Algebra: exponents, scientific notation, simplifying expressions

153 downloads 140487 Views 2MB Size Report
B. R~gkgl§Jor roots) ancUractional exponents. 1. Definition. \ the positive nth root of a if n is even and a) 0 n.fa denotes the nth root of a if n is odd. When a is ...
Algebra: notation,

I.

exponents, simplifying

scientific expressions

---------------------------------------------------------------------

For more practice problems and detailed written explanations, lowing books, both on reserve all year in the Sciences Library.

see the fol-

by Loren C. Larson (can be purchased in the bookstore) .Al.g,e.braancl1rigonometry, by Keedy and Bittinger

--------------------------------------------------------------------A. Exponents:

1. Definition

Definitions and rules.

al = a,

a2 = a-a,

2. aman = am+n m

a

n

(provided

o

4. .I&f a = 1 (provided

5. Drl a

-n

a

(reason: a

$

1 =~ a

_=

a C) 3 [ a

a-a-a-a-a a-a-a

~ = 1 and a

a =a a

)

= a 5-3 = a 2

1-1

1

0 =a )

0)

(a

$

o

1

(reason: - n = L n = a

0)

a

O-n-n =a

)

a

An example showing why:

6. {ab)n = an bn (

8. Note: (a + b)n

$

= a2 + 3 = as

= (a-a)(a-a-a)

a2a3

5

=a m-n

an = a-a..- a (n times)

An example showing why: (

3 . -a

a3 = a-a-a,

;II!:

(ab)3 = ababab = aaabbb = a3b3 ]

an + bn !!! (except when n = 1 or a = 0 or b = 0) 1.1

I

e.g. (1+2)3= Correct

33= 27,while

rules:

13+23=1+8=9.

= a2

(a + b)2

+

2ab + b2 ,

(a + b)3 = a3 + 3a2b + 3ab2 + b3 , etc.; see Section D .

9. Exponentiation precedes multiplication'. For example, 7a3 = 7.a.a.a , nQ1 (7a)3 , which would be 7a.7a.7a 10. (-a)n

= (-l)nan

=

an if n even -an

{

= (-x)(-x)(-x) = (-)(_)(_)x3 = -x3

(-x)3

Note: -x2

=

(-)x.x

5

- -3 x

=

~

(-x)2 .

1 5-1 =__1. 1 --

Examp~

x3

if n odd

= (-x)(-x) = (_)(_)x2 = x2

e.g. (-x)2

1

= 73a3 .

.'

(x

5

-2 3

10

-3

= 1

1000

I

) =x

-6

= 0.001.

8 -4 4 xx =L= 2 x x

;

'

x

2

' '

3x4. 5x3 = (3.5)(x4.x3) = 15x7 5 -1 or x y

Exercises I A Simplify each expression. 1. 2x3. 3x2 2. -(2x3)4 3. (-4x-1z-2)-2 4. (5x4y-3z2)(-2x2y4z-1) -2 3 -3 x 6 . -1y 2 5. 4 +-12-4 8 x Y -2 -4 3 7. (3a -lb -2c4)3 8 . 5 -3-5 x y (2a -lb2 c-3)2 2 x y

1.2

;

B. R~gkgl§Jor

roots) ancUractional

1. Definition

exponents

the positive nth root of a if n is even and a) 0

n.fa

denotes

\

the nth root of a if n is odd

When a is negative and n is even (e.g. 2./-9 ), n.;a is undefined within the real number system. ~: .;a is short for 2.fa, the positive square root of a. Examples: 2ff = ff = 3; 3ff = 2; 3./-8 = -2; ./-9 is undefined.

2. Definition

a1/n

is defined to be n.;a

(where possible)

.

(1. n) 1/n n n 1 1/n . (a ) =a = a = a , so a ~ the nth root of a)

(Reason:

am/n = (a1/n)m

3. Definition

value). provided

4. n.;ab = n.;a. nJD

.QI: (am)1/n

(these have

the same

a 1/n is defined.

and

nJa71) = n.;a/ nJD

provided n.ra- and nJD are both defined. (Note

./(-2)(-8)

5. n.;a+b e.g. ./32

= ./I6 = 4 even though j:2 and ;:a

n.;a + nJD.

~

+

42

In particular,

./a2

+ b2

~

are undefined.) a

+ b ,

= ./9 +16 = /25 = 5 , while 3 + 4 = 7 .

6. jX2 = IxI , the absolute value of x. Examp~ 1. 84/3 = (3jS)4 = 24 2. 182/3 = 3'/18"2"" = 3'/(3.372)(3.3.2)

3.

R

14

2

1L = :i..x:..= 1L 9

19

3

but

= 16 = 3.3'/2.3.2" = 3.3/12

J?

12

1L = :i..£ = ill 9

19

4. J62 = 6; ./(-6)2 = 6; j12 = j4:3 = /4n-=

3

2n-

5. Simplify 3fi2TaP-. 1.3

I

3j72a'1)9- (72a7b9)1/3 . (72)1/3a7/3b9/3 :I 81/391/3a7/3b3 = 2.91/3a7/3b3 or 2a2b3.3./9a (either of these is OK) 6. Rationalize the denominator of

l

= 5.13 = sJ3

13 13.13

or

3

13

(eliminate the radical)

.

~ 3

7. Simplify (0.027)1/3. (0.027)1/3

=(

27 )1/3

1000

=

= ( 333 )1/3

10

(33)~/3 (103 )1/3

= i-

or

0.3

10

Exercises La Simplify: 1. 163/2 2. (0.008)1/3 3. [(-3)(2)]1/4 5. x-3/2 / x3/2 4. (x2/3)(xl/3)4 6.

J-25 (~-64

,.

7.

~ x3'

9.

v 3/4

2/3

1/2

(x Y exponents:

Express the following using rational 8.

( x 1/3

JJ;

)2

)

10.

x~

1

Rationalize the denominator:

20

12

11.

J5

12.

c. Scientific notation Scientific notation is a uniform way of writing numbers in which each number is written in the form k times 10n with 1:s k