Hindawi Publishing Corporation Journal of Function Spaces Volume 2016, Article ID 7827040, 16 pages http://dx.doi.org/10.1155/2016/7827040
Research Article Fixed Point Theorems for Cyclic Contractions in đśâ-Algebra-Valued đ-Metric Spaces Chakkrid Klin-eam1,2 and Prondanai Kaskasem1 1
Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand Research Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok 65000, Thailand
2
Correspondence should be addressed to Chakkrid Klin-eam;
[email protected] Received 10 November 2015; Revised 28 December 2015; Accepted 6 January 2016 Academic Editor: Adrian Petrusel Copyright Š 2016 C. Klin-eam and P. Kaskasem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study fundamental properties of đśâ -algebra-valued đ-metric space which was introduced by Ma and Jiang (2015) and give some fixed point theorems for cyclic mapping with contractive and expansive condition on such space analogous to the results presented in Ma and Jiang, 2015.
1. Introduction Firstly, we begin with the basic concept of đśâ -algebras. A real or a complex linear space A is algebra if vector multiplication is defined for every pair of elements of A satisfying two conditions such that A is a ring with respect to vector addition and vector multiplication and for every scalar đź and every pair of elements đĽ, đŚ â A, đź(đĽđŚ) = (đźđĽ)đŚ = đĽ(đźđŚ). A norm â â
â on A is said to be submultiplicative if âđđâ ⤠âđââđâ for all đ, đ â A. In this case (A, â â
â) is called normed algebra. A complete normed algebra is called Banach algebra. An involution on algebra A is conjugate linear map đ ół¨â đâ on A such that đââ = đ and (đđ)â = đâ đâ for all đ, đ â A. (đ´, â) is called â-algebra. A Banach â-algebra A is â-algebra A with a complete submultiplicative norm such that âđâ â = âđâ for all đ â A. đśâ -algebra is Banach â-algebra such that âđâ đâ = âđâ2 . There are many examples of đśâ -algebra, such as the set of complex numbers, the set of all bounded linear operators on a Hilbert space đť, đż(đť), and the set of đ Ă đ-matrices, đđ (C). If a normed algebra A admits a unit đź, đđź = đźđ = đ for all đ â A, and âđźâ = 1, we say that A is a unital normed algebra. A complete unital normed algebra A is called unital Banach algebra. For properties in đśâ -algebras, we refer to [1â 3] and the references therein. Let (đ, đ) be a complete metric space. The well-known Banachâs contraction principle, which appeared in the Ph.D. dissertation of S. Banach in 1920, runs as follows: a mapping
đ : đ â đ is said to be a contraction if there exists đ â [0, 1) such that đ (đđĽ, đđŚ) ⤠đđ (đĽ, đŚ)
âđĽ, đŚ â đ.
(1)
Then, đ has a unique fixed point in đ which was published in 1922 [4]. Banachâs contraction principle has become one of the most important tools used for the existence of solutions of many nonlinear problems in many branches of science and has been extensively studied in many spaces which are more general than metric space by serveral mathematictians; see, for example, quasimetric spaces [5, 6], dislocated metric spaces [7], dislocated quasimetric spaces [8], đş-metric spaces [9â11], đ-metric spaces [12â14], metric-type spaces [15, 16], metric-like spaces [17], đ-metric-like spaces (or dislocated đ-metric spaces) [18, 19], quasi đ-metric spaces [20], and dislocated quasi-đ-metric spaces [21]. Note that the Banach contraction principle requires that mapping đ satisfies the contractive condition that each point of đ Ă đ and ranges of đ are positive real numbers. Consider the operator equation â
đ â â đżâđ đđż đ = đ,
(2)
đ=1
where {đż 1 , đż 2 , . . . , đż đ } is subset of the set of linear bounded operators on Hilbert space đť, đ â đż(đť), and đ â đż(đť)+ is positive linear bounded operators on Hilbert space đť. Then,
2
Journal of Function Spaces
we convert the operator equation to the mapping đš : đż(đť) â đż(đť) which is defined by â
đš (đ) = â đżâđ đđż đ + đ.
(3)
đ=1
Observe that the range of mapping đš is not real numbers but it is linear bounded operators on Hilbert space đť. Therefore, the Banach contraction principle can not be applied with this problem. Afterward, does such mapping have a fixed point which is equivalent to the solution of operator equation? In 2014, Ma et al. [22] introduced new spaces, called đśâ -algebravalued metric spaces, which are more general than metric space, replacing the set of real numbers by đśâ -algebras, and establish a fixed point theorem for self-maps with contractive or expansive conditions on such spaces, analogous to the Banach contraction principle. As applications, existence and uniqueness results for a type of integral equation and operator equation are given and were able to solve the above problem 2 if đż 1 , đż 2 , . . . , đż đ â đż(đť) satisfy ââ đ=1 âđż đ â < 1. Later, many authors extend and improve the result of Ma et al. For example, in [23], Batul and Kamran generalized the notation of đśâ -valued contraction mappings by weakening the contractive condition introduced by Ma et al. (the mapping is called đśâ -valued contractive type mappings) and establish a fixed point theorem for such mapping which is more generalized than the result of Ma et al.; in [24], Shehwar and Kamran extend and improve the result of Ma et al. [22] and Jachymski [25] by proving a fixed point theorem for self-mappings on đśâ -valued metric spaces satisfying the contractive condition for those pairs of elements from the metric space which form edges of a graph in the metric space. In 2015, Ma and Jiang [26] introduced a concept of đśâ algebra-valued đ-metric spaces which generalize an ordinary đśâ -algebra-valued metric space and give some fixed point theorems for self-map with contractive condition on such spaces. As applications, existence and uniqueness results for a type of operator equation and an integral equation are given. Generally, in order to use the Banach contraction principle, a self-mapping đ must be Lipschitz continuous, with the Lipschitz constant đ â [0, 1). In particular, đ must be continuous at all elements of its domain. That is one major drawback. Next, many authors could find contractive conditions which imply the existence of fixed point in complete metric space but not imply continuity. We refer to [27, 28] (Kannan-type mappings) and [29] (Chatterjea-type mapping). Theorem 1 (see [27]). If (đ, đ) is a complete metric space and mapping đ : đ â đ satisfies đ (đđĽ, đđŚ) ⤠đ [đ (đĽ, đđĽ) + đ (đŚ, đđŚ)] ,
(4)
where 0 ⤠đ < 1/2 and đĽ, đŚ â đ, then đ has a unique fixed point. Theorem 2 (see [29]). If (đ, đ) is a complete metric space and mapping đ : đ â đ satisfies đ (đđĽ, đđŚ) ⤠đ [đ (đĽ, đđŚ) + đ (đŚ, đđĽ)] ,
(5)
where 0 ⤠đ < 1/2 and đĽ, đŚ â đ, then đ has a unique fixed point. In 2003, Kirk et al. [30] introduced the following notation of a cyclic representation and characterized the Banach contraction principle in context of a cyclic mapping as follows. Theorem 3. Let đ´ 1 , đ´ 2 , . . . , đ´ đ be nonempty closed subsets of a complete metric space (đ, đ). Assume that a mapping đ : đ âđ đ=1 đ´ đ â âđ=1 đ´ đ satisfies the following conditions: (i) đ(đ´ đ ) â đ´ đ+1 for all 1 ⤠đ ⤠đ and đ´ đ+1 = đ´ 1 . (ii) There exists đ â [0, 1) such that đ(đđĽ, đđŚ) ⤠đđ(đĽ, đŚ) for all đĽ â đ´ đ and đŚ â đ´ đ+1 for 1 ⤠đ ⤠đ. Then, đ has a unique fixed point. In 2011, Karapinar and Erhan [31] introduced Kannantype cyclic contraction and Chatterjea-type cyclic contraction. Moreover, they derive some fixed point theorems for such cyclic contractions in complete metric spaces as follows. Theorem 4 (fixed point theorem for Kannan-type cyclic contraction). Let đ´ and đľ be nonempty subsets of metric spaces (đ, đ) and a cyclic mapping đ : đ´ ⪠đľ â đ´ ⪠đľ satisfies đ (đđĽ, đđŚ) ⤠đ [đ (đĽ, đđĽ) + đ (đŚ, đđŚ)] , âđĽ â đ´, đŚ â đľ,
(6)
where 0 ⤠đ < 1/2. Then, đ has a unique fixed point in đ´ ⊠đľ. Theorem 5 (fixed point theorem for Chatterjea-type cyclic contraction). Let đ´ and đľ be nonempty subsets of a metric spaces (đ, đ) and a cyclic mapping đ : đ´ ⪠đľ â đ´ ⪠đľ satisfies đ (đđĽ, đđŚ) ⤠đ [đ (đĽ, đđŚ) + đ (đŚ, đđĽ)] , âđĽ â đ´, đŚ â đľ,
(7)
where 0 ⤠đ < 1/2. Then, đ has a unique fixed point in đ´ ⊠đľ. The purpose of this paper is to study fundamental properties of đśâ -algebra-valued đ-metric space which was introduced by Ma and Jiang [26] and give some fixed point theorems for cyclic mapping with contractive and expansive condition on such space analogous to the results presented in [26].
2. Preliminaries In this section, we recollect some basic notations, defintions, and results that will be used in main result. Firstly, we begin with the concept of đ-metric spaces. Definition 6 (see [12, 13]). Let đ be a nonempty set. A mapping đ : đ Ă đ â R is called đ-metric if there exists a real number đ ⼠1 such that, for every đĽ, đŚ, đ§ â đ, we have (i) đ(đĽ, đŚ) ⼠0,
Journal of Function Spaces
3
(ii) đ(đĽ, đŚ) = 0 if and only if đĽ = đŚ,
Theorem 11 (see [3]). Let A be a unital Banach algebra and let đ be an element of A such that âđâ < 1. Then, đź â đ â Inv(A) and
(iii) đ(đĽ, đŚ) = đ(đŚ, đĽ), (iv) đ(đĽ, đ§) ⤠đ[đ(đĽ, đŚ) + đ(đŚ, đ§)].
â
(đź â đ)â1 = â đđ .
In this case, the pair (đ, đ) is called a đ-metric space. The class of đ-metric spaces is larger than the calass of metric spaces, since a đ-metric space is a metric when đ = 1 in the fourth condition in the above definition. There exist many examples in some work showing that the class of đ-metric is efficiently larger than those metric spaces (see also [12, 14, 32, 33]). Example 7 (see [12]). The set đđ (R) with 0 < đ < 1, where đ đđ (R) fl {{đĽđ } â R : ââ đ=1 |đĽđ | < â}, together with the function đ : đđ (R) Ă đđ (R) â R, 1/đ
â
óľ¨ óľ¨đ đ (đĽ, đŚ) = ( â óľ¨óľ¨óľ¨đĽđ â đŚđ óľ¨óľ¨óľ¨ )
,
(8)
đ=1
where đĽ = {đĽđ }, đŚ = {đŚđ } â đđ (R), is a đ-metric space with coefficient đ = 21/đ > 1. Observe that the result holds for the general case đđ (đ) with 0 < đ < 1, where đ is a Banach space. Example 8 (see [12]). The space đż đ (0 < đ < 1) of all real 1
functions đĽ(đĄ), đĄ â [0, 1], such that âŤ0 |đĽ(đĄ)|đ đđĄ < â, together with the function 1
óľ¨đ óľ¨ đ (đĽ, đŚ) = (⍠óľ¨óľ¨óľ¨đĽ (đĄ) â đŚ (đĄ)óľ¨óľ¨óľ¨ đđĄ) 0
1/đ
, (9)
is a đ-metric space with đ = 21/đ . Example 9 (see [33]). Let (đ, đ1 ) be a metric space and đ2 (đĽ, đŚ) = (đ1 (đĽ, đŚ))đ , where đ > 1 is natural numbers. Then, đ2 is a đ-metric with đ = 2đâ1 . The notation convergence, compactness, closedness, and completeness in đ-metric space are given in the same way as in metric space. Next, we give concept of spectrum of element in đśâ algebra A. Definition 10 (see [3]). We say that đ â A is invertible if there is an element đ â A such that đđ = đđ = đź. In this case, đ is unique and written đâ1 . The set (10)
is a group under multiplication. We define spectrum of an element đ to be the set đ (đ) = đđ´ (đ) = {đ â C | đđź â đ â Inv (A)} .
Theorem 12 (see [3]). Let A be a unital đśâ -algebra with a unit đź, then (1) đźâ = đź, (2) For any đ â Inv(A), (đâ )â1 = (đâ1 )â . (3) For any đ â A, đ(đâ ) = đ(đ)â = {đ â C : đ â đ(đ)}. All over this paper, A means a unital đśâ -algebra with a unit đź. R is set of real numbers and R+ is the set of nonnegetive real numbers. đđ (R) is đ Ă đ matrix with entries R. Definition 13 (see [3]). The set of hermitain elements of A is denoted by Aâ ; that is, Aâ = {đĽ â A : đĽ = đĽâ }. An element đĽ in A is positive element which is denoted by đ ⪯ đĽ, where đ means the zero element in A if and only if đĽ â Aâ and đ(đĽ) is a subset of nonnegative real numbers. We define a partial ordering Aâ by using definition of positive element as đĽ ⪯ đŚ if and only if đŚ â đĽ ⪰ đ. The set of positive elements in A is denoted by A+ = {đĽ â A : đĽ ⪰ đ}. The following are definitions and some properties of positive element of a đśâ -algebra A. Lemma 14 (see [3]). The sum of two positive elements in a đśâ algebra is a positive element. Theorem 15 (see [3]). If a is an arbitrary element of a đśâ algebra A, then đâ đ is positive.
âđĽ, đŚ â đż đ [0, 1] ,
Inv (A) = {đ â A | đ is invertible}
(12)
đ=0
(11)
We summarise some elementary facts about A+ in the following results. Theorem 16 (see [3]). Let A be a đśâ -algebra: (1) The set A+ is closed cone in A [a cone đś in a real or complex vector space is a subset closed under addition and under scalar multiplication by R+ ].
(2) The set A+ is equal to {đâ đ : đ â A}. (3) If đ ⪯ đ ⪯ đ, then âđâ ⤠âđâ.
(4) If A is unital and đ and đ are positive invertible elements, then đ ⪯ đ â đ ⪯ đâ1 ⪯ đâ1 . Theorem 17 (see [3]). Let A be a đśâ -algebra. If đ, đ â A+ and đ ⪯ đ, then for any đĽ â A both đĽâ đđĽ and đĽâ đđĽ are positive elements and đĽâ đđĽ ⪯ đĽâ đđĽ. Lemma 18 (see [3]). Suppose that A is a unital đśâ -algebra with a unit đź: (1) If đ â A+ with âđâ < 1/2, then đź â đ is invertible and âđ(đź â đ)â1 â < 1.
4
Journal of Function Spaces (2) Suppose that đ, đ â A with đ, đ ⪰ đ and đđ = đđ; then, đđ ⪰ đ. (3) Define Aó¸ = {đ â A : đđ = đđ, âđ â A}. Let đ â Aó¸ ; if đ, đ â A with đ ⪰ đ ⪰ đ and đź â đ â Aó¸ + is invertible operator, then (đź â đ)â1 đ ⪰ (đź â đ)â1 đ.
(13)
Definition 19 (see [34]). A matrix đ´ â đđ (C) is Hermitian if đ´ = đ´â , where đ´â is a conjugate transpose matrix of đ´. A Hermitian matrix đ´ â đđ (C) is positive definite if đĽâ đ´đĽ > 0 for all nonzero đĽ â Cđ , and it is positive semidefinite if đĽâ đ´đĽ ⼠0 for all nonzero đĽ â Cđ . In 2014, Ma et al. [22] introduced the concept of đśâ algebra-valued metric space by using the concept of positive elements in A. The following is definition of đśâ -algebravalued metric. Definition 20 (see [22]). Let đ be a nonempty set. A mapping đ : đ Ă đ â A is called đśâ -algebra-valued metric on đ if it satisfies the following conditions:
In the same way, the concept of expansive mapping is defined in the following way. Definition 23 (see [22]). Let đ be a nonempty set. A mapping đ is a đśâ -algebra-valued expansive mapping on đ, if đ : đ â đ satisfies (1) đ(đ) = đ, (2) đ(đđĽ, đđŚ) ⪰ đâ đ(đĽ, đŚ)đ, for all đĽ, đŚ â đ, where đ â A is an invertible element and âđâ1 â < 1. The following is the related fixed point theorem for đśâ algebra-valued expansive mapping. Theorem 24 (see [22]). Let (đ, A, đ) be a complete đśâ algebra-valued metric space. If a đ : đ â đ satisfies Defintion 23, then đ has a unique fixed point in đ.
3. Fundamental Properties of đśâ -Algebra-Valued đ-Metric Spaces
(1) đ(đĽ, đŚ) ⪰ đ for all đĽ, đŚ â đ. (2) đ(đĽ, đŚ) = đ if and only if đĽ = đŚ.
In this section, we begin with the concept of đśâ -algebravalued đ-metric space which was introduced by Ma and Jiang [26] as follows.
(3) đ(đĽ, đŚ) = đ(đŚ, đĽ) for all đĽ, đŚ â đ. (4) đ(đĽ, đŚ) ⪯ đ(đĽ, đ§) + đ(đ§, đŚ) for all đĽ, đŚ, đ§ â đ. Then, đ is called a đśâ -algebra-valued metric on đ and (đ, A, đ) is called a đśâ -algebra-valued metric space. We know that range of mapping đ in metric space is the set of real numbers which is đśâ -algebra; then, đśâ -algebravalued metric space generalizes the concept of metric spaces, replacing the set of real numbers by A+ . In such paper, Ma et al. state the notation of convergence, Cauchy sequence, and completeness in đśâ -algebra-valued metric space. For detail, a sequence {đĽđ } in a đśâ -algebra-valued metric space (đ, A, đ) is said to converge to đĽ â đ with respect to A if for any đ > 0 there is đ â N such that âđ(đĽđ , đĽ)â < đ for all đ ⼠đ. We write it as limđ â â đĽđ = đĽ. A sequence {đĽđ } is called a Cauchy sequence with respect to A if for any đ > 0 there is đ â N such that âđ(đĽđ , đĽđ )â < đ for all đ, đ ⼠đ. The (đ, A, đ) is said to be a complete đśâ -algebravalued metric space if every Cauchy sequence with respect to A is convergent. Moreover, they introduce definition of contractive and expansive mapping and give some related fixed point theorems for self-maps with đśâ -algebra-valued contractive and expansive mapping, analogous to Banach contraction principle. The following is the definition of contractive mapping and the related fixed point theorem. Definition 21 (see [22]). Suppose that (đ, A, đ) is a đśâ algebra-valued metric space. A mapping đ : đ â đ is called đśâ -algebra-valued contractive mapping on đ, if there is an đ â A with âđâ < 1 such that đ (đđĽ, đđŚ) ⪯ đâ đ (đĽ, đŚ) đ,
Theorem 22 (see [22]). If (đ, A, đ) is a complete đśâ -algebravalued metric space and đ : đ â đ satisfies Defintion 21, then đ has a unique fixed point in đ.
âđĽ, đŚ â đ.
(14)
Definition 25 (see [26]). Let đ be a nonempty set. A mapping đ : đ Ă đ â A is called đśâ -algebra-valued đ-metric on đ if there exists đ â Aó¸ such that đ ⪰ đź satisfies following conditions: (1) đ(đĽ, đŚ) ⪰ đ for all đĽ, đŚ â đ. (2) đ(đĽ, đŚ) = đ if and only if đĽ = đŚ. (3) đ(đĽ, đŚ) = đ(đŚ, đĽ) for all đĽ, đŚ â đ. (4) đ(đĽ, đŚ) ⪯ đ[đ(đĽ, đ§) + đ(đ§, đŚ)] for all đĽ, đŚ, đ§ â đ. Then, (đ, đ, A) is called a đśâ -algebra-valued đ-metric space. Remark 26. If đ = đź, then a đśâ -algebra-valued đ-metric spaces are đśâ -algebra-valued metric spaces. In particular, if A is set of real numbers and đ = 1, then the đśâ -algebra-valued đ-metric spaces is the metric spaces. Definition 27 (see [26]). Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space. A sequence {đĽđ } in (đ, A, đ) is said to converge to đĽ if and only if for any đ > 0 there exists đ â N such that, for all đ ⼠đ, âđ(đĽđ , đĽ)â ⤠đ. Then, {đĽđ } is said to be convergent with respect to A and đĽ is called limit point of {đĽđ }. We denote it by limđ â â đĽđ = đĽ. A sequence {đĽđ } is called a Cauchy seqeunce with respect to A if and only if for any đ > 0 there exists đ â N such that, for all đ, đ ⼠đ, âđ(đĽđ , đĽđ )â ⤠đ. We say (đ, A, đ) is a complete đśâ -algebra-valued đmetric space if every Cauchy sequence with respect to A is convergent sequence with respect to A.
Journal of Function Spaces
5
The following is an example of complete đśâ -algebravalued đ-metric space. Example 28 (see [26]). Let đ = R and let A = đđ (R). Define đ (đĽ, đŚ)
It is easy to verify đ is a đśâ -algebra-valued đ-metric space and (đ, đ2 (R), đ) is a complete đśâ -algebra-valued đ-metric space be completeness of R. Proof. An element đ´ â A = đđ (R) is positive element; denote it by
đ óľ¨đ óľ¨đ óľ¨đ óľ¨ óľ¨ óľ¨ = diag ((đĽ â đŚ) , đź1 óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ , đź2 óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ , . . . , đźđâ1 óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ )
[ [ [ [ [ =[ [ [ [ [ [ [
óľ¨đ óľ¨óľ¨ óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ 0
0 óľ¨đ óľ¨óľ¨ đź1 óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨
0
0
.. .
.. .
0
0
0
â
â
â
0
0
â
â
â
0
óľ¨đ óľ¨ đź2 óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ â
â
â
.. .
.. .
.. .
d
] ] ] ] ] ], ] ] ] ] ]
đ´ ⪰ đ, iff đ´ is positive semidefinite. We define a partial ordering ⪯ on A as follows: (15)
óľ¨đ óľ¨ â
â
â
đźđâ1 óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ ]
0
where đĽ, đŚ â R and đźđ > 0 for all đ = 1, 2, . . . , đ â 1 are constants and đ is a natural number such that đ ⼠2. A norm â â
â on A is defined by óľ¨ óľ¨1/đ âđ´â = max óľ¨óľ¨óľ¨óľ¨đđđ óľ¨óľ¨óľ¨óľ¨ , đ,đ
â
đ11 đ21 â
â
â
đđ1 [đ đ â
â
â
đ ] [đ đ â
â
â
đ ] [ 21 22 [ 12 22 2đ ] đ2 ] ] ] [ [ đ´â = [ . ] =[ . . . . .. ] ] ] [ . [ . . . . . d . ] . d . ] [ . [ . [đđ1 đđ2 â
â
â
đđđ ]
đ´ ⪯ đľ iff đ ⪯ đľ â đ´,
[ [ [ đ=[ [ [ [
â
â
â
â
â
â
2
0
] 0 ] ] ] .. ] . ] ]
.. .
.. .
d
[ 0
0
â
â
â
2đâ1 ]đĂđ
.
1 = (|đ|đ + |đ|đ ) 2
(20)
(21)
and hence |đ + đ|đ ⤠2đâ1 (|đ|đ + |đ|đ ) for all đ, đ â R. We substitute đ = đĽ â đŚ and đ = đŚ â đ§; then,
[đ1đ đ2đ â
â
â
đđđ ]
[đ đ â
â
â
đ ] [ 12 22 đ2 ] ] [ . =[ . .. .. ] ] [ . . d . ] [ .
óľ¨đ óľ¨ |đĽ â đ§|đ = óľ¨óľ¨óľ¨đĽ â đŚ + đŚ â đ§óľ¨óľ¨óľ¨ óľ¨đ óľ¨ óľ¨đ óľ¨ â¤ 2đâ1 (óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đŚ â đ§óľ¨óľ¨óľ¨ ) .
(22)
Hence, setting đ0 = (|đĽ â đŚ|đ + |đŚ â đ§|đ ) and đ1 = |đĽ â đ§|đ , we obtain that
[đ1đ đ2đ â
â
â
đđđ ]
[
0
0 đâ1
óľ¨đ óľ¨óľ¨ đ + đ óľ¨óľ¨đ óľ¨óľ¨ 1 óľ¨óľ¨ = óľ¨óľ¨ đ + (1 â 1 ) đóľ¨óľ¨óľ¨ ⤠1 |đ|đ + (1 â 1 ) |đ|đ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨ 2 óľ¨óľ¨ 2 2 óľ¨2 óľ¨ 2 óľ¨
đ11 đ21 â
â
â
đđ1
2đâ1 đ0 â đ1 0
2đâ1
Since function đ(đĽ) = |đĽ|đ is convex function for all đ ⼠2 and đĽ â R, this implies that
(17)
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [
(19)
where đ mean the zero matrix in đđ (R). Firstly, it clears that ⪯ is partially order relation. Next, we show that đ is a đśâ algebra-valued đ-metric space. Let đĽ, đŚ, đ§ â đ. It is easy to see that đ satifies conditions (1), (2), and (3) of Definition 25. We will only show condition (4) where đ(đĽ, đŚ) ⪯ đ[đ(đĽ, đ§) + đ(đ§, đŚ)] with
(16)
where đ´ = (đđđ )đĂđ â A. The involution is given by đ´â = (đ´)đ , conjugate transpose of matrix đ´: đ11 đ12 â
â
â
đ1đ
(18)
đâ1
đź1 (2
0
0
â
â
â
đ0 â đ1 )
0
â
â
â
đź2 (2đâ1 đ0 â đ1 ) â
â
â
0
0
.. .
.. .
.. .
d
0
0
0
â
â
â
0
] ] ] 0 ] ] ] .. ] ] . ] ] ] .. ] ] . ] ] đâ1 đźđâ1 (2 đ0 â đ1 )]
6
Journal of Function Spaces
[ [ [ [ [ =[ [ [ [ [ [
2đâ1 đ0
0
0
đâ1
[
[ [ [ =[ [ [ [
đź1 2
đ0
0
â
â
â
0
â
â
â
đź2 2đâ1 đ0 â
â
â
0
0
.. .
.. .
.. .
d
0
0
0
â
â
â
2đâ1
0 đâ1
0
2
.. .
.. .
[ 0
0
â
â
â
0
[ ][ [ ] â
â
â
0 ][ ][ . ][ [ d .. ] ][ [ [ â
â
â
2đâ1 ] [
0
] [ ] [ 0 ] [ ] [ ] [ .. ]â[ . ] [ ] [ ] [ .. ] [ . ] đâ1 đźđâ1 2 đ0 ] [
đ1
0
0
â
â
â
0
0
đź1 đ1
0
â
â
â
0
0
0
đź2 đ1 â
â
â
.. .
.. .
.. .
.. .
d
0
0
0
â
â
â
đźđâ1 đ1 ]
đ1
0
0
â
â
â
0
0
đź1 đ1
0
â
â
â
0
0
0
đź2 đ1 â
â
â
.. .
.. .
.. .
.. .
d
[ 0
0
0
â
â
â
đźđâ1 đ1 ]
đ0
0
0
â
â
â
0
0
đź1 đ0
0
â
â
â
0
0
0
đź2 đ0 â
â
â
.. .
.. .
.. .
.. .
d
0
0
0
â
â
â
đźđâ1 đ0 ]
.. .
] [ ] [ ] [ ] [ ] [ ]â[ ] [ ] [ ] [ ] [
.. .
] ] ] ] ] ] ] ] ] ]
.. .
] ] ] ] ] ] ] ] ] ]
= đ (đ (đĽ, đŚ) + đ (đŚ, đ§)) â đ (đĽ, đ§) (23)
implies that each eigenvalue of đ[đ(đĽ, đ§) + đ(đ§, đŚ)] â đ(đĽ, đŚ) is nonnegative. Since each eigenvalue of a positive semidefinite matrix is a nonnegative real number, we have that đ[đ(đĽ, đ§) + đ(đ§, đŚ)] â đ(đĽ, đŚ) is positive semidefinite; that is, đ[đ(đĽ, đ§) + đ(đ§, đŚ)] â đ(đĽ, đŚ) ⪰ đ, that is, đ(đĽ, đŚ) ⪯ đ[đ(đĽ, đ§) + đ(đ§, đŚ)], where đ = 2đâ1 đź â Aó¸ and đ ⪰ đź by 2đâ1 > 1. But |đĽ â đŚ|đ ⤠|đĽ â đ§|đ + |đ§ â đŚ|đ is impossible for all đĽ, đŚ, đ§ â R. Hence, (đ, đđ (R), đ) is đśâ -algebra-valued đ-metric spaces but not đśâ -algebra-valued metric spaces. Finally, we show that (đ, A, đ) is a complete đśâ -algebravalued đ-metric space. Suppose that {đĽđ } is a Cauchy sequence with respect to A. Then, for any đ > 0, there exists đ â N such that âđ(đĽđ , đĽđ )â ⤠đ for all đ, đ ⼠đ; that is, óľ¨ óľ¨đ 1/đ óľ¨ óľ¨đ 1/đ max {(óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) , (đź1 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) , óľ¨ óľ¨đ 1/đ óľ¨ óľ¨đ 1/đ (đź2 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) , . . . , (đźđâ1 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) } ⤠đ
(24)
óľ¨ óľ¨óľ¨ óľ¨ óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ = (óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨ )
óľ¨óľ¨đ 1/đ
óľ¨ â¤ max {(óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨ )
,
óľ¨ óľ¨đ 1/đ óľ¨ óľ¨đ 1/đ (đź1 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) , (đź2 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨óľ¨ ) , . . . , óľ¨óľ¨đ 1/đ
óľ¨ (đźđâ1 óľ¨óľ¨óľ¨đĽđ â đĽđ óľ¨óľ¨ )
(25)
}â¤đ
for all đ, đ ⼠đ. Hence, {đĽđ } is a Cauchy sequnce in R. By completeness of R, there exists đĽ â R such that limđ â â đĽđ = đĽ; that is, limđ â â |đĽđ â đĽ| = 0. Then, we have that óľ¨ óľŠóľŠ óľ¨ óľŠ óľ¨đ 1/đ óľ¨đ 1/đ óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ = max {(óľ¨óľ¨óľ¨đĽđ â đĽóľ¨óľ¨óľ¨ ) , (đź1 óľ¨óľ¨óľ¨đĽđ â đĽóľ¨óľ¨óľ¨ ) , óľ¨ óľ¨ óľ¨đ 1/đ óľ¨đ 1/đ (đź2 óľ¨óľ¨óľ¨đĽđ â đĽóľ¨óľ¨óľ¨ ) , . . . , (đźđâ1 óľ¨óľ¨óľ¨đĽđ â đĽóľ¨óľ¨óľ¨ ) }
Next, we disscus some fundamental properties of đśâ algebra-valued đ-metric spaces. Theorem 29. Let (đ, A, đ) be đśâ -algebra-valued đ-metric space. If {đĽđ } is a convergent sequence with respect to A, then {đĽđ } is Cauchy sequence with respect to A. Proof. Assume that {đĽđ } is a convergent sequence with respect to A; then, there exists a đĽ â đ such that limđ â â đĽđ = đĽ. Let đ > 0, there is đ â N such that, for all đ ⼠đ, đ óľŠ óľŠóľŠ . óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠(27) 2 âđâ For đ, đ â đ, we get that đ (đĽđ , đĽđ ) ⪯ đ [đ (đĽđ , đĽ) + đ (đĽ, đĽđ )] .
for all đ, đ ⼠đ. Therefore, óľ¨óľ¨đ 1/đ
converges to 0 as đ â â. Therefore, {đĽđ } is convergent with respect to A and {đĽđ } converging to đĽ, so (đ, A, đ) is a complete đśâ -algebra-valued đ-metric space.
(26)
By Theorem 16, for đ, đ ⼠đ, we have óľŠóľŠóľŠđ (đĽđ , đĽđ )óľŠóľŠóľŠ ⤠óľŠóľŠóľŠđ [đ (đĽđ , đĽ) + đ (đĽ, đĽđ )]óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠ â¤ âđâ óľŠóľŠđ (đĽđ , đĽ) + đ (đĽ, đĽđ )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ âđâ óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + âđâ óľŠóľŠóľŠđ (đĽ, đĽđ )óľŠóľŠóľŠ đ đ ⤠âđâ + âđâ = đ. 2 âđâ 2 âđâ
(28)
(29)
This implies that {đĽđ } is Cauchy sequence with respect to A. Definition 30. A subset đ of a đśâ -algebra-valued đ-metric space (đ, A, đ) is bounded with respect to A if there exists đĽ â đ and a nonnegetive real number đ such that âđ (đĽ, đĽ)â ⤠đ,
âđĽ â đ.
(30)
Journal of Function Spaces
7
Theorem 31. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space and let {đĽđ } be a sequence in đ and đĽ â đ. Then, (1) đĽđ â đĽ if and only if đ(đĽđ , đĽ) â đ, (2) a convergent sequence in đ is bounded with respect to A and its limit is unique, (3) a Cauchy sequence in đ is bounded with respect to A. Proof. (1) Assume that đĽđ â đĽ. Let đ > 0 is given. Then, there exists đ0 â N such that óľŠóľŠ óľŠ óľŠ óľŠ óľŠóľŠđ (đĽđ , đĽ) â đóľŠóľŠóľŠ = óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠đ.
(31)
This implies that đ(đĽđ , đĽ) â đ. Conversely, assume that đ(đĽđ , đĽ) â đ. Then, for any đ > 0, there exists đ1 â N such that óľŠ óľŠóľŠ óľŠóľŠđ (đĽđ , đĽ) â đóľŠóľŠóľŠ ⤠đ ół¨â (32) óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠đ; that is, đĽđ â đĽ. (2) Let {đĽđ } be a convergent sequence with respect to A. Suppose that đĽđ â đĽ. Then, taking đ = 1, we can find đ â N such that đ (đĽđ , đĽ) ⤠1,
âđ ⼠đ.
(33)
Let đž = max{âđ(đĽ1 , đĽ)â, âđ(đĽ2 , đĽ)â, . . . , âđ(đĽđ, đĽ)â}. Setting đ = max{1, đž}. This implies that óľŠ óľŠóľŠ óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠đ,
âđ â N.
(34)
Next, suppose that đĽđ â đĽ and đĽđ â đŚ. Consider, đ(đĽ, đŚ) ⪯ đ[đ(đĽ, đĽđ ) + đ(đĽđ , đŚ)]; by Theorem 16, we have óľŠ óľŠ óľŠóľŠ óľŠ óľŠ óľŠ óľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠âđâ [óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + óľŠóľŠóľŠđ (đĽđ , đŚ)óľŠóľŠóľŠ] .
(35)
From (1), letting đ â â, we obtian that âđ(đĽ, đŚ)â = 0; that is đĽ = đŚ. (3) Assume that {đĽđ } is a Cauchy sequence with respect to A. In particular, đ = 1; there exists đ1 â N such that óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đĽđ )óľŠóľŠóľŠ ⤠1 âđ, đ ⼠đ1 .
(36)
Let đž = max{âđ(đĽ1 , đĽđ1 )â, âđ(đĽ2 , đĽđ1 )â, . . . , âđ(đĽđ1 â1 , đĽđ1 )â}. Then, óľŠ óľŠóľŠ óľŠóľŠđ (đĽđ , đĽđ1 )óľŠóľŠóľŠ ⤠đž óľŠ óľŠ
âđ < đ1 .
(37)
Set đ = max{1, đž}. Then, we get that óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đĽđ1 )óľŠóľŠóľŠ ⤠đ âđ â N. óľŠ óľŠ
(38)
Proof. Let đ > 0 be given. Then, there exists đ â N such that óľŠ óľŠóľŠ óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠đ, âđ ⼠đ.
(39)
Since đ1 < đ2 < â
â
â
< đđ < â
â
â
is an increasing sequence of natural numbers, it is easily proved (by induction) that đđ ⼠đ. Hence, if đ ⼠đ, we also have đđ ⼠đ ⼠đ so that óľŠ óľŠóľŠ óľŠóľŠđ (đĽđđ , đĽ)óľŠóľŠóľŠ ⤠đ, âđđ ⼠đ. óľŠ óľŠ
(40)
Therefore, subsequence {đĽđđ } also converges to đĽ. Theorem 33. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space. Then, every subsequence of a Cauchy sequence is Cauchy sequence. Proof. Let {đĽđđ } be a subsequence of Cauchy sequence {đĽđ } in a đśâ -algebra-valued đ-metric space. Then, for every đ > 0, there is đ â N such that, for all đ, đ ⼠đ, we have âđ(đĽđ , đĽđ )â ⤠đ. Similar to the facts in proof of previous theorem, we have đđ ⼠đ ⼠đ and đđ ⼠đ ⼠đ. Hence, we obtain that âđ(đĽđđ , đĽđđ )â ⤠đ. Therefore, {đĽđđ } is Cauchy sequence. Theorem 34. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space and let {đĽđ } be a Cauchy sequence with respect to A. If {đĽđ } contains its convergent subsequence, then {đĽđ } is convergent sequence. Proof. Let đ > 0. Since {đĽđ } is a Cauchy sequence with respect to A, there exists an đ0 â N such that 1 óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đĽđ )óľŠóľŠóľŠ â¤ óľŠ óľŠ 2 âđâ đ, âđ, đ ⼠đ0 .
(41)
Let {đĽđđ } be a convergent subsequence of {đĽđ } and đĽđđ â đĽ (đ â â). Then, there exists đ1 â N such that 1 óľŠ óľŠóľŠ óľŠóľŠđ (đĽđđ , đĽ)óľŠóľŠóľŠ â¤ óľŠ 2 âđâ đ, óľŠ
âđđ ⼠đ1 .
(42)
Let đ = max{đ0 , đ1 }. For đ, đ ⼠đ, we have đ (đĽđ , đĽ) ⪯ đ [đ (đĽđ , đĽđđ ) + đ (đĽđđ , đĽ)] .
(43)
By Theorem 16, we also have óľŠ óľŠ óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠âđâ óľŠóľŠóľŠóľŠđ (đĽđ , đĽđđ ) + đ (đĽđđ , đĽ)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ âđâ óľŠóľŠóľŠóľŠđ (đĽđ , đĽđđ )óľŠóľŠóľŠóľŠ + âđâ óľŠóľŠóľŠóľŠđ (đĽđđ , đĽ)óľŠóľŠóľŠóľŠ ⤠âđâ [
(44)
đ đ + ] ⤠đ. 2 âđâ 2 âđâ
Therefore, đĽđ â đĽ as đ â â. Theorem 32. Let {đĽđ } be a convergent sequence in a đśâ algebra-valued đ-metric space (đ, A, đ) and limđ â â đĽđ = đĽ. Then, every subsequence {đĽđđ } of {đĽđ } is convergent and has the same limit đĽ.
Theorem 35. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space. Suppose that {đĽđ } and {đŚđ } are convergent with respect to A and converge to đĽ and đŚ, respectively. Then, đ(đĽđ , đŚđ ) converges to đ2 đ(đĽ, đŚ).
8
Journal of Function Spaces
Proof. Let đ > 0. Since đĽđ â đĽ and đŚđ â đŚ, there exist đ0 , đ1 â N such that đ óľŠ óľŠóľŠ , âđ ⼠đ0 , óľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ ⤠2 âđâ đ óľŠóľŠ óľŠ , âđ ⼠đ1 . óľŠóľŠđ (đŚđ , đŚ)óľŠóľŠóľŠ ⤠2 âđâ2
(45)
Since đ(đĽđ , đŚđ ) ⪯ đđ(đĽđ , đĽ) + đ2 đ(đĽ, đŚ) + đ2 đ(đŚ, đŚđ ), by Theorem 16, we have óľŠóľŠ óľŠ óľŠóľŠđ (đĽđ , đŚđ ) â đ2 đ (đĽ, đŚ)óľŠóľŠóľŠ óľŠ óľŠ
(46)
Theorem 36. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space. Suppose that {đĽđ } and {đŚđ } are convergent with respect to A and converge to đĽ and y, respectively. Then,
Taking the limit as đ â â in this inequality, we obtain that limđ â â âđ(đĽđ , đŚđ )â = 0. Since đ (đĽ, đ§) ⪯ đ [đ (đĽ, đĽđ ) + đ (đĽđ , đ§)] ,
óľŠ óľŠ â¤ lim sup óľŠóľŠóľŠđ (đĽđ , đŚđ )óľŠóľŠóľŠ đââ
(47)
óľŠ óľŠ â¤ âđâ2 óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ . In particular, if đĽ = đŚ, then we have limđ â â âđ(đĽđ , đŚđ )â = 0. Moreover, for any đ§ â đ, we have 1 óľŠ óľŠ inf óľŠóľŠđ (đĽđ , đ§)óľŠóľŠóľŠ âđ (đĽ, đ§)â ⤠lim đââ óľŠ âđâ óľŠ óľŠ â¤ lim sup óľŠóľŠóľŠđ (đĽđ , đ§)óľŠóľŠóľŠ ⤠âđâ âđ (đĽ, đ§)â . đââ
(48)
Proof. By defintion of đśâ -algebra-valued đ-metric space, it easy to see that
(49) 2
đ (đĽđ , đŚđ ) ⪯ đđ (đĽđ , đĽ) + đ đ (đĽ, đŚ) + đ đ (đŚ, đŚđ ) . Using Theorem 16, we have óľŠ óľŠ óľŠóľŠ óľŠ óľŠ 2óľŠ óľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠âđâ óľŠóľŠóľŠđ (đĽ, đĽđ )óľŠóľŠóľŠ + âđâ óľŠóľŠóľŠđ (đĽđ , đŚđ )óľŠóľŠóľŠ
óľŠóľŠ óľŠ óľŠ óľŠ óľŠ 2óľŠ óľŠóľŠđ (đĽđ , đŚđ )óľŠóľŠóľŠ ⤠âđâ óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + âđâ óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ
óľŠ óľŠ óľŠ óľŠ âđ (đĽ, đ§)â ⤠âđâ óľŠóľŠóľŠđ (đĽ, đĽđ )óľŠóľŠóľŠ + âđâ óľŠóľŠóľŠđ (đĽđ , đ§)óľŠóľŠóľŠ , óľŠ óľŠóľŠ óľŠ óľŠ óľŠóľŠđ (đĽđ , đ§)óľŠóľŠóľŠ ⤠âđâ óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + âđâ âđ (đĽ, đ§)â .
(53)
Definition 37. Let (đ, A, đ) be a đśâ -algebra-valued đ-metric space. A subset đš of (đ, A, đ) is called a closed set if a sequence {đĽđ } in đ and đĽđ â đĽ with respect to A imply đĽ â đš.
4. Fixed Point Theorems for Cyclic Contractions Theorem 38. Let đ´ and đľ be nonempty closed subset of a complete đśâ -algebra-valued đ-metric space (đ, A, đ). Assume that đ : đ´ ⪠đľ â đ´ ⪠đľ is cyclic mapping that satisfies đ (đđĽ, đđŚ) ⪯ đâ đ (đĽ, đŚ) đ,
âđĽ â đ´, âđŚ â đľ,
(54)
where đ â A with âđâ < 1/âđâ. Then, đ has a unique fixed point in đ´ ⊠đľ.
đ (đĽ, đŚ) ⪯ đđ (đĽ, đĽđ ) + đ2 đ (đĽđ , đŚđ ) + đ2 đ (đŚđ , đŚ) ,
óľŠ óľŠ + âđâ2 óľŠóľŠóľŠđ (đŚđ , đŚ)óľŠóľŠóľŠ ,
đ (đĽđ , đ§) ⪯ đ [đ (đĽđ , đĽ) + đ (đĽ, đ§)] ,
Again taking the lower limit as đ â â in the first inequality and the upper limit as đ â â in the second inequality, we obtain the second desired result.
1 óľŠóľŠ óľŠ óľŠ óľŠ inf óľŠóľŠđ (đĽđ , đŚđ )óľŠóľŠóľŠ óľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠lim đââ óľŠ âđâ2
óľŠ óľŠ + âđâ óľŠóľŠóľŠđ (đŚ, đŚđ )óľŠóľŠóľŠ .
(51)
by Theorem 16, we have
Therefore, đ(đĽđ , đŚđ ) â đ2 đ(đĽ, đŚ).
2
óľŠ óľŠ óľŠ óľŠ óľŠóľŠ 2óľŠ óľŠóľŠđ (đĽđ , đŚđ )óľŠóľŠóľŠ ⤠âđâ óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + âđâ óľŠóľŠóľŠđ (đŚ, đŚđ )óľŠóľŠóľŠ .
(52)
óľŠ óľŠ óľŠ óľŠ â¤ âđâ óľŠóľŠóľŠđ (đĽđ , đĽ)óľŠóľŠóľŠ + âđâ2 óľŠóľŠóľŠđ (đŚ, đŚđ )óľŠóľŠóľŠ ⤠đ.
2
Taking the lower limit as đ â â in the first inequality and the upper limit as đ â â in the second inequality, this completes the first result. In particular, if đĽ = đŚ, we have
Proof. Let đĽ0 be any point in đ´. Since đ is cyclic mapping, we have đđĽ0 â đľ and đ2 đĽ0 â đ´. Using the contractive condition of mapping đ, we get đ (đđĽ0 , đ2 đĽ0 ) = đ (đđĽ0 , đ (đđĽ0 )) ⪯ đâ đ (đĽ0 , đđĽ0 ) đ. (55) For all đ â N, we have
(50)
đ
đ (đđ đĽ0 , đđ+1 đĽ0 ) ⪯ (đâ ) đ (đĽ0 , đđĽ0 ) đđ (56) â đ
đ
= (đ ) đ˝đ ,
Journal of Function Spaces
9
where đ˝ = đ(đĽ0 , đđĽ0 ). Consider, for any đ, đ â N such that đ ⤠đ; then, đ (đđ đĽ0 , đđ đĽ0 )
Next, we will complete the proof by showing that đĽ is a unique fixed point of đ. Since đ ⪯ đ (đđĽ, đĽ) ⪯ đ [đ (đđĽ, đ2đ đĽ0 ) + đ (đ2đ đĽ0 , đĽ)]
⪯ đ [đ (đđ đĽ0 , đđ+1 đĽ0 ) + đ (đđ+1 đĽ0 , đđ đĽ0 )]
⪯ đ [đâ đ (đĽ, đ2đâ1 đĽ0 ) đ + đ (đ2đ đĽ0 , đĽ)]
⪯ đđ (đđ đĽ0 , đđ+1 đĽ0 )
by Theorem 16, we obtain that
+ đ2 [đ (đđ+1 đĽ0 , đđ+2 đĽ0 ) + đ (đđ+2 đĽ0 , đđ đĽ0 )] ⪯ â
â
â
⪯ đđ (đđ đĽ0 , đđ+1 đĽ0 ) + đ2 đ (đđ+1 đĽ0 , đđ+2 đĽ0 )
0 ⤠âđ (đđĽ, đĽ)â (57)
đ+1
⪯ đ (đâ ) đ˝đđ + đ2 (đâ ) đâ1
+ đđâđ (đâ )
(đ ół¨â â) .
đ ⪯ đ (đĽ, đŚ) = đ (đđĽ, đđŚ) ⪯ đâ đ (đĽ, đŚ) đ, đ
đ˝đđâ1 = â đđâđ+1 (đâ ) đ˝đđ .
we have óľŠ óľŠ óľŠ â óľŠ óľŠ âóľŠ óľŠ óľŠóľŠ óľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠óľŠóľŠóľŠđ đ (đĽ, đŚ) đóľŠóľŠóľŠ ⤠óľŠóľŠóľŠđ óľŠóľŠóľŠ óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ âđâ óľŠ óľŠ óľŠ óľŠ = âđâ2 óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ < óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ .
đ=đ
From Theorem 16, we have óľŠóľŠ đâ1 óľŠóľŠ óľŠóľŠ đ óľŠóľŠ óľŠ óľŠóľŠ đ đ đâđ+1 (đâ ) đ˝đđ óľŠóľŠóľŠ óľŠóľŠđ (đ đĽ0 , đ đĽ0 )óľŠóľŠóľŠ ⤠óľŠóľŠóľŠ â đ óľŠóľŠ óľŠóľŠóľŠđ=đ óľŠ
(61)
(62)
This is a contradiction. Therefore, đĽ = đŚ which implies that the fixed point is unique.
đâ1 óľŠ đ óľŠ óľŠóľŠ ⤠â óľŠóľŠóľŠđđâđ+1 (đâ ) đ˝đđ óľŠóľŠóľŠ óľŠ óľŠ đ=đ
Example 39. Let đ be a set of real numbers and A = đ2Ă2 (R) with âđ´â = maxđ,đ |đđđ |, where đđđ are entries of the matrix đ´ â đ2Ă2 (R). Then, (đ, A, đ) is a đśâ -algebra-valued đmetric space with đ = [ 20 02 ], where the involution is given by đ´â = (đ´)đ ,
đâ1 óľŠ óľŠ óľŠóľŠ đóľŠ óľŠóľŠ óľŠóľŠ óľŠ â¤ â óľŠóľŠóľŠóľŠđđâđ+1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠ(đâ ) óľŠóľŠóľŠ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ óľŠóľŠóľŠóľŠđđ óľŠóľŠóľŠóľŠ óľŠ óľŠ đ=đ
đâ1 óľŠ óľŠóľŠ óľŠ2 óľŠ óľŠ â¤ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â óľŠóľŠóľŠóľŠđđâđ+1 óľŠóľŠóľŠóľŠ óľŠóľŠóľŠóľŠ(đ)đ óľŠóľŠóľŠóľŠ đ=đ
(60)
We have đđĽ = đĽ; that is, đĽ is a fixed point of đ. Suppose that đŚ is fixed point of đ and đŚ ≠ đĽ. Since
đ˝đđ+1 + â
â
â
đâ1
óľŠ óľŠ óľŠ óľŠ â¤ âđâ âđâ2 óľŠóľŠóľŠóľŠđ (đĽ, đ2đâ1 đĽ0 )óľŠóľŠóľŠóľŠ + âđâ óľŠóľŠóľŠóľŠđ (đ2đ đĽ0 , đĽ)óľŠóľŠóľŠóľŠ ół¨â 0
+ â
â
â
+ đđâđ đ (đđâ1 đĽ0 , đđ đĽ0 ) đ
(59)
(58)
đâ1
óľŠ óľŠ â¤ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â âđâđâđ+1 âđâ2đ
óľ¨2 óľ¨óľ¨ 0 óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ [ ] đ (đĽ, đŚ) = óľ¨óľ¨2 óľ¨óľ¨ đĽ â đŚ 0 óľ¨ óľ¨ óľ¨] óľ¨ [ and partial ordering on A is given as
đ=đ đâ1
óľŠ óľŠ â¤ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â âđâ2đ âđâ2đ đ=đ â
óľŠ óľŠ â¤ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â (âđâ âđâ)2đ đ=đ
2đ óľŠ óľŠ (âđâ âđâ) = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ . 1 â (âđâ âđâ)
Since 0 ⤠âđâ < 1/âđâ, we have âđ˝â(âđââđâ)2đ /(1 â (âđââđâ)) â 0 as đ â â. Therefore, {đđ đĽ0 } is Cauchy sequence with respect to A. By the completeness of (đ, A, đ), there exists an element đĽ â đ such that đĽ = limđ â â đđ đĽ0 . Since {đ2đ đĽ0 } is a sequence in đ´ and {đ2đâ1 đĽ0 } is a sequence in đľ, we obtain that both sequences converge to the same limit đĽ. Since đ´ and đľ are closed set, this implies that đĽ â đ´ ⊠đľ.
(63)
đ11 đ12
[
đ21
đ11 đ12 ]⪯[ ] ââ đ22 đ21 đ22 đđđ ⤠đđđ
(64)
âđ, đ = 1, 2, 3, 4.
Define a mapping đ : đ â đ by 1 óľ¨óľ¨ 1 1 đĽ + 1/3 óľ¨óľ¨óľ¨ óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨ â ; đĽ â (â, â ] { â { óľ¨ óľ¨ { 3 đĽ 3 3 óľ¨ óľ¨ { { { { { { 1 1 đđĽ = {â ; đĽ â (â , 0] { 3 3 { { { { { { { 1 đĽ â (0, +â) . â ; { 2
(65)
It is clear that đ is not continuous at all elements of đ. Therefore, Theorem 22 cannot imply the existence of fixed point of mapping đ.
10
Journal of Function Spaces
Suppose that đ´ = [â1/2, â1/3] and đľ = [â1/3, 0]. Firstly, we will show that đ : đ´ ⪠đľ â đ´ ⪠đľ is cyclic mapping. Let đĽ â đľ; that is, â1/3 ⤠đĽ ⤠0. Then, đđĽ = â1/3 â đ´. Again, let đŚ â đ´; that is, â1/2 ⤠đĽ ⤠â1/3. Indeed, we consider 1 1 â ⤠đĽ ⤠â ół¨â 2 3
âđĽ, đŚ â đ,
(70)
Proof. Putting đ´ = đľ = đ, by Theorem 38, this implies that đ has a unique fixed point in đ´ ⊠đľ = đ.
1 đĽ + 1/3 â ⤠⤠0 ół¨â 18 3 đĽ + 1/3 1 0 ⤠â( )⤠ół¨â 3 18
(66)
1 óľ¨óľ¨ 1 óľ¨óľ¨óľ¨ 1 óľ¨óľ¨ 1 đĽ + 1/3 óľ¨óľ¨óľ¨ óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨ ⤠) óľ¨óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨óľ¨ ⤠ół¨â 3 đĽ óľ¨ 18 óľ¨óľ¨ đĽ óľ¨óľ¨ 18 óľ¨
(2) đ(đđĽ, đđŚ) ⪰ đâ đ(đĽ, đŚ)đ for all đĽ, đŚ â đ,
this implies that đđĽ â [â1/3, 0] = đľ. For any đĽ â đ´ and đŚ â đľ, since â1/2 ⤠đĽ ⤠â1/3 and â1/3 ⤠đŚ, we have 1/9 ⤠âđĽ/3 ⤠1/6 and â1/9 ⤠đŚ/3. Hence, we obtain that đĽ 1 đĽ đŚ â â¤â + . 3 9 3 3
Theorem 41. Suppose that (đ, A, đ) is a complete đśâ -algebravalued đ-metric space. Assume that a mapping đ : đ â đ satisfies (1) đ(đ) = đ;
1 óľ¨óľ¨ 1 1 đĽ + 1/3 óľ¨óľ¨óľ¨ 1 1 â ⤠â( ) óľ¨óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨óľ¨ â ⤠â ⤠0; 3 3 đĽ óľ¨ 3 18 3 óľ¨
0â¤â
đ (đđĽ, đđŚ) ⪯ đâ đ (đĽ, đŚ) đ,
where đ â A with âđâ < 1/âđâ. Then, đ has a unique fixed point in đ.
1 1 â ⤠đĽ + ⤠0 ół¨â 6 3
0 ⤠â(
Corollary 40. Suppose that (đ, A, đ) is a đśâ -algebra-valued đ-metric space. Assume that đ : đ â đ is called a đśâ algebra-valued đ-contractive mapping on đ; that is, đ satisfies
(67)
where đ â A is an invertible element and âđâ1 â < 1/âđâ such that đ is a đśâ -algebra-valued đ-expansive mapping on đ. Then, đ has a unique fixed point in đ. Proof. We will begin to prove this theorem by showing that đ is injective. Let đĽ, đŚ be an element in đ such that đĽ ≠ đŚ; that is, đ(đĽ, đŚ) ≠ 0. Assume that đđĽ = đđŚ. We have đ = đ (đđĽ, đđŚ) ⪰ đâ đ (đĽ, đŚ) đ
Next, we consider óľ¨ 1 óľ¨óľ¨ 1 1 óľ¨óľ¨óľ¨2 óľ¨2 óľ¨óľ¨ đĽ + 1/3 óľ¨óľ¨óľ¨óľ¨ óľ¨óľ¨ ) óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨óľ¨ â â (â )óľ¨óľ¨óľ¨ óľ¨óľ¨đđĽ â đđŚóľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨â ( óľ¨óľ¨ 3 đĽ óľ¨ 3 3 óľ¨óľ¨ óľ¨ óľ¨óľ¨ đĽ + 1/3 óľ¨óľ¨ 1 óľ¨óľ¨óľ¨óľ¨óľ¨2 óľ¨ = óľ¨óľ¨óľ¨â ( ) óľ¨óľ¨óľ¨óľ¨sin ( )óľ¨óľ¨óľ¨óľ¨óľ¨óľ¨óľ¨ óľ¨óľ¨ 3 đĽ óľ¨óľ¨óľ¨ óľ¨ (68) óľ¨óľ¨ đĽ + 1/3 óľ¨óľ¨2 óľ¨óľ¨ đĽ 1 óľ¨óľ¨2 óľ¨ óľ¨ â¤ óľ¨óľ¨óľ¨â ( )óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨óľ¨â â óľ¨óľ¨óľ¨óľ¨ 3 óľ¨ 3 9óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ đĽ đŚ óľ¨óľ¨2 1 óľ¨ óľ¨2 ⤠óľ¨óľ¨óľ¨óľ¨â + óľ¨óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ . 9 óľ¨ 3 3óľ¨ Then, we have óľ¨2 óľ¨óľ¨ 0 óľ¨óľ¨đđĽ â đđŚóľ¨óľ¨óľ¨ [ ] đ (đđĽ, đđŚ) = óľ¨óľ¨2 óľ¨óľ¨ đđĽ â đđŚ 0 óľ¨óľ¨ ] óľ¨óľ¨ [ 1 óľ¨óľ¨ óľ¨2 đĽ â đŚóľ¨óľ¨óľ¨ 0 [ 9 óľ¨óľ¨ ] ⪯[ ] 1 óľ¨óľ¨ óľ¨óľ¨2 0 óľ¨óľ¨đĽ â đŚóľ¨óľ¨ [ ] 9
1/2
= đâ đ (đĽ, đŚ)
1/2
= (đ (đĽ, đŚ)
1/2
đ (đĽ, đŚ)
đ
â
đ) (đ (đĽ, đŚ)
(71)
1/2
đ) ⪰ đ.
This implies that đâ đ(đĽ, đŚ)đ = đ. Since đ is invertible, we have đ(đĽ, đŚ) = đ which leads to contradiction. Thus, đ is injective. By the first condition of mapping đ, we obtain that đ is bijective which implies that đ is invertibe and đâ1 is bijective. Next, we will show that đ has a unique fixed point in đ. In fact, since đ is đśâ -algebra-valued đ-expansive and invertible mapping, we substitute đĽ, đŚ with đâ1 đĽ, đâ1 đŚ in the second condition of đ, respectively, which implies that đ (đ (đâ1 đĽ) , đ (đâ1 đŚ)) ⪰ đâ đ (đâ1 đĽ, đâ1 đŚ) đ, âđĽ, đŚ â đ.
(72)
That is (69)
1 1 óľ¨óľ¨2 óľ¨óľ¨ 0 0 0 [ 3 ] [óľ¨óľ¨đĽ â đŚóľ¨óľ¨ [ ] 3 ] = [ 1] óľ¨óľ¨2 [ 1 ] óľ¨óľ¨ 0 óľ¨óľ¨đĽ â đŚóľ¨óľ¨ ] 0 0 [ 3] [ [ 3] = đâ đ (đĽ, đŚ) đ, 0 where đ = [ 1/3 0 1/3 ]. Then, âđâ = 1/3 < 1/2 = 1/âđâ. Thus, đ satisfies contraction of Theorem 38 implying that đ has a unique fixed point in đ´ ⊠đľ; that is, {â1/3} = đš(đ).
đ (đĽ, đŚ) ⪰ đâ đ (đâ1 đĽ, đâ1 đŚ) đ,
âđĽ, đŚ â đ.
(73)
Since đ(đĽ, đŚ) and đâ đ(đâ1 đĽ, đâ1 đŚ)đ are positive elements in A, đâ đ(đâ1 đĽ, đâ1 đŚ) ⪯ đđ(đĽ, đŚ) and đâ1 â A. By condition (2) of Theorem 12 and Theorem 17, we have â
đ (đâ1 đĽ, đâ1 đŚ) = (đđâ1 ) đ (đâ1 đĽ, đâ1 đŚ) đ (đâ1 ) â
= (đâ1 ) đâ đ (đâ1 đĽ, đâ1 đŚ) đ (đâ1 ) â
⪯ (đâ1 ) đ (đĽ, đŚ) đâ1 .
(74)
Journal of Function Spaces
11
Therefore, đâ1 is đ-contractive mapping. Using Corollary 40, there exists a unique đĽ such that đâ1 đĽ = đĽ, which means it has a unique fixed point đĽ â đ such that đđĽ = đ(đâ1 đĽ) = (đđâ1 )đĽ = đźđĽ = đĽ. Theorem 42 (cyclic Kannan-type). Let đ´ and đľ be nonempty closed subset of a complete đśâ -algebra-valued đ-metric space (đ, A, đ). Assume that đ : đ´ ⪠đľ â đ´ ⪠đľ is cyclic mapping that satisfies đ (đđĽ, đđŚ) ⪯ đ [đ (đĽ, đđĽ) + đ (đŚ, đđŚ)] , âđĽ â đ´, âđŚ â đľ,
Continuing this process, we have đ
đ (đđ đĽ0 , đđ+1 đĽ0 ) ⪯ [(đź â đ)â1 đ] đ (đĽ0 , đđĽ0 ) = đźđ đ˝, (83) where đź = (đź â đ)â1 đ and đ˝ = đ(đĽ0 , đđĽ0 ). Next, we will show that {đđ đĽ0 } is Cauchy sequence with respect to A. Consider for any đ, đ â N and đ ⤠đ that we have đ (đđ đĽ0 , đđ đĽ0 ) ⪯ đđ (đđ đĽ0 , đđ+1 đĽ0 ) + đ2 đ (đđ+1 đĽ0 , đđ+2 đĽ0 ) + â
â
â
(75)
+ đđâđ đ (đđâ1 đĽ0 , đđ đĽ0 )
where đ â Aó¸ + with âđâ < 1/2âđâ. Then, đ has a unique fixed point in đ´ ⊠đľ. Proof. Without loss of generality, we can assume that đ ≠ đ. Since đ â Aó¸ + and đ ⪯ đ(đĽ, đđĽ) + đ(đŚ, đđŚ), by the second condition of Lemma 18, we have đ ⪯ đ{đ(đĽ, đđĽ) + đ(đŚ, đđŚ)}. Let đĽ0 be any element in đ´. Since đ is cyclic mapping, we have đđĽ0 â đľ and đ2 đĽ0 â đ´. Consider
đ
⪯ đđź đ˝ + đ đź
(84)
đ˝ + â
â
â
đâ1
+ đđâđ đźđâ1 đ˝ = â đđâđ+1 đźđ đ˝. đ=đ
From Theorem 16, we get that óľŠóľŠ đâ1 óľŠóľŠ óľŠ óľŠóľŠ óľŠóľŠ óľŠóľŠóľŠ đ đ đâđ+1 đ óľŠ đź đ˝óľŠóľŠóľŠ óľŠóľŠđ (đ đĽ0 , đ đĽ0 )óľŠóľŠ ⤠óľŠóľŠ â đ óľŠóľŠđ=đ óľŠóľŠ óľŠ óľŠ
đ (đđĽ0 , đ2 đĽ0 ) = đ (đđĽ0 , đ (đđĽ0 )) ⪯ đ [đ (đĽ0 , đđĽ0 ) + đ (đđĽ0 , đ2 đĽ0 )]
2 đ+1
đâ1 óľŠ óľŠ â¤ â óľŠóľŠóľŠóľŠđđâđ+1 đźđ đ˝óľŠóľŠóľŠóľŠ
(76)
đ=đ
= đđ (đĽ0 , đđĽ0 ) + đđ (đđĽ0 , đ2 đĽ0 ) ;
đâ1
óľŠ óľŠ â¤ â âđâđâđ+1 âđźâđ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ
that is, (đź â đ) đ (đđĽ0 , đ2 đĽ0 ) ⪯ đđ (đĽ0 , đđĽ0 ) .
đ=đ
(77)
đâ1
óľŠ óľŠ â¤ â âđâđ âđźâđ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ
Aó¸ + and âđâ
Since đ â < 1/2âđâ < 1/2, by the first condition of Lemma 18, we have that đźâđ is invertible and â(đźâđ)â1 đâ < 1. From the third condition of Lemma 18, we have đ (đđĽ0 , đ2 đĽ0 ) ⪯ (đź â đ)â1 đđ (đĽ0 , đđĽ0 ) .
đ=đ
đâ1
óľŠ óľŠ = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â (âđâ âđźâ)đ
(78)
đ=đ â
óľŠ óľŠ â¤ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â (âđâ âđźâ)đ
Similarly, we get that đ (đ2 đĽ0 , đ3 đĽ0 ) ⪯ (đź â đ)â1 đđ (đđĽ0 , đ2 đĽ0 ) . â1
(85)
đ=đ
(79)
đ óľŠ óľŠ (âđâ âđźâ) . = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ 1 â (âđâ âđźâ)
â1
Aó¸ +
Since (đź â đ) đ â and đ ⪯ (đź â đ) đđ(đĽ0 , đđĽ0 ) â đ(đđĽ0 , đ2 đĽ0 ), the second condition of Lemma 18, we have đ ⪯ (đź â đ)â1 â
đ {(đź â đ)â1 đđ (đĽ0 , đđĽ0 ) â đ (đđĽ0 , đ2 đĽ0 )} ;
(80)
that is, (đź â đ)â1 đđ (đđĽ0 , đ2 đĽ0 ) 2
⪯ [(đź â đ)â1 đ] đ (đĽ0 , đđĽ0 ) .
(81)
Hence, đ (đ2 đĽ0 , đ3 đĽ0 ) ⪯ (đź â đ)â1 đđ (đđĽ0 , đ2 đĽ0 ) â1
2
⪯ [(đź â đ) đ] đ (đĽ0 , đđĽ0 ) .
(82)
Consider óľŠ óľŠ óľŠ óľŠ âđâ âđźâ = âđâ óľŠóľŠóľŠóľŠđ (đź â đ)â1 óľŠóľŠóľŠóľŠ ⤠âđâ âđâ óľŠóľŠóľŠóľŠ(đź â đ)â1 óľŠóľŠóľŠóľŠ óľŠóľŠ â óľŠóľŠ â óľŠóľŠ óľŠóľŠ = âđâ âđâ óľŠóľŠóľŠâ (đ)đ óľŠóľŠóľŠ ⤠âđâ âđâ â â(đ)âđ óľŠóľŠđ=0 óľŠóľŠ đ=0 óľŠ óľŠ
< âđâ (
(86)
1 1 1 1 ) < = 1. 2 âđâ 1 â âđâ 2 1 â 1/2
Therefore, âđ˝â(âđââđźâ)2đ /(1 â (âđââđźâ)) â 0 as đ â â. Therefore, {đđ đĽ0 } is Cauchy sequence with respect to A. By the completeness of (đ, A, đ), there exists an element đĽ â đ such that đĽ = limđ â â đđ đĽ0 . Since {đ2đ đĽ0 } is a sequence in đ´ and {đ2đâ1 đĽ0 } is a sequence in đľ, we obtain that both sequences converge to
12
Journal of Function Spaces
the same limit đĽ. Since đ´ and đľ are closed set, this implies đĽ â đ´ ⊠đľ. Next, we will show that đĽ is a unique fixed point of đ. Consider đ (đđĽ, đĽ) ⪯ đ [đ (đđĽ, đ2đ đĽ0 ) + đ (đ2đ đĽ0 , đĽ)] = đđ (đđĽ, đ (đ2đâ1 đĽ0 )) + đđ (đ2đ đĽ0 , đĽ) ⪯ đđ [đ (đĽ, đđĽ) + đ (đ2đâ1 đĽ0 , đ2đ đĽ0 )] (87) + đđ (đ2đ đĽ0 , đĽ) ⪯ đđđ (đĽ, đđĽ) + đ2 đđ (đ2đâ1 đĽ0 , đĽ)
which leads to contradiction. Therefore, đĽ = đŚ; we complete the proof. Example 43. Let đ = [â1, 1] and A = đ2Ă2 (R) with âđ´â = maxđ,đ |đđđ | where đđđ are entries of the matrix đ´ â đ2Ă2 (R). Then, (đ, A, đ) is a đśâ -algebra-valued đ-metric space with đ = [ 20 02 ], where the involution is given by đ´â = (đ´)đ : óľ¨2 óľ¨óľ¨ 0 óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ ] đ (đĽ, đŚ) = [ óľ¨óľ¨2 , óľ¨óľ¨ đĽ â đŚ 0 óľ¨ óľ¨ óľ¨ óľ¨ ] [ and partial ordering on A is given as đ11 đ12
[
+ đ2 đđ (đĽ, đ2đ đĽ0 ) + đđ (đ2đ đĽ0 , đĽ) ;
đ21
âđ (đđĽ, đĽ)â ⤠âđâ âđâ âđ (đĽ, đđĽ)â óľŠ óľŠ + âđâ2 âđâ óľŠóľŠóľŠóľŠđ (đ2đâ1 đĽ0 , đĽ)óľŠóľŠóľŠóľŠ óľŠ óľŠ + âđâ âđâ óľŠóľŠóľŠóľŠđ (đĽ, đ2đ đĽ0 )óľŠóľŠóľŠóľŠ
(88)
óľŠ óľŠ + âđâ óľŠóľŠóľŠóľŠđ (đ2đ đĽ0 , đĽ)óľŠóľŠóľŠóľŠ .
âđ, đ = 1, 2, 3, 4.
Suppose that đ´ = [â1, 0] and đľ = [0, 1]. Define a mapping đ : đ´ ⪠đľ â đ´ ⪠đľ by đđĽ = âđĽ/4. Firstly, we will show that đ is cyclic mapping. Let đĽ be an element in đ´; that is, â1 ⤠đĽ ⤠0. Then, 0 ⤠âđĽ/4 ⤠1 implies đđĽ â đľ. Similarly, let đŚ â đľ, so 0 ⤠đŚ ⤠1. Then, â1/4 ⤠âđŚ/4 ⤠0. Hence, đđŚ â đ´. For any đĽ â đ´ and đŚ â đľ, we consider
(89)
â¤
1 1 óľ¨ óľ¨2 óľ¨ óľ¨2 (|đĽ| + óľ¨óľ¨óľ¨đŚóľ¨óľ¨óľ¨) ⤠(2 |đĽ|2 + 2 óľ¨óľ¨óľ¨đŚóľ¨óľ¨óľ¨ ) 16 16
1 1 âđ (đĽ, đđĽ)â < âđ (đĽ, đđĽ)â . (90) 2 âđâ 2
=
2 25 2 25 óľ¨óľ¨ óľ¨óľ¨2 ( |đĽ| + óľ¨đŚóľ¨ ) 25 16 16 óľ¨ óľ¨
=
đŚ óľ¨óľ¨2 đĽ óľ¨óľ¨2 óľ¨óľ¨ 2 óľ¨óľ¨óľ¨ (óľ¨óľ¨óľ¨đĽ + óľ¨óľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨óľ¨đŚ + óľ¨óľ¨óľ¨óľ¨ ) 25 óľ¨ 4óľ¨ óľ¨ 4óľ¨
=
2 óľ¨2 óľ¨ (|đĽ â đđĽ|2 + óľ¨óľ¨óľ¨đŚ â đđŚóľ¨óľ¨óľ¨ ) . 25
âđ (đđĽ, đĽ)â ⤠âđâ âđâ âđ (đĽ, đđĽ)â , and so
This implies that âđ(đđĽ, đĽ)â = 0; that is, đ(đđĽ, đĽ) = đ and so đđĽ = đĽ. That is, đĽ is fixed point of đ. Now if đŚ is another fixed point of đ and đŚ ≠ đĽ, then đ ⪯ đ (đĽ, đŚ) = đ (đđĽ, đđŚ) ⪯ đ (đ (đĽ, đđĽ) +, đ (đŚ, đđŚ)) (91) = đ (đ (đĽ, đĽ) + đ (đŚ, đŚ)) = đ,
(93)
1 óľ¨óľ¨ óľ¨2 óľ¨2 óľ¨óľ¨ âđĽ âđŚ óľ¨óľ¨óľ¨óľ¨2 óľ¨óľ¨ â óľ¨đĽ â đŚóľ¨óľ¨óľ¨ óľ¨óľ¨đđĽ â đđŚóľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨óľ¨ óľ¨ = 4 óľ¨óľ¨ 16 óľ¨ óľ¨ 4
Letting đ â â, we get that
âđ (đđĽ, đĽ)â ⤠âđâ
đ11 đ12 ]⪯[ ] ââ đ22 đ21 đ22 đđđ ⤠đđđ
by Theorem 16 and submultiplicative, we obtian that
2
(92)
(94)
Then, we have
2 óľ¨2 óľ¨ óľ¨2 óľ¨óľ¨ 0 (|đĽ â đđĽ|2 + óľ¨óľ¨óľ¨đŚ â đđŚóľ¨óľ¨óľ¨ ) 0 óľ¨óľ¨đđĽ â đđŚóľ¨óľ¨óľ¨ ] [ [ ] [ 25 ] đ (đđĽ, đđŚ) = [ ]⪯[ ] 2 óľ¨óľ¨2 óľ¨óľ¨ 2 óľ¨ óľ¨ 2 óľ¨ óľ¨ đđĽ â đđŚ 0 óľ¨ óľ¨ đŚ â đđŚ + ) 0 (|đĽ â đđĽ| óľ¨ óľ¨ óľ¨ óľ¨ [ ] [ óľ¨ ] óľ¨ 25 2 óľ¨óľ¨2 óľ¨óľ¨ 2 0 0 ] [(|đĽ â đđĽ| + óľ¨óľ¨đŚ â đđŚóľ¨óľ¨ ) [ 25 ] ][ =[ ] = đ [đ (đĽ, đđĽ) + đ (đŚ, đđŚ)] , [ óľ¨óľ¨2 óľ¨óľ¨ 2] 2 đŚ â đđŚ 0 (|đĽ â đđĽ| + ) óľ¨óľ¨ ] óľ¨óľ¨ 0 [ 25 ] [
(95)
Journal of Function Spaces
13
0 where đ = [ 2/25 0 2/25 ]. Then, âđâ = 2/25 < 1/4 = 1/2âđâ. Thus, đ satisfies contraction of Theorem 42 implying that đ has a unique fixed point in đ´ ⊠đľ; that is, {0} = đš(đ).
Theorem 44 (cyclic Chatterjea-type). Let đ´ and đľ be nonempty closed subset of a complete đśâ -algebra-valued đmetric space (đ, A, đ). Assume that đ : đ´ ⪠đľ â đ´ ⪠đľ is cyclic mapping that satisfies
Hence, đ (đ2 đĽ0 , đ3 đĽ0 ) ⪯ (đđ) (đź â đđ)â1 đ (đđĽ0 , đ2 đĽ0 ) (103)
â1 2
⪯ [(đđ) (đź â đđ) ] đ (đĽ0 , đđĽ0 ) . Continuing this process, we have đ
đ (đđĽ, đđŚ) ⪯ đ [đ (đŚ, đđĽ) + đ (đĽ, đđŚ)] , âđĽ â đ´, âđŚ â đľ,
(96)
Proof. Without loss of generality, we can assume that đ ≠ đ. Since đ â Aó¸ + and đ ⪯ đ(đŚ, đđĽ) + đ(đĽ, đđŚ), by the second condition of Lemma 18, we have đ ⪯ đ{đ(đŚ, đđĽ) + đ(đĽ, đđŚ)}. Let đĽ0 be any element in đ´, Since đ is cyclic mapping, we have đđĽ0 â đľ and đ2 đĽ0 â đ´. Consider đ (đđĽ0 , đ2 đĽ0 ) = đ (đđĽ0 , đ (đđĽ0 )) ⪯ đ [đ (đđĽ0 , đđĽ0 ) + đ (đĽ0 , đ đĽ0 )]
(104) = đđ đ˝,
where đ â Aó¸ + with âđâ < 1/2âđâ2 . Then, đ has a unique fixed point in đ´ ⊠đľ.
2
đ (đđ đĽ0 , đđ+1 đĽ0 ) ⪯ [(đđ) (đź â đđ)â1 ] đ (đĽ0 , đđĽ0 )
where đ = (đđ)(đź â đđ)â1 and đ˝ = đ(đĽ0 , đđĽ0 ). Next, we will show that {đđ đĽ0 } is Cauchy sequence with respect to A. Consider for any đ, đ â N and đ ⤠đ; we have đ (đđ đĽ0 , đđ đĽ0 ) ⪯ đđ (đđ đĽ0 , đđ+1 đĽ0 ) + đ2 đ (đđ+1 đĽ0 , đđ+2 đĽ0 ) + â
â
â
+ đđâđ đ (đđâ1 đĽ0 , đđ đĽ0 )
(97)
(105)
⪯ đđđ đ˝ + đ2 đđ+1 đ˝ + â
â
â
⪯ đđ [đ (đĽ0 , đđĽ0 ) + đ (đđĽ0 , đ2 đĽ0 )] ;
đâ1
that is,
+ đđâđ đđâ1 đ˝ = â đđâđ+1 đđ đ˝. (đź â đđ) đ (đđĽ0 , đ2 đĽ0 ) ⪯ đđđ (đĽ0 , đđĽ0 ) .
Since đ â Aó¸ + and đ â Aó¸ + , from the second condition of Lemma 18, we get that đđ â Aó¸ + . Since âđđâ < âđâ(1/2âđâ2 ) ⤠1/2 and đđ â Aó¸ + , by the first condition of Lemma 18, we have (đź â đđ)â1 â Aó¸ + and (đđ)(đź â đđ)â1 â Aó¸ + with â(đđ)(đź â đđ)â1 â < 1. From the third condition of Lemma 18, we have đ (đđĽ0 , đ2 đĽ0 ) ⪯ (đđ) (đź â đđ)â1 đ (đĽ0 , đđĽ0 ) .
đ=đ
(98) From Theorem 16, we get that
óľŠóľŠ đâ1 óľŠóľŠ óľŠóľŠ óľŠ óľŠóľŠ óľŠóľŠóľŠ đ đ đâđ+1 đ óľŠ đ đ˝óľŠóľŠóľŠ óľŠóľŠđ (đ đĽ0 , đ đĽ0 )óľŠóľŠ ⤠óľŠóľŠ â đ óľŠóľŠđ=đ óľŠóľŠ óľŠ óľŠ đâ1 óľŠ óľŠ â¤ â óľŠóľŠóľŠóľŠđđâđ+1 đđ đ˝óľŠóľŠóľŠóľŠ đ=đ
(99) đâ1
óľŠ óľŠ â¤ â âđâđâđ+1 âđâđ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ
Similarly, we get that đ (đ2 đĽ0 , đ3 đĽ0 ) ⪯ (đđ) (đź â đđ)â1 đ (đđĽ0 , đ2 đĽ0 ) . â1
đ=đ
(100) đâ1
â1
Aó¸ +
Since (đđ)(đź â đđ) â and đ ⪯ (đđ)(đź â đđ) đ(đĽ0 , đđĽ0 ) â 2 đ(đđĽ0 , đ đĽ0 ), the second condition of Lemma 18, we have
óľŠ óľŠ â¤ â âđâđ âđâđ óľŠóľŠóľŠđ˝óľŠóľŠóľŠ đ=đ
đâ1
đ ⪯ (đđ) (đź â đđ)â1 â
{(đđ) (đź â đđ)â1 đ (đĽ0 , đđĽ0 ) â đ (đđĽ0 , đ2 đĽ0 )} ;
(101)
óľŠ óľŠ = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â (âđâ âđâ)đ đ=đ â
óľŠ óľŠ = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ â (âđâ âđâ)đ
that is,
đ=đ
(đđ) (đź â đđ)â1 đ (đđĽ0 , đ2 đĽ0 ) â1 2
⪯ [(đđ) (đź â đđ) ] đ (đĽ0 , đđĽ0 ) .
(102)
đ óľŠ óľŠ (âđâ âđâ) = óľŠóľŠóľŠđ˝óľŠóľŠóľŠ . 1 â (âđâ âđâ)
(106)
14
Journal of Function Spaces This implies that âđ(đđĽ, đĽ)â = 0; that is, đ(đđĽ, đĽ) = đ and so đđĽ = đĽ. That is, đĽ is fixed point of đ. Now if đŚ is another fixed point of đ and đŚ ≠ đĽ, then
Consider óľŠ óľŠ âđâ âđâ = âđâ óľŠóľŠóľŠóľŠđđ (đź â đđ)â1 óľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ âđâ âđđâ óľŠóľŠóľŠóľŠ(đź â đđ)â1 óľŠóľŠóľŠóľŠ óľŠóľŠ â óľŠóľŠ â óľŠ óľŠóľŠóľŠ đóľŠ = âđâ âđđâ óľŠóľŠâ (đđ) óľŠóľŠóľŠ ⤠âđâ âđđâ â â(đđ)âđ óľŠóľŠđ=0 óľŠóľŠ đ=0 óľŠ óľŠ
đ ⪯ đ (đĽ, đŚ) = đ (đđĽ, đđŚ)
óľŠ óľŠ óľŠ óľŠ óľŠ óľŠóľŠ óľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠óľŠóľŠóľŠ2đđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠2 âđâ óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ
Therefore, âđ˝â(âđââđâ)2đ /(1 â (âđââđâ)) â 0 as đ â â. Therefore, {đđ đĽ0 } is Cauchy sequence with respect to A. By the completeness of (đ, A, đ), there exists an element đĽ â đ such that đĽ = limđ â â đđ đĽ0 . Since {đ2đ đĽ0 } is a sequence in đ´ and {đ2đâ1 đĽ0 } is a sequence in đľ, we obtain that both sequences converge to the same limit đĽ. Since đ´ and đľ are closed set, this implies đĽ â đ´ ⊠đľ. Next, we will complete the proof by showing that đĽ is a unique fixed point of đ. Since đ (đđĽ, đĽ) ⪯ đ [đ (đđĽ, đ2đ đĽ0 ) + đ (đ2đ đĽ0 , đĽ)] = đđ (đđĽ, đ (đ
1 óľŠ óľŠ óľŠ óľŠ < 2 ( óľŠóľŠ 2 óľŠóľŠ ) óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ ⤠óľŠóľŠóľŠđ (đĽ, đŚ)óľŠóľŠóľŠ , 2 óľŠóľŠđ óľŠóľŠ
Example 45. Let đ = [0, 1] and A = đ2Ă2 (R) with âđ´â = maxđ,đ |đđđ |, where đđđ are entries of the matrix đ´ â đ2Ă2 (R). Then, (đ, A, đ) is a đśâ -algebra-valued đ-metric space with đ = [ 20 02 ], where the involution is given by đ´â = (đ´)đ : đ (đĽ, đŚ) = [ [
đĽ0 )) + đđ (đ đĽ0 , đĽ)
⪯ đđ [đ (đĽ, đ2đ đĽ0 ) + đ (đ2đâ1 đĽ0 , đđĽ)]
= đđđ (đĽ, đ2đ đĽ0 ) + đđđ (đ2đâ1 đĽ0 , đđĽ)
óľ¨2 óľ¨óľ¨ óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨
[
đ21
đ11 đ12 ]⪯[ ] ââ đ22 đ21 đ22 đđđ ⤠đđđ
⪯ đđđ (đĽ, đ2đ đĽ0 ) + đ2 đđ (đ2đâ1 đĽ0 , đĽ) + đ đđ (đĽ, đđĽ) + đđ (đ đĽ0 , đĽ) , by Theorem 16, we have óľŠ óľŠ âđ (đđĽ, đĽ)â ⤠âđâ âđâ óľŠóľŠóľŠóľŠđ (đĽ, đ2đ đĽ0 )óľŠóľŠóľŠóľŠ
+ âđâ âđâ âđ (đĽ, đđĽ)â
(114)
(115)
âđ, đ = 1, 2, 3, 4.
Suppose that đ´ = [0, 1] and đľ = [0, 1/2]. Define a mapping đ : đ´ ⪠đľ â đ´ ⪠đľ by đđĽ = đĽ/5. Firstly, we will show that đ is cyclic mapping. Let đĽ â đ´; that is, 0 ⤠đĽ ⤠1. Then, 0 ⤠đĽ/5 ⤠1/5 implies đđĽ â đľ. Similarly, let đŚ â đľ, so 0 ⤠đŚ ⤠1/2. Then, 0 ⤠đŚ/5 ⤠1/10. Hence, đđŚ â đ´. Now, we will show that đ satisfies the contraction of Theorem 44. Consider
2đ
2
] óľ¨2 , óľ¨óľ¨ óľ¨óľ¨đĽ â đŚóľ¨óľ¨óľ¨ ]
đ11 đ12
(108)
+ đđ (đ đĽ0 , đĽ)
óľŠ óľŠ + âđâ2 âđâ óľŠóľŠóľŠóľŠđ (đ2đâ1 đĽ0 , đĽ)óľŠóľŠóľŠóľŠ
0
0
and partial ordering on A is given as
2đ
2
(113)
which leads to a contradiction. Therefore, đĽ = đŚ which implies that the fixed point is unique.
2đ
+ đđ (đ2đ đĽ0 , đĽ)
(112)
From Theorem 16, we get that
1 1 1 âđâ < âđâ ( ) < = 1. 2 1 â âđđâ 2 1 â 1/2 2 âđâ
2đâ1
⪯ đ (đ (đŚ, đđĽ) + đ (đĽ, đđŚ)) = 2đđ (đĽ, đŚ) .
(107)
(109)
óľŠ óľŠ + âđâ óľŠóľŠóľŠóľŠđ (đ2đ đĽ0 , đĽ)óľŠóľŠóľŠóľŠ .
(đĽ â đŚ) 1 (6 (đĽ â đŚ)) 1 đŚ đĽ = = (đĽ â + â đŚ) 5 6 5 6 5 5
(116)
and so 2
Letting đ â â, we get that
(
âđ (đđĽ, đĽ)â ⤠âđâ2 âđâ âđ (đĽ, đđĽ)â ,
(110)
2 (đĽ â đŚ) đŚ đĽ 1 ) = ( (đĽ â + â đŚ)) 5 6 5 5
=
and so 1 âđ (đđĽ, đĽ)â ⤠âđâ âđ (đĽ, đđĽ)â 2 âđâ2 2
1 < âđ (đĽ, đđĽ)â . 2
(111)
2 đŚ 1 đĽ ((đĽ â ) + ( â đŚ)) 36 5 5
2 đŚ 2 1 đĽ ⤠(2 (đĽ â ) + 2 ( â đŚ) ) 36 5 5
=
1 óľ¨óľ¨ óľ¨2 óľ¨2 óľ¨ (óľ¨óľ¨đĽ â đđŚóľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đđĽ â đŚóľ¨óľ¨óľ¨ ) . 18
(117)
Journal of Function Spaces
15
Then, we have
đ (đđĽ, đđŚ) =
óľ¨2 óľ¨óľ¨ óľ¨đđĽ â đđŚóľ¨óľ¨óľ¨ [óľ¨ [
0
1 óľ¨óľ¨ óľ¨2 óľ¨2 óľ¨ 0 (óľ¨óľ¨đĽ â đđŚóľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đđĽ â đŚóľ¨óľ¨óľ¨ ) ] [ ] ⪯ [ 18 ] 2 1 óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ 2 2 óľ¨ óľ¨ óľ¨ óľ¨óľ¨đđĽ â đđŚóľ¨óľ¨ ] 0 (óľ¨óľ¨đĽ â đđŚóľ¨óľ¨óľ¨ + óľ¨óľ¨óľ¨đđĽ â đŚóľ¨óľ¨óľ¨ ) ] [ 18 0
1 óľ¨óľ¨2 óľ¨óľ¨2 óľ¨óľ¨ óľ¨óľ¨ 0 0 [ 18 ] [(óľ¨óľ¨đĽ â đđŚóľ¨óľ¨ + óľ¨óľ¨đđĽ â đŚóľ¨óľ¨ ) ] =[ óľ¨óľ¨2 óľ¨óľ¨ óľ¨óľ¨2 = đ [đ (đĽ, đđŚ) + đ (đŚ, đđĽ)] , óľ¨óľ¨ 1] đĽ â đđŚ đđĽ â đŚ 0 ( + ) óľ¨ óľ¨ óľ¨ óľ¨ 0 óľ¨ óľ¨ óľ¨ ] óľ¨ [ 18 ] [ 0 2 where đ = [ 1/18 0 1/18 ]. Then, âđâ = 1/18 < 1/8 = 1/2âđâ . Thus, đ satisfies contraction of Theorem 44 implying that đ has a unique fixed point in đ´ ⊠đľ.
Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments The authors would like to thank Science Achievement Scholarship of Thailand and Faculty of Science, Naresuan University.
References [1] K. R. Davidson, Câ -Algebras by Example, vol. 6 of Fields Institute Monographs, American Mathematical Society, 1996. [2] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, NY, USA, 1972. [3] G. J. Murphy, Câ -Algebras and Operator Theory, Academic Press, London, UK, 1990. [4] S. Banach, âSur les op´erations dans les ensembles abstraits et leur application aux e´quations int´egrales,â Fundamenta Mathematicae, vol. 3, pp. 133â181, 1922. [5] D. Doitchinov, âOn completeness in quasi-metric spaces,â Topology and its Applications, vol. 30, no. 2, pp. 127â148, 1988. [6] W. A. Wilson, âOn quasi-metric spaces,â American Journal of Mathematics, vol. 53, no. 3, pp. 675â684, 1931. [7] P. Hitzler and A. K. Seda, âDislocated topologies,â Journal of Electrical Engineering, vol. 51, pp. 3â7, 2000. [8] F. M. Zeyada, G. H. Hassan, and M. A. Ahmad, âA generalization of fixed point theorem due to Hitzler and Seda in dislocated quasi-metric space,â Arabian Journal for Science and Engineering, vol. 31, no. 1, pp. 111â114, 2005. [9] Z. Mustafa, A new structure for generalized metric spaces: with application to fixed point theory [Ph.D. thesis], University of Newcastles, Callaghan, Australia, 2005. [10] Z. Mustafa and B. Sims, âA new approach to generalized metric spaces,â Journal of Nonlinear and Convex Analysis, vol. 7, no. 2, pp. 289â297, 2006. [11] Z. Mustafa and H. Obiedat, âFixed point theorem of Reich in G-metric spaces,â CUBO, vol. 12, no. 1, pp. 83â93, 2010.
(118)
[12] I. A. Bakhtin, âThe contraction mapping principle in quasimetric spaces,â in Functional Analysis, vol. 30, pp. 26â37, Unianowsk Gos. Ped. Inst., 1989. [13] S. Czerwik, âContraction mapping in b-metric spaces,â Acta Mathematica Universitatis Ostraviensis, vol. 1, no. 1, pp. 5â11, 1993. [14] S. Czerwik, âNonlinear set-valued contraction mapping in bmetric spaces,â in Atti del Seminario Matematico e Fisico dellâ Universit`a di Modena, pp. 263â276, 1998. [15] M. A. Khamsi, âRemarks on cone metric spaces and fixed point theorems of contractive mappings,â Fixed Point Theory and Applications, vol. 2010, Article ID 315398, 2010. [16] M. A. Khamsi and N. Hussain, âKKM mappings in metric type spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 9, pp. 3123â3129, 2010. [17] A. Amini-Harandi, âMetric-like spaces, partial metric spaces and fixed points,â Fixed Point Theory and Applications, vol. 2012, article 204, 2012. [18] M. A. Alghamdi, N. Hussain, and P. Salimi, âFixed point and coupled fixed point theorems on b-metric-like spaces,â Journal of Inequalities and Applications, vol. 2013, article 402, 2013. [19] N. Hussain, J. R. Roshan, V. Parvaneh, and M. Abbas, âCommon fixed point results for weak contractive mappings in ordered bdislocated metric spaces with applications,â Journal of Inequalities and Applications, vol. 2013, article 486, 2013. [20] M. H. Shah and N. Hussian, âNonlinear contractions in partially ordered quasi b-metric spaces,â Communications of the Korean Mathematical Society, vol. 27, no. 1, pp. 117â128, 2012. [21] C. Klin-eam and C. Suanoom, âDislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions,â Fixed Point Theory and Applications, vol. 2015, article 74, 2015. [22] Z. Ma, L. Jiang, and H. Sun, âđśâ -algebra-valued metric spaces and related fixed point theorems,â Fixed Point Theory and Applications, vol. 2014, article 206, 2014. [23] S. Batul and T. Kamran, âđśâ -valued contractive type mappings,â Fixed Point Theory and Applications, vol. 2015, article 142, 2015. [24] D. Shehwar and T. Kamran, âđśâ -valued G-contractions and fixed points,â Journal of Inequalities and Applications, vol. 2015, article 304, 2015. [25] J. Jachymski, âThe contraction principle for mappings on a metric space with a graph,â Proceedings of the American Mathematical Society, vol. 136, no. 4, pp. 1359â1373, 2008. [26] Z. Ma and L. Jiang, âđśâ -algebra-valued b-metric spaces and related fixed point theorems,â Fixed Point Theory and Applications, vol. 2015, article 222, 2015. [27] R. Kannan, âSome results on fixed points,â Bulletin of the Calcutta Mathematical Society, vol. 60, pp. 71â76, 1968.
16 [28] R. Kannan, âSome results on fixed points-II,â The American Mathematical Monthly, vol. 76, pp. 405â408, 1969. [29] S. K. Chatterjea, âFixed point theorem,â Comptes Rendus de l Academie Bulgare des Sciences, vol. 25, pp. 727â730, 1972. [30] W. A. Kirk, P. S. Srinivasan, and P. Veeramani, âFixed points for mappings satisfying cyclical contractive conditions,â Fixed Point Theory, vol. 4, no. 1, pp. 79â89, 2003. [31] E. Karapinar and I. M. Erhan, âBest proximity point on different type contractions,â Applied Mathematics & Information Sciences, vol. 5, no. 3, pp. 558â569, 2011. [32] V. Berinde, âGeneralized contractions in quasimetric space,â in Seminar on Fixed Point Theory, Cluj- Napoca, pp. 3â9, 1993. [33] Z. Yang, H. Sadati, S. Sedghi, and N. Shobe, âCommon fixed point theorems for non-compatible self-maps in b-metric spaces,â The Journal of Nonlinear Science and Applications, vol. 8, pp. 1022â1031, 2015. [34] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, Mass, USA, 2nd edition, 2013.
Journal of Function Spaces
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014