Almost Perfect Nonlinear functions

0 downloads 0 Views 390KB Size Report
I NR IA, D omaine de V oluceau -R oc q uencourt, BP 105 - 78 15 3 , Le Chesnay, ... Pour une bo î te- S à n .... The first infinite class of quadratic APN functions, ...... i=1 ci (x2i a + xa2i ) + F(a) . Then, the set. {DaF(x),x ∈ Fn. 2 } has cardinality.
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Almost Perfect Nonlinear functions Thierry P. Berger — Anne Canteaut — Pascale Charpin — Yann Laigle-Chapuy

N° 5774 Décembre 2005

N 0249-6399

ISRN INRIA/RR--5774--FR+ENG

THÈME 2

apport de recherche

     !"# $# %'&(*),+-+.0/21435),+-67),+ 48 9:: )= : ? )@=BA ? 8 /C=BDEF=BGH)I;5&4=B+-JK( : 8KL = :: NM =O(*67GH)QP;5&=BJAK. RSUTV5WXY[ZC\]U^_W!`baQc,^bd^_W` WeNdqfg`hrsdaQijtu`lWe2knmFvwVayoBxyaQW`bk ^hp,ijW z{fQ|U|BaQrsexUW!rsW-d}SUWr}d}SUW~]B€@Q‚ƒY…„N\-dWV†oUr‡W!XQˆQˆ@€‰YXgІ|jfQcQWk ∗





§

‹ŒKŽ‘U’QQ“•” W‰^_]F–,Wknes^bc,fe‡WCksaQV>WCaQ|BW]#|Ur‡aQoU`bWV'k—aQ]™˜{`bV>a,kneqWrnš›W-dœe{{a,]U`_^b]UW-fgr!žŸ˜Nq2 —š›ij]jdœ¡ e‡^_a,]jk{a–,Wr{f>¢O]U^£e‡W!¢jW`bx¤aQš¥d}Sjfgr}fQdesWr‡^hkue‡^bd 2 ¦ ” W|Ur‡a–F^bxyW!]jW§¨d}Sjfgr}fQdesWrs^b©fges^baQ]jk—agš˜Nq¨š›ij]jdœ¡ e‡^_a,]jk¥fQ]jx5agš ˜{qª|OWrsV†iye‡fges^baQ]jk4oFm†V5W-fg]jk¥agšBesSUW^_rdaQV>|BaQ]UW],e4š›ij]jdœe‡^_a,]jk ¦ ” W{cQW]UWr}fg`b^b©Wkna,V>W r‡˜NWqksiUª`_e‡kwš›iUag]jšdœ{e‡^_a,mF]joOkWrsc#” žuW‰«-¬Qfg¬g`hkn‚Fa! ¥š›fQay]jdxijkknesa,r‡]'W]jescgSjesW2SjdWf,]knf5W2agdš®a,]p@tuijWf,dxyesiUr‡fgr‡W2es^hda,]­š›iUe‡]jSUdW‰es^biUaQ|U]j|Bk Wr” oOWCa,iUda,]j],xe‡rsag^bš®oU]jiyaQe‡W{]U`be‡^_a]jWesfgSjr‡WC^_eudm5iUaQrn¡š r‡W]@e§—aQr‡¯yk¥a,]­˜{¦ q°p@ijfQxyr}fe‡^bdš›iU]jdœe‡^_a,]jk±@oFm5|Ur‡a–@^b]Uc!e‡Sjfef`hfgr‡cQW{d¦ `bf,kskagš®p@ijfQxUr‡fges^hdš›iU]jdes^baQ]jk dfg]U]jageoOW˜Nq ¦ ²¤³@´7µ‡¶· ¸KŽQ“[¹ a@a,`_W-fg]#š›iU]jdes^baQ]l±l˜N`_V>a@kueCoOW],eCš›iU]jdes^baQ]l± fQ`_V>a,kne2|BWrsš›Wde2]Ua,]U`b^_]UW-fgrNš›iU]jdœe‡^_a,]l± |Ba§—Wr—š›iU]jdes^baQ]l±U|BWr‡ViUe‡fe‡^_a,]|BaQ`bmF]UaQV>^hfg` Qà áœâKã º$Þä*»#Ý_å ¼¾â ½¿*Þ¼u»Á×CÀÁÕæ¼u×sÀÃçuޜÂ}Û ÄÁâ şÜ¿*ÆHØbÂ}ÝbޜǾ׿‰È}èFÉ¥é-Ùæ¿HޜÊÁÛ ËÌÅ2áœêÍÁëŸÂ}ìÍQëÚíüuÆ{îœÎlï-êÂ}ÅNºlÀÁÍÁ¼uÏÁÐðÄÁÂ}ËÌÐÌÀÁËÌÅH¼ ÊÁê ¼uºKÀ#ÏÁËÌş»¿*ÆH¿HÂ}ÊÁÐÌË̼¼ êgÍÁì ÆŸ¼uÈÍ-Çu¿H¼u¼u¼uñ—ÀÁËÌÄg»Á¼uќÆKʼnò È}îœÉîœï-Òó ÓӜÔ'՟ÖBÖOÖ0վרÚÙnÛ¾×gܜØhÝbޜ×gÜœß ÂÇn}ȜÏ-»¿*Ê-¿HÆHȜºôËÌÆHÄÁÅ4ÏÅ*¿*Î Ê-¼uȜȜÀ‰ÆŸÏÁ¿¿HÐÌÀÈõ¼uËÌÐÌñËÌÆHøœÅH¼ÍÁËÌȜƟ¿*»'ÈsÈNõÈ}¼¿*ɮʿH¿HÂ}ÊÁÊÁ»-¼4ËÌø‰Åñ{¿*ÍÂ}ÊÁÂ}»¼ÍgÏ-¼uÂ}Å*ÆwÇu»ÁÆHȜήËÌ»ÍËÌù¿ÐÌÐBóñÄgȜ¼ÏÁÅ4ÍÁÏÁƟ¼¾Ä-õ-ÐÌËÌËÌÅ*¼¾ÊÁÎ ¼u¼uÀ>ƟÅËÌ»>ήÊÁÕHÖOÈ ÖBê ÄÖ°ùè»۟ÏÁÜñ×äæ¼uÜƟȜönÏÁØhÝ_Å4Þ×ÇuȜäNñޜñ×5¼nÕ¾»×s¿Hç¾Å4ÞœÛ Â}â »ÁÀܜØhÝ_Å*ޜÏÁ׃ќќè@¼uşé-¿*ÙæËÌȜޜ»ÁÛ áÅ ÷!ê Êí ÂuÊ-õ¼¼ ¼ hñ{Â}ËÌú Ðë Fº$¿*û®lÊ-üëË̼nº Ɵê@ƛê ýù Â}ó ÄgÇu¼uȜÏÁƟñ{Рќ¿*¼nþ{Â}Æ ËÌK»ÁÀÁ¼¼uÏÁÅ »ÁÀÁìËÌÐ̼ ÇuËÌñ Ë̼uO»Áó É_ȜÇuÆ Ð̼uÏÁŗÇuÀÁ¼nÂ}¼ Ï ú ËÌñÈÇȜќÏÁ¼użuêB»ÁÇuÿ Ȝò ÏÁ‰ÂƟ¿ uê õ¼n»ÏÁ¼{ºKÿnîœÐÌÄgï ¼uƛ¿ í -ÊÁÿnȜï ñ{Â}ê Å ê ¼ô}î û7œÊÁî ¼uÅ*ú »ÁËÌñÂnù Ȝê­Ñœ¼uý ÅÆ*Â}û7»-¼uÇnÀÁ¼ ¼¾ó ½ êUý ¼ ÆHÚÂ}ñ{»ÁÂ}ÇuË̼ Ð ó ú ºK»Á»Á¼ Ý ó û Ù Â}âw»ê¿*¼n¼ Â}ÚÏ-ñ{¿ Â}KËÌÐËÌ»ÁƟËðÂÂ}Å*ó ÉbÇnÆ Â}Ð̼ ó û7ÊÂ}ƟÍÁËÌ» KËÌ»ÁƟËð ó ÉbÆ Ý Ù âwê ¼ Úñ{Â}ËÌÐ BÂ}»Á» ó ú Â}ËÌќÐ̼ Ÿû7ÊÂ}Í-Ï-ù KËÌ»-ÆHËð ó É_Æ 



† ‡ §

 

 

 

 





"!





 







 







#

Unité de recherche INRIA Rocquencourt





 # $##K 5"# #Kœ $ { †  œ   Ž  “ fW]@e¥xyW-k4|Ur‡aQ|Ur‡^_\es\-kKxUW`bf2š›aQ]Odœes^baQ]'xyWksiUojknes^_esiye‡^_a,]'iyes^b`b^bks\WxUfQ]jk4`hfNš›a,]jdœe‡^_a,]'xyW—esaQijr ¦ vwWene‡WNš›a,]jdœe‡^_a,]l±yfg|U|BW`b\WG@HC;I9J+KJLO±FW-kueiU]UW2š›aQ]jdes^baQ]­–,WdesaQr‡^bW`b`_W{r‡W|jrs\-knW],e‡\W{|OfgrknW-kwdaQV>|Oa@ksfQ]@esWk oBaFaQ`b\W]U]UWk ¦ „Cfg]jkdWene‡Ww\esijxUWw]Ua,ijk$]UaQijkK^b]@es\r‡Wk‡ksaQ]jk$fgiNM!oBa.OhesWkn¡QPp@iU^@|Urs\-knW]@esW]@eK`bf2V>W^b`_`bWiUr‡Wr‡\ks^hkue}fg]jdW fQiNM:;r‡\ks^hkue}fg]jdWZY>dWene‡W¦ dr‡m@|Ue‡fg]Ofg`bmFksWCWknep@ijfQ]@nes^_¢j\W‰|jfQr`_W!|jfQr‡fQV>Tesr‡W δ(F ) [ F n 2

δ(F ) = max #{x ∈ Fn2 , F (x + a) + F (x) = b}.

N\ ]UW‰daQ]Oxy^£e‡^_a,]xyW‰ks\dijrs^_es\2Wknep@iUWC`bf5xy^hkue‡rs^boUiye‡^_a,]xyW-k—–ÁfQ`_WiUr}kwxyW2esa,iyesW-k—`_W-k—xU\r‡^_–,\WkwxyW kna,^£e |jrsayd}SUW5xyW>`bf#xy^hkue‡rs^boUiye‡^_a,]WQ±ld4 W-kues¡JYg¡æxU^_r‡W†p@iUW δ(F ) ksaQ^_eC`bW†|j`_ijk‰|BWe‡^£e|Ba,k‡ks^_oU`bW ¦ FR®a,iyesW oBa.OhesW¡P F Y n W]@e‡rs\Wk—We n ksaQrses^bWkw–Q\rs^_¢jW δ(F ) ≥ 2 ¦  Wkwš›aQ]Odœes^baQ]Ok F e‡W`b`_W-kp@iUW δ(F ) = 2 ksaQ]@e xU^£e‡W kU>]')+1+3,U>,:.'^=:;$9J+G+*,_*]C.*,KBX$9*`/#:.$9')CžH˜{q±5$2a9Eab±OfQ`_V>a,kne|OWrnš›W-dœe{]Ua,]U`b^_]UW-fgrœ  ¦ WkNš›aQ]jdes^baQ]jkC˜{q ksaQ]@eCxUaQ]jd†x74 ij]IcQr}fg]Ox™^_]@es\r)be2W]fQ`_WcYÃ`hfƒdr‡m@|Ue‡fg]Ofg`bmFksWxU^X67\r‡W]@es^bW`b`bWQ±¥V'fg^hk>dW™kna,]@e5fgiOksks^xyWk5aQoUtuWe‡k>xy^hk‡dr‡We‡k W+MUdW|Ues^baQ]U]UW`bk ¦  fƒrsW-d}SUWr}d}SUW­e‡SU\a,rs^hp@iUW™kniUr>`bWk5š›a,]jdœe‡^_a,]jk'˜{q  f?C;Bf.*`g;GAaEa a‡  f­d`bf,ksks^_¢Odfges^baQ]™xyWk{š›aQ]jdes^baQ]jk ˜Nq Wkne`_a,^_]>x74 besr‡WfQd}SUW–Q\WwWe¥xyWVij`£e‡^_|U`bWk|jrsa,oU`_TV>Wkx74 iU]†c,r‡fQ]jx!^b]@es\rHbe4r‡WknesW],e]Ua,]r‡\ksaQ`bijk ¦ NaQijk‰\esijxy^baQ]Ok‰^bd^4iU] dWrse‡fQ^_]xyWr‡]U^bWrCrs\-knij`£e}feCfQ|U|BaQrsesW†xUWkC\`b\V>W]@e}k2]jaQiU–,Wfgi?M#|BaQiUr‰\`bfQoOa,rsWrNiU]UW>d`hfQk‡ks^£¢Odfe‡^_a,]ÃxyWk š›a,]jdœe‡^_a,]jk˜Nq p@ijfQxUr‡fges^hp,ijWk±lWexya,^£embesr‡W>|U`hfQd\­xjfg]jk!`bW­da,]@esWMFe‡W­xyW'|U`bijkn^bWijr‡k‰e‡r‡fÁ–fQiNM¤esr‡Tk r‡\dW]@e‡k±Á^_]j^£e‡^_\-k|jfgrK`WenesW]@eKW]†\–@^hxyW]jdWw`bf2|Ur‡WV>^_TrsW—d`hfQk‡knW—xyWwš›aQ]jdes^baQ]jk ˜Nq¨p@ijfQxUr‡fges^hp,ijWk]Ua,]\-p,ij^_–fg`bW]@e‡Wk8Y>xyWk—š›a,]jdœe‡^_a,]jk|Uij^bk‡ksfQ]jdW-k‰ž›–Qa,^_r-T ‚U±l« Wæ±bž*XgˆQˆ@€Q s  ¦ n · -Ž µ ’o Ž“ š›aQ]Odœes^baQ]OkoOaFaQ`b\W]U]UW-k±Fš›a,]jdœe‡^_a,]jk|Ur‡Wk‡p,ijWC|OfgrsšŸfg^_esWV>W],e]Ua,]`b^b]U\fQ^_r‡Wk±@š›aQ]jdes^baQ]jk |jrsW-ksp@iUW‰da,iUrsoBWk±Fš›aQ]Odœes^baQ]Ok|UiU^hksk‡fg]jdWk±y|Oa,`_mF]?p,V>WkxyW!|BWr‡Viye}fe‡^_a,] ¦ a6=0,b

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+aQr‡W

™} K#   ™® -ƒ ® $  ]^_]@e‡rsayxyijdW>]Uage}fes^baQ]ƒfg]jxƒksaQV>W>ojfQks^bd†|Ur‡aQ|BWrses^bWkC§SU^hd}SV>^_]jc'§wW^_c,S,eagš^_e‡kW+MF|BaQ]jW]@e‡k [ F [x] ¦ a6=0, b∈Fn 2

,

-

/.



 0

2

n 2



n 1( 2

n 2

n 2

a

n 2

n 2

n−1

n

2n

2n



n

deg

2X −1

λi x

i

!

= max { wt(i) | λi 6= 0 },

§SjWr‡W fQ]jx#esSjW§wW^_c,S@e{^bk2dfg`hdij`bfgesWx#a,]™esSUW ¡æfQrsmWMy|jfg]Okn^baQ]™agš i ¦ ” WxUW]UaQesWoFmR$r e‡SUW‰esr}fQλdWN∈š›ijF]jdœe‡^_a,]¤aQ] F ±U^ ¦ W ¦ ±UR®r (β) = β + β + · · · 2+ β ¦ RSUWwš›iU]jdes^baQ] dfQ]†fQ`bksaNoBWrsW|UrsW-knW]@esWx‰oFm ¹ aFaQ`bWfQ]!š›iU]jdes^baQ]jkaQš –fgr‡^hfgoU`bWk±Á^£e}k ¹ aFaQ`bWfQ] #CEC.');$9*`:;J ¦ {aQesW‰FesSOfeesSjWdaFaQr}xy^b]jfe‡Wkfgr‡W!kna,V>n Wes^bV>Wkdfg`b`_W-x­e‡SUWda,V>n|Oa,]UW]@e‡kaQš F ±UojiyeN^_e{^bk V>a,rsW!da,]F–QW]j^_W],e—š›aQra,iUr|UiUr‡|Ba,ksW2e‡a>ijknW‰e‡SUWCš›aQ`b`_a§^b]Uc'xyW¢j]U^_es^baQ]l±U`b^b¯QW‰^_] TÌX‚.W ¦ i=0

i

2n

2n

2

2n−1

ë lë º  

€

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+e‡SUW a,iUr‡^_Wr‰žŸaQr ” fg`hknSB wesr}fg]jknš›aQr‡V agš f [ F(f ) X ž*XQ  (−1) = 2 − 2wt(f ) , F(f ) = §RSjSjWW{r‡š›W iU]jwt(f des^baQ)] ^hk2^beskSUWk‡fg^hx>fgesV>a†V>oO^_W]Uc™@#:.§—BD:;W*`^bcQ##S@Ne2^_aQš$š fQf]jx'± ^ aQ¦ W ]j¦ `_± m>e‡^_SUš W>]FiUVoBWr‰aga,š r±@xWp@∈iUF^b–fg`bWkn]@iOesd}`bSÃmQ± esSOfe f (x) = 1 ¦ 



 



(

2n

2n

2n

λ



2n

(

0

λ

2n

n

n

a

∗ 2n

2n

a

n

f (x)

n

x∈F2n

n 2



wt(f ) = 2n−1

F(f ) = 0

f

#³  Ÿ·  ]", ” fg`hknS¤ks|OW-dœe‡rsiUV C = f ∈ B $j-9", A3NBf0$j+ 



 

¦

(

n

{F(f + ϕa ), a ∈ F2n } .

]"?N]Ua,]U`_^b]UW-fgr‡^£eum CQ= f $j $9,:.'0$2:.B9BX@#*S Cš›iU]jdes^baQ]jk ¦ RSUW™]Ua,]U`b^_]UW-fgr‡^£eum aQšCf]Ua§xyW¢j]UW-xôoFm V>WfQ]jk>agš2esSUW ]jaQ]U`b^_]jWfgr‡^_es^bWk—agš^£e}k{da,V>|Oa,]UW]@e‡k ¦ F F F »ÏÁñw! Ägí º ¼nÊ-Ælñ—¼nÈ}ÅHÉyÏÁ¼пHÉb¿HËÌÏ-ËÌñÅ*»Á¼¾¼uǾ¿¥Å ¿*ËÌËÌË ÈœÅw¿$»Á‰ÈÅ®ÇuÎ Å*Çu¼¾ÏÁ¼u¿ÆHÆHż4Î$ó ËÌË »¿HÊ>¿HÆHÈƟ¼uÀÁÍQÏÁ¼¾Çu¿H¼uË À!¿*ËÌȜËÌ#» »" Â}ÿnÐÌ%î ÐÌ$'Èn& Î ¿*¼uÊ-À ¼uó!ù2Çní Â}Ê»CÏ-ÅwÄg¼4¿HÊÁÅ*¼¼u¼u5»!Â}Â}ÐÌÅ®ÅHÊ>—ќÅ*Íg¼u»Á¼u¼uǾÆH¿*Â}ƟÏÁÐÌ)Ë ñ¨(s‡¿HËÌËÌ»ÁȜÇu»!ÐÌÏÁÈ}À-É ¼nÅwϼnÂ}Â}ÀÁÇæÆHÊ>‡¿*õœËÌÇ¥Â}ÐÌÉbÏÁÏ-¼»ÁǾή¿*ËËÌ¿HȜÊ5»ÁÅ ¿*ó Ê-¼ (



$



*



n−1

a∈F2n

a

n 2





 



(

n

*

$

(

s 

*

*

n 2



*

*

2n

2n



 

» ï



' e+'#d :.*SJ#:.3N`3N 











#³  Ÿ·  + @# :-=#3N*`+žH˜ ¹  +a ]"?+Λ(F

 e$j) ="?2+* n $jGCEC;*,Bfa !C;')#C .'#d($ = F $jG:.BfC @#+*,]BD:.#:.3,#d 9",:.U$j 

+:;š›aQr—f‰š›iU]jdes^baQ] F a–,Wr F esaoBW2˜Nq§fQk|Ursa–F^hxyWx5oFm>{mFoOWrsc^_]!TÌX‚;W ¦ RSj^bkda,]jxy^_es^baQ]^b]F–Qa,`_–,Wk®esSUWxyWr‡^b–Áfges^b–QW-k®aQšUesSUWda,V>|Oa,]UW]@e‡kKaQš ]esSU^hk4knW-dœe‡^_a,]l±§wWw|Ur‡a–QW¥e‡Sjfe e‡SU^hkdaQ]Oxy^£e‡^_a,]^hkfg`hksa5f>ksiNF­d^bW]@e{daQ]Oxy^£e‡^_a,]#fQ]jx#xyWr‡^_–,W!fg]UaQesSUFWr¦ d} SOfgr}fQdœe‡Wr‡^_©-fe‡^_a,]'o@mV5W-fg]jkaQš e‡” SUW!W]UksiUaQV5e‡fg¡*ojaQ`_šÚm¡æk‡fQp@|Uij|Ufg`br‡m­WNaQ^b]jijxyr{^hdd}fgSjesfgaQr}r}fQkdesagWš$r‡es^b©SUfWe‡^_da,aQ]'V>es|Ba'aQf,]Ud}WSU],^_e}Wk–QagW‰š knFa,V>¦ WC” ]jW‰W§°š›iUrsrsesW-SjknWiUrN`_e‡xyk^ha,k‡d]ij|jk‡k`bfgknesa,WV>fQiUW‰WdxaQš›]iUtu]jW-dœde‡esiU^baQrs]jW-kk ¦ ¦ 

 

"

f ∈ Bn X X ν(f ) = F 2 (Da f ) = 2−n F 4 (f + ϕa ) .

2n

ë lë º  



BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+W ±,e‡SUW]esSjW‰ksiUV ^b]ƒž   W-p@ijfg`hkNfge2`bDWfQknfe 2 D+ ksfa F ^bk2]UaQeC˜{qw ¦ RSUλ^hk26=fQrsλc,iU6=V>W0]@eN§fQk{§^hxyW`_m™ijaksWx™š›a,rN|Ur‡a–F^_]jc­V>aQr‡W c,W]UWr‡fQ`rsW-kniU`_e‡kGTÌX‚W ¦ vwa,]F–QWr}ksW`bmQ±7esSjWkni?F'd^_W]@edaQ]Oxy^£e‡^_a,]^bfQ`OaQš®xyWc,rsWW a,] ]jW]@e{agš F SjfQkxyWcQFr‡WW!fe{V>a@kue 3 ¦ ˜{]FmdaQV>|BaQ]UW3],e f F± λ 6= 0 ±USOfQk{n fQ`_` ^_e‡k2xy¦ Wr‡^_–fges^b–QWkaQšxUWcQr‡WW fgeV5a@kue 2 ž f ^bk—e‡SUW!]FiU`b` š›iU]jdes^baQ]O  ¦ RSU^bk{^_V>|U`b^_W-kesSOfeš›aQr{fQ`_` λ fg]jxš›aQr{fQ`_` a ±y§—WCSOfÁ–QW = 2n #{ (x, y) ∈ F22n | F (x + a) + F (x) = F (y + a) + F (y) } = 22n+1 + 2n #{ (x, y) | Da F (x) = Da F (y), x 6= y y 6= x + a }

a λ

.

2n+2

0

a λ0



2n

λ

0

F(Da fλ ) ≡ 0 (mod 2(n+2)/2 ),

#f da,]UcQr‡iUW]jdW§Sj^bd}Sƒ^bk‰k‡fe‡^bkn¢jWxIoFmÃfg]Fm¤p,iOfQxyr}fe‡^bd]UaQ]y¡æoBW]@e‰š›iU]jdœe‡^_a,] ¦ PFij|U|Oa@knW†esSOfe‰š›aQr!fg]Fm ± W-p@ijfg`hk š›a,rwW+MUfQdœe‡`_m –ÁfQ`_ijWkwagš fg]jx­Wp@ijfg`hk š›aQrwesSUW2age‡SUWr}k RSUW]l± a |F(D f )| oFmfQ|U|U`bmF^_]Uc'RSUWaQr‡WV2 Xy± F ^hk{˜{qw ¦  k^_e{2|Ba,k‡kn^boU`bW2e‡a­da,]jλkue‡rsiOdœe{kniOd}S#f†0š›iU]jdes^baQ] F / ¦ eNš›aQ`b`_a§{kš›r‡aQV esSUW|UrsW–F^_a,ijkesSjWaQr‡WV esSjfge{esSjW˜{q |Ur‡aQ|BWrseum^hkrsW`bfgesW-x#esa>esSjW–fg`biUWkNagšesSUW ksiUV5¡æagšÚ¡¾ksp@ijfQrsW2^_]jxU^bdfesa,r‡k± ±UagšKesSjWdaQV>|BaQ]UW]@e‡kagš F ¦ ν(f ) a λ

(n+2)/2

n−2

λ

 

» ï



Š

' e+'#d :.*SJ#:.3N`3N 

·  · o^_]jWp@ijfg`b^_es^bWk‰ViOkueoBW'Wp@ijfQ`_^_es^bWk ¦ RSUW] F ^hk˜Nq ¦ RSjW'`bf,kuekne‡fe‡WV>W]@e!^hk!^_V>V>WxU^bfgesW`bm xUWxyijdWx ¦  ,.- ‘? o ³  "?+* F $j89",($9* +'#+=#3N*`+]3N'0>?C.n  ')#H:;B9B5^"?+ .:.Bf3,  n ν(f ) 5+ n @# CEea ]"N3% Λ(F ) = max  k ≡ 0 (mod 4) | k < 2 :;*`dN=C.'Z:.B9B λ 6= 0 d a ν(f ) = 2 5+ n @#A .+*`a ]"%3% Λ(F ) = 2 :;*`d`=C.' :.B9B λ 6= 0 d ν(f ) = 2 + 2 a ewfQ|U|BWfgr}kš›r‡aQV vwaQr‡aQ`b`bfQrsm'«e‡SjfeesSUWN˜Nq|jrsa,|OWrneuma,]U`bm5xyW|OW]jxUkaQ]5esSUWNWMFesW]jxyWx ” fg`hksS ks|BWdœ e‡rsijV agš F ±U^ ¦ W ¦ ±ya,]e‡SUW!Vij`£e‡^bksWe λ∈F2n

.

%

/*

2n −2 +*

*



(

λ









λ

,*







2n

(

(n/2)+1

2n+1 *

(

(n+2)/2

2n+1

λ

n+3

Nage‡W‰esSjfge ) da,]jkn^hkne‡kagš4fg`b`l–fg`biUW-k—e‡fg¯,W]™oFm |F(f + ϕ )| fg]jxe‡SUW]FiUVoBWraQš$e‡^_V>W-kesSjWm ayddiUr ¦  ]aQW(F esSUWr—§—aQr}xUk±F^£š ^hk˜{q±jfg]Fm>š›iU]jdes^baQ] kniOd}Se‡Sjfe ) = W(F ) ^hk˜{q°e‡a@a ¦ ] OxyWW-x ± F ^hk˜{qw¨^£š4fg]OxFa,]U`_m^£šKesSUW ν(f ) ksfges^hkuš›mƒFžŸŠQ  ¦ ¹ iyeesSUW!–W(F fQ`_iUW-k ν(f ) fQrsWCaQoUe‡fg^b]UW-xoFm V>W-fg]jkaQš®esSjW!–ÁfQ`_ijWkagšKesSjWknWe W(F ) žŸksWW!„NW¢j]U^_es^baQ]¤Š@  ¦ ” š›ij]jdœRe‡SU^_a,W]jrskW'¦ fQ” rsW5SjaQW]U] `bmIn f^hkš›ayW§xUx W±yMFe‡e‡SUWr‡]jWxyW!W-˜{x q~fgW`hksMFSƒesWks]j|OxyW-Wdœx e‡r‡” f#fg§`hSUknS¤^hd}Sƒks|OfQW-rsdœW5esr}¯Ff>]Ufgar‡§W2]W]@es^baQ]UW-x ¦ e$^bk §—aQrsesS‰]UaQes^hd^b]Uce‡Sjfeleu§—a—š›iU]jdes^baQ]jk fQ]jx §^£e‡Sxy^X67Wr‡W]@e ” fg`hksS‰ks|BWdœe‡r‡fV'fÁm2]UW–,WrsesSUW`_W-ksk oBWksijd}Se‡Sjfee‡SUW^brNda,V>|Oa,]UW]@e‡k—SjfÁ–,WNe‡SUFWk‡fgV>GW!kniUV5¡æagšÚ¡¾ksp@ijfQrsW2^_]Oxy^bdfe‡aQr}k a,r^_]Okue}fg]jdWQ±y§SUW] ^bkayxUxl±,fg`b`y¯F]Ua§]>˜{q š›ij]jdœe‡^_a,]jkaQ] F fgr‡Wknijd}S†esSOfe4esSjW^brda,V5|BaQ]jW]@” ¦e‡k f k‡fe‡^bknš›m ν(f ) = n š›aQr—fg`b` vwaQ]F–,Wr}knW`_m,±geu§—a‰š›iU]jdœe‡^_a,]jkw§^£e‡S'esSUW‰k‡fgV>W{WMFe‡W]jxyW-x fQ`bksSks|OW-dœe‡rsiUV V'fÁm 2 oBW‰knijd}SesSjfgeλesSU6=W‰kn0W¦ e‡k {ν(f ), λ ∈ F } fQ]jx {ν(g ), λ ∈ F } fgr‡WCxy^D67Wr‡W]@e±yfQk—§—W2§^b`b`7ksWWC^b] k MyfQV>|U`_W‰‚ ¦ ³  · Œ o ³ $9*` :;*  =#3N*`+0$2C.* C;* F d n C ed53,#"G^"?:; ν(f ) 6= 2 =C.'_+C. *]C.* +')C λ ∈ F a vwa,rsa,`_`hfgr‡m «>W]jfQoU`_W-k‰ijk‰e‡aÃd}Sjfgr}fQdesWr‡^b©W>˜{q š›iU]Odœes^baQ]Ok§SUW]knWe ¦ PFijd}S fIks^£e‡ijfe‡^_a,]ôayddiUr‡kš›aQr ^b]jkne‡fQ]jdW§SUW] fg`b`e‡SUW f , λ 6= 0 ±¥fgr‡W|j`bfgesWfQiUWx š›iU]jdœe‡^_a,]jk±fQk†|Oa,^_]@e‡Wx a,iye>^_] vwa,rsa,`_`hfgr‡^bWkX fQ]jx V ” SUW] ^hkayxUx ±$esSUWkn^_esijfges^baQ] ^hk!§wW`_`_¡æ¯@]ja§] R$a¤oOWd`bWfgr-±®§—W­ksiUV>V>fQrs^b©W'^_e^b] esSUW ]jWMFe­d¦ aQr‡aQ`b`hfgr‡m nfQ]jx cQ^b–QW™fQk>|Ur‡aFagš‰fƒksSUa,rne'WMy|U`hfg]Ofes^baQ¦ ] ¦ RSUW¤W–QW] dfQksWQ±§Sj^bd}S §—We‡rsW-fe'^b] vwa,rsa,`_`hfgr‡mVy±U^hkV>aQr‡W2^b]@esWrsW-kue‡^_]Uc'ks^_]OdW‰§wW!c,W]UWr‡fQ`_^b©W2esSjWCr‡WksiU`_e{agš{mFoOWrsccTÌX‚U±ORSUWa,rsWV•«ˆ;W ¦ ·  · o`BD:;J#:.3,# :.*` +:.0$j^=# ν(f ) = 2 $j a _')C C =a š ^bkC|U`hfe‡WfQiUWx ±Be‡SUW]|U`_^bWkwe‡Sjfe F ^hk—˜Nq ¦ RSjW2W-p,ij^_–fg`bW]OdWCoOWeu§wWW] fg]Ox {^bkV>W],e‡^_a,]UWx^b]™„2W¢O]U^£e‡^_a,]I ¦  n+1 2

W(x3 )

2n −2

n 2 +1

24g +23g +22g +2g −1

2g+1

24g +23g +22g +2g −1

2g

n 2

3

2g

2g+2

2g

2g

n 2 +1

24g +23g +22g +2g −1

2n

2n+1

∗ 2n

λ



.



-



λ

∗ 2n

λ

!

2n

2

λ

λ

2n+1

∗ 2n

λ

λ

%





(

∗ 2n

+

 

λ

 #

2n

λ



∗ 2n

2n+1 

λ

!

λ

λ

 #

 # 

 

2n

*

∗ 2n

λ

 # 



» ï



n+2s λ

2n+1

  

 #

«-ˆ

' e+'#d :.*SJ#:.3N`3N 











·  · ožŸŠ@ 2SUaQ`hxUkC^_V>|U`bmF^_]jce‡Sjfe‰š›a,r‰ksaQV>W λ §wW5ViOkue!SjfÁ–,W ± $2a9Ea f ^bkoBW]@e ¦ ¤aQr‡WC|UrsW-d^hknW`_m [ ν(f ) = 2 

*



∗ 2n

 

 #

(

2n



λ

*

λ

$



$



n



 # 

2n



*

(n+2)/2

n

(n+2)/2

$

+*



2n

 

λ

λ

2n+2

 #

λ

2n

λ

X

ν(fλ ) = (2n − 1)22n+1 = B22n + N 22n+2

gf ]jx B + N ≥ 2 − 1 ¦ ” W5ViOkueCSjfÁ–QW B = 2(2 − 1) − 4N §^£e‡S −N ≤ B − (2 − 1) ¦ W]jdW §SU^hd}S `bWf,xUk!e‡a §^_esS W-p,iOfg`b^£eum ^_šNfg]jx aQ]U`bmI^_š BN ≤= 4B(2 −−2(21)/3−¦  1)e^bk‰W-p,ij^_–fg`bW]@e!e‡a™k‡BfÁmF≥^_]jc2 e‡·Sj(2fefQ−]@mI1)/3 ]UaQ]ƒoOW]@edaQV>|BaQ]UW]@e f ksfges^hku¢OWk ν(f ) = 2 fg]jx L(f ) = 2 žHkn^b]jdW>^_e^bk|U`bfgesW-fgiUW-xj  ¦  e^bV5|j`_^bWk‰e‡Sjfe Λ(F ) = 2 ¦ vwaQ]F]U–,aQW]#r}knoBWW`_m,]@±7eNf,dksa,ksV5iUV>|BaQW†]jesWSj]@fge‡ekk‡Bfe‡=^bkn¢j2Wk · (2 − 1)/3 fQ]jx fQΛ(F RSFijk±UesSUW (2 − 1)/3 ]jxWw`b^_]jWfgr ¹ aFaQ`bWfQ]!š›iU]jdes^baQ] RSUWr‡Wš›a,rsW,±F^£e{^hkoOW]@e±U^bV>|U`_mF^b]Uc>esSOfe F + L ^bk{]Uage{f>|BWr‡Viye}fes^baQ] ¦ ϕ¦  ,.- ‘? o ³ °RSUWrsWwWMy^bkne4˜{qôš›iU]jdes^baQ]jkfQkKd}SjfQr‡f,dœesWrs^b©W-xC^_]esSUW—|Ur‡W–F^_a,ijkKdaQr‡aQ`b`hfgr‡m RSUWwV5a@kue šŸfQV>aQijka,]UW!^hk F : x 7→ x §SjWr‡W f¹ ^hk{oBW]@eN^_š¥fg]jx™a,]U`_m^£š λ 6= a š›aQrCfg`b` a ∈ F ¦ ¦ {aQesW!e‡Sjfe ^hk˜{q¨š›aQr{fg]Fm n + ^_e{^hk{˜ š›a,rayxUx n ¦ x 7→ x ,.- ‘? o ³   We!ijk!da,]jkn^hxyWr‰fQ]|Oa,]UW]@e‡k f ± ±Ufgr‡W‰|U`hfesW-fgiUW-x ” SUW] ^bkayxUx ±7vwaQr‡aQ`b`bfQrsm­X†^_V>|U`b^bWk—esSOfe±Uš›aQr{fg]Fm>š›iU]Odœes^baQ] §SU^hd}S λ∈F SOfQkCesSjWksfQV>W5W+MFesW]OxyWx ¦ ” fg`hknS nks|OW-dœesr‡iUV fQk F ±fg`b`¥daQV>|BaQ]UW]@e‡k g ± λ ∈ F ±Kfgr‡W>|U`bGfgesW-fgiUW-x a,|yes^bV'fg` ¦ aQr^b]jkne‡fQ]jdW,±yesSUW‰š›ij]jdœe‡^_a,] R®r + x), 1 ≤ i < n + 1 , gcd(i, n) = 1 G : x 7→ x + (x + x) (x λ∈F∗ 2n

n

n

n

n



n

n

λ (n+2)/2

2n+2

λ

(n+2)/2

λ

n

n

(n+2)/2

2n+2

λ

 # 

λ

λ

λ

λ

.

3

3

λ

3

2n

.

2n

λ

∗ 2n

λ

2i +1

2i

∗ 2n

2i +1

2

ë lë º  

«,«

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+|U`bmF^_]UcesSjfge±Bš›aQr‰fg]Fm ±y§—W‰SjfÁ–QW ) = 2 ¦ λ 6= 0 ” SUW] n ^hk!Wν(g xUW¢j]UW-x#^_] T̀EW [ –,W]l± e‡SUW'kn^_esiOfes^baQ]ƒ^hk!daQV>|U`bWe‡W`bmIxy^D6BWrsW]@e ¦ a,r‰^_]jkne‡fQ]jdW,± esSjW­˜{q š›iU]Odœes^baQ] R$r ), 1 ≤ i < n , gcd(i, n) = 1 G : x 7→ x + (x + x + 1) (x SOfQk!e‡SUWk‡fgV>W ” fg`hksSôkn|BWdesr‡iUV fQk x ¦ ¹ iye±4^_e5xUa@W-k]UaQe†^bV>|U`_mƒ2e‡Sjfe>fg`b`w^_e‡k5da,V5|BaQ]jW]@e‡k†fgr‡W |j`bfgesWfQiUWx ¦ a,r'^_]Okue}fg]jdWQ±—š›aQr n = 6 fg]jx i = 1 ± ν(g ) ± λ 6= 0 ±—e‡fQ¯QW-k 30 es^bV>Wk>e‡SUWÖfg`biUW ± 24 es^bV5W-k!e‡SUW­–fg`biUW 2 + 2 fg]jx 9 e‡^_V>W-k!esSjW­–fg`biUW 2 ¦  oF–F^_a,ijks`_m,±lesSjW g š›a,r§SU^hd}S 2 fgr‡W‰]Uage|U`hfe‡WfgijWx ¦ ν(g ) = 2 + 2 RSjW4|UrsW–F^_a,ijk7WMUfgV>|U`bW4|BaQ^b],e}k aQiUelesSjfge esSUWw˜{qô|Ursa,|OWrneumNV>fÁmN`_W-fQx2esaNxU^X67Wr‡W]@e®ksWe‡k {ν(f ), λ ∈ §SUWr‡Wf,ka,]U`_m'a,]UW‰daQ]U¢jcQiUr}fe‡^_a,]­^hk¯@]ja§]^b]­esSjWCayxUx#df,knW ˜ª]jfgesiUr}fg` p@iUW-kue‡^_a,]^hk—esa>xyW¡ F } e‡Wr‡V>^_]UW5§SUWesSUWr2e‡SUW>daQ]U¢jcQiUr}fe‡^_a,]™esSjfgefg|U|BWfQr‡kN^_]xyiUW#e‡aƒ^bV>|U`bWV>W]@e‡fges^baQ] da,]jkue‡r‡fQ^_]@e}k ¦  ] e‡SU^hk'kniUoOknW-dœes^baQ]®±§—W™xU^bk‡dijk‡k5esSj^bk>a,|OW] |jrsa,oU`_WV ¦ ³  · Œ o ³ 5+ F @#-:(>?+'m3N:.0$2C.*C.* F d n  .*]a R$9S>?C.H$2@+BDi=C;' F CA@H   ” W!§^b`_` ¢Or‡knersW–@^bW§ §Sjfe^hk¯F]Ua§]fQoOa,iyeesSj^bk|jrsa,oU`_WV ¦  ³F·  ³  F @#m:;*,Z>,'A3NJ:;|Uiye‡Wr-±yš›aQr2^_]Okue}fg]jdW!^_] TÌXgˆW 2^hk{W-fQksm'esa|Ursa–,WQ±Uks^_]OdW!^_š e‡SUW] F (F ) = F ¦ RSFijk±y§^£e‡S F = {0, 1, β, β + 1} ±y¦ §—W‰aQoye}fg^b] [ F ∈ F [x] 

.



-



*

$

2n



2n





$

 

$

4

 #

$

2t

 # 

$

λ



∗ 2n

 



4

4

4

{§fQk—|Ur‡a–QW-x­oFm aQi T XQˆW ¦

4

F (0) + F (1) + F (β) + F (β + 1) = 0.

 #

 



» ï



«ÁX

' e+'#d :.*SJ#:.3N`3N 











RSUW5š›a,`_`ba§^_]jcr‡WksiU`_e‰§fQk2|Ur‡a–QW-xÃoFmÝ{mFoBWr‡c#^b] T XVW [  n @# .*]a ^=:.*Sm>?+'m3N:.0$2C.* $ j G3,H" 9",:.-:.B9B $9?C;*`+*,?∈+'Fm3N:.0$2C.* CQ= F ¦ q4fQrne‡^bfQ`_`bm­oBFW]@e{š›iU]jdes^baQ]jkNfgr‡W‰f ¯F^b]jx#agš4|U`hfe‡WfgijWxš›iU]jdes^baQ]jkN§SU^bd}S™SjfÁ–,W‰`_^b]UWfQrNknesr‡ijdœe‡iUrsW-k{fg]Oxe‡SUW|Ur‡aFagšagš4{mFoBWr‡c>š›rsiU^_enš›ij`_`bm iOknW-x™esSUW>]UW-dW-ksk‡fgr‡mdaQ]jxy^_es^baQ]?+'m3N:.0$2C.* $ = :.*]C.*SBf$ =HdS=C;'m:.B9B a ∈ F d  "?:  F 

*

1$



∗ 2n

λ

2n

 # 

2n

∗ 2n

λ

n

a λ

∗ 2n

a∈F∗ 2n

-

/.



 

%



2n



C;*?+#13,+*,0Bf F $j :.*

X

_')C C =a

∗ 2n

λ

+*

(

F(Da fλ ) = −2n

>,'A3N:.0$2C.* $ =m:.*` C.*SBf$ =HdS=C.'A:.*, a ∈ F d X :.*` X F (D f ) = 2 . F(D f ) = −2 λ∈F∗ 2n



∗ 2n

n

a λ

λ∈F∗ 2n



2n

∗  2n

X

F(Da fλ )

2

a λ

2n

λ∈F∗ 2n

=

X

λ∈F∗ 2n

λ∈F∗ 2n

=

X

R$r $R r X (−1) X

(−1)

(λ(F (x)+F (x+a)))

x∈F2n

(λ(F (x)+F (x+a)))

.

R SjW5`hfQkne!kniUV ^bk!d`_W-fgr‡`_m¤W-p,iOfg`Kesa −2 ^£šfg]jxWfQ]jkCesSjfge ^hkf#|OWrsV†iye‡fges^baQ] ¦ RSjW'`bf,kuekne‡fgesWV>W],e!aQšwe‡SUW'|Ur‡aQ|Ba,ks^£e‡^_a,],C.*]*S2 CQ= F a #F3N-^"?:. gcd(d, 2 − 1)F= 1 a `",* 9", -

/.



 



2n

n

ν(f1 ) =

X

(

a 5+

d

+*`C;J ^"? d :;')AH1+3,:.B:.*`



x 7→ xd fλ ν(fλ ) λ ∈ F∗2n

F 2 (D1 fλ ).

 C;')#C .' ^"?+-:.+*,W]@e^hk—xU^_r‡Wdes`bmxyWxUijdW-x š›r‡aQVRs SU=Wa,1rsWVX x¦ z7→W-dxfg`b`7esSOfe F dfg]j]UageoBW˜{Fq°¦ š›a,rW–QW] n žŸksWW!RSUWaQr‡WV Vj±   ¦  RSjW†šŸf,dœeCesSjfge ˜{qw±l§^_esS = x a–QWr F ž n ayxUxj œ±®^_V>|U`b^_W-kCesSjfge ν(R$r (x )) = 2 §SjW] gcd(d, 2 F− 1) = 1 ±y§—f,kF|U(x) rsa–,Wxo@m W`b`bWksWesS Tb«-ŠW®^b]™fQ]Uage‡SUWrdaQ]@esW+M@ežHknWWfg`hknaT Š;WÚ  Wr‡WCfQc,fg^b]l±@esSjWCks^£e‡ijfe‡^_a,]^hk—–QWrsm'xy^D6BWrsW]@e—§SUW] n ^bk—W–,W]#fQk—|Oa,^_]@e‡Wx­a,iye^_]esSUWCš›a,`_`ba¦§^_]jc e‡SUWa,rsWV ¦ zW-dfQ`_`BesSOfe Λ(F ) ^hk—xUW¢j]UW-x­oFm'„NW¢j]U^_es^baQ] ¦ {aQesW2esSjfge—^_e^bk—da,]tuWdesiUr‡Wx­esSjfge Λ(F ) dfg]U]jageoBW`bWk‡k!e‡Sjfg] 2 š›a,rW–,W] n ¦ ” W|jrsa–,W'SUWr‡W­e‡Sjfee‡SU^hk^hke‡rsijW'š›aQr5˜{q|Oa§—Wr š›ij]jdœe‡^_a,]jk ¦  ³F·  ³   n = 2t @# :.*  .* $9*SJ l':.*]cBD+ F @H:.*,-=#3N*]0$2C.* C;* F C =m^"?(=C.' a 5+ f +*`C;J ^"?AHC;(>,C.*]*S2 C = F a ]",*,d F $j  $ =m:.*` C.*SBf$ = x 7→ x i=0

µ∈F2n

d

2n

d

 # 

d

2n

n





(n+2)/2



d 

*



2n

(

λ

ν(f1 ) + 2ν(fα ) = 3 · 22n+1

",'H α j$  :Z>`'$9A$90$ +BD+G+*,_CQ= F a  C.'HHC +'#d $ = F $j  d ^"?+*!$9 :;W‰esSjfge 











¦ RSFijk±Fš›r‡aQV q¥r‡aQ|Ba,ks^_es^baQ]#‚j±y§—W!SjfÁ–,WNš›a,r{fg]Fm a [

gcd(d, 2n − 1) = 3 X 3 F 2 (Da fλ ) = ν(f1 ) + 2ν(fα ),

§ SjWr‡W ^hkfN|Ur‡^bV5^_es^b–QWW`_WV5W]@eKaQš RSU^hkda,V5W-k$š›rsa,V¨esSUWwšŸfQdeesSjfge ν(f ) = ν(f ) oOW-dfQijknW oBage‡S#š›iUα]jdœe‡^_a,]jk{fQrsWC`_^b]UW-fgr‡`_m­W-p@iU^_–fQF`_W],e ¦ ¦ zW-dfQ`_`OesSjfge^_š ^hkw˜Nq±F§—W{SjfÁ–QW žŸksWWNq¥rsa,|Oa@kn^_es^baQ]V,  ¦ W]jdWQ± f,ddaQr}xy^_]jce‡a>RSjWaQFr‡W:Vx 7→XF± Fx ^hk{˜Nq¨^_šfQ]jxa,]U`bm­gcd(d, ^£š 2 − 1) = 3 λ∈F2n

2n

α2

α

d

n

'

ν(f1 ) + 2ν(fα ) = 3 · 22n+1 .

 We g ± λ ∈ F ±yxyW]Uage‡WesSjWCdaQV>|Oa,]UW]@e}k¥agš G : x 7→ x a–,Wr F ¦  š F : x 7→ x ^hkw˜Nq0e‡SUW] ± ±y§^_esS gcd(d, 2 − 1) = 3 ¦ RSFijk§wW‰SjfÁ–,W [ d=3 k r>0 R®r X (−1) F(f ) = R$r X (−1) = R$r = F(g ). X = (−1) λ r

3

2n

d

2n

n

(λxd )

λ

x∈F2n

r

(λy 3 )

y∈F2n

(λz 3 )

λ

RSj^bk^hk{oBWdfgijksW x 7→ x ^hk 3¡*esaQ¡ 1 š›rsa,V F esa>e‡SUWksWe { z | z ∈ F } ±Bkn^b]jdW u = v ^£š¥fg]Ox a,]U`bm­N^£aš §ƒ(u/v) §SUWr‡W β ∈ FR®r ¦ RSUWw–ÁfQ`_ijWklaQš §wWrsWwxyWe‡Wr‡V5^b]UW-x u = vβ§^£e‡S §—WSOfÁ–Q=W 1F(f±Fe‡Sjf)e{=^hk F(g F(g ) oFm#v—fQrs`b^_es©GT_«ÁXF±jRSUWaQr‡WV «+W [ ) g (x)= (λx ) ¦ z∈F2n

d

λ

3

∗ 2n

3

λ

∗ 4

λ

d

2n

3

d

λ

(−1)t+1 2t+1 , (−1)t 2t

F(gλ ) =

¦ ” WxyWxyiOdWCesSjfge fQ]jx F(f ) = 2 ; F(f ) = −2 š›a,rW–,W] t fQ]jx fg]jx F(f ) = −2 F(f ) = 2 š›a,rayxUx t ¦ ÃaQr‡Wa–QWr±@§—WCSOfÁ–QWCš›aQr{fQ]@m t [ f,ddaQr}xy^_]jc5f,k λ ^bka,r^bk]jageNf>diUoBW!^b] 1

1

F∗2n

t+1

t

t+1

α

t

α

Λ(F ) ≥ |F(f1 )| = 2t+1 .

z W-dfQ`_` e‡SjfeNš›aQr{ayxUx ±U^_eN^hk§wW`_`_¡æ¯@]ja§]e‡Sjfe ) ≥ 2 š›aQr2fg]Fm­š›iU]Odœes^baQ] F aQ] F §Sja,ksW^bV>fQcQWwSjfQkKxy^bV5W]jksn^_a,] n ¦ RSUW]UW+MFedaQ]tuW-dœesijΛ(F rsWda,V5W-k®]Ofesijr‡fQ`_`bmCš›rsa,V e‡SUW|Ur‡W–F^_a,ijklr‡WksiU`_e ¦ · -³ ’gE ® ³  F @# :.*, =#3N*`+š›a,r n ∈ {10, 20}  fg]jx  ν(f ) = 2 +2 2 +2 −1 ν(f ) = 2 −2 2 +2 −1 . WrsW,±U§wW‰SjfÁ–,W Λ(F ) > 2 ¦ .

2n

n 2

i

2n+2

1

4g

1

2n+1

n+2g+1

3g

2g

g

g

2n+1

α

n+2g

2g

g

n 2 +1





2g

2n

α

(  *

  



” W!|Ur‡W–F^baQijks`_m>š›aydijknW-x#aQ]™˜{qδ(F) °š›iU]O≥dœes4^baQ]Ok±U^ ¦ W ¦ ±yesSUW‰š›ij]jdœe‡^_a,]jkš›aQr§Sj^bd}S 

δ(F ) =

max

δ(F ) = 2

§^_esS

#{x ∈ Fn2 , Da F (x) = b}.

Na§!±j§—W|BaQ^b],e2aQiye{e‡SjfeCkna,V5WrsW-kniU`_e‡kNaQ]#esSjW†ksiUV5¡*aQšÚ¡æk‡p@ijfgr‡W‰^_]jxU^bdfesa,r‡k{agšesSUW†daQV>|BaQ]UW]@e‡k{aQš dfQ]#oBWxyWrs^b–QW-x'š›r‡aQV Nm@oBWr‡c,4 kr‡WksiU`£e TÌX‚;W*±y§SUW] δ(F ) ≥ 4 ¦ F  · · Ž  Ÿ·  + @H :i=#3N*`+0$2C.*R=#')C; F $9*,C F i$9^" #C.R>,C.*`+*,W‰]Uage}fe‡^_a,]#f,k^_]¤„2W¢j]U^_es^baQ]IX ¦  We a ∈ F oOWksijd}S#esSOfeesSjWr‡WCW+My^bkne‡k §^_esS §^_]Ub)c†š›=aQr‡Vδ(Fij`bf>) ¦ xyiU W‰We e‡a'A{mFxyoOWW]Ursagcce‡W†TÌXe‡‚.SUW W>š›]FaQiUr{VfQ]FoBmWr!aQš b ∈ F kniOd}SÃesSOfe δ(a, b) = i ¦ bz{W∈dfQF`_`7e‡SUW‰š›aQ`b`baδ(a, [ a∈F λ∈F2n



∗ 2n

2n

2n

i

∗ 2n

X

” WxyW-xyijdWCe‡Sjfe

λ∈F2n

F 2 (Da fλ ) = 2n

X

δ 2 (a, b) .

b∈F2n

δ(F )−2

2

−n

X

2

2

F (Da fλ ) = δ(F ) Aδ(F ) +

X i=2

λ∈F2n

δ(F )−2

≥ δ(F )2 Aδ(F ) + 2

X i=2

 

» ï



i2 A i

iAi ,

žn«Q«- 

«-Š

' e+'#d :.*SJ#:.3N`3N 









§^_esS™W-p,iOfg`b^£eum­^_š4fg]jxaQ]U`bm­^_š δ(a, b) ∈ {δ(F ), 2, 0} š›a,r{fg`b` b ∈ F ¦ ¤aQr‡Wa–,Wr-±,§—W‰SjfÁ–QW 2n

δ(F )−2

X

RSFijk±

iAi = 2n − δ(F )Aδ(F ) .



žn«-XQ 

i=2

X

F 2 (Da fλ ) ≥ 22n+1 + 2n δ(F )(δ(F ) − 2) ,

§^_esS™W-p,iOfg`b^£eum­^_š4fg]jxaQ]U`bm­^_š A = 1 fg]jx A = 0 š›aQr{fQ`_` 4 ≤ i ≤ δ(F ) − 2 ¦  ·  · o?C '>,'A3NJ:;,C.*]*S2 CQ= f a ]"?+*?dU:;B9B ν(f ) d λ ∈ F d :.')A#13,:;B:.*]G+:.0$j^=# 1) = 1 λ∈F2n

i

δ(F )



+

*



d 

2n

(

λ

λ

 C;')#C .'#d $ =mH1+3,:.BX$9RSj|BWa]l§w±7We‡r—SU|BW5Wr‡ksiUVV5iUe‡¡æagfšÚe‡¡¾^_ksa,p@]ijaQfQšrsWF^b]jxy^h§dSjfgesWa,] r‡kNn ag^hšk^_We‡–,k‰Wd] a,¦ V>|Oa,]UW]@e‡kCfQd}Sj^_W–QW!e‡SUW†`ba§—Wkne ν(fλ ) = 22n+1 + 2n+3

∗ 2n

2n

ë lë º  

«-¬

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+§SUWe‡SUWr—˜{qª|OWrsV†iye‡fges^baQ]jk4aQš WMy^hkuew§SUW] ^hk¥W–,W]l±QesSUWNijknW aQš4|OWrsV†iye‡fges^baQ]jk F §^_esS δ(F ) = 4 ^bk2knij^£e}fgoU`bW!^_],+'m3N:.0$2C.* F C.* F d n  .*,d i$99" #C;(>,C.*]*S2 f d λ ∈ F d 3,#"c^"?:; δ(F ) = 4 :.*] n

4





.



-

!

*



2n

X

λ

∗ 2n

ν(fλ ) = (2n − 1)22n+1 + A2n+3

=C;' +C. 9$ *SJ l' A < 2 − 1 a " ‰ $ ¨ "# $# ˜N]^b]y¢j]U^_esWd`hfQk‡klaQšjp@ijfQxyr}fe‡^bdw˜{qôš›iU]jdes^baQ]jk±§SU^hd}S†fQrsW¥]jage$W-p@iU^_–fQ`_W],e$esa‰fg]FmC|Oa§—Wr®š›iU]jdœe‡^_a,]l± §fQkd}Sjfgr}fQdesWr‡^b©Wxô–QWrsm rsW-dW]@e‡`_m°žŸksWW T ‚.WCfQ]jx Tb«Á W›  ¦ RSU^hkxy^hks|Ursa–,Wk'f daQ]tuW-dœesijrsW¤a,]˜{q λ∈F∗ 2n





 

» ï



n

XQˆ

' e+'#d :.*SJ#:.3N`3N 











š›ij]jdœe‡^_a,]jk#agš†xyWcQr‡WW 2 ±2k‡fÁmF^_]Uc esSjfge™ksijd}Sš›ij]jdœe‡^_a,]jk™fgr‡WIWp@iU^b–fg`bW]@ee‡aôe‡SUWƒ|Oa§—Wrš›iU]jdes^baQ]jk a–,Wr §^£e‡S fg]jx Wr‡WQ±¥§—W¤da,],e‡rs^boUiye‡We‡aƒesSUW x d`bf,7→ksks^_¢Oxdfges^baQ]aQš†˜{Fq p@ijf,xyr‡gcd(k, fges^hd¤š›iUn)]Odœ=es^baQ]O1k ¦ ” 1Wƒ≤|Ur‡ak–QWÃ≤e‡Sjn/2 fe#¦esSjWr‡WƒfQrsWƒ]Ua ˜{q p@ijfQxUr‡fges^hd š›ij]jdœe‡^_a,]jkaQ] F aQš®esSjW‰š›aQr‡V X žn«-€Q  F (x) = cx , c ∈F , W+MUdW|UeCe‡SUW'|Ur‡W–F^baQijks`_mIV5W]@es^baQ]UW-xI|Ba§wWr‰š›iU]jdes^baQ]jk ¦ ” W'§^b`b`¥ijksW†e‡SUW WrsV>^_esWe4 kdrs^_esWrs^baQ] ¦ ˜ |jrsaFagšKagš$esSUW!]UW+MFeesSUWaQr‡WV dfg]#oOW‰š›a,iU]jx#^_] TÌXQXF±ORSUWa,rsWV ¦ ‚;W ¦  ³F·  ³ T WrsV>^_esW4 kdrs^_esWrs^baQ]?W  F @H :;*, *,$9 UB mC = #"?:.'H:+J+'$j]jW'S@mF|BWr‡|U`hfg]UW ¦ vwrsaFa,¯QWxڛiU]jdes^baQ]jkfQrsW'˜ ¹ fg]OxIe‡SUW­a,]U`_mI¯@]ja§]h+')CEC e#5š›iU]jdes^baQ]jk fQrsW‰p@ijfQxUr‡fges^hd ¦ ³  · Œ o ³ C.*?0'3,_'HC C # =#3N*`+^hfg`hkNaQš rs`bmQ±esSjW—d`bf,ksks^£¢Bdfe‡^_a,]!agšj˜Nq p@ijf,xyr}fes^hdš›iU]Odœes^baQ]Ok®^hk®]jage$m,WefQd}SU^bW–,Wx ¦ F [x] §^£e‡S n = 3k fQvw]j`bWx fQgcd(3, k) = 1 ¦ 2n

a



n 2

2n

a



2n

.



-

n 2



a



2n

ë lë º  

XU«

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+,C +'=#3N*]0$2C.* =C.' n 6= 3k d ",'H a gcd(3, k) = 1 ]ÃesSUW5]UWMFe!knW-dœe‡^_a,]l±O§—W|jrsa–,W!esSjfge2e‡SUW†d`bf,ksk2agšp@ijf,xyr}fes^hd‰š›iU]Odœes^baQ]OkCxUW¢j]UW-xÃoFm žu«Á€g {^hkC˜{q a,]U`bmF0 :;*` j > 0 a 

.



-

!



*



-

/.



 

*









+

i

(

2 +2

j

∗ 2n



      (   )(.  *.



Nage‡W2e‡Sjfežn«-€Q w^hk]Uagee‡SUW!cQW]UWr}fg`BWMy|Ur‡Wk‡kn^baQ]agšp,iOfQxyr}fe‡^bdNš›iU]jdes^baQ]jka,] ks^b]jdW‰^_exUa@W-k]Uage b^ ]jd`_ijxUW{fg]Fm!esWrsV agšBesSUW{š›aQr‡V x ±,§^£e‡S i, j > 0 ¦  ]5esSjW{ag”e‡SUWr4SjfQ]jx ±,]UFage‡WesSjfge¥^£š F ^hk¥˜Nq e‡SUW] F + L ^bk˜Nq°esaFaj±F§SUWrsW L ^bkfQ]@m'f;F>]jWC|BaQ`bmF]UaQV>^hfg` ¦ WC¢jr}kue|Ur‡a–QWNf†ijksWš›iU` `bWV>V'f5^_] a,r‡xUWr¥e‡a5d}SOfgr}fQdœe‡Wr‡^_©WesSjWC˜Nq°|Ursa,|OWrneum5š›a,rwe‡SUW‰d`hfQk‡kaQš$p@ijfQxyr}fe‡^bd{š›iU]jdes^baQ]jkxyW¢j]UWxoFm¤žu«-€,  ¦ w³ ‘ 5+ H @HA:Z>,C.BX.*`C.A$2:.BiC.* F 3,#"^"?:. H(0) = 0 :;*`:;W]@e2± k‡fÁ−m 1β ∈ F ±B§Sj^bd}SÃ^hkC]UageC0^_] I ¦  WeCiOk2xyW¢j]UW†esSUW ¦ |BaQ`bmF]UaQV>^hfg` P aQ] F oFm  š›aQr x 6= e H(x) › š Q a r P (x) = . RSjW] e‡SUW^bV'fgcQWagš P Sjf,kdfQr‡xU^_]jfQ`_^_eum 2 ±4V>βWfg]j^_]UxcI=esSjefge P ^hk†fI|OWrsV†iye‡fges^baQ] ¦ Na§ §wW#fgr‡W c,aQ^b]Uc‰esaWMy|Ur‡Wk‡kesSUWN|Oa,`_mF]Ua,V5^hfg` W = H + P ¦ {aQesWe‡Sjfe-±Qš›r‡aQV esSjWNxyW¢O]U^£e‡^_a,]­agš P ± W (x) = 0 ij]U`_W-ksk x = e fQ]jx W (e) = P (e) = β ¦ ” Wd`bfQ^_V esSjfge—e‡SUW!iU]U^hp@iUW!r‡W|Ur‡WksW]@e‡fges^baQ]agš W V>ayxyiU`ba ^bk x +x [   W (x) = β (x + e) +1 . RSj^bk2^bk‰ks^_V>|U`bm™oOW-dfQijknWesSUW5r‡^_c,S,es¡*SOfg]jx™|BaQ`bmF]UaQV>^hfg`fgoBa–QWSjf,k2xUWcQr‡WW 2 − 1 fQ]jxÃ^hkNW-p@ijfg`$esa š›aQrW-fQd}S x ¦ RSFijk§—W‰|Ursa–,Wx­esSjfge W   2n

2i +2j







2n

(



n

n

2n

∗ 2n

2n

n

2n

2n −1

n

P (x) = H(x) + β (x + e)2

n

−1

+1 .

Py^_]jdW P ^hkf†|BWr‡ViUe‡fe‡^_a,]l±y^_e‡kxyWcQr‡WWC^bkfgeV>a@kue 2 − 2 žÚš›r‡aQV RSjWaQr‡WV€g  ¦ RSU^hk^bV5|j`_^bWke‡Sjfe ViOkue{SjfÁ–,WNe‡SUW‰esWrsV βx + ^_e‡k{xUWcQr‡WWC^hk 2 − 1 ¦ H  n

2n −1

 

» ï



n

X,X

' e+'#d :.*SJ#:.3N`3N 



 · · Ž  Ÿ· + F @# *`# @   a ]"?+*?d F $j d $2a9EaDd Q : x 7→ F (x)/x -

/.



 



"

(



Q(x) =

j$  : >?+'m3N:.0$2C.* >?C;Bf.*`C;m$2:;BC;* F a _')C C =a a,r{fg]Fm ±y§—WCSOfÁ–QW a∈F

c i x2

i





$ =:.*] C;*,Bf$ =^"? >,C.Bf.*]C.A$2:.B žn«Ág 



2

n−1 X



−1

i=1

2n

∗ 2n

Da F (x) =

n−1 X

 i  i ci x2 a + xa2 + F (a) .

RSjW]l±®esSUW­ksWe {D F (x), x ∈ F } Sjf,k!dfgr}xy^b]jfg`b^_eum SjfQkf5¯QWrs]jW` agš4xy^bV>W]jks^_a,] 1 ±y^ ¦ W ¦ ± D F i=1

n 2

a

2n−1

^£šfg]jx]jW'|Oa,`_mF]Ua,V5^hfg`

a

›š aQr{fg`b` x 6∈ {0, a} , a,rWp@iU^b–ÁfQ`_W]@es`bm^hfg` ¦ N   a ! § , ± j i s k b ^ U ] c  W ‡ r 5 V _ ^ s e e4 k—dr‡^_esWr‡^baQ]l±,aQ]UWCdaQV>|U`bWe‡W`bm5d}SOfgr}fQdœe‡Wr‡^_©Wke‡SUWN|BWr‡ViUe‡fe‡^_a,]­|BaQ`bm@]jaQV>^£¡ W fQ`bkagšle‡SUW{š›a,rsV žn«Á  RSU^bkw§fQkf,dœe‡ijfg`b`_m>|Ur‡a–QW-x>oFm5q4fÁmF]UW TÌX W7^b]fQ]Uage‡SUWr—daQ]@e‡WMFe±@esSjWNcQW]UWr}fg` |jrsa,oU`_WV agšZ9",#C.R¦ >`BD+ e'A$9*`:;,:.$9' (c , c ) $j E+')Ca ” W‰SjfÁ–,W ± _')C C =a ” W!ijknW Wr‡V>^£e‡W4 kdr‡^£e‡Wr‡^_a,]ƒžHRSUWa,rsWV€g —§^_esS t = 2 + 1 k ∈ [1, n − 1] ¦ i=1

$

2n



k

n−k

k



Q2

 We

k

+1

(x) =

n−1 X n−1 X

k

c2i cj x2

i+k

+2j −2k −1

¦ RSUW!V>a,]UaQV>^hfg` m SjfQkxyWcQr‡WW

.

i=1 j=1

mi,j (x) = x2

i+k

+2j −2k −1

x2

i+k

i,j

+2j −2k −1

≡ x2

n

−1

2n − 1

^_šfQ]jx#aQ]U`bm­^_š

n

(mod x2 + x) .

Na§!±l§—W5iOknW  WV>V'f™X§^_esS µ = 1 ± (u , u ) = (0, k) fg]jx (a , a ) = (j, i) ±®^ ¦ W ¦ ± u = 2 + 1 fQ]jx v = 2 + 2 ¦ ” W†xyW-xyijdWesSjfge m Sjf,kNxyWcQr‡WW 2 − 1 ^£šfQ]jx™aQ]U`bm™^£š {0, k} = {j, i + k RSj^bk2kn^_esijfges^baQ]™ayddiUr‡ka,]U`bm§SUW] fg]Ox RSjWr‡Wš›aQr‡WQ±Fe‡SUWa,]U`_mesWrsV (mod n)} . aQš¥xyWc,rsWW 2 − 1 aQš Q Sjf,k{daFW+F'd^_W]@e c i +c k¦ =e{š›na,`_`ba§{kjesSO=fe{k ¦ e‡SU^bk{esWrsV–fg]U^hknSjWkš›a,r2fg]Fm §SjW] Q ^hk{f5|OWrsV†iye‡fges^baQ]#|Oa,`_mF]Ua,V>^bfQ` ¦ k ∈ [1, n − 1]  Na§!±y§wWdfg]#|Ursa–,WNe‡SUW!cQW]UWr}fg`Be‡SUWa,rsWV ¦ j

n

 

» ï



0

i+k

1

i,j

2k +1

2k n−k k

n

0

1

k

Xg‚

' e+'#d :.*SJ#:.3N`3N 

 ³F·  ³ 

>?C;Bf.*`C;m$2:;B C =

F2n [x]











CQ=-^"? =C.'

Q(x) =

n−1 X

c i x2

i

−1

, ci ∈ F 2n

#:;*,*`C;U@#A:Z>,'A3NJ:;,C.Bf.*]C.A$2:.B3N*,BD# Q(x) = cx i$9^" gcd(k, n) = 1 :.*` c ∈ F a C.*,+H1+3,+*,0Bfd :!1+3,:.'H:.0$2(=#3N*`+0$2C.* F C .' F C =A9",8=C.'  $j  $ =:.*]!C.*SBfc$ = i$9^" gcd(k, n) = 1 :;*` c ∈ F a F (x) = cx _')C C =a  We oBWIksijd}S esSjfge 0 ¦  We r = n − 1 ^_š gcd(k, n) = 1 fg]jx k ∈aQes[1, n§− 1] ” W!§^b`b`l|Ur‡a–QWCo@cm^_6= U S  W s r h ^ s k W ]jxUijdœe‡^_a,]#a,] µ esSOfe ¦ r = n/ gcd(k, n) š›aQr{fQ`_` µ ∈ [1, r − 1], žu«-Š,  c =0 §SjWr‡W2fg`b`B^_]jxU^bdWk—fgr‡WNxyW¢O]UWxV5ayxyij`_a rsa,V esSUWC|Ur‡W–F^_a,ijk¥|jrsa,|Oa@kn^_es^baQ]l± p@ijfges^baQ]Ižn«Š, ¥SUaQ`hxUk š›a,r µ = 1 ¦ {a§!±j`_We µ < r ¦ ” Wf,ksksiUnV>¦ W‰P esSOfe c = 0 š›a,r2fQ]@m 1 ≤ µ ≤k µ − 1 ±OfQ]jx#§wWfQrsW c,aQ^b]Uc†esa'|Ur‡a–QWNesSjfge c = 0 ¦  We u = 2 ¦ ” W!SjfÁ–,W i=1

2k −1 



∗ 2n

*

2n

2k +1 

∗ 2n k

k

k

−µk

k

−µk

Qu (x)

=

n−1 X

c i x2

i

−1

i=1

=

µ Y

j=0

=

n−1 X

ci x

!Pµj=0 2kj

2i −1

i=1

µ n−1 Y X

0

−µ0 k kj (mod n)

µ j=0

kj

c2i x2

!2kj

kj+i

−2kj

j=0 i=1

=

§SjWr‡W fQ]jx ± §Sj^bd}Sa m= (aSjf,,k. .xy.W,c,arsWW) (2a 0

a

µ

X

a∈[1,n−1]µ+1

{aj + kj



µ Y

j=0

kj



c2aj  ma (x)

rsa,V  WV>V'f¤Xy±$§wW'xyW-xyijdW>e‡Sjfe!e‡SUW­–fg`biUW-k‰agš a š›aQr fQrsWCe‡SUa,¦ ksW! knijd}SesSOfe ma (x) = x

j n





j=0

2kj+aj −2kj

∈ [1, n − 1] − 1)

(mod n), j ∈ [0, µ]} = {kj

a,rWp@iU^b–ÁfQ`_W]@es`bm­esSja,ksW‰ksijd}SesSjfge

aj = k(σ(j) − j) (mod n),

(mod n), j ∈ [0, µ]}

š›a,r{fg`b` j ∈ [0, µ] ë lë º  

X,€

BXGC.#8+'^=H+ C.*SBf$9*`#:;' =#3N*`+WC|BWr‡ViUe‡fe‡^_a,] σ agš [0, µ] ¦ PF^_]OdW‰esSjWdaQr‡r‡Wks|Oa,]jxy^b]UcV>aQ]jaQV>^bfQ`bk m SjfÁ–QW!daFW+F'd^_W]@e‡k a

bσ =

µ Y

kj

c2k(σ(j)−j) ,

§—W!xyWxUijdW‰e‡SjfeesSjWdaFWF­d^bW]@e{aQš®esSjW‰esWr‡V aQšKxyWcQr‡WW j=0

X

bσ =

µ X Y

(2n − 1)

^b]

Qu

^hkWp@ijfQ`7esa

kj

c2k(σ(j)−j) ,

§ SjWr‡W S xyW]UaQesW-k4esSjWNcQr‡aQij|5aQš |OWrsV†iye‡fgPes^baQ]jkagš [0, µ] ksijd}S>e‡Sjfe k(σ(j) − j) 6≡ 0 mod n š›a,rwfQ`_` ±U§wW‰SjfÁ–,W oF–F^_a,ijks`_m,±,š›a,r{fg]Fm Py^_]jdW σ(j) 6= j š›aQr{fQ`_` j ∈ [0, µ] ± − j) = 0 ¦ j¦  e‡SUWr‡WCWMy^bkne‡kfge—`bWf,kueaQ]UσWC∈^b]jSxyWM j ∈ [0, µ] knijd}S(σ(j) esSOfe σ(j) ¦ iU š$`_eses^bSU|UW`bW!rsWCagWš My^hkue}kf j ksijd}±yS§esSUSj^hd}fgS e − j^bk `$9* :.*` 5:;$ ;B K 5"?:#>`3N 











 #w"#® „2iUr‡^_]jcesSj^bkw§wa,rs¯7±,aQiUrwV>fQ^_]|UiUr‡|Oa@knW{§fQk¥esae‡fQd}¯F`bW2ksW–,Wr}fg`Ua,|OW]­|Ur‡aQoU`bWV'k¥a,]˜{qwš›iU]Odœes^baQ]Ok ¦ ijrV'fg^b] rsW-kniU`_e‡kSjfÁ–QW­daQ]jdWr‡]ƒ§^_esS ]jaQ]U`b^_]jWfgr‡^_eumQ±˜{q |OWrsV†iye‡fges^baQ]jkfQ]jx p@ijfQxUr‡fges^hd'˜{q š› ij]jdœe‡^_a,]jk ¦ „2Wks|U^_esW2esSUW-knW2rsW-kniU`_e‡k±@§wW2|Oa,^_]@eaQiyewesSjfgef!]FiUV†oOWrwaQš®^b],e‡Wr‡Wknes^b]Uc|Ur‡aQoj`_WV>kwr‡WV'fg^b] a,|OW]fg]jx0esSjfgeesSjWksWIfgr‡WIxy^DF­diU`_e|Ur‡aQoj`_WV>k ¦ ˜{V>a,]Uc e‡SUa,ksWÃaQ|BW]0^hk‡kniUW-k±a,]UWIaQš‰esSUW|Oa,rne}fg]@e!aQ]UW-k‰š›r‡aQV f¤drsmF|ye‡aQcQr}fg|jSU^bd†|BaQ^b],eaQš—” –F^bW§ ^bk!esSUW'W+MF^hknesW]OdW'agš˜{qw |OWrsV†iye‡fges^baQ]jk xUW|BW]jxy^b]UcƒaQ]ôfQ]ôW–QW]ô]@ijVoBWr>agš{–fgr‡^hfgoU`bWk W™§—fQ]@eesaW]@es^baQ] fg`hkna ž›^b] esSjWW–QW] df,knWÁ  e‡Sjfe5aQiUr†rsW-knij`£ea,] esSjW]Ua,]U`_^b]UW-fgr‡^£euma,kne—qWrsš›Wde—NaQ]y¡ `b^b]UWfQr2š›ij]jdœe‡^_a,]jk ¦  ] U')CEH##.$9* .  *,+'*`:.0$2C.*]:.B L`.(>,C$93NC;* *E=C.':.0$2C.* ]",HC;'d L ±j˜xyW`bfQ^bxUWQ±j˜Nijkue‡r‡fQ`_^hfU±?PFW|yesWVoBWr2XQˆQˆ@€ ¦ T V;W kN¦ ¹ ^_SOfgV fQ]jx†˜ ¦ PFSOfgV>^_r ¦ „2^X67Wr‡W]@e‡^bfQ`Udr‡m@|Ue‡fg]Ofg`bmFks^hk$aQš7„ k P@¡æ`b^_¯,W{dr‡m@|Uesa,ksmykue‡WV'k ¦ %C;3N'*`:;B C = 'H>`C.BDC ±O‚Bžu«-  [ V UQXy±B«¬Q¬j« ¦ T ‚W  ¦ ¹ ijxjfgcQSFm@fg]l±yv ¦ v—fQrs`bWe-±,q ¦ W`_¯,WQ±Ffg]jxZ ¦  W-fg]jxUWr ¦ ˜{]­^b]y¢j]U^_esW‰d`hfQk‡k¥aQš®p@ijfQxyr}fe‡^bdN˜{q š›ij]jdœe‡^_a,]jk­§SU^hd}S fgr‡W#]jage­Wp@iU^b–fg`bW]@e'esa |Ba§—Wr'V'fg|U|j^_]Uc@k ¦ vwr‡mF|yesa,`_a,cQm Wq¥rs^b]@e˜{r}d}SU^b–QWQ± z{W|BaQrse2XgˆQˆ@€ ;V,€g¬j±,Xgˆ,ˆ,€ ¦   "!$#%&(')$g¦ T €.W  ¦ ¹ ijxUfQcQSFm,fQ]l±yv ¦ v—fQrs`bWe-±Ufg]jx#˜ ¦ qaQene ¦ NW§ daQ]Okue‡rsijdes^baQ]jk—aQšK˜{`bV>a,kne ¹ W]@efQ]jx#˜{`bV5a@kue qWrnš›W-dœe¥{a,]U`_^b]UW-fgrK|Oa,`_mF]Ua,V5^hfg`hk ¦  ] AC;' )"?C#>C;* C ;$9* A:.*` 'H>]JC '):H>,"%+*    g± |OfgcQW-k8VQˆ %Vj«-€U± ¹ Wr‡cQW]l±y{aQr‡§fÁmQ± Ãfgr}d}S¤XgˆQˆ@€ ¦ T W!˜ ¦ v—fQ],e‡WfQiye±Bv ¦ v—fgr‡`_We±Uq ¦ vwSjfgr‡|U^b]l±jfg]Ox¤v ¦ a,],e}fg^b]UW ¦ q¥r‡aQ|jfQc,fe‡^_a,]d}SjfQr‡f,dœe‡Wr‡^bknes^hdkfg]Ox daQr‡rsW`bfges^baQ]y¡æ^bV5V†iU]U^_eumaQš7Sj^_c,SU`_m>]Ua,]U`b^_]UW-fgr ¹ aFaQ`bWfQ]>š›iU]jdes^baQ]jk ¦  ]  .:.*`#R$9* 'H>`C.BDC ; K -,.0/ 1.-2   ±B–QaQ`biUV>W5«ŠQˆF!aQš #03N') mC. $9* C;(>]3NJ+' L]+$2*]#±U|OfgcQW-k€gˆ@ €,XQXU± ¹ Wrs`b^b]l±jZCWr‡V'fg]FmQ±UXgˆ,ˆQˆ ¦ Py|Urs^b]Uc,Wrs4¡ 34Wrs`hfgc ¦ T́W!˜ ¦ v—fg]@esW-fgiye-± v ¦ v—fgr‡`_We±Bq ¦ vwSOfgr‡|U^_]®±BfQ]jx]JC '+ab±$ž2V@  [ « V@€ B«‚@€U±j«¬,¬V ¦ Tb«Q«+Wv ¦ v—fgr‡`_We±-q ¦ vwSjfQrs|U^b]l±Áfg]jx 3 ¦ B^b]Ua–F^bW– ¦ vwaFxUWk±oBW]@e®š›ij]jdœe‡^_a,]jk®fQ]jxC|OWrsV†iye‡fges^baQ]jklksiU^_e‡fQoU`_W š›a,r{„ k P@¡*`b^b¯QWdr‡mF|yesa@knmyknesWV>k ¦ m+a C e 'H>`C '+ab±K«-€Už*XQ  [ «ÁXQ€ 7«-€ ±U«-¬Q¬QŠ ¦ Tb«-X.W  ¦ v—fgr‡`_^_es© ¦ k My|U`b^hd^_e­W–fg`bijfe‡^_a,]ôaQšCdWrne}fg^b]ôW+MF|BaQ]jW]@es^hfg`ksiUV'k ¦ !:;9",a L]#:.*]ab±—‚Q‚ [ %€ B« ± «-¬@g¬ ¦ Tb« V;W —¦ vwSjfQojfgijxIfg]jx P ¦ 3¥fgijxyW]jfÁm ¦  ^b]U¯yk2oOWeu§wWW]Ixy^D67Wr‡W]@es^hfg`4fg]Ox¤`_^b]UW-fgr‰dr‡m@|Ue‡fg]Ofg`bmFks^hk ¦  ]  .:.*]# $9* 'H>`C.BDC  K -,.0/ 1.-2  j±U–Qa,`_iUV>W‰¬,€Qˆagš 5#+k ¦ $9*,$9 $2+BDm:;*` >>]BDab±BXQˆQˆ@€ ¦ R®a'fg|j|OW-fgr ¦ Tb«-€.WCq ¦ vwSjfgr‡|U^b]l±®˜ ¦ R^_We g– Q^_]UW]l±lfg]Ox 3 ¦ B^b]Ua–F^_W– ¦  ]ƒoU^b]jfgr‡mÃdmyd`b^hd5dayxyWk‰§^_esS V>^_]j^_V†iUV xU^bkne‡fQ]jdW d = 3 ¦ U')Ce@B m * =C;'Ga N'):;*?A$jH$2C;*j±,VeVjž›‚F  [ XgŠF yXQ¬ ±j«¬,¬@ ¦ Tb« W ¦ „2aQoUoBWrses^b] ¦ ˜{`bV>a,kne!|OWrnš›W-dœe]Ua,]U`_^b]UW-fgr‰|Oa§—Wr‰š›ij]jdœe‡^_a,]jk‰aQ] GF (2 ) [ f#]UW§ d`hfQk‡k2š›aQr xy^b–F^bks^boU`_Wo@m™€ ] U')CE#H#;$9* ;ACQ= $9*S$9J $2+BDA:;*` >e>`Bf$2#:.0$2C.*, U1 ±B|jfgc,Wk‰«Q«E%V 7«-Xy«,± n ˜NiUc,ksoUiUr‡cj±jZCWrsV'¦ fQ ]@m,±jXgˆ,ˆQˆ ¦ PF|Ur‡^b]UcQWrn¡ 34Wr‡`bfQc ¦ Tb«ÁW  ¦Nk xyW`H±jZ ¦ ‰mFiUr‡Wc,S@m@fg]l±@fg]jx˜ ¦ qagese ¦ ˜ª]jW§ª˜Nq°š›iU]jdes^baQ]#§SU^bd}S^bk—]UaQe—W-p@iU^_–fQ`_W],e—esa f>|Ba§—WrV'fg|U|U^b]Uc ¦ qrsW|Urs^b]@e±OXQˆQˆ@€ ¦  !   ')$!  !   ¦ Tb«Š;W‰R ¦ W`b`_W-knWesS ¦ PFa,V5W5r‡WksiU`£e}k2fQoOa,iyeNe‡SUW>dr‡a,k‡ku¡¾da,rsr‡W`hfe‡^_a,]š›iU]Odœes^baQ]f;My^_V'fg` `b^b]UWfQr{knW-p,ijW]jdWk ¦  $j+'H  :;9",:.0$2œ±$« [ Xgˆ,%¬ UX;V,XU±U«¬F ¦ Tb«¬;W ¦ ” ¦ q ¦ ^br‡k‡d}Syš›W`hx ¦ U')C +#+`C '):H>,"% *   g±O|jfgc,Wk{X@.%V UXgŠ,ˆU ± 34Wr‡k‡fg^b`b`_W-k± r}fg]OdWQ±jXQˆQˆeV ¦ TÌXy«+W ¦ ¡¾„ ¦ aQi ¦ PyaQ`biyes^baQ]Iesa™f­|Ur‡aQoU`bWV aQš¥q4fÁm@]jW ¦ q¥r‡aFdWW-xy^_]jc,k2agš¥e‡SUW5˜  P71± 34a,` ¦ « V@Xy±B] ¦ «Q± |j| ¦ «¡ ¦ TÌXQX.W‰z ¦  ^hxy`®fQ]jx ¦ {^bWxUWr‡rsW^£e‡Wr ¦ $9*S$9J +BD ¦ v—fQVoUr‡^hxycQW \{]U^b–QWr‡ks^_eum'q¥rsW-ksk± «¬,ŠV ¦ TÌX;V;W ¦ {mFoOWrsc ¦ „N^D67Wr‡W]@es^hfg`b`_m]K C.B C  K 0,.0/ .-2  g±4–Qa,`_ijV5W¤ €™agš #03N')  C;J $9* iC;(>]3NJ+' L7$2+*`#±¥|jfQcQWk €,€ ‚j± ¹ Wr‡`b^_]l±jZCWrsV'fQ]@m,±7«¬Q¬eV ¦ PF|Ur‡^b]UcQWrn¡ 34Wr‡`bfQc ¦

m

2$





*









,(





 





−1





&

1

!

!

 

$

(

n





!

,!

!





 

  





* 





+*



!



n 2

/



!







!



"



+*



 



» ï



&



,(









XQŠ

' e+'#d :.*SJ#:.3N`3N 











TÌX‚W ¦ {mFoOWrsc ¦ PF¡*oBaMyWk'fg]Oxôr‡aQiU]Ox š›iU]Odœes^baQ]Ok'§^£e‡S0daQ]@e‡rsa,`_`hfgoU`bW`b^b]UWfQrs^_eumôfg]Ox xy^D67Wr‡W]@es^hfg` ij]U£^ š›a,rsV>^_eum ¦  ] 5:. L7CQ=# :.') _*`+'H>`0$2C.*hK L U±–QaQ`biUV>Wë-ˆQˆQŠ™aQš 5#+`3N+'  L7$2+*`#±U|jfQcQWk{€  y€,‚ PF|Ur‡^_]Uc,Wrs4¡ 34Wrs`hfgcO±O«-¬Q¬eV ¦ ¦ TÌX W-P ¦ k{¦ q4fÁm@]jW ¦ ˜0daQV>|U`bWe‡W{xyWe‡Wr‡V5^b]jfges^baQ]5agšBesr}fg]jks`bfges^baQ]5a–Qa,^bxUkK^b]5¢j]U^_esWN„2Wk‡fgr‡cQiU^hfg]†|U`hfg]UW-k ¦ i$9*`#+$ K .R+*`aL7 a +aG:;Jai *`:;Jab±   ±j{a–,WVoBWr‰«-¬@F« ¦ TÌX,W kN¦ z ¦ –fg] „2fQVfQ]jx„ ¦ aQ]ªxUWr `hfQk‡k ¦ vwaFxUWk±{cQr}fg|USOk±{fQ]jx0ksd}SjWV>Wk­š›rsa,V ]jaQ]U`b^_]jWfgr š›ij]jdœe‡^_a,]jk ¦ R$Wd}SU]U^hdfQ`{r‡W|BaQrse±zWksWfQr‡d}S V>WV>aQr}fg]jxUiUV™± k ” g¬QˆU±R^b`_oUijrsc \N]U^_–,Wr}kn^_eumQ± RSjW{We‡SUWr‡`hfg]jxUk± ÃfÁmXQˆQˆ,ˆ ¦ TÌXgŠ;W ¦ ¡  ¦ 7Sjfg]Uc¤fQ]jx  ¦ BSUW]Uc ¦ Z‰˜Nv¨¡esSUW­drs^_esWrs^baQ]`3N+'-L]+$2*]#±l«@žH€,  [ V,Xgˆ %VeV@F±j«¬Q¬@€ ¦ TÌXg¬;W  ¦ BSjW]Uc'fg]Ox ¦ ¡  ¦ BSjfg]jc ¦ q¥`hfe‡WfgijWxš›iU]jdes^baQ]jk ¦  ] *E=C.':.0$2C.* :.*] C.AA3N*,$2#:.0$2C.* L7#3N'$90d L ±F–QaQ`biUV>W‰«ÁQX agš 5#+