ALMOST EVERYWHERE CONVERGENCE OF (C, α) - CiteSeerX

1 downloads 0 Views 231KB Size Report
ψ(ns−1)Ms+(ms−1−1)Ms−1+...(m0−1)M0 (x) ¯ψk(x). = ψnsMs−1(x) ¯ψk(x). Lemma 1 is proved. D. Lemma 2. Let α ∈ (0, 1)and n := n(A) = nAMA + ··· + n0M0.
Georgian Mathematical Journal Volume 13 (2006), Number 3, 447–462

ALMOST EVERYWHERE CONVERGENCE OF (C, α)-MEANS OF QUADRATICAL PARTIAL SUMS OF DOUBLE VILENKIN–FOURIER SERIES ¨ ´ AND USHANGI GOGINAVA GYORGY GAT

Abstract. We prove that the maximal operator of the (C, α)-means of quadratical partial sums of double Vilenkin–Fourier series is of weak type (1,1). 1 Moreover, the (C, α)-means tα n f of a function f ∈ L converge a.e. to f as n → ∞. 2000 Mathematics Subject Classification: 42C10. Key words and phrases: Ces´aro means, Vilenkin system, a.e. convergence.

1. Introduction In 1939, for the two-dimensional trigonometric Fourier partial sums Sj,j f Marcinkiewicz [8] proved that for all f ∈ L log L([0, 2π]2 ) the relation n 1X t1n f = Sj,j f → f n j=0 holds a.e. as n → ∞. Zhizhiashvili [13] improved this result and showed that for f ∈ L([0, 2π]2 ) the (C, α) means n 1 X α−1 α tn f = α A Sj,j f An j=0 n−j converge to f a.e. for any α > 0. Dyachenko [3] proved this result for dimensions greater than 2. In papers [12, 6] by Weisz and Goginava one can find that the (C, 1) means t1n f of the double Walsh–Fourier series of a function f ∈ L([0, 1]2 ) converges to f a.e. Recently, G´at [4] proved this result with respect to two-dimensional Vilenkin systems. The d-dimensional Walsh–Fourier case is discussed in [7]. The aim of this paper is to generalize the result of Zhizhiashvili [13] concerning the (C, α)-means with respect to two-dimensional (bounded) Vilenkin systems. First, we give a brief introduction to the theory of Vilenkin systems. These orthonormal systems were introduced by N. Ya. Vilenkin in 1947 (see, e.g., [11, 1]) as follows. Let m := (mk , k ∈ N) (N := {0, 1, . . . }, P := N \ {0}) be a sequence of integers, each of them not less than 2. Let Zmk denote the discrete cyclic group of order mk . That is, Zmk can be represented by the set {0, 1, . . . , mk − 1}, with the group operation mod mk addition. Since the group is discrete, every subset c Heldermann Verlag www.heldermann.de ISSN 1072-947X / $8.00 / °

´ AND U. GOGINAVA G. GAT

448

is open. The normalized Haar measure µk on Zmk is defined by µk ({j}) := 1/mk (j ∈ {0, 1, . . . , mk − 1}). Let ∞

Gm := × Zmk . k=0

Then every x ∈ Gm can be represented by a sequence x = (xi , i ∈ N), where xi ∈ Zmi (i ∈ N). The group operation on Gm (denoted by +) is the coordinatewise addition (the inverse operation is denoted by −), the measure (denoted by µ), which is the normalized Haar measure, and the topology are respectively the product measure and the topology. Consequently, Gm is a compact Abelian group. If supn∈N mn < ∞, then we call Gm a bounded Vilenkin group. If the generating sequence m is not bounded, then Gm is said to be an unbounded Vilenkin group. In this paper we discuss bounded Vilenkin groups only. A Vilenkin group is metrizable in the following way: ∞ X |xi − yi | d(x, y) := (x, y ∈ Gm ). M i+1 i=0 The topology induced by this metric, the product topology, and the topology given by intervals defined below, are the same. A base for the neighborhoods of Gm can be given by the intervals I0 (x) := Gm ,

In (x) := {y = (yi , i ∈ N) ∈ Gm : yi = xi for i < n}

for x ∈ Gm , n ∈ P. Let 0 = (0, i ∈ N) ∈ Gm denote the null element of Gm and In (0) := In , I n = Gm \In . Furthermore, let Lp (Gm ) (1 ≤ p ≤ ∞) denote the usual Lebesgue spaces (k · kp are the corresponding norms) on Gm , n the σ-algebra generated by the sets In (x) (x ∈ Gm ), and En the conditional expectation operator with respect to n (n ∈ N). Let 1 ≤ p ≤ +∞ be real. We say that an operator T is of type (p, p) if there exists an absolute constant C > 0 such that kT f kp ≤ Ckf kp for all f ∈ Lp . T is said to be of weak type (1, 1) if there exist an absolute constant C > 0 such that kT f kweak-L1 ≤ Ckf k1 for all f ∈ L1 (Gm ), where kf kweak-L1 = supλ>0 λµ(|f | > λ). It is known that the operator which maps a function f on the maximal function f ∗ := sup |En f | is of weak type (1, 1), and of type (p, p) for all 1 < p ≤ ∞ (see, e.g., [2]). Let M0 := 1, Mn+1 := mn Mn (n ∈ N) be the so-called generalized powers. Then each natural number n can be uniquely expressed as ∞ X n= ni Mi (ni ∈ {0, 1, . . . , mi − 1}, i ∈ N), i=0

where only a finite number of ni ’s differs from zero. For 1 ≤ n ∈ N we denote by |n| := max {k ∈ N : M k ≤ n} the order of a natural number n. In other words, M|n| ≤ n < M|n|+1 . The generalized Rademacher functions are defined as ¶ µ √ xn (x ∈ Gm , n ∈ N, ı := −1). rn (x) := exp 2πı mn

ALMOST EVERYWHERE CONVERGENCE

449

The nth Vilenkin function is ψn :=

∞ Y

n

rj j

(n ∈ N).

j=0

The system ψ := (ψn : n ∈ N) is called a Vilenkin system. Each ψn is a character of Gm , and all the characters of Gm are of this form. Define the m-adic addition as ∞ X k ⊕ n := (kj + nj ( mod mj ))Mj (k, n ∈ N). j=0

Then ψk⊕n = ψk ψn , ψn (x + y) = ψn (x)ψn (y), ψn (−x) = ψ¯n (x), |ψn | = 1 (k, n ∈ N, x, y ∈ Gm ). Set Aαn := (1+α)...(n+α) for any n ∈ N, α ∈ R. It is known that Aαn ∼ nα . Define n! the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet kernels, the (C, α) means, kernels, and the Fej´er means and kernels with respect to the Vilenkin system ψ as follows: Z fˆ(n) :=

f ψ¯n dµ, Gm

Sn f :=

n−1 X

fˆ(k)ψk ,

k=0

Dn :=

n−1 X

ψk ,

k=0

σnα f =

n 1 X α−1 A Sk f, Aαn k=0 n−k

Knα :=

n 1 X α−1 A Dk , Aαn k=0 n−k

σn f := σn1 f, Kn := Kn1 (f ∈ L1 (Gm ). It is well-known that Z Sn f (y) = f (x)Dn (y − x)dµ(x) (n ∈ N, y ∈ Gm , f ∈ L1 (Gm )). Gm

It is also well-known [1] that ( Mn if x ∈ In := In (0), DMn (x) = 0 if x ∈ / In , Z SMn f (x) = Mn f dµ = En f (x) (f ∈ L1 (Gm ), n ∈ N). In (x)

(1)

´ AND U. GOGINAVA G. GAT

450

Next, we introduce some notation for the theory of two-dimensional Vilenkin systems. Let m ˜ be a sequence like m. The relation between the sequences (m ˜ n) ˜ and (Mn ) is the same as between the sequences (mn ) and (Mn ). The group Gm × Gm˜ is called a two-dimensional Vilenkin group. The normalized Haar measure is denoted by µ as in the one-dimensional case. We also suppose that m = m, ˜ that is, Gm × Gm˜ = G2m . The two-dimensional Fourier coefficients, the rectangular partial sums of the Fourier series, the Dirichlet kernels, the (C, α) means, the kernels of the (C, α) means with respect to a two-dimensional Vilenkin system are defined as follows: Z ˆ f (x, y)ψ¯n1 (y)ψ¯n2 (y)dµ(x, y), f (n1 , n2 ) := G2m

Sn1 ,n2 f (u, v) :=

nX 2 −1 1 −1 n X

fˆ(k1 , k2 )ψk1 (u)ψk2 (v),

k1 =0 k2 =0

Dn1 ,n2 (x, y) := Dn1 (x)Dn2 (y), n 1 X α−1 α tn f := α A Sj,j f, An j=0 n−j Tnα

n 1 X α−1 A Dj,j . := α An j=0 n−j

It is also well-known that tαn f (u, v)

Z f (x, y)Tnα (u − x, v − y)dµ(x, y).

= G2m

For the two-dimensional variable (x, y) ∈ G2m we use the notation ψn1 (x, y) = ψn (x),

Dn1 (x, y) = Dn (x),

Knα,1 (x, y) = Knα (x),

ψn2 (x, y) = ψn (y),

Dn2 (x, y) = Dn (y),

Knα,2 (x, y) = Knα (y)

for any α > 0 and n ∈ N. Set the maximal operator tα∗ f := sup |tαn f | for any f ∈ L1 (G2m ) and α > 0. n∈N

2. Main Results Theorem 1. Let f ∈ L1 (G2m ) and α > 0. Then ktα∗ f kweak-L1 ≤ C kf k1 . Corollary 1. Let f ∈ L1 (G2m ) and α > 0. Then tαn (f ) → f a.e. as n → ∞.

ALMOST EVERYWHERE CONVERGENCE

451

3. Auxiliary results Lemma 1. Let 0 ≤ j < ns Ms and 0 ≤ ns < ms . Then Dns Ms −j = Dns Ms − ψns Ms −1 Dj . Proof. It is clear that nsX Ms −1

Dns Ms = Dns Ms −j +

ψk = Dns Ms −j +

k=ns Ms −j

j−1 X

ψns Ms −k−1 .

k=0

Consequently, ψns Ms −k−1 (x) = ψ(ns −1)Ms +(ms−1 −1)Ms−1 +···+(m0 −1)M0 −k (x) = ψ(ns −ks −1)Ms +(ms−1 −ks−1 −1)Ms−1 +...(m0 −k0 −1)M0 (x) = ψ(n −1)M +(m −1)M +...(m −1)M (x)ψ¯k (x) s

s

s−1

s−1

0

0

= ψns Ms −1 (x)ψ¯k (x). Lemma 1 is proved.

¤

Lemma 2. Let α ∈ (0, 1) and n := n(A) = nA MA + · · · + n0 M0 . Then in the one-dimensional case   Mp −1 A X i  X X c (α) |Knα | ≤ α Mpα−1 |Kj | + Miα |KMi −1 | + Miα DMi .  p=1  n i=0

j=Mp−1

Proof. It is evident that n X

Aα−1 n−j Dj =

nX A MA

j=1

n X

Aα−1 n−j Dj +

j=1

Aα−1 n−j Dj = I + II.

(2)

j=nA MA +1

Since [5] for r ∈ {0, . . . , mA − 1} ! Ã r−1 X q r ψMA DMA + ψM Dj , Dj+rMA = A q=0

then for I we write ! Ã r−1 nX MA A −1 X X q I= ψMA DMA Aα−1 n−j−rMA r=0 j=1

+

ÃM −1 nX A −1 A X r=0

j=0

q=0

!

Aα−1 D (nA −r−1)MA +n(A−1) +j MA −j

r ψM = I1 + I2 . A

It is evident that |I1 | ≤ c (α) MAα DMA . Using Lemma 1, for I2 we obtain ¯) ¯ −1 ( nX A A −1 ¯M ¯ X ¯ ¯ α−1 α A(nA −r−1)MA +n(A−1) +j Dj ¯ . |I2 | ≤ c (α) MA DMA + ¯ ¯ ¯ r=0

j=1

(3)

(4)

´ AND U. GOGINAVA G. GAT

452

Since Dj+nA MA = DnA MA + ψnA MA Dj , we write

¯ ¯ª © |II| ≤ c (α) MAα DMA + n(A−1) ¯Knα(A−1) ¯ .

Combining (2)–(5), we obtain ( n |Knα | ≤ c (α) MAα DMA

(5)

¯ ¯ ¯ ¯

¯ ¯ ¯ + Aα−1 D ¯ (nA −r−1)MA +n(A−1) +j j ¯ r=0 j=1 ) ¯ ¯ + n(A−1) ¯K α(A−1) ¯ . nX A −1 ¯M A −1 X

n

Iterating this inequality, we obtain ¯ −1 ¯) ( A A n i −1 ¯M i ¯ X X X X ¯ ¯ α−1 n |Knα | ≤ c (α) Miα DMi + A D ¯ ¯ . (ni −r−1)Mi +n(i−1) +j j ¯ ¯ i=0 r=0

i=0

j=1

Applying Abel’s transformation, we write M i −1 X

D Aα−1 (ni −r−1)Mi +n(i−1) +j j

=−

j=1

M i −2 X

Aα−2 jK j (ni −r−1)Mi +n(i−1) +j

j=1

+Aα−1 (Mi − 1) KMi −1 , (ni −r)Mi +n(i−1) −1 consequently, n |Knα | ≤ c (α)

 A X 

Miα DMi +

A X i X

Mp −1

Mpα−1

i=0 p=1

i=0

X

j=Mp−1

|Kj | +

A X

Miα |KMi −1 |

i=0

Lemma 2 is proved.

  

. ¤

Lemma 3. Let A ≥ k. Then Z sup |KMn | ≤ c

n≥A

Mk . MA

Ik

Proof. Since [9] |KMA (x)| ≤ cMs

m s −1 X

1In (0)+es xs (x) , x ∈ Is \Is+1 , s = 0, . . . , n − 1,

xs =1

where 1E is the characteristic function of a set E and es := (0, . . . , 0, 1, 0, . . . ) ∈ G, the s-th coordinate of which is 1 and the rest are zeros, we obtain Z ∞ Z ∞ X k−1 Z X X sup |KMn | ≤ |KMn | = |KMn | n≥A

Ik

n=A

Ik

n=A s=0

Is+1 \Is

ALMOST EVERYWHERE CONVERGENCE

≤c

∞ X k−1 X n=A s=0

Ms

Z

m s −1 X xs =1

1In (0)+es xs ≤ c

Is+1 \Is

453

∞ k−1 X 1 X Mk Ms ≤ c . M M n s=0 n n=A

Lemma 3 is proved.

¤

Lemma 4. Let A ≥ k. Then Z Mk (A − k + 1) sup |Kn | ≤ c . MA n≥MA Ik

Proof. Since A X ¯ Mj ¯¯ |Kn | ≤ c KMj ¯ MA j=0

by Lemma 3 and the fact that [1]

for MA ≤ n < MA+1 ,

Z

sup n≥1

|Kn | < ∞,

(6)

Gm

we obtain Z Z ∞ X v X ¯ ¯ Mj ¯KM ¯ sup |Kn | ≤ j Mv n≥MA v=A j=0 Ik

Ik

Z Z ∞ X v ∞ X k X ¯ ¯ X ¯ ¯ M Mj j ¯KM ¯ + ¯KM ¯ = j j Mv Mv v=A j=k+1 v=A j=0 ( ≤c

Ik



Mk X Mk (v − k + 1) + MA v=A Mv

Ik

) ≤c

Mk (A − k + 1) . MA

Lemma 4 is proved.

¤

Lemma 5. Let α ∈ (0, 1) and A ≥ k. Then Z A−k+1 sup |Knα | ≤ c (α) . (MA /Mk )α n≥MA Ik

Proof. From Lemma 2 we get Z Z Mp −1 N i 1 X X α−1 X ¯¯ ¯¯ α sup |Kn | ≤ c (α) sup α Mp Kj n≥MA N ≥A MN i=0 p=1 j=M Ik

Ik

p−1

Z

N 1 X α Mi |KMi −1 | α N ≥A MN i=0

sup

+ c (α) Ik

´ AND U. GOGINAVA G. GAT

454

Z + c (α)

N 1 X α Mi DMi = I + II + III. α N ≥A MN i=0

sup

Ik

(7)

From (1), (6) and Lemma 4 we obtain Z ∞ k X Mkα 1 X α ≤ c (α) D III ≤ c (α) , M Mi i α α M M N A i=0 N =A

(8)

Ik

Z N ∞ X 1 X α Mi |KMi −1 | II ≤ c (α) α M N i=0 N =A Ik

Z ∞ k X 1 X α = c (α) Mi |KMi −1 | α M N i=0 N =A Ik

Z N ∞ X 1 X α Mi + c (α) |KMi −1 | α M N N =A i=k+1 Ik

∞ N X Mkα 1 X Mkα α (i − k) Mk M ≤ c (α) α + c (α) ≤ c (α) α , MA MNα i=k+1 i Mi MA N =A

Z I ≤ c (α) Ik

Mp −1 k i 1 X X α−1 X sup α Mp |Kj | N ≥A MN i=0 p=1 j=M p−1

Z + c (α) Ik

Z + c (α) Ik

Mp −1 k N 1 X X α−1 X Mp |Kj | sup α N ≥A MN j=M i=k+1 p=1 p−1

Mp −1 i N X 1 X X α−1 Mp |Kj | sup α N ≥A MN j=M i=k+1 p=k+1 p−1

= I1 + I2 + I3 ; Mα I1 ≤ c (α) kα , MA Mα I2 ≤ c (α) kα (A − k + 1) , MA

(10) (11) (12)

Z ∞ N i X 1 X X α I3 ≤ c (α) M MNα i=k+1 p=k+1 p N =A

sup |Kl |

l≥Mp−1

Ik

≤ c (α)

(9)

∞ X

1 MNα N =A

N X

i X

i=k+1 p=k+1

Mpα

p−k (Mp /Mk )

ALMOST EVERYWHERE CONVERGENCE ∞ X N −k+1 A−k+1 . ≤ c (α) α ≤ c (α) (MN /Mk ) (MA /Mk )α N =A

(13)

Combining (7)–(13), we complete the proof of Lemma 5. Lemma 6. Let α ∈ (0, 1) and n = nA MA + · · · + n0 M0 . Then 10 X

|Tnα | ≤ c (α)

Bi ,

i=1

where

Mr+1 −1 A+1 s−1 1 X X α−1 X ¯¯ 1 ¯¯ M Tj , B1 = α n s=0 r=0 r j=M r

B2 = 1 B3 = α n

A+1 X

1 nα

A X

s=0

¯ ¯ Msα ¯Tn1s Ms ¯ ,

s=0

|Dn1 s Ms |

s−1 X

Mr+1 −1

X ¯ 1,2 ¯ ¯K ¯ ,

Mrα−1

r=0

j

j=Mr

A ¯ ¯ 1 X 1 ¯, B4 = α |Dns Ms |Msα ¯Kn1,2 M s s n s=0 Mr+1 −1 A+1 s−1 X X ¯ 1,1 ¯ 1 X 2 α−1 ¯K ¯ , |Dns Ms | Mr B5 = α j n s=0 r=0 j=M r

B6 =

1 nα

A X

¯ ¯ ¯, |Dn2 s Ms |Msα ¯Kn1,1 M s s

s=0

A 1 X α B7 = α M |Dns Ms ,ns Ms |, n s=0 s A ¯ ¯ 1 X 2 ¯ B8 = α |Dns Ms |Aαn(s−1) ¯Knα,1 (s−1) , n s=1 A ¯ ¯ 1 X 1 ¯ B9 = α |Dns Ms |Aαn(s−1) ¯Knα,2 (s−1) , n s=1

B10 ≤ c (α) . Proof. It is evident that Aαn Tnα

=

nX A MA

Aα−1 n−j Dj,j

+

j=1

=

nAX MA −1 j=0

Aα−1 D + n(A−1) +j nA MA −j,nA MA −j

n X

Aα−1 n−j Dj,j

j=nA MA +1 (A−1) nX

j=1

455

Aα−1 D . n(A−1) −j j+nA MA ,j+nA MA

¤

´ AND U. GOGINAVA G. GAT

456

Since (see Lemma 1) 2

DnA MA −j,nA MA −j = DnA MA ,nA MA − Dn1 A MA ψn2 A MA −1 Dj 1

−Dn2 A MA ψn1 A MA −1 Dj + ψn1 A MA −1 ψn2 A MA −1 Dj,j and Dj+nA MA ,j+nA MA = DnA MA ,nA MA + Dn1 A MA ψn2 A MA Dj2 +Dn2 A MA ψn1 A MA Dj1 + ψn1 A MA ψn2 A MA Dj,j , we get Aαn Tnα = Aαn(A) −1 DnA MA ,nA MA ! Ãn M −1 AX A 2 D Dn1 A MA ψn2 A MA −1 − Aα−1 n(A−1) +j j Ãn − Ãn +

j=0 A MA −1

X

! 1 Aα−1 D n(A−1) +j j

j=0 MA −1 AX

Dn2 A MA ψn1 A MA −1

! D Aα−1 n(A−1) +j j,j

ψn1 A MA −1 ψn2 A MA −1

j=0 α,1 1 α 2 2 1 +Aαn(A−1) Knα,2 (A−1) DnA MA ψnA MA + An(A−1) Kn(A−1) DnA MA ψnA MA +ψn1 A MA ψn2 A MA Aαn(A−1) Tnα(A−1) .

Consequently,

¯n M −1 ¯ A ¯ AX ¯ ¯ 2¯ ¯ 1 ¯ ¯Dn M ¯ Aαn |Tnα | ≤ Aαn(A) −1 |DnA MA ,nA MA | + ¯ D Aα−1 ¯ (A−1) j A A n +j ¯ ¯ j=0 ¯ ¯n M −1 ¯n M −1 ¯ A A ¯ ¯ AX ¯ AX ¯ 1 ¯ ¯ ¯ ¯ α−1 2 D + D +¯ D A Aα−1 ¯ ¯ ¯ j,j (A−1) +j (A−1) +j j nA MA n n ¯ ¯ ¯ ¯ j=0 j=0 ¯ ¯¯ 1 ¯ ¯ ¯¯ 2 ¯ ¯ ¯ ¯ ¯Dn M ¯ + Aα(A−1) ¯K α,1 ¯ ¯Dn M ¯ + Aα(A−1) ¯T α(A−1) ¯ . +Aαn(A−1) ¯Knα,2 (A−1) n n n A A A A n(A−1) Iterating this inequality, we obtain ¯ ¯n M −1 ( A s ¯ sX ¯¯ X 2 ¯ ¯ 1 ¯¯ ¯ Aα−1 D Aαn |Tnα | ≤ Aαn(s) −1 |Dns Ms ,ns Ms | + ¯ (s−1) +j j ¯ Dns Ms n ¯ ¯ s=1 j=0 ¯ ¯ ¯ ¯ Ms −1 Ms −1 ¯nsX ¯ ¯nsX ¯¯ ¯ 1¯ ¯ ¯ ¯ α−1 α−1 2 ¯ ¯ An(s−1) +j Dj,j ¯ An(s−1) +j Dj ¯ Dns Ms + ¯ +¯ ¯ ¯ ¯ ¯ j=0 j=0 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ª ¯ ¯Dn1 M ¯ + Aα(s−1) ¯K α,1 ¯ ¯Dn2 M ¯ + Aα(0) ¯T α(0) ¯ . (14) +Aαn(s−1) ¯Knα,2 (s−1) (s−1) n n n s s s s n Applying Abel’s transformation, we write ¯ ¯n M −1 s ¯ ¯ sX ¯ ¯ α−1 An(s−1) +j Dj,j ¯ ¯ ¯ ¯ j=0

ALMOST EVERYWHERE CONVERGENCE

(n ≤ c (α)

s Ms −2

X ¡

n(s−1) + j

j=0

(

≤ c (α)

s MX r+1 −1 X ¡ r=0

≤ c (α)

¢α−2 ¯ 1 ¯ ¡ (s) ¢α−1 ¡ (s) ¢¯ j ¯Tj ¯ + n n − 1 ¯Tn1s Ms

) ¯ ¯ ¯ ¯ ¢ ¡ ¢ α−2 α n(s−1) + j j ¯Tj1 ¯ + n(s) ¯Tn1s Ms −1 ¯

j=Mr

(

s X

) X ¯ ¯ ¡ ¯ ¯ ¢ α ¯Tj1 ¯ + n(s) ¯Tn1 M −1 ¯ . s s

Mr+1 −1

Mrα−1

r=0

(15)

j=Mr

Analogously,

≤ c (α)

457

) ¯ ¯ −1

¯ ¯ Ms −1 ¯nsX ¯ l ¯ ¯ α−1 An(s−1) +j Dj ¯ ¯ ¯ ¯ ( s X

j=0

Mrα−1

r=0

) X ¯ 1,l ¯¯ ¡ ¯ ¯ ¢ α ¯Kj ¯ + n(s) ¯Tn1s Ms −1 ¯ , l = 1, 2.

Mr+1 −1 ¯

(16)

j=Mr

Combining (14)–(16) we complete the proof of Lemma 6.

¤

Corollary 2. Let α ∈ (0, 1) . Then Z sup |Tnα | < ∞. n≥1

G2m

Proof. Since [1], [4]

Z sup n≥1

and

¯ 1¯ ¯Tn ¯ < ∞

(17)

G2m

Z |Knα | < ∞, α > 0,

sup n≥1

Gm

from Lemma 6 we obtain the proof of Corollary 2.

¤

Lemma 7. Let α ∈ (0, 1) . Then Z sup |Tnα | ≤ c (α) < ∞. n≥Mk

Ik ×Ik

Proof. Since in [4] one can find Z

¯ ¯ sup ¯Tn1 ¯ ≤ c < ∞,

n≥Mk Ik ×Ik

by (17) we can write Z Z sup B1 ≤ c (α) n≥Mk

Ik ×Ik

Ik ×Ik

Mr+1 −1 A+1 s−1 1 X X α−1 X ¯¯ 1 ¯¯ sup α Mr Tj A≥k MA s=0 r=0 j=M r

´ AND U. GOGINAVA G. GAT

458

Z ≤ c (α) Ik ×Ik

Z

Mr+1 −1 k s−1 1 X X α−1 X ¯¯ 1 ¯¯ sup α Mr Tj A≥k MA s=0 r=0 j=M r

Mr+1 −1 A+1 k−1 1 X X α−1 X ¯¯ 1 ¯¯ Tj sup α Mr A≥k MA j=M s=k+1 r=0

+c (α)

r

Ik ×Ik

Z

Mr+1 −1 A+1 s−1 1 X X α−1 X ¯¯ 1 ¯¯ sup α Mr Tj A≥k MA j=M s=k+1 r=k

+c (α)

r

Ik ×Ik

Mr+1 −1 Z k s−1 1 X X α−1 X M ≤ c (α) α Mk s=0 r=0 r j=M r

Ik ×Ik

Mr+1 −1 Z k−1 1 X α−1 X +c (α) α M Mk r=0 r j=M r

Z

¯ 1¯ ¯Tj ¯ ¯ 1¯ ¯Tj ¯

Ik ×Ik

A+1 s−1 ¯ ¯ 1 X X α Mr sup ¯Tl1 ¯ ≤ c (α) < ∞. α l≥Mk A≥k MA s=k+1 r=k

sup

+c (α) Ik ×Ik

Analogously, we obtain

(18)

Z sup B2 < ∞.

(19)

n≥Mk Ik ×Ik

We have Z

Z sup B3 =

sup B3 +

n≥Mk Ik ×Ik

Z

It is evident that Z Z sup B3 ≤ c (α) n≥Mk

I k ×Ik

I k ×Ik

Z ≤ c (α) I k ×Ik

sup B3 +

n≥Mk I k ×I k

Z

I k ×Ik

A+1 1 X sup α A≥k MA s=0

k 1 X sup α A≥k MA s=0

Ãm −1 s X

Ãm −1 s X

(20)

n≥Mk Ik ×I k

|Dn1 s Ms |

ns =0

|Dn1 s Ms |

ns =0

! s−1 X

Mr+1 −1

Mrα−1

r=0

! s−1 X r=0

≤ c (α) < ∞. Analogously,

sup B3 .

n≥Mk

X ¯ 1,2 ¯ ¯K ¯ j

j=Mr

Mr+1 −1

Mrα−1

X ¯ 1,2 ¯ ¯K ¯ j

j=Mr

(21)

Z sup B3 < ∞.

n≥Mk I k ×I k

(22)

ALMOST EVERYWHERE CONVERGENCE

We write Z Z sup B3 ≤ c (α) n≥Mk

Ik ×I k

Ik ×I k

Z ≤ c (α) Ik ×I k

Z +c (α) Ik ×I k

Z +c (α) Ik ×I k

Ãm −1 s X

A+1 1 X sup α A≥k MA s=0

k 1 X sup α A≥k MA s=0

Ãm −1 s X

A+1 1 X sup α A≥k MA s=k+1 A+1 1 X sup α A≥k MA s=k+1

|Dn1 s Ms |

! s−1 X

ns =0

Mr+1 −1

Mrα−1

r=0

|Dn1 s Ms |

! s−1 X

ns =0

Ãm −1 s X

459

j=Mr

Mr+1 −1

X ¯ 1,2 ¯ ¯K ¯ j

Mrα−1

r=0

|Dn1 s Ms |

! k−1 X

ns =0

r=0

Ãm −1 s X

! s−1 X

|Dn1 s Ms |

ns =0

X ¯ 1,2 ¯ ¯K ¯ j

j=Mr Mr+1 −1

X ¯ 1,2 ¯ ¯K ¯ j

Mrα−1

j=Mr Mr+1 −1

X ¯ 1,2 ¯ ¯K ¯ j

Mrα−1

j=Mr

r=k

=: M + N + R.

(23)

It is evident that M ≤ c (α) < ∞, N ≤ c (α)

∞ X Mα

(24) A+1 m s −1 Z X X

k MAα s=k+1 n =0 A=k s I

|Dn1 s Ms |

k

≤ c (α)

∞ X

A−k+1 ≤ c (α) < ∞. (MA /Mk )α A=k

(25)

Using Lemma 4 and (1), for R we get Z s−1 ∞ A+1 ms −1 X X 1 X X α M R ≤ c (α) MAα s=k+1 n =0 r=k r A=k s

¯ ¯ |Dn1 s Ms | sup ¯Kl1,2 ¯ l≥Mr

Ik ×I k

A+1 s−1 ∞ X 1 X X αr − k + 1 M ≤ c (α) MAα s=k+1 r=k r (Mr /Mk ) A=k

≤ c (α) ≤ c (α)

∞ A+1 s−1 X Mkα X X r − k + 1 MAα s=k+1 r=k (Mr /Mk )1−α A=k ∞ X Mα

k MAα A=k

(A − k + 1) ≤ c (α) < ∞.

(26)

Combining (23)–(26), we obtain Z sup B3 < ∞.

n≥Mk Ik ×I k

(27)

´ AND U. GOGINAVA G. GAT

460

After substituting (21), (22) and (27) into (20), we have Z sup B3 < ∞.

(28)

n≥Mk

Ik ×Ik

Analogously, we obtain Z sup Bj < ∞,

j = 4, 5, 6, 7.

(29)

n≥Mk Ik ×Ik

For B9 we write Z Z sup B9 =

Z sup B9 +

n≥Mk

Ik ×Ik

sup B9 +

n≥Mk

I k ×J k

Using Lemma 2, we have Z Z sup B9 ≤ c (α) n≥Mk

I k ×Ik

Z

I k ×Ik

I k ×Ik

A 1 X sup α A≥k MA s=1

k Z 1 X ≤ c (α) α Mk s=1

sup B9 .

n≥Mk

(30)

n≥Mk Ik ×I k

Ãm −1 s X

! |Dn1 s Ms |

ns =0

¯ ¯ sup Aαn ¯Knα,2 ¯

1≤n≤Ms

¯ ¯ sup Aαn ¯Knα,2 ¯

Gm

1≤n≤Ms

 Mp −1 Z k X s X i X X ¯ 1,2 ¯ 1 α−1 ¯K ¯ Mp ≤ c (α) α j Mk s=1 i=0  p=1 j=Mp −1G  m Z Z  ¯ 1,2 ¯ ¯K ¯ + Miα +Miα |D | ≤ c (α) < ∞. Mi Mi −1  Gm

(31)

Gm

Analogously, we obtain

Z sup B9 < ∞.

(32)

n≥Mk Ik ×I k

By Lemmas 2, 5 and (1) we have à A m −1 ! A Z Z s XX X ¯ ¯ 1 sup B9 ≤ c (α) sup α Maα sup ¯Kqα,2 ¯ |Dn1 s Ms | n≥Mk A≥k MA |q|=a a=0 s=k n =0 Ik ×I k

s

Ik ×I k

Z +c (α) Ik ×I k

k−1 ¯ ¯ 1 X 1 ¯ sup α |Dns Ms |Aαn(s−1) ¯Knα,2 (s−1) A≥k MA s=1

∞ k−1 Z X 1 X ≤ c (α) MAα a=0 A=k

Ik ×I k

A X

Ãm −1 s X

s=k

ns =0

!

¯ ¯ |Dn1 s Ms | Maα sup ¯Kqα,2 ¯ |q|=a

ALMOST EVERYWHERE CONVERGENCE

Ãm −1 A s X X

Z ∞ A X 1 X +c (α) MAα a=k A=k

Ik ×I k

Z +c (α) Ik ×I k

( ≤ c (α)

k−1 1 X Mkα s=1

∞ k−1 X A−k+1X A=k

MAα

Ãm −1 s X

a=0

|q|=a

! |Dn1 s Ms |

ns =0

Maα

¯ ¯ |Dn1 s Ms | Maα sup ¯Kqα,2 ¯

ns =0

s=k

+

¯ ¯ sup Aαl ¯Klα,2 ¯

1≤l≤Ms

∞ A X A−k+1X A=k

461

!

MAα

a=k

Maα

a−k+1 (Ma /Mk )α

( i )) k−1 s 1 XX X α + α M + Miα ≤ c (α) < ∞. Mk s=1 i=0 p=1 p By virtue of (30)–(33) we have Z sup B9 ≤ c (α) < ∞.

(33)

(34)

n≥Mk

Ik ×Ik

Analogously, we get Z sup B8 ≤ c (α) < ∞.

(35)

n≥Mk Ik ×Ik

Combining (18), (19), (28), (29), (34) and (35), by Lemma 6 we complete the proof of Lemma 7. ¤ Proof of Theorem 1. For α ≥ 1 Theorem 1 is proved in [4]. Hence it can be assumed that 0 < α < 1. As a consequence of Corollary 2 we have that the maximal operator tα∗ f := supn∈N |tαn f | is of type (∞, ∞). Since this sublinear operator is quasi-local (this is what Lemma 4 means), then by standard arguments (see, e.g., the book [10]) it follows that it is of weak type (1, 1). That is, the proof of Theorem 1 is complete. ¤ Proof of Corollary 1. The set of Vilenkin polynomials is dense in L1 (G2m ), so by the well-known density argument we have that tαn f → f a.e. for all integrable two-variable functions f . We remark that the Marcinkiewicz interpolation theorem (see, e.g., [10]) also gives that the maximal operator tα∗ is of type (p, p) for all 1 < p ≤ ∞. The proof of Corollary 1 is complete. ¤ Acknowledgement The first author is supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. M 36511/2001,T 048780, and by the Sz´echenyi fellowship of the Hungarian Ministry of Education Sz¨o 184/2003.

462

´ AND U. GOGINAVA G. GAT

References 1. G. H. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, and A. I. Rubinste˘ın, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. (Russian) ` Elm, Baku, 1981. 2. D. L. Burkholder, Distribution function inequalities for martingales. Ann. Probability 1(1973), 19–42. 3. M. I. D’yachenko, (C, α)-summability of multiple trigonometric Fourier series. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 131(1988), No. 2, 261–263. ´ t, Convergence of Marcinkiewicz means of integrable functions with respect to 4. G. Ga two-dimensional Vilenkin systems. Georgian Math. J. 11(2004), No. 3, 467–478. 5. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh series and transforms. Theory and applications. (Russian) Nauka, Moscow, 1987; English transl.: Mathematics and its Applications (Soviet Series), 64. Kluwer Academic Publishers Group, Dordrecht, 1991. 6. U. Goginava, Pointwise convergence of the Marcinkiewicz means of double Walsh series. Bull. Georgian Acad. Sci. 161(2000), No. 3, 382–384. 7. U. Goginava, Marcinkiewicz–Fejer means of d-dimensional Walsh–Fourier series. J. Math. Anal. Appl. 307(2005), No. 1, 206–218. 206-218. 8. J. Marcinkiewicz, Sur une nouvelle condition pour la convergence presque partout des s´eries de Fourier. Ann. Sc. Norm. Super. Pisa, II. Ser. 8(1939), 239–240. ´ l and P. Simon, On a generalization of the concept of derivative. Acta Math. Acad. 9. J. Pa Sci. Hungar. 29(1977), No. 1-2, 155–164. ´ l, Walsh series. An introduction to 10. F. Schipp, W. R. Wade, P. Simon, and J. Pa dyadic harmonic analysis. Adam Hilger, Ltd., Bristol, 1990. 11. N. Vilenkin, On a class of complete orthonormal systems. (Russian) Bull. Acad. Sci. URSS. S´er. Math. [Izvestia Akad. Nauk SSSR] 11(1947), 363–400. 12. F. Weisz, Convergence of double Walsh-Fourier series and Hardy spaces. Approx. Theory Appl. (N.S.) 17(2001), No. 2, 32–44. 13. L. V. Zhizhiasvili, Generalization of certain theorem of Marcinkiewicz. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 32(1968), 1112–1122.

(Received 11.10.2005) Authors’ addresses: G. G´at Institute of Mathematics and Computer Science College of Ny´ıregyh´aza P.O. Box 166, Nyiregyh´aza, H-4400 Hungary E-mail: [email protected] U. Goginava Institute of Mechanics and Mathematics Faculty of Exact and Natural Sciences I. Javakhishvili Tbilisi State University 1, Chavchavadze Ave., Tbilisi 0128 Georgia E-mail: z [email protected]

Suggest Documents