Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2013, Article ID 683091, 7 pages http://dx.doi.org/10.1155/2013/683091
Research Article Almost Periodic Solutions for Wilson-Cowan Type Model with Time-Varying Delays Shasha Xie and Zhenkun Huang School of Science, Jimei University, Xiamen 361021, China Correspondence should be addressed to Zhenkun Huang;
[email protected] Received 9 October 2012; Accepted 26 December 2012 Academic Editor: Junli Liu Copyright Β© 2013 S. Xie and Z. Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Wilson-Cowan model of neuronal population with time-varying delays is considered in this paper. Some sufficient conditions for the existence and delay-based exponential stability of a unique almost periodic solution are established. The approaches are based on constructing Lyapunov functionals and the well-known Banach contraction mapping principle. The results are new, easily checkable, and complement existing periodic ones.
1. Introduction Consider a well-known Wilson-Cowan type model [1, 2] with time-varying delays πππ (π‘) = βππ (π‘) + [ππ β ππ ππ (π‘)] ππ‘
ππ (π‘), ππ(π‘) correspond to the transmission time-varying delays. It is interesting to revisit Wilson-Cowan system on the following points.
(1)
(i) The Wilson-Cowan model has a realistic biological background which describes interactions between excitatory and inhibitory populations of neurons [1β 3]. It has extensive application such as pattern analysis and image processing [4, 5].
where ππ (π‘), ππ(π‘) represent the proportion of excitatory and inhibitory neurons firing per unit time at the instant π‘, respectively. ππ and ππ are related to the duration of the 1 refractory period, ππ and ππ are constants. π€π1 , π€π , π€π2 , and 2 π€π are the strengths of connections between the populations. πΌπ (π‘), πΌπ(π‘) are the external inputs to the excitatory and the inhibitory populations. πΊ(β
) is the response function of neuronal activity and it is always assumed to be sigmoid type.
(ii) There exists rich dynamical behavior in WilsonCowan model. Theoretical results about stable limit cycles, equilibria, chaos, and oscillatory activity have been reported in [2, 3, 6β9]. Recently, Decker and Noonburg [8] reported new results about the existence of three periodic solutions when each neuron was stimulated by periodical inputs. However, under time-varying (periodic or almost periodic) inputs, Wilson-Cowan model can have more complex state space and coexistence of divergent solutions and local stable solutions which could not be easily estimated by its boundary. To see this, we can refer to Figure 1 for the phase portrait of solutions of the following
Γ πΊ [π€π1 ππ (π‘ β ππ (π‘)) 1 ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] , βπ€π
πππ (π‘) = βππ (π‘) + [ππ β ππππ (π‘)] ππ‘ Γ πΊ [π€π2 ππ (π‘ β ππ (π‘)) 2 ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] , βπ€π
2
Discrete Dynamics in Nature and Society (π»2 ) The quadratic equation (πΎ + π
π₯)(πΌ + ππ₯) = π₯ has a positive solution πΏ, where
50 40 30 20
1 2 π = max{πΏ (π€π1 + π€π ) , πΏ (π€π2 + π€π )} ,
XN
10 0
πΎ = max{ππ , ππ} ,
β10
π
= max{ππ , ππ} ,
(5)
β€ }. πΌ = max {πΏπΌπβ€ , πΏπΌπ
β20 β30 β40 β50 β80 β60 β40 β20
0
20
40
60
80
100
(π»3 ) ππ (π‘), ππ(π‘) are bounded and continuously differentiable with 0 β€ ππ (π‘) β€ ππβ€ ,
XP
Figure 1: Coexistence of divergent and local stable solutions of (2) with almost periodic inputs.
Wilson-Cowan type model with πΊ(π§) = tanh(π§) and almost periodic inputs [10β12]: πππ (π‘) = βππ (π‘) + [1 β ππ (π‘)] ππ‘ Γ πΊ [ππ (π‘) β ππ (π‘) + 5 sinβ2π‘] , πππ (π‘) = βππ (π‘) + [1 β ππ (π‘)] ππ‘
(2)
Γ πΊ [ππ (π‘) β ππ (π‘) + 0.5 cos π‘ sin π‘] .
Throughout this paper, we always assume that ππ , ππ, ππ , 1 2 ππ, π€π1 , π€π2 , π€π , and π€π are positive constants, ππ (π‘), ππ(π‘), πΌπ (π‘), and πΌπ(π‘) are almost periodic functions [12], and set
π‘βR
σ΅¨ σ΅¨ πΌπβ€ = sup σ΅¨σ΅¨σ΅¨πΌπ (π‘)σ΅¨σ΅¨σ΅¨ , π‘βR
β€ = supππ (π‘) , ππ π‘βR
σ΅¨ σ΅¨ β€ πΌπ = sup σ΅¨σ΅¨σ΅¨πΌπ (π‘)σ΅¨σ΅¨σ΅¨ .
Μ (π‘) > 0 1 β ππ
(3)
1 β ππΜ (π‘) > 0, for π‘ β π
.
(6)
For for all π’ = (π’1 , π’2 ) β R2 , we define the norm βπ’β = max{|π’1 |, |π’2 |}. Let π΅ := {π | π = (π1 , π1 )}, where π is an almost periodic function on R2 . For all π β π΅, if we define induced nodule βπβπ΅ = supπ‘βR βπ(π‘)β, then π΅ is a Banach space. The initial conditions of system (1) are of the form ππ (π ) = ππ (π ) ,
(iii) Few works reported almost periodicity of WilsonCowan type model in the literature. Under almost periodic inputs, whether there exists a unique almost periodic solution of (1) which is stable? How to estimate its located boundary? Revealing these results can give a significant insight into the complex dynamical structure of Wilson-Cowan type model.
ππβ€ = supππ (π‘) ,
β€ 0 β€ ππ (π‘) β€ ππ ,
ππ (π ) = ππ (π ) ,
π β [βπ, 0] , (7)
β€ } and π = (ππ , ππ) β π΅. where π = max{ππβ€ , ππ
Definition 1 (see [12]). Let π’(π‘) : R β Rπ be continuous. π’(π‘) is said to be almost periodic on R if, for any π > 0, it is possible to find a real number π = π(π) > 0, and for any interval with length π(π), there exists a number πΏ = πΏ(π) in this interval such that |π’(π‘ + πΏ) β π’(π‘)| < π, for all π‘ β R. The remaining part of this paper is organized as follows. In Section 2, we will derive sufficient conditions for checking the existence of almost periodic solutions. In Section 3, we present delay-based exponential stability of the unique almost periodic solution of system (1). In Section 4, we will give an example to illustrate our results obtained in the preceding sections. Concluding remarks are given in Section 5.
π‘βR
2. Existence of Almost Periodic Solutions Moreover, we need some basic assumptions in this paper. (π»1 ) πΊ(0) = 0, supπ£βR |πΊ(π£)| β©½ π΅π and there exists an πΏ > 0 such that |πΊ (π’) β πΊ (π£)| β©½ πΏ |π’ β π£|
for βπ’, π£ β R.
(4)
Theorem 2. Suppose that (π»1 ) and (π»2 ) hold. If πΎπ + π
(π΅π + πΏπ) < 1, then there exists a unique almost periodic solution of system (1) in the region σ΅© σ΅© π΅β = {π | π β π΅, σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ β€ πΏ} .
(8)
Discrete Dynamics in Nature and Society
3
Proof. For for all π = (ππ , ππ) β π΅β , we consider the almost π π periodic solution ππ (π‘) = (ππ (π‘), ππ(π‘)) of the following almost periodic differential equations:
σ΅¨ σ΅¨ β€ sup [ππ + ππ σ΅¨σ΅¨σ΅¨ππ (π‘)σ΅¨σ΅¨σ΅¨] π‘βR
σ΅¨ Γ πΊ σ΅¨σ΅¨σ΅¨σ΅¨[π€π1 ππ (π‘ β ππ (π‘))
πππ (π‘) = βππ (π‘) + [ππ β ππ ππ (π‘)] ππ‘
σ΅¨ 1 βπ€π ππ (π‘ β ππ (π‘)) + πΌπ (π‘)]σ΅¨σ΅¨σ΅¨σ΅¨ σ΅© σ΅© β€ (ππ + ππ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ )
Γ πΊ [π€π1 ππ (π‘ β ππ (π‘))
σ΅© σ΅© 1 σ΅© σ΅©σ΅©πσ΅©σ΅©σ΅© + πΌβ€ ) Γ πΏ (π€π1 σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ + π€π σ΅© σ΅©π΅ π
1 ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] , βπ€π
πππ (π‘) = βππ (π‘) + [ππ β ππππ (π‘)] ππ‘
(9)
σ΅© 1 σ΅© ) σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ + πΏπΌπβ€ ) . Γ (πΏ (π€π1 + π€π
Γ πΊ [π€π2 ππ (π‘ β ππ (π‘))
(11)
2 ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] . βπ€π
By similar estimation, we can get
By almost periodicity of ππ (π‘), ππ(π‘), πΌπ (π‘), and πΌπ(π‘) and Theorem 3.4 in [12] or [10], (9) has a unique almost periodic solution π
ππ (π‘) π‘
ββ
Γ
σ΅© 2 σ΅© β€ Γ (πΏ (π€π2 + π€π ) σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ + πΏπΌπ ).
(12)
π‘
ββ
σ΅© σ΅¨ σ΅¨ σ΅¨ σ΅¨ σ΅©σ΅© σ΅©σ΅©πΉ (π)σ΅©σ΅©σ΅©π΅ = sup {σ΅¨σ΅¨σ΅¨πΉπ (π)σ΅¨σ΅¨σ΅¨ , σ΅¨σ΅¨σ΅¨πΉπ (π)σ΅¨σ΅¨σ΅¨}
exp(β (π‘ β π )) [ππ β ππ ππ (π )]
π‘βR
πΊ [π€π1 ππ (π
β ππ (π ))
1 ππ (π β ππ (π )) + πΌπ (π )] ππ , βπ€π π
σ΅¨σ΅¨ σ΅© σ΅© σ΅¨ σ΅¨σ΅¨πΉπ (π)σ΅¨σ΅¨σ΅¨ β€ (ππ + ππσ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ )
Therefore, by the above estimations and (π»2 ), we get
=β«
ππ (π‘) = β«
σ΅© σ΅© β€ (ππ + ππ σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ )
σ΅© σ΅© σ΅© σ΅© β€ (πΎ + π
σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ ) (πσ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ + πΌ) β€ (πΎ + π
πΏ) (ππΏ + πΌ) = πΏ,
(10)
exp(β (π‘ β π )) [ππ β ππππ (π )]
Γ πΊ [π€π2 ππ (π β ππ (π )) 2 βπ€π ππ (π β ππ (π )) + πΌπ (π )] ππ .
Define a mapping πΉ : π΅β β π΅ by setting πΉ(π)(π‘) = (πΉπ (π)(π‘), πΉπ(π)(π‘)) = ππ (π‘), for all π β π΅β . Now, we prove that πΉ is a self-mapping from π΅β to π΅β . From (10) and (π»1 ), we obtain
which implies that πΉ(π) β π΅β . So, the mapping πΉ is selfmapping from π΅β to π΅β . Next, we prove that πΉ is a contraction mapping in the region π΅β . For all π, π β π΅β , by (10), we have σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨πΉπ (π) (π‘) β πΉπ (π) (π‘)σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ π‘ σ΅¨ β€ sup σ΅¨σ΅¨σ΅¨β« exp (β (π‘ β π )) [ππ β ππ ππ (π )] π‘βR σ΅¨σ΅¨ ββ Γ πΊ [π€π1 ππ (π β ππ (π )) 1 ππ (π β ππ (π )) + πΌπ (π )] ππ βπ€π
σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨πΉπ (π) (π‘)σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ π‘ σ΅¨ β€ sup σ΅¨σ΅¨σ΅¨β« exp (β (π‘ β π )) [ππ β ππ ππ (π )] π‘βR σ΅¨σ΅¨ ββ Γ
(13)
πΊ [π€π1 ππ (π
β ππ (π ))
σ΅¨σ΅¨ σ΅¨ 1 βπ€π ππ (π β ππ (π )) + πΌπ (π )] ππ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨
ββ«
π‘
ββ
exp (β (π‘ β π )) [ππ β ππ ππ (π )] Γ πΊ [π€π1 ππ (π β ππ (π )) σ΅¨σ΅¨ σ΅¨ 1 ππ (π β ππ (π )) + πΌπ (π )] ππ σ΅¨σ΅¨σ΅¨ , βπ€π σ΅¨σ΅¨ (14)
4
Discrete Dynamics in Nature and Society
which leads to
From (15) and (16), we have σ΅© σ΅©σ΅© σ΅©σ΅©πΉ (π) β πΉ (π)σ΅©σ΅©σ΅©π΅ σ΅¨ σ΅¨ σ΅¨ σ΅¨ = sup {σ΅¨σ΅¨σ΅¨πΉπ (π) β πΉπ (π)σ΅¨σ΅¨σ΅¨ , σ΅¨σ΅¨σ΅¨πΉπ (π) β πΉπ (π)σ΅¨σ΅¨σ΅¨}
σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨πΉπ (π) (π‘) β πΉπ (π) (π‘)σ΅¨σ΅¨σ΅¨ β€ sup β« π‘βR
π‘
ββ
exp (β (π‘ β π ))
π‘βR
σ΅© σ΅© β€ πΎπ σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©
σ΅¨ 1 Γ [ππ πΏ σ΅¨σ΅¨σ΅¨σ΅¨π€π1 ππ (π β ππ (π )) β π€π ππ (π β ππ (π )) βπ€π1 ππ (π
β
1 ππ (π ))+π€π ππ (π
σ΅¨ + ππ σ΅¨σ΅¨σ΅¨σ΅¨ππ (π ) πΊ [π€π1 ππ (π β ππ (π )) β
1 π€π ππ (π
Since πΎπ + π
π΅π + π
πΏπ β (0, 1), it is clear that the mapping πΉ is a contraction. Therefore the mapping πΉ possesses a unique fixed point πβ β π΅β such that πΉπβ = πβ . By (9), πβ is an almost periodic solution of system (1) in π΅β . The proof is complete.
+πΌπ (π )] β ππ (π ) πΊ [π€π1 ππ (π β ππ (π )) β
Remark 3. Obviously, quadratic curve C(π£) := π
ππ£2 +(πΎπ+ π
πΌ β 1)π£ + πΎπΌ satisfies with C(0) β₯ 0. So, Ξ := (πΎπ + π
πΌ β 1)2 β 4π
ππΎπΌ > 0 and πΎπ + π
πΌ < 1 guarantees the existence of πΏ in (π»2 ) and πΏ lies in the following interval:
β ππ (π ))
σ΅¨ +πΌπ (π ) ] σ΅¨σ΅¨σ΅¨σ΅¨ ] ππ σ΅¨ σ΅¨ σ΅¨ σ΅¨ 1 β€ ππ πΏ (π€π1 sup σ΅¨σ΅¨σ΅¨ππ (π‘) β ππ (π‘)σ΅¨σ΅¨σ΅¨ + π€π sup σ΅¨σ΅¨σ΅¨ππ (π‘) β ππ (π‘)σ΅¨σ΅¨σ΅¨) π‘βR
+ sup β« π‘βR
π‘
ββ
σ΅© σ΅© σ΅© σ΅© + π
(π΅π σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅© + πΏπ σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©) σ΅© σ΅© = (πΎπ + π
π΅π + π
πΏπ) σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅© .
σ΅¨ β ππ (π ))σ΅¨σ΅¨σ΅¨σ΅¨
β ππ (π ))
1 ππ (π π€π
π‘βR
σ΅¨ Γ [σ΅¨σ΅¨σ΅¨σ΅¨ππ (π ) πΊ (π€π1 ππ (π β ππ (π ))
1 β πΎπ β π
πΌ β βΞ 1 β πΎπ β π
πΌ + βΞ , ]. 2π
π 2π
π
(18)
Μ2 ) πΎπ + π
πΌ < 1 β 2βπΎππ
πΌ,π
π΅π < (1 β (πΎπ β π
πΌ))/2, (π»
1 ππ (π β ππ (π )) + πΌπ (π )) βπ€π
and hence it leads to a parameter-based result.
β ππ (π ) πΊ (π€π1 ππ (π β ππ (π )) 1 β π€π ππ (π β ππ (π ))
σ΅¨ +πΌπ (π ))σ΅¨σ΅¨σ΅¨
σ΅¨ + σ΅¨σ΅¨σ΅¨σ΅¨ππ (π ) πΊ (π€π1 ππ (π β ππ (π ))
1 ππ (π β ππ (π )) + πΌπ (π )) β π€π
β ππ (π ) πΊ (π€π1 ππ (π β ππ (π )) σ΅¨ 1 ππ (π ) + πΌπ (π ))σ΅¨σ΅¨σ΅¨σ΅¨]|ππ β π€π σ΅© 1 σ΅© β€ ππ πΏ (π€π1 + π€π ) σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅
Μ2 ) hold. Then there Corollary 4. Suppose that (π»1 ) and (π» exists a unique almost periodic solution of system (1) in the region π΅β = {π | π β π΅, βπβπ΅ β€ (1 β (πΎπ + π
πΌ))/2π
π}.
3. Delay-Based Stability of the Almost Periodic Solution In this section, we establish locally exponential stability of the unique almost periodic solution of system (1) in the region π΅β , which is delay dependent. Theorem 5. Suppose that (π»1 )β(π»3 ) hold. If πΎπ + π
(π΅π + πΏπ) < 1 and there exist constants β1 > 0, β2 > 0 such that (1 β ππ π΅π ) β1 > sup
(15)
π‘βR
πΆπ , 1 β ππΜ (ππβ1 (π‘))
πΆπ , β1 Μ 1 β π π‘βR π (ππ (π‘))
(19)
(1 β πππ΅π ) β2 > sup
By similar argument, we can get σ΅¨σ΅¨ σ΅¨ σ΅¨σ΅¨πΉπ (π) (π‘) β πΉπ (π) (π‘)σ΅¨σ΅¨σ΅¨ σ΅© σ΅© 2 σ΅© β€ πππΏ (π€π2 + π€π ) σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅ σ΅© σ΅© σ΅© 2 σ΅© + ππ (π΅π σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅ + πΏπΏ (π€π2 + π€π ) σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅ ) .
[
By Theorem 2, we know that the unique almost periodic solution depends on πΎπ + π
(π΅π + πΏπ) < 1. Choosing πΏ = (1 β (πΎπ + π
πΌ))/2π
π, we get a simple assumption as follows:
exp (β (π‘ β π )) ππ
σ΅© σ΅© σ΅© 1 σ΅© + ππ (π΅π σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅ + πΏπΏ (π€π1 + π€π ) σ΅©σ΅©σ΅©π β πσ΅©σ΅©σ΅©π΅ ) .
(17)
(16)
where πΆπ := πΏ[(ππ + ππ πΏ)β1 π€π1 + (ππ + πππΏ)β2 π€π2 ] and πΆπ := 1 2 β1 + (ππ + πππΏ)β2 π€π ], ππβ1 (π‘) and ππ (π‘) are πΏ[(ππ + ππ πΏ)β1 π€π the inverse functions of ππ (π‘) = π‘ β ππ (π‘) and ππ(π‘) = π‘ β ππ(π‘), then system (1) has exactly one almost periodic solution πβ (π‘) in the region π΅β which is locally exponentially stable.
Discrete Dynamics in Nature and Society
5
Proof. From Theorem 2, system (1) has a unique almost periodic solution πβ (π‘) β π΅β . Let π(π‘) = (ππ (π‘), ππ(π‘)) be an arbitrary solution of system (1) with initial value π = (ππ , ππ) β π΅β . Set π(π‘) = ππ (π‘) β ππβ (π‘), π(π‘) = ππ(π‘) β β (π‘). By system (1), we get ππ
Calculating the upper right derivative of π(π‘) along system (1), one has π·+ π (π‘) β€ π [β1 |π (π‘)| + β2 |π (π‘)|] πππ‘
ππ (π‘) = βπ (π‘) ππ‘
+ πππ‘ β1 [β |π (π‘)| σ΅¨ + σ΅¨σ΅¨σ΅¨[ππ β ππ (π (π‘) + ππβ (π‘))]
+ [ππ β ππ (π (π‘) + ππβ (π‘))] Γ
πΊ [π€π1 (π (π‘
β ππ (π‘)) +
ππβ (π‘
Γ πΊ [π€π1 (π (π‘ β ππ (π‘)) + ππβ (π‘ β ππ (π‘)))
β ππ (π‘)))
1 β (π (π‘βππ (π‘)) + ππ (π‘βππ (π‘))) β π€π
1 β (π (π‘ β ππ (π‘)) + ππ (π‘ β ππ (π‘))) πΌπ (π‘)] βπ€π
+πΌπ (π‘)]
β [ππ β ππ ππβ (π‘)]
β [ππ β ππ ππβ (π‘)]
Γ πΊ [π€π1 ππβ (π‘ β ππ (π‘))
Γ πΊ [π€π1 ππβ (π‘ β ππ (π‘))
1 β ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] , βπ€π
σ΅¨ 1 β βπ€π ππ (π‘ β ππ (π‘)) + πΌπ (π‘)]σ΅¨σ΅¨σ΅¨σ΅¨]
ππ (π‘) = βπ (π‘) ππ‘
+ πππ‘ β2 [β |π (π‘)| σ΅¨ β + σ΅¨σ΅¨σ΅¨σ΅¨ [ππ β ππ (π (π‘) + ππ (π‘))]
β + [ππ β ππ (π (π‘) + ππ (π‘))]
Γ πΊ [π€π2 (π (π‘ β ππ (π‘)) + ππβ (π‘ β ππ (π‘)))
Γ πΊ [π€π2 (π (π‘ β ππ (π‘)) + ππβ (π‘ β ππ (π‘)))
2 β βπ€π (π (π‘βππ (π‘))+ππ (π‘ β ππ (π‘)))+πΌπ (π‘)]
2 β (π (π‘ β ππ (π‘)) + ππ (π‘ β ππ (π‘))) β π€π
β β [ππ β ππππ (π‘)]
+πΌπ (π‘)] β β [ππ β ππππ (π‘)]
Γ πΊ [π€π2 ππβ (π‘ β ππ (π‘))
Γ πΊ [π€π2 ππβ (π‘ β ππ (π‘))
2 β ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] . βπ€π
σ΅¨ 2 β ππ (π‘ β ππ (π‘)) + πΌπ (π‘)]σ΅¨σ΅¨σ΅¨σ΅¨] βπ€π
(20) Construct the auxiliary functions πΉπ (π’), πΉπ(π’) defined on [0, +β) as follows: β€
πΆπ ππ’ππ , Μ (ππβ1 (π‘)) π‘βR 1 β ππ β€
(21)
One can easily show that πΉπ (π’), πΉπ(π’) are well defined and continuous. Assumption (19) implies that πΉπ (0) < 0, πΉπ (π’) β +β as π’ β +β and πΉπ(0) < 0, πΉπ(π’) β +β as π’ β +β. It follows that there exists a common π > 0 such that πΉπ (π) < 0 and πΉπ(π) < 0. Consider the Lyapunov functional
π‘
π‘βππ (π‘)
+β«
π‘
π‘βππ (π‘)
β€ πΆπ |π (π )| ππ(π +ππ ) ππ 1 β ππΜ (ππβ1 (π )) β€ πΆπ |π (π )| ππ(π +ππ ) ππ . β1 Μ (ππ (π )) 1 β ππ
+
β€ πΆπ |π (π‘)| ππ(π‘+ππ ) β1 Μ 1 β ππ (ππ (π‘))
σ΅¨ σ΅¨ β€ β πΆπ σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨ exp [π (π‘ β ππ (π‘) + ππ )] ,
(23)
which leads to π·+ π (π‘) β€ [(π β 1) β1 πππ‘ |π (π‘)| + (π β 1) β2 πππ‘ |π (π‘)|] σ΅¨ σ΅¨ + πππ‘ β1 [ππ πΏ (π€π1 σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨
π (π‘) = [β1 |π (π‘)| + β2 |π (π‘)|] πππ‘ +β«
β€ πΆπ |π (π‘)| ππ(π‘+ππ ) β1 1 β ππΜ (ππ (π‘))
σ΅¨ σ΅¨ β πΆπ σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨ exp [π (π‘ β ππ (π‘) + ππβ€ )]
πΉπ (π’) := (π’ β 1 + ππ π΅π ) β1 + sup
πΆπππ’ππ . πΉπ (π’) := (π’ β 1 + πππ΅π ) β2 + sup β1 Μ (ππ (π‘)) π‘βR 1 β ππ
+
(22)
σ΅¨ 1 σ΅¨σ΅¨ + π€π σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨) + ππ |π (π‘)| π΅π σ΅¨ σ΅¨ + ππ πΏπΏ (π€π1 σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨ σ΅¨ 1 σ΅¨σ΅¨ +π€π σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨)]
6
Discrete Dynamics in Nature and Society σ΅¨ σ΅¨ + πππ‘ β2 [πππΏ (π€π2 σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨
Μ2 ), and (π»3 ) hold. If there Corollary 6. Suppose that (π»1 ), (π» exist constants β1 > 0, β2 > 0 such that
σ΅¨ 2 σ΅¨σ΅¨ + π€π σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨) + ππ |π (π‘)| π΅π +
σ΅¨ πππΏπΏ (π€π2 σ΅¨σ΅¨σ΅¨π (π‘
(1 β ππ π΅π ) β1 > sup
σ΅¨ β ππ (π‘))σ΅¨σ΅¨σ΅¨
1 β ππΜ (ππβ1 (π‘))
π‘βR
σ΅¨ 2 σ΅¨σ΅¨ +π€π σ΅¨σ΅¨π (π‘βππ (π‘))σ΅¨σ΅¨σ΅¨)] β€ πΆπ + |π (π‘)| ππ(π‘+ππ ) 1 β ππΜ (ππβ1 (π‘))
(1 β πππ΅π ) β2 > sup
,
1 2 πΏ (πΌπ β1 π€π + πΌπβ2 π€π )
π‘βR
β1 Μ (ππ 1 β ππ (π‘))
(28) ,
where
σ΅¨ σ΅¨ β πΆπ σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨ πππ‘ +
πΏ (πΌπ β1 π€π1 + πΌπβ2 π€π2 )
πΌπ := ππ + ππ
β€ πΆπ |π (π‘)| ππ(π‘+ππ ) β1 Μ (ππ (π‘)) 1 β ππ
1 β (πΎπ + π
πΌ) , 2π
π
πΌπ := ππ + ππ
σ΅¨ σ΅¨ β πΆπ σ΅¨σ΅¨σ΅¨π (π‘ β ππ (π‘))σ΅¨σ΅¨σ΅¨ πππ‘
(29)
1 β (πΎπ + π
πΌ) , 2π
π
β1 ππβ1 (π‘) and ππ (π‘) are defined as Theorem 5, then system (1) has exactly one almost periodic solution πβ (π‘) in the region
β€
πΆπ ππππ β€ [(π β 1 + ππ π΅π ) β1 + sup ] Μ (ππβ1 (π‘)) π‘βR 1 β ππ
1 β (πΎπ + π
πΌ) σ΅© σ΅© π΅β = {π | π β π΅, σ΅©σ΅©σ΅©πσ΅©σ΅©σ΅©π΅ β€ }, 2π
π
Γ πππ‘ |π (π‘)|
(30)
which is locally exponentially stable. β€
πΆπππππ + [(π β 1 + πππ΅π ) β2 + sup ] β1 Μ (ππ (π‘)) π‘βR 1 β ππ
4. An Example In this section, we give an example to demonstrate the results obtained in previous sections. Consider a Wilson-Cowan type model with time-varying delays as follows:
Γ πππ‘ |π (π‘)| β€ βπ1 [|π (π‘)| + |π (π‘)|] πππ‘ , (24)
πππ (π‘) = βππ (π‘) + [ππ β ππ ππ (π‘)] ππ‘ Γ πΊ [π€π1 ππ (π‘ β ππ (π‘))
where π1 := β(1/2) max{πΉπ (π), πΉπ(π)} > 0. We have from the above that π(π‘) β€ π(π‘0 ) and min {β1 , β2 } πππ‘ (|π (π‘)| + |π (π‘)|) β€ π (π‘) β€ π (0) ,
π‘ β₯ 0. (25)
1 βπ€π ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] ,
πππ (π‘) = βππ (π‘) + [ππ β ππππ (π‘)] ππ‘
Note that
(31)
Γ πΊ [π€π2 ππ (π‘ β ππ (π‘))
β€ πΆπ π (0) = [(β1 + β2 ) + ππβ€ sup ππππ β1 Μ (ππ (π )) π β[βππβ€ ,0] 1 β ππ [
2 βπ€π ππ (π‘ β ππ (π‘)) + πΌπ (π‘)] ,
β€ πΆπ σ΅© σ΅© β€ +ππ sup ππππ ] σ΅©σ΅©σ΅©π β πβ σ΅©σ΅©σ΅© , β1 Μ 1 β π (π (π )) β€ π π π β[βππ ,0] ] (26)
where πβ (π ) = πβ (π ), π β [βπ, 0]. Then there exists a positive constant π > 1 such that σ΅© σ΅¨ σ΅¨σ΅¨ β β σ΅© βππ‘ σ΅¨σ΅¨ππ (π‘) β ππ (π‘)σ΅¨σ΅¨σ΅¨ β€ π σ΅©σ΅©σ΅©π β π σ΅©σ΅©σ΅© π , σ΅© σ΅¨ σ΅¨σ΅¨ β β σ΅© βππ‘ σ΅¨σ΅¨ππ (π‘) β ππ (π‘)σ΅¨σ΅¨σ΅¨ β€ π σ΅©σ΅©σ΅©π β π σ΅©σ΅©σ΅© π .
(27)
The proof is complete. Set πΏ = (1β(πΎπ+π
πΌ))/2π
π. It follows from Corollary 4 and Theorem 5 the following.
1 = where ππ = ππ = 1, ππ = ππ = 0.01, π€π1 = π€π2 = π€π 2 π€π = 0.1, ππ (π‘) = ππ(π‘) = 0.1π‘ + 10, πΌπ (π‘) = 7 sin β7π‘, πΊ(π£) = tanh(π£), and πΌπ(π‘) = 7 cos β2π‘. It is easy to calculate that
πΎ = 1,
π = 0.2,
π
= 0.01,
β1 ππβ1 (π‘) = ππ (π‘) =
πΏ = π΅π = 1,
(π‘ + 10) , 0.9
πΌ = 7, (32)
πΏ = 182.5.
Μ2 ) hold. By Corollary 4, (31) It is easy to check that (π»1 ) and (π» has a unique almost periodic solution πβ (π‘) in region π΅β = {π | π β π΅, βπβπ΅ β€ 182.5}. Setting β1 = β2 = 0.5, we can check that (π»3 ) and (28) hold and hence πβ (π‘) is exponentially stable in π΅β . Figure 2 shows the transient behavior of the unique almost periodic solution (ππ (π‘), ππ(π‘)) in π΅β . Phase portrait of attractivity of ππ and ππ is illustrated in Figure 3.
Discrete Dynamics in Nature and Society
7
1.5
NCETFJ (JA11144), the Excellent Youth Foundation of Fujian Province (2012J06001), the Foundation of Fujian High Education (JA10184, JA11154), and the Foundation for Young Professors of Jimei University, China.
1 0.5
References
0 β0.5 β1
0
10
20
30
40
50
60
70
80
Time (π‘)
ππ (π‘) ππ (π‘)
Figure 2: Transient behavior of the almost periodic solution of (31) located in π΅β . 3 2
XN (t)
1 0 β1 β2 β3 β3
β2
β1
0 XP (t)
1
2
3
Figure 3: Phase portrait of attractivity of the unique almost periodic solution of (31) located in π΅β .
5. Concluding Remarks In this paper, we investigate Wilson-Cowan type model and obtain the existence of a unique almost periodic solution and its delay-based local stability in a convex subset. Our results are new and can reduce to periodic case, hence, complement existing periodic ones [7, 8]. We point out that there will exist multiple periodic (almost periodic) solution for system (1) under suitable parameter configuration. However, it is difficult to analyze its multistability of almost periodic solution by the existing method [10, 11, 13, 14]. We leave it for interested readers.
Acknowledgments This research is supported by the National Natural Science Foundation of China under Grants (11101187, 61273021),
[1] H. R. Wilson and J. D. Cowan, βExcitatory and inhibitory interactions in localized populations of model neurons,β Biophysical Journal, vol. 12, no. 1, pp. 1β24, 1972. [2] H. R. Wilson and J. D. Cowan, βA mathematical theory of the functional dynamics of cortical and thalamic nervous tissue,β Kybernetik, vol. 13, no. 2, pp. 55β80, 1973. [3] C. van Vreeswijk and H. Sompolinsky, βChaos in neuronal networks with balanced excitatory and inhibitory activity,β Science, vol. 274, no. 5293, pp. 1724β1726, 1996. [4] S. E. Folias and G. B. Ermentrout, βNew patterns of activity in a pair of interacting excitatory-inhibitory neural fields,β Physical Review Letters, vol. 107, no. 22, Article ID 228103, 2011. [5] K. Mantere, J. Parkkinen, T. Jaaskelainen, and M. M. Gupta, βWilson-Cowan neural-network model in image processing,β Journal of Mathematical Imaging and Vision, vol. 2, no. 2-3, pp. 251β259, 1992. [6] L. H. A. Monteiro, M. A. Bussab, and J. G. C. Berlinck, βAnalytical results on a Wilson-Cowan neuronal network modified model,β Journal of Theoretical Biology, vol. 219, no. 1, pp. 83β91, 2002. [7] B. Pollina, D. Benardete, and V. W. Noonburg, βA periodically forced Wilson-Cowan system,β SIAM Journal on Applied Mathematics, vol. 63, no. 5, pp. 1585β1603, 2003. [8] R. Decker and V. W. Noonburg, βA periodically forced WilsonCowan system with multiple attractors,β SIAM Journal on Mathematical Analysis, vol. 44, no. 2, pp. 887β905, 2012. [9] P. L. William, βEquilibrium and stability of wilson and cowanβs time coarse graining model,β in Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems (MTNS β12), Melbourne, Australia, July 2012. [10] Z. Huang, S. Mohamad, X. Wang, and C. Feng, βConvergence analysis of general neural networks under almost periodic stimuli,β International Journal of Circuit Theory and Applications, vol. 37, no. 6, pp. 723β750, 2009. [11] Y. Liu and Z. You, βMulti-stability and almost periodic solutions of a class of recurrent neural networks,β Chaos, Solitons and Fractals, vol. 33, no. 2, pp. 554β563, 2007. [12] C. Y. He, Almost Periodic Differential Equation, Higher Education, Beijing, China, 1992. [13] H. Zhenkun, F. Chunhua, and S. Mohamad, βMultistability analysis for a general class of delayed Cohen-Grossberg neural networks,β Information Sciences, vol. 187, pp. 233β244, 2012. [14] H. Zhenkun and Y. N. Raffoul, βBiperiodicity in neutral-type delayed difference neural networks,β Advances in Difference Equations, vol. 2012, article 5, 2012.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014