÀiÃÊÌ
iÊÕÃiÊvÊ>Ê«À>ÀÞÊ>ÞÊ
>`i\ H
STEP 2
Ã`iÀÊ
ÜÊÞÕÊ ÜÕ`Ê>iÊi>V
Ê «ÃÃLiÊ7ÌÌ}ÊÀi>}iÌ]Ê >`Ê`iÌiÀiÊÜ
V
Ê iÌ
`ÊÛÛiÃÊÌ
iÊiÃÃÊ ÃÕLÃÌÌÕÌi`Ê>ÞÊ
>`i°
PPh3
1) PPh3
X
2) BuLi
1° Alkyl halide
iÌ
`Ê ÓÊ ÃÊ iÞÊ ÌÊ LiÊ ÀiÊ ivwViÌ]Ê LiV>ÕÃiÊ >Ê «À>ÀÞÊ >ÞÊ
>`iÊ ÜÊ Õ`iÀ}Ê -NÓÊ ÀiÊÀ>«`ÞÊÌ
>Ê>ÊÃiV`>ÀÞÊ>ÞÊ
>`i°Ê/
iÀivÀi]ÊÌ
iÊvÜ}ÊÜÕ`ÊLiÊÌ
iÊ«ÀiviÀÀi`Ê ÃÞÌ
iÃÃ\ O
-
+
P Ph Ph Ph
PRACTICE the skill 20.37 `iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ«Ài«>ÀiÊi>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`ÃÊÕÃ}Ê >Ê7ÌÌ}ÊÀi>VÌ\
APPLY the skill
(a)
(b)
(d)
(e)
20.38
(c)
Ã`iÀÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊLiÌ>V>ÀÌii]ÊiÌi`Êi>ÀiÀÊÊÌ
ÃÊV
>«ÌiÀ\
b-carotene
iÃ}Ê>ÊÃÞÌ
iÃÃÊvÊLiÌ>ÊV>ÀÌiiÊÕÃ}ÊÌ
iÊV«Õ`ÊLiÜÊ>ÃÊÞÕÀÊÞÊÃÕÀViÊvÊV>ÀLÊ>ÌÃ\
Br
20.39
`iÌvÞÊÌ
iÊÀi>}iÌÃÊiViÃÃ>ÀÞÊÌÊ>VV«Ã
Êi>V
ÊvÊÌ
iÊÌÀ>ÃvÀ>ÌÃÊLiÜ\ OH
(a)
(b)
need more PRACTICE? Try Problems 20.51–20.53
klein_c20_001-056v1.4.indd 39
30/04/10 16.47
40
CHAPTER 20
Aldehydes and Ketones
20.11 Baeyer-Villiger Oxidation of Aldehydes and Ketones O
When treated with a peroxy acid, ketones can be converted into esters via the insertion of an oxygen atom:
O RCO3H
R
R
R
O
R
This reaction, discovered by Adolf von Baeyer and Victor Villiger in 1899, is called the BaeyerVilliger oxidation. This process is believed to proceed via Mechanism 20.13.
MECHANISM 20.13 THE BAEYER-VILLIGER OXIDATION Nucleophilic attack H
O
O R
-
O O
R
-
O R R
The peroxyacid functions as a nucleophile and attacks the carbonyl group, forming a tetrahedral intermediate
O
Proton transfer +
O H
Rearrangement
R
O
O
R
O
A proton is transferred from one location to another. This step can occur intramolecularly, because it would involve a five-membered transition state
O
O
O O
+
H
The carbonyl group is reformed, with simultaneous migration of an alkyl group
R
O
+ OH
R
The peroxy acid attacks the carbonyl group of the ketone, giving a tetrahedral intermediate that then undergoes an intramolecular proton transfer (or two successive intermolecular proton transfers). Finally, the C5O double bond is re-formed by migration of an R group. This rearrangement produces the ester. In much the same way, treatment of a cyclic ketone with a peroxy acid yields a cyclic ester, or lactone. O
O RCO3H
O
A lactone
When an unsymmetrical ketone is treated with a peroxy acid, formation of the ester is regioselective; for example: O O RCO3H
O
In this case, the oxygen atom is inserted on the left side of the carbonyl group, rather than the right side. This occurs because the isopropyl group migrates more rapidly than the methyl group during the rearrangement step of the mechanism. The migration rates of different groups, or migratory aptitude, can be summarized as follows: H > 3° > 2°, Ph > 1° > methyl
klein_c20_001-056v1.4.indd 40
30/04/10 16.47
20.12
Synthesis Strategies
41
A hydrogen atom will migrate more rapidly than a tertiary alkyl group, which will migrate more rapidly than a secondary alkyl group or phenyl group. Below is one more example that illustrates this concept: O
O H
O
RCO3H
H
In this example, the oxygen atom is inserted on the right side of the carbonyl, because the hydrogen atom exhibits a greater migratory aptitude than the phenyl group.
CONCEPTUAL CHECKPOINT 20.40 *Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÊi>V
ÊÀi>VÌÊLiÜ\ O
O RCO3H
?
(a)
O H
(b)
RCO3H
?
RCO3H
?
(c)
20.12 Synthesis Strategies Recall from Chapter 12 that there are two main questions to ask when approaching a synthesis problem: 1. 2.
Is there any change in the carbon skeleton? Is there any change in the functional group?
Let’s focus on these issues separately, beginning with functional groups.
Functional Group Interconversion In previous chapters, we learned how to interconvert many different functional groups (Figure 20.9). The reactions in this chapter expand the playing field by opening up the frontier of aldehydes and ketones. You should be able to fill in the reagents for each transformation in Figure 20.9. If you are having trouble, refer to Figure 13.13 for help. Then, you should be able to make a list of the various products than can be made from aldehydes and ketones and identify the required reagents in each case.
Reactions covered in this chapter
O
OH
X
FIGURE 20.9 ÕVÌ>Ê}ÀÕ«ÃÊÌ
>ÌÊV>ÊLiÊ ÌiÀVÛiÀÌi`ÊÕÃ}ÊÀi>VÌÃÊ Ì
>ÌÊÜiÊ
>ÛiÊi>Ài`ÊÌ
ÕÃÊv>À°
klein_c20_001-056v1.4.indd 41
30/04/10 16.47
42
CHAPTER 20
Aldehydes and Ketones
Reactions Involving a Change in Carbon Skeleton In this chapter, we have seen three C–C bond-forming reactions: (1) a Grignard reaction, (2) cyanohydrin formation, and (3) a Wittig reaction: O C
H
1) CH3MgBr 2) H2O
+
N
H C
C
Ph
Ph
H
OH
H3C
–
C P Ph
KCN, HCN
H C
OH C
C
We have only seen one C–C bond-breaking reaction: the Baeyer-Villiger oxidation: O C
O RCO3H
C
C
C O
These four reactions should be added to your list of reactions that can change a carbon skeleton. Let’s get some practice using these reactions.
SKILLBUILDER 20.7
PROPOSING A SYNTHESIS
LEARN the skill
*À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊÌ
iÊvÜ}ÊÊ ÌÀ>ÃvÀ>Ì\
SOLUTION STEP 1 ëiVÌÊÜ
iÌ
iÀÊÌ
iÀiÊ ÃÊ>ÊV
>}iÊÊÌ
iÊ V>ÀLÊÃiiÌÊ>`ÉÀÊ >ÊV
>}iÊÊÌ
iÊ`iÌÌÞÊ ÀÊV>ÌÊvÊÌ
iÊ vÕVÌ>Ê}Àիð
Ü>ÞÃÊLi}Ê>ÊÃÞÌ
iÃÃÊ«ÀLiÊLÞÊ>Ã}ÊÌ
iÊvÜ}ÊÌÜʵÕiÃÌÃ\ 1. Is there any change in the carbon skeleton?Ê9iðÊ/
iÊ«À`ÕVÌÊ
>ÃÊÌÜÊ>``Ì>ÊV>ÀLÊ >Ìð 2. Is there any change in the functional groups?Ê °Ê Ì
ÊÌ
iÊÃÌ>ÀÌ}Ê>ÌiÀ>Ê>`ÊÌ
iÊ «À`ÕVÌÊ
>ÛiÊ>Ê`ÕLiÊL`ÊÊÌ
iÊiÝ>VÌÊÃ>iÊV>̰ÊvÊÜiÊ`iÃÌÀÞÊÌ
iÊ`ÕLiÊL`ÊÊ Ì
iÊ«ÀViÃÃÊvÊ>``}ÊÌ
iÊÌÜÊV>ÀLÊ>ÌÃ]ÊÜiÊÜÊii`ÊÌÊ>iÊÃÕÀiÊÌ
>ÌÊÜiÊ`ÊÃÊÊ ÃÕV
Ê>ÊÜ>ÞÊÌ
>ÌÊÜiÊV>ÊÀiÃÌÀiÊÌ
iÊ`ÕLiÊL`° ÜÊi̽ÃÊVÃ`iÀÊ
ÜÊÜiÊ}
ÌÊÃÌ>ÊÌ
iÊ>``Ì>ÊÌÜV>ÀLÊ>ÌÃ°Ê /
iÊvÜ}Ê q ÊL`ÊÃÊÌ
iÊiÊÌ
>ÌÊii`ÃÊÌÊLiÊ>`i\ ÊÌ
ÃÊV
>«ÌiÀ]ÊÜiÊ
>ÛiÊÃiiÊÌ
ÀiiÊ q ÊL`vÀ}ÊÀi>VÌðÊi̽ÃÊVÃ`iÀÊi>V
ÊiÊ>ÃÊ>Ê«ÃÃLÌÞ°
klein_c20_001-056v1.4.indd 42
30/04/10 16.47
20.12
STEP 2 7
iÊÌ
iÀiÊÃÊ>ÊV
>}iÊ ÊÌ
iÊV>ÀLÊÃiiÌ]Ê VÃ`iÀÊ>ÊvÊÌ
iÊ q Ê L`vÀ}ÊÀi>VÌÃÊ >`Ê>ÊvÊÌ
iÊ q ÊL` LÀi>}ÊÀi>VÌÃÊÌ
>ÌÊ ÞÕÊ
>ÛiÊi>Ài`ÊÃÊv>À°
Synthesis Strategies
43
7iÊV>Êi`>ÌiÞÊÀÕiÊÕÌÊVÞ>
Þ`ÀÊvÀ>Ì]Ê>ÃÊÌ
>ÌÊ«ÀViÃÃÊÃÌ>ÃÊÞÊiÊ V>ÀLÊ>Ì]ÊÌÊÌܰÊ-Êi̽ÃÊVÃ`iÀÊvÀ}ÊÌ
iÊ q ÊL`ÊÜÌ
ÊiÌ
iÀÊ>ÊÀ}>À`ÊÀi>VÌÊÀÊ>Ê7ÌÌ}ÊÀi>V̰ Ê À}>À`Ê Ài>}iÌÊ Ü½ÌÊ >ÌÌ>VÊ >Ê 5 Ê `ÕLiÊ L`]Ê ÃÊ ÕÃ}Ê >Ê À}>À`Ê Ài>VÌÊ ÜÕ`ÊÀiµÕÀiÊwÀÃÌÊVÛiÀÌ}ÊÌ
iÊ 5 Ê`ÕLiÊL`ÊÌÊ>ÊvÕVÌ>Ê}ÀÕ«ÊÌ
>ÌÊV>ÊLiÊ >ÌÌ>Vi`ÊLÞÊ>ÊÀ}>À`ÊÀi>}iÌ]ÊÃÕV
Ê>ÃÊ>ÊV>ÀLÞÊ}ÀÕ«\ HO H
O H 1) EtMgBr 2) H2O
/
ÃÊ Ài>VÌÊ V>Ê `ii`Ê LiÊ ÕÃi`Ê ÌÊ vÀÊ Ì
iÊ VÀÕV>Ê q Ê L`°Ê /Ê ÕÃiÊ Ì
ÃÊ iÌ
`Ê vÊ
q ÊL`ÊvÀ>Ì]ÊÜiÊÕÃÌÊwÀÃÌÊvÀÊÌ
iÊiViÃÃ>ÀÞÊ>`i
Þ`i]ÊÌ
iÊ«iÀvÀÊÌ
iÊÀ}>À`Ê Ài>VÌ]Ê>`ÊÌ
iÊw>ÞÊÀiÃÌÀiÊÌ
iÊ`ÕLiÊL`ÊÊÌÃÊ«À«iÀÊV>̰Ê/
ÃÊV>ÊLiÊ>VV«Ã
i`ÊÜÌ
ÊÌ
iÊvÜ}ÊÀi>}iÌÃ\
1) BH3 # THF 2) H2O2 , NaOH
HO
OH
H
O H
PCC
1) EtMgBr
1) TsCl, py
2) H2O
2) NaOEt, heat
C¬C bond-forming reaction
/
ÃÊ«ÀÛ`iÃÊÕÃÊÜÌ
Ê>ÊvÕÀÃÌi«Ê«ÀVi`ÕÀi]Ê>`ÊÌ
ÃÊ>ÃÜiÀÊÃÊViÀÌ>ÞÊÀi>Ã>Li° i̽ÃÊÜÊiÝ«ÀiÊÌ
iÊ«ÃÃLÌÞÊvÊ«À«Ã}Ê>ÊÃÞÌ
iÃÃÊÜÌ
Ê>Ê7ÌÌ}Ê Ài>V̰Ê,iV>ÊÌ
>ÌÊ>Ê7ÌÌ}ÊÀi>VÌÊV>ÊLiÊÕÃi`ÊÌÊvÀÊ>Ê 5 ÊL`]ÊÃÊ ÜiÊvVÕÃÊÊvÀ>ÌÊvÊÌ
ÃÊL`\ /
ÃÊL`ÊV>ÊLiÊvÀi`ÊvÊÜiÊÃÌ>ÀÌÊÜÌ
Ê>ÊiÌiÊ>`ÊÕÃiÊÌ
iÊvÜ}Ê7ÌÌ}Ê Ài>}iÌ\ O PPh3
/ÊÕÃiÊÌ
ÃÊÀi>VÌ]ÊÜiÊÕÃÌÊwÀÃÌÊvÀÊÌ
iÊiViÃÃ>ÀÞÊiÌiÊvÀÊÌ
iÊÃÌ>ÀÌ}Ê>ii\ O
/
ÃÊV>ÊLiÊ>VV«Ã
i`ÊÜÌ
ÊâÞÃðÊ/
ÃÊ}ÛiÃÊ>ÊÌÜÃÌi«Ê«ÀVi`ÕÀiÊvÀÊ>VV«Ã
}ÊÌ
iÊ`iÃÀi`ÊÌÀ>ÃvÀ>Ì\ÊâÞÃÃÊvÜi`ÊLÞÊ>Ê7ÌÌ}ÊÀi>V̰Ê/
ÃÊ>««À>V
ÊÃÊ `vviÀiÌÊÌ
>ÊÕÀÊwÀÃÌÊ>ÃÜiÀ°ÊÊÌ
ÃÊ>««À>V
]ÊÜiÊ>ÀiÊÌÊ>ÌÌ>V
}Ê>ÊÌÜV>ÀLÊV
>]ÊLÕÌÊ À>Ì
iÀ]ÊÜiÊ>ÀiÊwÀÃÌÊiÝ«i}Ê>ÊV>ÀLÊ>ÌÊ>`ÊÌ
iÊ>ÌÌ>V
}Ê>ÊÌ
ÀiiV>ÀLÊV
>°
klein_c20_001-056v1.4.indd 43
30/04/10 16.47
44
CHAPTER 20
Aldehydes and Ketones
Ê ÃÕ>ÀÞ]Ê ÜiÊ
>ÛiÊ `ÃVÛiÀi`Ê ÌÜÊ «>ÕÃLiÊ iÌ
`Ã°Ê Ì
Ê iÌ
`ÃÊ >ÀiÊ VÀÀiVÌÊ >ÃÜiÀÃÊÌÊÌ
ÃÊ«ÀLi]ÊLÕÌÊÌ
iÊiÌ
`Êi«Þ}ÊÌ
iÊ7ÌÌ}ÊÀi>VÌÊÃÊiÞÊÌÊLiÊÀiÊ ivwViÌ]ÊLiV>ÕÃiÊÌÊÀiµÕÀiÃÊviÜiÀÊÃÌi«Ã° 1) BH3 # THF 2) H2O2 , NaOH 3) PCC 4) EtMgBr 5) H2O 6) TsCl, py 7) NaOEt, heat
1) O3 2) DMS 3) Ph3P
PRACTICE the skill 20.41 *À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\ OH
(a)
(b) OH OH
(c)
(d)
O
Br
N
(e)
(f) O O
O EtO
OEt
(g) O
O
APPLY the skill
20.42 1Ã}Ê>ÞÊV«Õ`ÃÊvÊÞÕÀÊV
Ã}]Ê`iÌvÞÊ>ÊiÌ
`ÊvÀÊ«Ài«>À}Êi>V
ÊvÊ Ì
iÊvÜ}ÊV«Õ`ðÊYour only limitation is that the compounds you use can have no more than two carbon atoms°ÊÀÊ«ÕÀ«ÃiÃÊvÊVÕÌ}ÊV>ÀLÊ>ÌÃ]ÊÞÕÊ>ÞÊ}ÀiÊÌ
iÊ «
iÞÊ}ÀÕ«ÃÊvÊ>Ê7ÌÌ}ÊÀi>}ḭÊ/
>ÌÊÃ]ÊÞÕÊ>ÀiÊ«iÀÌÌi`ÊÌÊÕÃiÊ7ÌÌ}ÊÀi>}iÌð N
NH
(a)
(b)
O
O
O
(c)
O
(d)
HO N
OH
OH H2 N
HO
(e)
(f)
(g)
O
(h)
need more PRACTICE? Try Problems 20.55, 20.58, 20.67–20.69, 20.71, 20.75
klein_c20_001-056v1.4.indd 44
30/04/10 16.47
20.13
45
Spectroscopic Analysis of Aldehydes and Ketones
20.13 Spectroscopic Analysis of Aldehydes and Ketones Aldehydes and ketones exhibit several characteristic signals in their infrared (IR) and nuclear magnetic resonance (NMR) spectra. We will now summarize these characteristic signals.
IR Signals The carbonyl group produces a strong signal in an IR spectrum, generally around 1715 or 1720 cm−1. However, a conjugated carbonyl will produce a signal at a lower wavenumber as a result of electron delocalization via resonance effects: O
O
LOOKING BACK ÀÊ>ÊiÝ«>>ÌÊvÊÌ
ÃÊ ivviVÌ]ÊÃiiÊ-iVÌÊ£x°Î°
1715 cm –1
1680 cm –1
Ring strain has the opposite effect on a carbonyl group. That is, increasing ring strain tends to increase the wavenumber of absorption: O
1715 cm –1
O
O
1745 cm –1
1780 cm –1
Aldehydes generally exhibit one or two signals (C–H stretching) between 2700 and 2850 cm−1 (Figure 20.10).
100
% Transmittance
80
2719 O
60 H 40
1726
20
FIGURE 20.10 Ê,ÊëiVÌÀÕÊvÊ>Ê>`i
Þ`i°
klein_c20_001-056v1.4.indd 45
0 4000
3500
3000
2500
2000
1500
1000
Wavenumber (cm⫺1)
30/04/10 16.47
46
CHAPTER 20
Aldehydes and Ketones 1
H NMR Signals
In a 1H NMR spectrum, the carbonyl group itself does not produce a signal. However, it has a pronounced effect on the chemical shift of neighboring protons. We saw in Section 16.5 that a carbonyl group adds +1 ppm to the chemical shift of its neighbors: O R
R
R
R H
H
H
~1.2 ppm
H
~2.2 ppm
Aldehydic protons generally produce signals around 10 ppm. These signals can usually be identified with relative ease, because very few signals appear that far downfield in a 1H NMR spectrum (Figure 20.11).
O H
5
1
FIGURE 20.11 Ê£Ê ,ÊëiVÌÀÕÊvÊ>Ê >`i
Þ`i°
2 2
10
9
8
7
6
5
4
3
2
Chemical Shift (ppm)
13
C NMR Signals
In a 13C NMR spectrum, the carbon atom of a carbonyl group will generally produce a weak signal near 200 ppm. This signal can often be identified with relative ease, because very few signals appear that far downfield in a 13C NMR spectrum (Figure 20.12).
O 209.1 FIGURE 20.12 Ê£Î Ê ,ÊëiVÌÀÕÊvÊ>ÊiÌi°
220
200
180
160
140
120
100
80
60
40
20
0
Chemical Shift (ppm)
CONCEPTUAL CHECKPOINT 20.43 «Õ`Ê Ê
>ÃÊ iVÕ>ÀÊ vÀÕ>Ê £äH£ä"Ê >`Ê iÝ
LÌÃÊ >Ê ÃÌÀ}ÊÃ}>Ê>ÌÊ£ÇÓäÊV£ÊÊÌÃÊ,ÊëiVÌÀÕ°Ê/Ài>ÌiÌÊÜÌ
Ê£]ÓiÌ
>i`Ì
ÊvÜi`ÊLÞÊ,>iÞÊViÊ>vvÀ`ÃÊÌ
iÊ«À`ÕVÌÊÃ
ÜÊLiÜ°Ê `iÌvÞÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊV«Õ`ʰ
klein_c20_001-056v1.4.indd 46
Compound A
1) [H+], HS
SH
2) Raney Ni
30/04/10 16.47
47
Review of Concepts and Vocabulary
REVIEW OF REACTIONS
SYNTHETICALLY USEFUL REACTIONS
1. Þ`À>ÌiÊÀ>Ì 2. ViÌ>ÊÀ>Ì 3. ÞVVÊViÌ>Ê À>Ì
HO
O
[H+], H2O
OH
RCO3H
O
15
1
4. ÞVVÊ/
>ViÌÊ À>Ì
H2C
ROH, –H2O
RO
OR
OH
HO
2
O
–H2O
3 [H+] RNH2 –H2O
8. "ÝiÊÀ>Ì S
9. Þ`À>âiÊÀ>Ì 10. 7vvÃ
iÀÊ,i`ÕVÌ
S
4 N
11. ,i`ÕVÌÊvÊ>ÊiÌi 12. À}>À`Ê,i>VÌ 14. 7ÌÌ}Ê,i>VÌ 15. >iÞiÀ6}iÀÊ"Ý`>Ì
[H+] R2NH –H2O
[H+] NH2OH –H2O
[H+] NH2NH2 –H2O
R
N
R N
OH
7
5
OH R
N
NH2
9 8
H
13
12
OH
6
H
CN
1) LAH 2) H2O
R
Raney Ni
13. Þ>
Þ`ÀÊÀ>Ì
OH
1) RMgBr 2) H2O
SH
HS
O
14
HCN, KCN [H+]
–H2O
6. iÊÀ>Ì
PPh3
[H+]
5. iÃÕvÕÀâ>Ì 7. >iÊÀ>Ì
O
[H+]
11
85%
NaOH, H2O, heat
10
REVIEW OF CONCEPTS AND VOCABULARY SECTION 20.1 UÊ Ì
Ê>`i
Þ`iÃÊ>`ÊiÌiÃÊVÌ>Ê>Êcarbonyl group]Ê>`Ê LÌ
Ê>ÀiÊVÊÊ>ÌÕÀiÊ>`Ê`ÕÃÌÀÞÊ>`ÊVVÕ«ÞÊ>ÊViÌÀ>Ê ÀiÊÊÀ}>VÊV
iÃÌÀÞ°
SECTION 20.2 UÊ /
iÊÃÕvwÝʺ>»Ê`V>ÌiÃÊ>Ê>`i
Þ`VÊ}ÀÕ«]Ê>`ÊÌ
iÊÃÕvwÝÊ ºi»ÊÃÊÕÃi`ÊvÀÊiÌið UÊ Ê>}Ê>`i
Þ`iÃÊ>`ÊiÌiÃ]ÊV>ÌÃÊÃ
Õ`ÊLiÊ>ÃÃ}i`Ê ÃÊ>ÃÊÌÊ}ÛiÊÌ
iÊV>ÀLÞÊ}ÀÕ«ÊÌ
iÊÜiÃÌÊÕLiÀÊ«ÃÃLi°
SECTION 20.3 UÊ `i
Þ`iÃÊV>ÊLiÊ«Ài«>Ài`ÊÛ>ÊÝ`>ÌÊvÊ«À>ÀÞÊ>V
Ã]Ê âÞÃÃÊvÊ>iiÃ]ÊÀÊ
Þ`ÀLÀ>ÌÝ`>ÌÊvÊÌiÀ>Ê >Þið UÊ iÌiÃÊ V>Ê LiÊ «Ài«>Ài`Ê Û>Ê Ý`>ÌÊ vÊ ÃiV`>ÀÞÊ >V
Ã]ÊâÞÃÃÊvÊ>iiÃ]Ê>V`V>Ì>Þâi`Ê
Þ`À>ÌÊvÊÌiÀ>Ê>ÞiÃ]ÊÀÊÀi`i À>vÌÃÊ>VÞ>̰
SECTION 20.4 UÊ /
iÊ iiVÌÀ«
VÌÞÊ vÊ >Ê V>ÀLÞÊ }ÀÕ«Ê `iÀÛiÃÊ vÀÊ ÀiÃ>ViÊivviVÌÃÊ>ÃÊÜiÊ>ÃÊ`ÕVÌÛiÊivviVÌð UÊ `i
Þ`iÃÊ>ÀiÊÀiÊÀi>VÌÛiÊÌ
>ÊiÌiÃÊ>ÃÊ>ÊÀiÃÕÌÊvÊÃÌiÀVÊ ivviVÌÃÊ>`ÊiiVÌÀVÊivviVÌð UÊ Ê }iiÀ>Ê iV
>ÃÊ vÀÊ ÕVi«
VÊ >``ÌÊ Õ`iÀÊ L>ÃVÊ V`ÌÃÊÛÛiÃÊÌÜÊÃÌi«Ã\ 1.Ê ÕVi«
VÊ>ÌÌ>VÊÌÊ}iiÀ>ÌiÊ>Êtetrahedral intermediate° 2.Ê *ÀÌÊÌÀ>ÃviÀ
klein_c20_001-056v1.4.indd 47
UÊ /
iÊ«ÃÌÊvÊiµÕLÀÕÊÃÊ`i«i`iÌÊÊÌ
iÊ>LÌÞÊvÊÌ
iÊ ÕVi«
iÊÌÊvÕVÌÊ>ÃÊ>Êi>Û}Ê}ÀÕ«°
SECTION 20.5 UÊ 7
iÊ>Ê>`i
Þ`iÊÀÊiÌiÊÃÊÌÀi>Ìi`ÊÜÌ
ÊÜ>ÌiÀ]ÊÌ
iÊV>ÀLÞÊ}ÀÕ«ÊV>ÊLiÊVÛiÀÌi`ÊÌÊ>Êhydrate°Ê/
iÊiµÕLÀÕÊ}iiÀ>ÞÊv>ÛÀÃÊÌ
iÊV>ÀLÞÊ}ÀÕ«]ÊiÝVi«ÌÊÊÌ
iÊV>ÃiÊ vÊ ÛiÀÞÊ Ã«iÊ >`i
Þ`iÃ]Ê ÀÊ iÌiÃÊ ÜÌ
Ê ÃÌÀ}Ê iiVÌÀ ÜÌ
`À>Ü}ÊÃÕLÃÌÌÕiÌð UÊ Ê>V`VÊV`ÌÃ]Ê>Ê>`i
Þ`iÊÀÊiÌiÊÜÊÀi>VÌÊÜÌ
ÊÌÜÊ iVÕiÃÊvÊ>V
ÊÌÊvÀÊ>Êacetal° UÊ ÊÌ
iÊ«ÀiÃiViÊvÊ>Ê>V`]ÊÌ
iÊV>ÀLÞÊ}ÀÕ«ÊÃÊ«ÀÌ>Ìi`Ê ÌÊvÀÊ>ÊÛiÀÞÊ«ÜiÀvÕÊiiVÌÀ«
i° UÊ /
iÊiV
>ÃÊvÀÊ>ViÌ>ÊvÀ>ÌÊV>ÊLiÊ`Û`i`ÊÌÊÌÜÊ «>ÀÌÃ\ 1.Ê /
iÊwÀÃÌÊÌ
ÀiiÊÃÌi«ÃÊ«À`ÕViÊ>Êhemiacetal° 2.Ê /
iÊ>ÃÌÊvÕÀÊÃÌi«ÃÊVÛiÀÌÊÌ
iÊ
i>ViÌ>ÊÌÊ>Ê>ViÌ>° UÊ ÀÊ >ÞÊ Ã«iÊ >`i
Þ`iÃ]Ê Ì
iÊ iµÕLÀÕÊ v>ÛÀÃÊ vÀ>ÌÊvÊÌ
iÊ>ViÌ>ÆÊ
ÜiÛiÀ]ÊvÀÊÃÌÊiÌiÃ]ÊÌ
iÊiµÕLÀÕÊ v>ÛÀÃÊÀi>VÌ>ÌÃÊÀ>Ì
iÀÊÌ
>Ê«À`ÕVÌð UÊ Ê>`i
Þ`iÊÀÊiÌiÊÜÊÀi>VÌÊÜÌ
ÊiÊiVÕiÊvÊ>Ê`Ê ÌÊvÀÊ>ÊVÞVVÊ>ViÌ>° UÊ /
iÊÀiÛiÀÃLÌÞÊvÊ>ViÌ>ÊvÀ>ÌÊi>LiÃÊ>ViÌ>ÃÊÌÊvÕVÌÊ>ÃÊ«ÀÌiVÌ}Ê}ÀÕ«ÃÊvÀÊiÌiÃÊÀÊ>`i
Þ`iðÊViÌ>ÃÊ >ÀiÊÃÌ>LiÊÕ`iÀÊÃÌÀ}ÞÊL>ÃVÊV`Ìð UÊ i>ViÌ>ÃÊ>ÀiÊ}iiÀ>ÞÊ`vwVÕÌÊÌÊÃ>ÌiÊÕiÃÃÊÌ
iÞÊ>ÀiÊ VÞVV°
30/04/10 16.47
48
CHAPTER 20
Aldehydes and Ketones
SECTION 20.6 UÊ Ê>V`VÊV`ÌÃ]Ê>Ê>`i
Þ`iÊÀÊiÌiÊÜÊÀi>VÌÊÜÌ
Ê>Ê «À>ÀÞÊ>iÊÌÊvÀÊ>Êimine° UÊ /
iÊwÀÃÌÊÌ
ÀiiÊÃÌi«ÃÊÊiÊvÀ>ÌÊ«À`ÕViÊ>Êcarbinolamine]Ê >`Ê Ì
iÊ >ÃÌÊ Ì
ÀiiÊ ÃÌi«ÃÊ VÛiÀÌÊ Ì
iÊ V>ÀL>iÊ ÌÊ>Êi° UÊ >ÞÊ`vviÀiÌÊV«Õ`ÃÊvÊÌ
iÊvÀÊ, ÓÊÜÊÀi>VÌÊÜÌ
Ê >`i
Þ`iÃÊ>`ÊiÌiÃÆÊvÀÊiÝ>«i\ 1.Ê 7
iÊ
Þ`À>âiÊ ÃÊ ÕÃi`Ê >ÃÊ >Ê ÕVi«
iÊ ÓNHÓ®]Ê >Ê hydrazoneÊÃÊvÀi`° 2.Ê 7
iÊ
Þ`ÀÝÞ>iÊ ÃÊ ÕÃi`Ê >ÃÊ >Ê ÕVi«
iÊ Ó"®]Ê >ÊoximeÊÃÊvÀi`° UÊ Ê >V`VÊ V`ÌÃ]Ê >Ê >`i
Þ`iÊ ÀÊ iÌiÊ ÜÊ Ài>VÌÊ ÜÌ
Ê >ÊÃiV`>ÀÞÊ>iÊÌÊvÀÊ>Êenamine°Ê/
iÊiV
>ÃÊvÊ i>iÊvÀ>ÌÊÃÊ`iÌV>ÊÌÊÌ
iÊiV
>ÃÊvÊiÊvÀ>ÌÊiÝVi«ÌÊvÀÊÌ
iÊ>ÃÌÊÃÌi«° UÊ ÊÌ
iÊWolff-Kishner reduction]Ê>Ê
Þ`À>âiÊÃÊÀi`ÕVi`ÊÌÊ>Ê >>iÊÕ`iÀÊÃÌÀ}ÞÊL>ÃVÊV`Ìð
SECTION 20.7 UÊ Ê>V`VÊV`ÌÃ]Ê>ÊÀi>}iÌÃ]ÊÌiÀi`>ÌiÃ]Ê>`Êi>Û}Ê }ÀÕ«ÃÊ iÌ
iÀÊ Ã
Õ`Ê LiÊ iÕÌÀ>Ê Ê V
>À}i®Ê ÀÊ Ã
Õ`Ê Li>ÀÊ iÊ«ÃÌÛiÊV
>À}i° UÊ HydrolysisÊ vÊ >ViÌ>Ã]Ê iÃ]Ê >`Ê i>iÃÊ Õ`iÀÊ >V`VÊ V`ÌÃÊ«À`ÕViÃÊiÌiÃÊÀÊ>`i
Þ`ið
UÊ À}>À`ÊÀi>VÌÃÊ>ÀiÊÌÊÀiÛiÀÃLi]ÊLiV>ÕÃiÊV>ÀL>ÃÊ`Ê ÌÊvÕVÌÊ>ÃÊi>Û}Ê}Àիð UÊ 7
iÊÌÀi>Ìi`ÊÜÌ
Ê
Þ`À}iÊVÞ>`iÊ ®]Ê>`i
Þ`iÃÊ>`Ê iÌiÃÊ >ÀiÊ VÛiÀÌi`Ê ÌÊ cyanohydrins°Ê ÀÊ ÃÌÊ >`i
Þ`iÃÊ>`ÊÕ
`iÀi`ÊiÌiÃ]ÊÌ
iÊiµÕLÀÕÊv>ÛÀÃÊvÀ>ÌÊvÊÌ
iÊVÞ>
Þ`À° UÊ /
iÊWittig reactionÊV>ÊLiÊÕÃi`ÊÌÊVÛiÀÌÊ>ÊiÌiÊÌÊ>Ê >ii°Ê/
iÊWittig reagentÊÌ
>ÌÊ>VV«Ã
iÃÊÌ
ÃÊÌÀ>ÃvÀ>ÌÊ ÃÊ V>i`Ê >Ê phosphorane]Ê Ü
V
Ê Li}ÃÊ ÌÊ >Ê >À}iÀÊ V>ÃÃÊvÊV«Õ`ÃÊV>i`Êylides° UÊ /
iÊiV
>ÃÊvÊ>Ê7ÌÌ}ÊÀi>VÌÊÛÛiÃÊÌ>ÊvÀ>ÌÊ vÊ>Êbetaine]ÊÜ
V
ÊÕ`iÀ}iÃÊ>ÊÌÀ>iVÕ>ÀÊÕVi«
VÊ >ÌÌ>V]Ê }iiÀ>Ì}Ê >Ê oxaphosphetane°Ê ,i>ÀÀ>}iiÌÊ }ÛiÃÊÌ
iÊ«À`ÕV̰ UÊ *Ài«>À>ÌÊvÊ7ÌÌ}ÊÀi>}iÌÃÊÛÛiÃÊ>Ê-NÓÊÀi>VÌ]Ê>`Ê Ì
iÊÀi}Õ>ÀÊÀiÃÌÀVÌÃÊvÊ-NÓÊ«ÀViÃÃiÃÊ>««Þ°
SECTION 20.11 UÊ ÊBaeyer-Villiger oxidationÊVÛiÀÌÃÊ>ÊiÌiÊÌÊ>ÊiÃÌiÀÊLÞÊ ÃiÀÌ}Ê>ÊÝÞ}iÊ>ÌÊiÝÌÊÌÊÌ
iÊV>ÀLÞÊ}ÀÕ«°Ê ÞVVÊ iÌiÃÊ«À`ÕViÊVÞVVÊiÃÌiÀÃÊV>i`Êlactones° UÊ 7
iÊ>ÊÕÃÞiÌÀV>ÊiÌiÊÃÊÌÀi>Ìi`ÊÜÌ
Ê>Ê«iÀÝÞÊ>V`]Ê vÀ>ÌÊ vÊ Ì
iÊ iÃÌiÀÊ ÃÊ Ài}ÃiiVÌÛi]Ê >`Ê Ì
iÊ «À`ÕVÌÊ ÃÊ `iÌiÀi`Ê LÞÊ Ì
iÊ migratory aptitudeÊ vÊ i>V
Ê }ÀÕ«Ê iÝÌÊ ÌÊÌ
iÊV>ÀLÞ°
SECTION 20.12
SECTION 20.8 UÊ Ê>V`VÊV`ÌÃ]Ê>Ê>`i
Þ`iÊÀÊiÌiÊÜÊÀi>VÌÊÜÌ
ÊÌÜÊ iµÕÛ>iÌÃÊ vÊ >Ê Ì
Ê ÌÊ vÀÊ >Ê thioacetal°Ê vÊ >Ê V«Õ`Ê ÜÌ
ÊÌÜÊ-Ê}ÀÕ«ÃÊÃÊÕÃi`]Ê>ÊVÞVVÊÌ
>ViÌ>ÊÃÊvÀi`° UÊ 7
iÊÌÀi>Ìi`ÊÜÌ
Ê,>iÞÊVi]ÊÌ
>ViÌ>ÃÊÕ`iÀ}ÊdesulfurizationÊÌÊÞi`Ê>ÊiÌ
ÞiiÊ}ÀÕ«°
UÊ /
ÃÊ V
>«ÌiÀÊ iÝ«Ài`Ê Ì
ÀiiÊ q Ê L`vÀ}Ê Ài>VÌÃ\Ê £®Ê>ÊÀ}>À`ÊÀi>VÌ]ÊÓ®ÊVÞ>
Þ`ÀÊvÀ>Ì]Ê>`ÊήÊ>Ê 7ÌÌ}ÊÀi>V̰ UÊ /
ÃÊV
>«ÌiÀÊiÝ«Ài`ÊÞÊiÊ q ÊL`LÀi>}ÊÀi>VÌ\Ê Ì
iÊ >iÞiÀ6}iÀÊÝ`>̰
SECTION 20.13
SECTION 20.9 UÊ 7
iÊÌÀi>Ìi`ÊÜÌ
Ê>Ê
Þ`À`iÊÀi`ÕV}Ê>}iÌ]ÊÃÕV
Ê>ÃÊÌ
ÕÊ >ÕÕÊ
Þ`À`iÊ ®Ê ÀÊ Ã`ÕÊ LÀ
Þ`À`iÊ > {®]Ê >`i
Þ`iÃÊ>`ÊiÌiÃÊ>ÀiÊÀi`ÕVi`ÊÌÊ>V
ð UÊ /
iÊÀi`ÕVÌÊvÊ>ÊV>ÀLÞÊ}ÀÕ«ÊÜÌ
ÊÊÀÊ > {ÊÃÊÌÊ >ÊÀiÛiÀÃLiÊ«ÀViÃÃ]ÊLiV>ÕÃiÊ
Þ`À`iÊ`iÃÊÌÊvÕVÌÊ>ÃÊ>Ê i>Û}Ê}ÀÕ«°
SECTION 20.10 UÊ 7
iÊÌÀi>Ìi`ÊÜÌ
Ê>ÊÀ}>À`Ê>}iÌ]Ê>`i
Þ`iÃÊ>`ÊiÌiÃÊ >ÀiÊVÛiÀÌi`ÊÌÊ>V
Ã]Ê>VV«>i`ÊLÞÊÌ
iÊvÀ>ÌÊ vÊ>ÊiÜÊ q ÊL`°
UÊ >ÀLÞÊ }ÀÕ«ÃÊ «À`ÕViÊ >Ê ÃÌÀ}Ê ,Ê Ã}>Ê >ÀÕ`Ê £Ç£xÊ V£°Ê Ê VÕ}>Ìi`Ê V>ÀLÞÊ «À`ÕViÃÊ >Ê Ã}>Ê >ÌÊ >Ê ÜiÀÊÜ>ÛiÕLiÀ]ÊÜ
iÊÀ}ÊÃÌÀ>ÊVÀi>ÃiÃÊÌ
iÊÜ>ÛiÕLiÀÊvÊ>LÃÀ«Ì° UÊ `i
Þ`VÊ qÊ L`ÃÊ iÝ
LÌÊ iÊ ÀÊ ÌÜÊ Ã}>ÃÊ LiÌÜiiÊ ÓÇääÊ>`ÊÓnxäÊV£° £
UÊ Ê >Ê Ê ,Ê Ã«iVÌÀÕ]Ê >Ê V>ÀLÞÊ }ÀÕ«Ê >``ÃÊ ³£Ê ««Ê ÌÊ Ì
iÊV
iV>ÊÃ
vÌÊvÊÌÃÊi}
LÀÃ]Ê>`Ê>Ê>`i
Þ`VÊ«ÀÌÊ «À`ÕViÃÊ>ÊÃ}>Ê>ÀÕ`Ê£äÊ««° £Î
UÊ Ê>Ê Ê ,ÊëiVÌÀÕ]Ê>ÊV>ÀLÞÊ}ÀÕ«Ê«À`ÕViÃÊ>ÊÜi>Ê Ã}>Êi>ÀÊÓääÊ««°
KEY TERMINOLOGY acetalÊ UUU >iÞiÀ6}iÀÊÝ`>ÌÊ UUU LiÌ>iÊ UUU V>ÀL>iÊ UUU V>ÀLÞÊ}ÀÕ«Ê UUU VÞ>
Þ`ÀÃÊ UUU
klein_c20_001-056v1.4.indd 48
`iÃÕvÕÀâ>ÌÊ UUU i>iÊ UUU
i>ViÌ>Ê UUU
Þ`À>ÌiÊ UUU
Þ`À>âiÊ UUU
Þ`ÀÞÃÃÊ UUU
iÊ UUU >VÌiÊ UUU }À>ÌÀÞÊ>«ÌÌÕ`iÊ UUU Ý>«
ë
iÌ>iÊ UUU ÝiÊ UUU «
ë
À>iÊ UUU
ÌiÌÀ>
i`À>ÊÌiÀi`>ÌiÊ UUU Ì
>ViÌ>Ê UUU 7ÌÌ}ÊÀi>VÌÊ UUU 7ÌÌ}ÊÀi>}iÌÊ UUU 7vvÃ
iÀÊÀi`ÕVÌÊ UUU Þ`iÊ UUU
30/04/10 16.47
49
Skillbuilder Review
SKILLBUILDER REVIEW 20.1 NAMING ALDEHYDES AND KETONES STEP 1
ÃiÊÌ
iÊ}iÃÌÊ V
>ÊVÌ>}ÊÌ
iÊV>ÀLÞÊ }ÀÕ«]Ê>`ÊÕLiÀÊÌ
iÊV
>Ê ÃÌ>ÀÌ}ÊvÀÊÌ
iÊi`ÊVÃiÃÌÊ ÌÊÌ
iÊV>ÀLÞÊ}ÀÕ«°
STEP 2 AND 3 `iÌvÞÊ Ì
iÊÃÕLÃÌÌÕiÌÃ]Ê>`Ê>ÃÃ}Ê V>Ìð
4,4-dimethyl
8 7 2
4
1 3
9 2
4
1 3
5
O
9
R
6 5
O
O
4,4-dimethyl-6-ethyl
6-ethyl
O
3-nonanone
STEP 5 ÃÃ}ÊÌ
iÊ Vw}ÕÀ>ÌÊvÊ>ÞÊV
À>ÌÞÊ ViÌiÀ°
8
7
6
STEP 4 ÃÃiLiÊÌ
iÊ ÃÕLÃÌÌÕiÌÃÊ>«
>LiÌV>Þ°
(R)-4,4-dimethyl-6-ethyl -3-nonanone
Try problems 20.1–20.4, 20.44–20.49
20.2 DRAWING THE MECHANISM OF ACETAL FORMATION STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊiViÃÃ>ÀÞÊvÀÊ
i>ViÌ>ÊvÀ>̰ Proton transfer
Nucleophilic attack
H¬A
O
+
Proton transfer
H
+
O
COMMENTS UÊ ÛiÀÞÊÃÌi«Ê
>ÃÊÌÜÊVÕÀÛi`Ê>ÀÀÜÃ°Ê À>ÜÊÌ
iÊ«ÀiVÃiÞ° UÊ ÊÌÊvÀ}iÌÊÌ
iÊV
>À}ið UÊ À>ÜÊi>V
ÊÃÌi«ÊÃi«>À>ÌiÞ°
OH
R¬O¬H
OH
A
H O+
OR
R
STEP 2 À>ÜÊÌ
iÊvÕÀÊÃÌi«ÃÊÌ
>ÌÊVÛiÀÌÊÌ
iÊ
i>ViÌ>ÊÌÊ>Ê>ViÌ>° Proton transfer
OH
H¬A
H + H O
+
Nucleophilic attack
Loss of a leaving group
–H2O
+
R
R + H O
R¬ O ¬H
O
Proton transfer
OR
OR
A
OR
OR OR
Try Problems 20.8–20.10, 20.57, 20.62, 20.67
20.3 DRAWING THE MECHANISM OF IMINE FORMATION STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊiViÃÃ>ÀÞÊvÀÊV>ÀL>iÊvÀ>̰ Nucleophilic attack
Proton transfer +
O H¬A
+
O
H R¬NH2
COMMENTS UÊ >V
Ê«>ÀÌÊvÊÌ
iÊiV
>ÃÊLi}ÃÊ ÜÌ
Ê>Ê«ÀÌÊÌÀ>ÃviÀÊ>`Êi`ÃÊ ÜÌ
Ê>Ê«ÀÌÊÌÀ>ÃviÀ° UÊ ÛiÀÞÊÃÌi«Ê
>ÃÊÌÜÊVÕÀÛi`Ê>ÀÀÜÃ°Ê >iÊÃÕÀiÊÌÊ`À>ÜÊÌ
iÊ«ÀiVÃiÞ° UÊ ÊÌÊvÀ}iÌÊÌ
iÊ«ÃÌÛiÊV
>À}iÃ°Ê /
iÀiÊÃ
Õ`ÊLiÊÊi}>ÌÛiÊ V
>À}ið UÊ À>ÜÊi>V
ÊÃÌi«ÊÃi«>À>ÌiÞ]Ê vÜ}ÊÌ
iÊ«ÀiVÃiÊÀ`iÀÊvÊ ÃÌi«Ã°
Proton transfer
OH
OH A
H
N
N
R
+
H
H
R
STEP 2 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊÌ
>ÌÊVÛiÀÌÊÌ
iÊV>ÀL>iÊÌÊ>Êi° Loss of a leaving group
Proton transfer
OH
H¬A
N R
H
+
H + H O N
–H2O
R + H N
Proton transfer R R–NH2
N
H
R
Try Problems 20.15–20.18, 20.72, 20.86
klein_c20_001-056v1.4.indd 49
30/04/10 16.47
50
CHAPTER 20
Aldehydes and Ketones
20.4 DRAWING THE MECHANISM OF ENAMINE FORMATION COMMENTS UÊ >V
Ê«>ÀÌÊvÊÌ
iÊiV
>ÃÊ Li}ÃÊÜÌ
Ê>Ê«ÀÌÊÌÀ>ÃviÀÊ >`Êi`ÃÊÜÌ
Ê>Ê«ÀÌÊ ÌÀ>ÃviÀ° UÊ ÛiÀÞÊÃÌi«Ê
>ÃÊÌÜÊVÕÀÛi`Ê >ÀÀÜðÊ>iÊÃÕÀiÊÌÊ`À>ÜÊ Ì
iÊ«ÀiVÃiÞ° UÊ ÊÌÊvÀ}iÌÊÌ
iÊ«ÃÌÛiÊ V
>À}iðÊ/
iÀiÊÃ
Õ`ÊLiÊÊ i}>ÌÛiÊV
>À}ið UÊ À>ÜÊi>V
ÊÃÌi«ÊÃi«>À>ÌiÞÊ vÜ}ÊÌ
iÊ«ÀiVÃiÊÀ`iÀÊvÊ ÃÌi«Ã°
STEP 1 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊiViÃÃ>ÀÞÊvÀÊV>ÀL>iÊvÀ>̰ Nucleophilic attack
Proton transfer H
+
O H¬A
O
+
Proton transfer OH
OH
R2NH
A
H
N
N
R +R
R
R
STEP 2 À>ÜÊÌ
iÊÌ
ÀiiÊÃÌi«ÃÊÌ
>ÌÊVÛiÀÌÊÌ
iÊV>ÀL>iÊÌÊ>Êi>i° Proton transfer
OH
H¬A
N
H + H O
+
Nucleophilic attack
Loss of a leaving group
R
N
R
–H2O
R + R N
R
R2NH
R
R N
H
R
Try Problems 20.21–20.24, 20.72
20.5 DRAWING THE MECHANISM OF A HYDROLYSIS REACTION STEP 1 7À}ÊL>VÜ>À`Ã]Ê`À>ÜÊ>ÊÌiÀi`>Ìið
STEP 2 UÊvÌiÀÊ`À>Ü}Ê>ÊÌiÀi`>ÌiÃ]ÊÌ
iÊ`À>ÜÊ>Ê Ài>}iÌÃÊ>`ÊVÕÀÛi`Ê>ÀÀÜÃÊÕÃ}ÊÌ
iÊvÜ}ÊÀÕiÃ\ UÊÊ>V`VÊV`ÌÃ]Ê>ÊÀi>}iÌÃ]ÊÌiÀi`>ÌiÃ]Ê>`Ê i>Û}Ê}ÀÕ«ÃÊiÌ
iÀÊÃ
Õ`ÊLiÊiÕÌÀ>ÊÀÊÃ
Õ`Ê Li>ÀÊiÊ«ÃÌÛiÊV
>À}i° UÊ1ÃiÊÞÊÌ
ÃiÊÀi>}iÌÃÊÌ
>ÌÊ>ÀiÊ>Ài>`ÞÊ«ÀiÃḭ
first draw this intermediate +
H
O
O
then draw the other intermediates, working backward
Try Problems 20.26, 20.27, 20.65
20.6 PLANNING AN ALKENE SYNTHESIS WITH A WITTIG REACTION ÊEXAMPLE `iÌvÞÊ ÊÌ
iÊÀi>VÌ>ÌÃÊÞÕÊ ÊÜÕ`ÊÕÃiÊÌÊ«Ài«>ÀiÊ ÊÌ
ÃÊV«Õ`ÊÛ>Ê>Ê 7ÌÌ}ÊÀi>V̰
STEP 1 1Ã}Ê>ÊÀiÌÀÃÞÌ
iÌVÊ>>ÞÃÃ]Ê`iÌiÀiÊÌ
iÊÌÜÊ «ÃÃLiÊÃiÌÃÊvÊÀi>VÌ>ÌÃÊÌ
>ÌÊVÕ`ÊLiÊÕÃi`ÊÌÊvÀÊÌ
iÊ
5 ÊL`°
H
O
H PPh3
PPh3
+
+
Method 1
Method 2
STEP 2 Ã`iÀÊ
ÜÊÞÕÊ ÜÕ`Ê>iÊi>V
Ê«ÃÃLiÊ 7ÌÌ}ÊÀi>}iÌ]Ê>`Ê`iÌiÀiÊ Ü
V
ÊiÌ
`ÊÛÛiÃÊÌ
iÊiÃÃÊ ÃÕLÃÌÌÕÌi`Ê>ÞÊ
>`i° x
O
X
Will undergo SN2 more readily
2˚ Alkyl halide
1˚ Alkyl halide
Try Problems 20.37–20.39, 20.51–20.53
20.7 PROPOSING A SYNTHESIS STEP 1 i}ÊLÞÊ >Ã}ÊÌ
iÊvÜ}ÊÌÜÊ µÕiÃÌÃ\ £°ÊÃÊÌ
iÀiÊ>ÊV
>}iÊÊÌ
iÊ V>ÀLÊÃii̶ Ó°ÊÃÊÌ
iÀiÊ>ÊV
>}iÊÊÌ
iÊ vÕVÌ>Ê}Àիö
AU/ED: long page klein_c20_001-056v1.4.indd 50
STEP 2 vÊÌ
iÀiÊÃÊ>ÊV
>}iÊÊÌ
iÊV>ÀLÊÃiiÌ]Ê VÃ`iÀÊ>ÊvÊÌ
iÊ q ÊL`vÀ}ÊÀi>VÌÃÊ>`Ê >ÊvÊÌ
iÊ q ÊL`LÀi>}ÊÀi>VÌÃÊÌ
>ÌÊÞÕÊ
>ÛiÊ i>Ài`ÊÃÊv>À
q ÊL`vÀ}ÊÀi>VÌÃÊÊÌ
ÃÊV
>«ÌiÀ UÊÀ}>À`ÊÀi>VÌ UÊ Þ>
Þ`ÀÊvÀ>Ì UÊ7ÌÌ}ÊÀi>VÌ
q ÊL`LÀi>}ÊÀi>VÌÃÊÊÌ
ÃÊV
>«ÌiÀ UÊ >iÞiÀ6}iÀÊÝ`>Ì
CONSIDERATIONS ,iiLiÀÊÌ
>ÌÊÌ
iÊ`iÃÀi`Ê«À`ÕVÌÊÃ
Õ`ÊLiÊÌ
iÊ >ÀÊ«À`ÕVÌÊvÊÞÕÀÊ«À«Ãi`ÊÃÞÌ
iÃð >iÊÃÕÀiÊÌ
>ÌÊÌ
iÊÀi}V
iV>ÊÕÌViÊvÊi>V
Ê ÃÌi«ÊÃÊVÀÀiV̰ Ü>ÞÃÊÌ
ÊL>VÜ>À`ÊÀiÌÀÃÞÌ
iÌVÊ>>ÞÃîÊ>ÃÊÜiÊ >ÃÊvÀÜ>À`]Ê>`ÊÌ
iÊÌÀÞÊÌÊLÀ`}iÊÌ
iÊ}>«° ÃÌÊÃÞÌ
iÃÃÊ«ÀLiÃÊÜÊ
>ÛiÊÕÌ«iÊVÀÀiVÌÊ >ÃÜiÀÃ°Ê ÊÌÊviiÊÌ
>ÌÊÞÕÊ
>ÛiÊÌÊw`ÊÌ
iʺi»Ê VÀÀiVÌÊ>ÃÜiÀ°
Try Problems 20.41, 20.42, 20.55, 20.58, 20.67–20.69, 20.71, 20.75 30/04/10 16.47
51
Practice Problems
Note:ÊÃÌÊvÊÌ
iÊ*ÀLiÃÊ>ÀiÊ>Û>>LiÊÜÌ
WileyPLUS]Ê>ÊiÊÌi>V
}Ê>`Êi>À}ÊÃÕ̰
PRACTICE PROBLEMS 20.44
*ÀÛ`iÊ>ÊÃÞÃÌi>ÌVÊ1* ®Ê>iÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`Ã\
O
O H
O
O
(a)
H
O
O
(a)
(b)
O H
(c)
20.51
À>ÜÊ Ì
iÊ «À`ÕVÌÃÊ vÊ i>V
Ê 7ÌÌ}Ê Ài>VÌÊ LiÜ°Ê vÊ ÌÜÊÃÌiÀiÃiÀÃÊ>ÀiÊ«ÃÃLi]Ê`À>ÜÊLÌ
ÊÃÌiÀiÃiÀÃ\Ê
(d) O H
HO
(e)
(f)
Br
?
H
(a) O
À>ÜÊÌ
iÊÃÌÀÕVÌÕÀiÊvÀÊi>V
ÊV«Õ`ÊLiÜ\
Ph
>®Ê «À«>i`> L®Ê {«
iÞLÕÌ>>
Ph
Ph Ph P Ph
O
O
20.45
CH3
H3C
CF3
F3C
(b) O
(b)
Ph Ph P Ph
H
?
Ph Ph P Ph
H
?
Ph
V®Ê (S)Ϋ
iÞLÕÌ>> `®Ê Î]Î]x]xÌiÌÀ>iÌ
Þ{
i«Ì>i O
i®Ê (R)Î
Þ`ÀÝÞ«iÌ>> v®Ê iÌ>
Þ`ÀÝÞ>ViÌ«
ii }®Ê Ó]{]ÈÌÀÌÀLiâ>`i
Þ`i
H
(c)
®Ê ÌÀLÀ>ViÌ>`i
Þ`i ®Ê (3R,4R)Î]{`
Þ`ÀÝÞÓ«iÌ>i
Ph Ph P Ph
O
20.46
À>ÜÊ >Ê VÃÌÌÕÌ>ÞÊ ÃiÀVÊ >`i
Þ`iÃÊ ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê {Hn"]Ê >`Ê «ÀÛ`iÊ >Ê ÃÞÃÌi>ÌVÊ 1* ®Ê >iÊvÀÊi>V
ÊÃiÀ°
20.47
À>ÜÊ >Ê VÃÌÌÕÌ>ÞÊ ÃiÀVÊ >`i
Þ`iÃÊ ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê xH£ä"]Ê >`Ê «ÀÛ`iÊ >Ê ÃÞÃÌi>ÌVÊ 1* ®Ê >iÊvÀÊi>V
ÊÃiÀ°Ê7
V
ÊvÊÌ
iÃiÊÃiÀÃÊ«ÃÃiÃÃiÃÊ>ÊV
À>ÌÞÊViÌiÀ¶Ê
H
?
(d)
20.52 À>ÜÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊÌ
iÊ>ÞÊ
>`iÊii`i`ÊÌÊ«Ài«>ÀiÊ i>V
Ê vÊ Ì
iÊ vÜ}Ê 7ÌÌ}Ê Ài>}iÌÃ]Ê >`Ê Ì
iÊ `iÌiÀiÊÜ
V
Ê7ÌÌ}ÊÀi>}iÌÊÜÊLiÊÌ
iÊÃÌÊ`vwVÕÌÊÌÊ«Ài«>Ài°Ê
Ý«>ÊÞÕÀÊV
Vi\Ê
20.48
À>ÜÊ>ÊVÃÌÌÕÌ>ÞÊÃiÀVÊiÌiÃÊÜÌ
ÊiVÕ>ÀÊ vÀÕ>Ê ÈH£Ó"]Ê >`Ê «ÀÛ`iÊ >Ê ÃÞÃÌi>ÌVÊ 1* ®Ê >iÊ vÀÊi>V
ÊÃiÀ°Ê
CH3
Ph
(a)
Ph P Ph
(c)
Ph Ph P Ph
Ph H
(b)
Ph Ph P Ph
H
20.49
Ý«>Ê Ü
ÞÊ Ì
iÊ 1* Ê >iÊ vÊ >Ê V«Õ`Ê ÜÊ iÛiÀÊi`ÊÜÌ
ÊÌ
iÊÃÕvwÝʺ£i°»Ê
20.50
ÀÊ i>V
Ê «>ÀÊ vÊ Ì
iÊ vÜ}Ê V«Õ`Ã]Ê `iÌvÞÊ Ü
V
ÊV«Õ`ÊÜÕ`ÊLiÊiÝ«iVÌi`ÊÌÊÀi>VÌÊÀiÊÀ>«`ÞÊÜÌ
Ê >ÊÕVi«
i\Ê
klein_c20_001-056v1.4.indd 51
30/04/10 16.47
52
CHAPTER 20
Aldehydes and Ketones
20.53
-
ÜÊ
ÜÊ >Ê 7ÌÌ}Ê Ài>VÌÊ V>Ê LiÊ ÕÃi`Ê ÌÊ «Ài«>ÀiÊ i>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`ðÊÊi>V
ÊV>Ãi]Ê>ÃÊÃ
ÜÊ
ÜÊ Ì
iÊ7ÌÌ}ÊÀi>}iÌÊÜÕ`ÊLiÊ«Ài«>Ài`\Ê
20.60
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌîÊvÀÊi>V
ÊÀi>VÌÊLiÜ°Ê O 1) LAH 2) H2O
(a) (a)
O
(b)
1) PhMgBr 2) H2O
(b) O
(c)
(C6H5)3P=CH2
(c)
20.54
ÃiÊ>ÊÀ}>À`ÊÀi>}iÌÊ>`Ê>ÊiÌiÊÌ
>ÌÊV>ÊLiÊ ÕÃi`ÊÌÊ«À`ÕViÊi>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`Ã\Ê >®Ê ÎiÌ
ÞΫiÌ>Ê L®Ê £iÌ
ÞVÞV
iÝ> V®Ê ÌÀ«
iÞiÌ
>Ê `®Ê x«
iÞx>
O HCN, KCN
(d)
20.55
9ÕÊ >ÀiÊ ÜÀ}Ê Ê >Ê >LÀ>ÌÀÞ]Ê >`Ê ÞÕÊ >ÀiÊ }ÛiÊ Ì
iÊ Ì>ÃÊ vÊ VÛiÀÌ}Ê VÞV«iÌiiÊ ÌÊ £]x«iÌ>i`°Ê 9ÕÀÊ wÀÃÌÊ Ì
Õ}
ÌÊ ÃÊ Ã«ÞÊ ÌÊ «iÀvÀÊ >Ê âÞÃÃÊ vÜi`Ê LÞÊ Ài`ÕVÌÊ ÜÌ
Ê ]Ê LÕÌÊ ÞÕÀÊ >LÊ ÃÊ ÌÊ iµÕ««i`Ê vÀÊ >Ê âÞÃÃÊ Ài>VÌ°Ê -Õ}}iÃÌÊ >Ê >ÌiÀ>ÌÛiÊ iÌ
`Ê vÀÊ VÛiÀÌ}Ê VÞV«iÌiiÊ ÌÊ £]x«iÌ>i`°ÊÊ ÀÊ
i«]ÊÃiiÊ-iVÌʣΰ{ÊÀi`ÕVÌÊvÊiÃÌiÀÃÊÌÊ}ÛiÊ>V
î°Ê
20.61
-Ì>ÀÌ}Ê ÜÌ
Ê VÞV«iÌ>iÊ >`Ê ÕÃ}Ê >ÞÊ Ì
iÀÊ Ài>}iÌÃÊ vÊ ÞÕÀÊ V
Ã}]Ê `iÌvÞÊ
ÜÊ ÞÕÊ ÜÕ`Ê «Ài«>ÀiÊ i>V
ÊvÊÌ
iÊvÜ}ÊV«Õ`Ã\Ê HO COOH
(a)
20.56
(b)
(c)
*Ài`VÌÊ Ì
iÊ >ÀÊ «À`ÕVÌÃ®Ê vÀÊ Ì
iÊ ÌÀi>ÌiÌÊ vÊ >ViÌiÊÜÌ
ÊÌ
iÊvÜ}ÊV«Õ`Ã\Ê >®Ê Q+RÊ]Ê ÎÊ]ÊÓ"®Ê
L®Ê Q+RÊ]Ê ÎNHÓÊ]ÊÓ"®
V®Ê Q+RÊ]ÊiÝViÃÃÊ Ì"]ÊÓ"®Ê
`®Ê Q+RÊ]Ê Î®Ó Ê]ÊÓ"®
+
O
+
i®Ê Q RÊ]Ê ÓNHÓÊ]ÊÓ"®Ê
v®Ê Q RÊ]Ê Ó"Ê]ÊÓ"®
}®Ê > {]Êi"Ê
®Ê *
®Ê ]Ê Ê
®Ê Ì} ÀÊvÜi`ÊLÞÊÓ"
®Ê ÈHx®ÎP5 Ó ÎÊ
®Ê ÊvÜi`ÊLÞÊÓ"
(d)
20.57 *À«ÃiÊ >Ê «>ÕÃLiÊ iV
>ÃÊ vÀÊ Ì
iÊ vÜ}Ê ÌÀ>ÃvÀ>Ì\Ê
(e)
20.62
ÕÌ>À>`i
Þ`iÊ ÃÊ >Ê }iÀV`>Ê >}iÌÊ Ì
>ÌÊ ÃÊ ÃiÌiÃÊÕÃi`ÊÌÊÃÌiÀâiÊi`V>ÊiµÕ«iÌÊÌÊÃiÃÌÛiÊÌÊLiÊ
i>Ìi`Ê Ê >Ê >ÕÌV>Ûi°Ê Ê `ÞÊ >V`VÊ V`ÌÃ]Ê }ÕÌ>À>`i
Þ`iÊ iÝÃÌÃÊ Ê >Ê VÞVVÊ vÀÊ LiÜÊ À}
Ì®°Ê À>ÜÊ >Ê «>ÕÃLiÊ iV
>ÃÊvÀÊÌ
ÃÊÌÀ>ÃvÀ>Ì\Ê O
O
O HO
O NH2
HO
O
[H+]
H
O
HO
[H3O+]
H
OH
O
H
EtOH
Glutaraldehyde
20.58 iÛÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÊÀiV>ÊÌ
>ÌÊÊ>`i
Þ`iÃÊ>ÀiÊÀiÊÀi>VÌÛiÊÌ
>ÊiÌiî\Ê O
O O
H
HO
20.63 *Ài`VÌÊ Ì
iÊ >ÀÊ «À`ÕVÌÃ®Ê LÌ>i`Ê Ü
iÊ i>V
Ê vÊ Ì
iÊvÜ}ÊV«Õ`ÃÊÕ`iÀ}iÃÊ
Þ`ÀÞÃÃÊÊÌ
iÊ«ÀiÃiViÊ vÊÎ"+\Ê N
H
N
(a)
20.59 /Ài>ÌiÌÊ vÊ V>ÌiV
Ê ÜÌ
Ê vÀ>`i-
(b)
O
(c)
OH
Þ`iÊÊÌ
iÊ«ÀiÃiViÊvÊ>Ê>V`ÊV>Ì>ÞÃÌÊ«À`ÕViÃÊ >Ê V«Õ`Ê ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê ÇHÈ"Ó°Ê À>ÜÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊÌ
ÃÊ«À`ÕV̰
OCH3
O OH Catechol
klein_c20_001-056v1.4.indd 52
O
O
O
(d)
(e)
30/04/10 16.47
53
Practice Problems
20.64
`iÌvÞÊ >Ê vÊ Ì
iÊ «À`ÕVÌÃÊ vÀi`Ê Ü
iÊ Ì
iÊ V«Õ`ÊLiÜÊÃÊÌÀi>Ìi`ÊÜÌ
Ê>µÕiÕÃÊ>V`\ O
O
(g)
N O
?
excess H3O+
O
O [H+]
(h)
ethylene glycol (1 equivalent)
H
20.65
À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê ÌÀ>ÃvÀ>ÌÃ\ H3O+
H
H
H2 N
[H+] OH
O
H3O+
N
?
HCN, KCN
(i) O
(b)
?
O
O
N
(a)
OH
(−H2O)
N
N
?
[H+] HS
?
(j) H
OH
(−H2O)
O
O [H+]
H2O
O
(c)
H
HO
20.67 `iÌvÞÊÌ
iÊÃÌ>ÀÌ}Ê>ÌiÀ>ÃÊii`i`ÊÌÊ>iÊi>V
ÊvÊ Ì
iÊvÜ}Ê>ViÌ>Ã\
OH O
O
O
20.66
*Ài`VÌÊÌ
iÊ>ÀÊ«À`ÕVÌîÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê Ài>VÌÃ\Ê
(a)
(b)
O
CH3 N
(a)
NH2
O
[H+] (−H2O)
?
(c)
OEt
O
O
(d)
O
O
20.68
1Ã}Ê iÌ
>Ê >ÃÊ ÞÕÀÊ ÞÊ ÃÕÀViÊ vÊ V>ÀLÊ >ÌÃ]Ê `iÃ}Ê>ÊÃÞÌ
iÃÃÊvÀÊÌ
iÊvÜ}ÊV«Õ`\Ê
?
1) PhMgBr
(b)
2) H2O
O
O CH3CO3H
(c)
?
O
20.69
O
[H+]
(e)
*À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê ÌÀ>ÃvÀ>ÌÃ\
?
CH3CO3H
(d)
O
N H
O
?
O
(a) O
(−H2O)
O
[H+]
(f)
NH2 (−H2O)
klein_c20_001-056v1.4.indd 53
O
?
O
O
O
(b) O
30/04/10 16.47
54
CHAPTER 20
Aldehydes and Ketones
20.70 /
iÊV«Õ`ÊLiÜÊÃÊLiiÛi`ÊÌÊLiÊ>ÊÜ>ëʫ
iÀi°Ê À>ÜÊÌ
iÊ>ÀÊ«À`ÕVÌÊvÀi`ÊÜ
iÊÌ
ÃÊV«Õ`ÊÃÊ
Þ`ÀÞâi`ÊÊ>µÕiÕÃÊ>V`\Ê
20.75
*À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê ÌÀ>ÃvÀ>ÌÃ\ O
(a) O O O
Br
(b)
20.71
*À«ÃiÊ>ÊivwViÌÊÃÞÌ
iÃÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}Ê ÌÀ>ÃvÀ>ÌÃ\
O O
(c)
(a) MeO OMe
OH
Br
CN Br
(b)
(d) O NH
O
(c)
(e)
20.72
À>ÜÊ >Ê «>ÕÃLiÊ iV
>ÃÊ vÀÊ Ì
iÊ vÜ}Ê ÌÀ>ÃvÀ>Ì\
Br H
O
O
N
NH2 NH2
(f)
[H2SO4] [–H2O]
O
N
N
20.73 7
iÊVÞV
iÝ>iÊÃÊÌÀi>Ìi`ÊÜÌ
ÊÓ"]Ê>ÊiµÕLÀÕÊÃÊiÃÌ>LÃ
i`ÊLiÌÜiiÊVÞV
iÝ>iÊ>`ÊÌÃÊ
Þ`À>Ìi°Ê/
ÃÊ iµÕLÀÕÊ}Ài>ÌÞÊv>ÛÀÃÊÌ
iÊiÌi]Ê>`ÊÞÊÌÀ>ViÊ>ÕÌÃÊ vÊÌ
iÊ
Þ`À>ÌiÊV>ÊLiÊ`iÌiVÌi`°ÊÊVÌÀ>ÃÌ]ÊÜ
iÊVÞV«À«>iÊÃÊÌÀi>Ìi`ÊÜÌ
ÊÓ"]ÊÌ
iÊÀiÃÕÌ}Ê
Þ`À>ÌiÊ«Ài`>ÌiÃÊ >ÌÊiµÕLÀÕ°Ê-Õ}}iÃÌÊ>ÊiÝ«>>ÌÊvÀÊÌ
ÃÊVÕÀÕÃÊLÃiÀÛ>̰Ê
(g)
(h) O
O
20.74
Ã`iÀÊ Ì
iÊ Ì
ÀiiÊ VÃÌÌÕÌ>Ê ÃiÀÃÊvÊ`Ý>iÊ {Hn"Ó®\Ê O
O
O
O O O
1,2-dioxane
1,3-dioxane
1,4-dioxane
"iÊvÊÌ
iÃiÊVÃÌÌÕÌ>ÊÃiÀÃÊÃÊÃÌ>LiÊÕ`iÀÊL>ÃVÊV`ÌÃÊ>ÃÊÜiÊ>ÃÊ`ÞÊ>V`VÊV`ÌÃÊ>`ÊÃÊÌ
iÀivÀiÊÕÃi`Ê >ÃÊ>ÊVÊÃÛḭÊÌ
iÀÊÃiÀÊÃÊÞÊÃÌ>LiÊÕ`iÀÊ L>ÃVÊV`ÌÃÊLÕÌÊÕ`iÀ}iÃÊ
Þ`ÀÞÃÃÊÕ`iÀÊ`ÞÊ>V`VÊ V`ÌðÊ/
iÊÀi>}ÊÃiÀÊÃÊiÝÌÀiiÞÊÕÃÌ>LiÊ>`Ê «ÌiÌ>ÞÊiÝ«ÃÛi°Ê`iÌvÞÊi>V
ÊÃiÀ]Ê>`ÊiÝ«>ÊÌ
iÊ «À«iÀÌiÃÊvÊi>V
ÊV«Õ`°
klein_c20_001-056v1.4.indd 54
30/04/10 16.47
55
Integrated Problems
INTEGRATED PROBLEMS 20.76
«Õ`Ê Ê
>ÃÊ iVÕ>ÀÊ vÀÕ>Ê ÇH£{"Ê >`Ê Ài>VÌÃÊÜÌ
ÊÃ`ÕÊLÀ
Þ`À`iÊÊiÌ
>ÊÌÊvÀÊ>Ê>V
°Ê /
iÊ £Ê ,Ê Ã«iVÌÀÕÊ vÊ V«Õ`Ê Ê iÝ
LÌÃÊÞÊÌÜÊÃ}>Ã\Ê>Ê`ÕLiÌÊIÊrÊ£Ó®Ê>`Ê>ÊÃi«ÌiÌÊIÊrÊÓ®°Ê/Ài>Ì}ÊV«Õ`Ê Ê ÜÌ
Ê £]ÓiÌ
>i`Ì
Ê - Ó Ó-®Ê vÜi`Ê LÞÊ ,>iÞÊ ViÊ}ÛiÃÊV«Õ`Ê °Ê >®Ê ÜÊ>ÞÊÃ}>ÃÊÜÊ>««i>ÀÊÊÌ
iÊ£Ê ,ÊëiVÌÀÕÊvÊ V«Õ`Ê ¶ L®Ê ÜÊ>ÞÊÃ}>ÃÊÜÊ>««i>ÀÊÊÌ
iÊ£Î Ê ,ÊëiVÌÀÕÊvÊ V«Õ`Ê ¶ V®Ê iÃVÀLiÊ
ÜÊÞÕÊVÕ`ÊÕÃiÊ,ÊëiVÌÀÃV«ÞÊÌÊÛiÀvÞÊÌ
iÊ VÛiÀÃÊvÊV«Õ`ÊÊÌÊV«Õ`Ê °
20.78 `iÌvÞÊ Ì
iÊ ÃÌÀÕVÌÕÀiÃÊ vÊ V«Õ`ÃÊ Ê ÌÊ Ê LiÜ]Ê >`Ê Ì
iÊ `iÌvÞÊ Ì
iÊ Ài>}iÌÃÊ Ì
>ÌÊ V>Ê LiÊ ÕÃi`Ê ÌÊ VÛiÀÌÊ VÞV
iÝiiÊÌÊV«Õ`Ê ÊÊÕÃÌÊiÊÃÌi«° H3O+
H2CrO4
A
B +
[H ] NH2NH2 (–H2O)
D
20.79
KOH / H2O heat
C
`iÌvÞÊÌ
iÊÃÌÀÕVÌÕÀiÃÊvÊV«Õ`ÃÊÊÌÊ ÊLiÜ\ O
20.77
1)
1Ã}Ê Ì
iÊ vÀ>ÌÊ «ÀÛ`i`Ê LiÜ]Ê `i`ÕViÊ Ì
iÊ ÃÌÀÕVÌÕÀiÃÊvÊV«Õ`ÃÊ]Ê ]Ê ]Ê>`Ê \Ê A (C10H12)
Br2 FeBr3
Mg
A
B
H 2) H2O
H
PCC
D 1) EtMgBr
1) O3 2) DMS
(C11H16O)
2) H2O
E
C (C9H10O)
HO
OH
[H+], −H2O
D
20.80 Ê >`i
Þ`iÊ ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê {HÈ"Ê iÝ
LÌÃÊ >Ê,ÊÃ}>Ê>ÌʣǣxÊV£° >®Ê *À«ÃiÊÌÜÊ«ÃÃLiÊÃÌÀÕVÌÕÀiÃÊÌ
>ÌÊ>ÀiÊVÃÃÌiÌÊÜÌ
Ê Ì
ÃÊvÀ>̰ L®Ê iÃVÀLiÊ
ÜÊÞÕÊVÕ`ÊÕÃiÊ£Î Ê ,ÊëiVÌÀÃV«ÞÊÌÊ `iÌiÀiÊÜ
V
ÊvÊÌ
iÊÌÜÊ«ÃÃLiÊÃÌÀÕVÌÕÀiÃÊÃÊVÀÀiV̰Ê
N
B [H+], (CH3)2NH
AlCl3
C
(–H2O)
20.81
Ê V«Õ`Ê ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê H£ä"Ê iÝ
LÌÃÊ >Ê ÃÌÀ}Ê Ã}>Ê >ÌÊ £ÈnÇÊV£ÊÊÌÃÊ,ÊëiVÌÀÕ°Ê/
iÊ £Ê>`Ê £Î Ê ,ÊëiVÌÀ>ÊvÀÊÌ
ÃÊV«Õ`Ê>ÀiÊÃ
ÜÊ LiܰÊ`iÌvÞÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊÌ
ÃÊV«Õ`°Ê 3
Proton NMR
2 2
9
8
3
7
6
5
4
3
2
1
Chemical Shift (ppm)
Carbon 13 NMR 128.3 132.5 199.9 200
180
127.7
31.3
7.9
136.7 160
140
120
100
80
60
40
20
0
Chemical Shift (ppm)
klein_c20_001-056v1.4.indd 55
30/04/10 16.47
56
CHAPTER 20
Aldehydes and Ketones
20.82 Ê V«Õ`Ê ÜÌ
Ê iVÕ>ÀÊ vÀÕ>Ê £ÎH£ä"Ê «À`ÕViÃÊ >Ê ÃÌÀ}Ê Ã}>Ê >ÌÊ £ÈÈäÊV£ÊÊÌÃÊ,ÊëiVÌÀÕ°Ê/
iÊ £Î Ê ,ÊëiVÌÀÕÊvÀÊÌ
ÃÊV«Õ`ÊÃÊÃ
ÜÊLiÜ°Ê `iÌvÞÊÌ
iÊÃÌÀÕVÌÕÀiÊvÊÌ
ÃÊV«Õ`°Ê Carbon 13 NMR 130.0 128.3 132.4 137.5
196.7 200
190
180
170
160
150
140
130
120
110
100
Chemical Shift (ppm)
ÊiÌiÊÜÌ
ÊiVÕ>ÀÊvÀÕ>Ê H£n"ÊiÝ
LÌÃÊÞÊiÊÃ}>ÊÊÌÃÊ £Ê ,Ê Ã«iVÌÀÕ°Ê*ÀÛ`iÊ>ÊÃÞÃÌi>ÌVÊ1* ®Ê>iÊvÀÊÌ
ÃÊV«Õ`°Ê
20.83
CHALLENGE PROBLEMS 20.84
À>ÜÊ>Ê«>ÕÃLiÊiV
>ÃÊvÀÊi>V
ÊvÊÌ
iÊvÜ}ÊÌÀ>ÃvÀ>ÌÃ\ O
N
O
H3
H
H N
O+
H + H3C + CH3
HO
(a) O OCH3 O
(c)
H
H3O+
(b) O H
H
+
NH2NH2
[H2SO4]
O
H
O [H2SO4]
OH
(d)
N N
O
O
OCH3
OH
OCH3
O
O
[H2SO4]
(e) OH
OH
OCH3 [TsOH]
(f) HO
O
O
OH
20.85 1`iÀÊ>V`V>Ì>Þâi`ÊV`ÌÃ]ÊvÀ>`i
Þ`iÊ«ÞiÀâiÃÊÌÊ«À`ÕViÊ>ÊÕLiÀÊ vÊ V«Õ`Ã]Ê VÕ`}Ê «>À>vÀ>`i
Þ`i°Ê À>ÜÊ >Ê «>ÕÃLiÊ iV
>ÃÊ vÀÊ Ì
ÃÊ ÌÀ>ÃvÀ>Ì\
O
O [H3O+]
H
H
O
O
Paraformaldehyde
klein_c20_001-056v1.4.indd 56
30/04/10 16.47