Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM (artículo arbitrado) doi: http://dx.doi.org/10.1016/j.riit.2015.09.012
An Approximation to the Probability Normal Distribution and its Inverse Una aproximación a la distribución de probabilidad normal y su inversa Alamilla-López Jorge Luis Instituto Mexicano del Petróleo Dirección de Investigación en Transformación de Hidrocarburos E-mail:
[email protected]
Information on the article: received: February 2015, accepted: March 2015
Abstract Mathematical functions are used to compute Normal probabilities, which absolute errors are small; however their large relative errors make them unsuitable to compute structural failure probabilities or to compute the menace curves of natural hazards. In this work new mathematical functions are proposed to compute Normal probabilities and their inverses in an easy and accurate way. These functions are valid over a wide range of random variaȱȱȱȱȱȱ ȱȱȱȱĜ¢ȱ are required. In addition, these functions have the advantage that the numerical correspondence between the random value X = x and its Normal proba¢ȱ̘ȱǻȬx) is bijective.
Keywords:
QRUPDOGLVWULEXWLRQ LQYHUVH DEVROXWHHUURU UHODWLYHHUURU
Resumen Se utilizan funciones matemáticas para calcular probabilidades normales, cuyos errores absolutos son pequeños; sin embargo, sus grandes errores relativos las hacen inadecuadas para calcular probabilidades de falla de estructuras o para calcular curvas de amenaza de peligros naturales. En este trabajo se proponen nuevas funciones matemáticas para calcular probabilidades normales y sus inversas, de manera fácil y precisa. Estas funciones son válidas en un intervalo amplio de valores que puede tomar la variable aleatoria y son útiles en aplicaciones donde se ȱȱ¢ȱęȱǯȱ¤ǰȱȱȱȱȱ ventaja de que la correspondencia numérica entre el valor aleatorio X = x y su probabilidad Normal ̘ȱǻȬx) es biyectiva.
Descriptores:
distribución normal inversa error absoluto error relativo
An Approximation to the Probability Normal Distribution and its Inverse
Introduction ȱȱȱȱ̘ȱǻȬx) is used in engineering probabilistic applications to compute reliabiliȱ ȱ ȱ ¢ȱ ȱ ȱ ǰȱ ěȱ platforms, pipelines, tanks, and bridges, among others. These applications require accurate estimations of small probabilities, which are associated with relatively large values. In addition, these probabilities have to be easily invertible. The disadvantage of not having a cloȱ¢ȱȱȱȱ̘ȱǻȬx) has been overcome using mathematical approximations. Summaries of these mathematical approximations are given in ǻ ĵȱ ǭȱ ǰȱ ŗşŝŘDzȱ ȱ ǭȱ ǰȱ ŗşşŜǼǰȱ which are useful to compute probabilities or their inverses, but not both. The errors of these approximations ȱęȱȱȱȱȱ¡ȱȱǯȱ The absolute errors of the approximations are small but ȱȱȱȱęǰȱ ȱȱportant in the tail of probability distribution. In the present work, this inconvenience is shown for the best ȱȱȱȱǻ ĵȱǭȱǰȱŗşŝŘǼǰȱȱȱ ȱȱȱȱȱ ȱ ȱ ¡ǯȱ ǰȱ ȱ ¡tions commonly used to compute failure probabilities are revised and new mathematical expressions with no such inconvenience are proposed. These new functions are useful to compute Normal probabilities and their inverses in a relatively easy and fast way, with good accuracy. Furthermore, they have the advantages of being valid over a wide range of the random variable, which makes them useful in engineering applications.
ȱΠȱǻx). It can also be seen as the one that transforms the probability density function in its cumulatiǯȱ ǰȱȱȱȱȱΜǻȉǼȱȱȱȱȱx, ȱ ęȱ ȱ ȱ ȱ ΜǻȉǼȱ ȱ DZȱ ΜȂǰȱ ΜȂȂ respectively, hence it gives the linear second order diěȱ Μȱȁȁȱx Μȱȁȱ Μȱ ȱƽȱŖȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻŘǼ ȱ ěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱΜ ǻx = 0) = ŘS / Ř ȱΜȂȱǻx = 0) ƽȱȭŗǯȱȱȱȱȱȱȱȱȱΜȱǻ).ȱȱ ȱ ȱ ȱ ŗǰȱ ȱ ¢ȱ ¡ȱ ȱ ȱΜȱǻxǼǰȱȱ¢ȱȱ¡ȱǻřǼǰȱȱȱ results for large x values. ଵ
ଵ
௫
௫య
ɗ ሺݔሻ ൌ െ
ଵǤଷ ௫ఱ
െ
ଵǤଷǤହ ௫ళ
ڮȱȱȱȱȱȱȱȱ
ǻřǼ
For xȱȱȱȱ£ǰȱǯȱǻřǼǰȱȱȱȱȱȱǯȱȱȱ¢totic approximation of this function can be used to calculate probabilities associated with large values of x, it has the disadvantage of not being easily invertible. ȱȱȱȱΜ ǻx), that provide good approximation over a wide range of x values, are those ȱ¢ȱ ȱǻ ĵȱȱǰȱŗşŝŘDzȱ ǻǰȱŗşŞśǼǯȱȱ Ȃȱȱȱȱsic function, probably the most used to compute Normal probabilities, because it has the minimum absolute ȱȱǻ ĵȱȱǰȱŗşŝŘǼǰȱȱȱȱ¡pressed as follows
Reference framework Herein, some of the mathematical functions typically used in engineering applications are reviewed. The number of functions analyzed is not exhaustive; the author only discusses some approaches that in his opinion are representative for estimating probabilities and/or their inverses in structural and mechanical engineering. The analysis is focused on identifying the accuracy and scope of these functions, and showing the inconveniences mentioned in the previous section. In general, the normal probability distribution ȱ̘ȱǻ·) can be described in terms of its probabili¢ȱ¢ȱȱΠȱǻȉǼȱȱ ̘ǻxǼȱƽȱΜǻxǼȱΠǻx)
ȱǻŚǼ
ǻŗǼ
ȱ ȱ ΜǻȉǼȱ ȱ ȱ ȱ ȱ function with its derivative, the probability density
606
߰ு ሺݔሻ ൌ σହୀଵ ܽ ሺͳ ܽ ݔሻି ȱ
)LJXUH1XPHULFDODQGDV\PSWRWLFDSSURDFKRIIXQFWLRQΜȱǻ)
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
Alamilla-López Jorge Luis
ɗୖ ሺݔሻ ൌ
௫ ଵାଶ௬
0.00020
Relative error (in numerical value)
where ajȱ ȱ Ĝȱ ȱ ȱ ęȱ ęǰȱ jȱƽȱŖǰȱŗǰȱǯǯǯȱǰȱśǯȱȱ¡ȱȱȱȱ Ήǰȱ ȱȱȩΉǻxǼȱǀȱŝǯśȱuȱŗŖŞ|. However, as is shown ȱȱŘǰȱȱȱȱΉRȱ ȱę¢ȱ ȱ xǯȱȱȱȱȱȱȱȱŚǰȱ ȱȱȱȱΜH ǻ) diverge from the function obtained numerically as x grows, which means that the accuracy of the approach should be expressed in terms of its relative errors, not by its absolute error. Likewise, an ȱȱȱǯȱǻŚǼȱȱȱ¢ȱǯȱ ȱ ȱ ȱ ¢ȱ ǻǰȱ ŗşŞśǼȱ ȱ ȱΜǻx), can be expressed as
0.00015
Rosenblueth' approximation
0.00010 0.00005 0.00000 -0.00005 -0.00010 -0.00015 -0.00020
0
5
10
15
20
x
భ ଵାమ ௫ାయ ௬ାర ௬௫ା௭ାఱ ௭௫
ǻśǼ
)LJXUH5HODWLYHHUURUDVDIXQFWLRQRIxRI5RVHQEOXHWK· DSSUR[LPDWLRQ
Where bi, i = ŗǰȱǯǯǯǰȱśǰȱȱȱȱĜǰȱȱy = x ŘȱȦȱŘǰȱ and z = ŘǯşřȱyŘǯȱȱȱ ȱȱȱřǰȱȱȱȱ the author, this last function leads to relative errors be ȱȩΉRǻxǼȱǀȱŚǯśȱuȱŗŖś| when x ǁȱŗȱȱȱȱȱ ȱ ȩΉRǻxǼȱ ǀȱ ŘǯŖȱ uȱ ŗŖŚȩȱ ȱ ȱ ȱ ǯȱȱ ȱ ȱ ȱȱȱŚǰȱȱȱȱĴȱȱȱ¢ȱ Hastings, because match up very closely with the numeȱȱǯȱ ȱǯȱǻśǼȱȱ¢ȱȱȱ numerically. There are other expressions, as that proposed by ȱǻŗşşřǼȱȱ£ȱǻŗşşŗǼǰȱ ȱȱȱtage that the estimation of probabilities and their inverses are easy. However, the relative error grows a lot for xȱȱȱȱǻřǼǯȱȱȱŚǰȱȱȱΜǻȉǼȱȱ associated with these last approaches is compared with that obtained numerically and in general, the accuracy of these approaches should be expressed in terms of their relative errors; not by their absolute error, because )LJXUH1XPHULFDODQGVHYHUDODSSURDFKHVRIIXQFWLRQΜÃ 0.08 0.07
Hastings' approximation
0.06
this leads to compare errors associated with probabilities of several magnitude orders.
Relative error
0.05
Normal probabilities
0.04 0.03 0.02 0.01 0.00 -0.01
0
5
10
15
x
)LJXUH5HODWLYHHUURUDVDIXQFWLRQRIxRI+DVWLQJV· DSSUR[LPDWLRQ
20
In this work, the mathematical expressions to describe ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ complement, which indicates that for x >> 0 values, ̘ȱǻx) o. However, it is possible to compute Normal ȱȱȱŗȦŘǰȱȱȱȱ¢¢ȱ ȱȱǰȱ̘ȱǻxǼȱƽȱŗȱȱ̘ȱǻxǼǯȱ ǰȱΜȱǻ·) is desȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ Μ0iȱ ǻ·Ǽǰȱ ȱ ƽȱ ǿŗǰȱ Řǰȱ řȀǰȱ which have the same mathematical form and are given ¢ȱǯȱǻŜǼǯȱȱȱȱȱȱȱȱȱȱ
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
607
An Approximation to the Probability Normal Distribution and its Inverse
interval [x0i , x0 i+ŗ], i = ǿŗǰȱŘǰȱřȀǰȱ ȱx0i and x0 iƸŗ values ęȱȱ¢ȱȱȱǰȱęȱ ȱȱŗǯ ߰ ሺݔሻ ൌ ܿ ݁ݔൣെ൫ܿଷ ݔଷ ܿଶ ݔଶ ܿଵ ݔ൯൧
ǻŜǼ ݔ ݔ൏ ݔశభ ȱ
ȱȱΜǻȉǼȱȱȱȱȱȱx. The expoȱȱȱ¢ȱǯȱǻŜǼȱȱȱȱbing that decrement, because its behavior is decreasing. ȱȱȱ¢ȱ ȱȱĜȱ cŗi, cŘi, cři present in the argument of the exponential function, was chosen due to its simplicity, since it allows the roots of a third degree polynomial be evaluated in a closed way. Besides, the natural logarithm of ǯȱǻŜǼȱȱȱȱ¢ȱȱȱȱȱble. It is noteworthy that the resulting polynomial of ǯȱǻŗǼȱȱȱȱȱ ǰȱȱȱȱȱȱ ΠǻȉǼȱȱȱ¢ȱȱȱ ǯȱȱȱȱ¢ȱȱȱȱȱ ȱĴȱȱȱȱȱΜǻȉǼǰȱ ȱȱȱȱȱȬ tiguous intervals. ȱȱȱȱΜȱǻȉǼȱȱȱȱȱȱ ȱΜ0i ǻȉǼǰȱi = ǿŗǰȱŘǰȱřȀǰȱȱȱȱȱǯȱȱȱ ȱ Ĝȱ cŘi and cři ǰȱ ȱ ȱ ȱ ęȱ ȱ each interval [x0i , x0 i+1 Ǿǰȱȱ ȱȱȱŗDzȱ ȱȱĜȱc0i and cŗi ǰȱȱęȱȱȱȱcŘi and cři , by means of the following expressions
ିଵ
ݎ ൌ ൫ݔ െ ݔశభ ൯ ȱ
ǻŗŖǯǼ
ݎଵ ൌ ݎ ሺ ɗାଵ െ ɗ ሻȱ
ǻŗŖǯǼ
ݎଶ ൌ െݎ ൫ݔଶ െ ݔଶశభ ൯
ȱǻŗŖǯǼ
ݎଷ ൌ െݎ ൫ݔଷ െ ݔଷశభ ൯ȱ
ǻŗŖǯǼ
\ i \ǻ x0 Ǽ and \ i ŗ \ǻ xŖ Ǽ ȱȱęȱȱȱ x0 and x0 vaŗǰȱ ȱȱȱȱȱȱȱȱȱ ǯȱȱȱęȱǰȱȱȱȱcŖŗȱȱȱΜŗ can S Ȧ Ř . ȱȱȱĜbe also obtained as cŖ \ŗ ȱȱȱŗȱȱȱȱŝȱȱŗŖȱ¢ȱȱȱ values estimates of the distribution function be contiǯȱ ȱ ȱ ȱ ȱ śǰȱ ȱ ȱ ȱ ȱ ȱȱȩΉRǻxǼȱǀȱŘǯśȱu_, which means that are be ȱŖǯŘśƖǯȱȱȱȱȱȱx values of ŖǰȱřǰȱŞȱȱŘŖȱȱȱȱ£ǰȱ ȱȱȱ ȱ the proposed approach. The error is greater than that ȱ¢ȱǻǰȱŗşŞśǼȱȱȱȱȱǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȩΉǻxǼȱ ǀȱ şǯśȱ u for x < řǰȱȱȱ ȱȱȩΉǻxǼȱǀȱŜǯŚȱu_ for x tǯȱȱŜǰȱ ȱȱȱȱȱȱȱ ȱȱ¢ȱȱȱȱΜǻȉǼǯȱdes, as is shown in the next section, the set of functions ȱǯȱǻŜǼȱȱȱȱȱȱȱǯ i ŗ
i
i ŗ
i
ŗ
0.003
ܿ ൌ ݁ݔൣݍଵ ݍଶ ܿଶ ݍଷ ܿଷ ൧ȱ ܿଵ ൌ ݎଵ ݎଶ ܿଶ ݎଷ ܿଷ ȱ
ǻŞǼ
Where qki and rki ǰ i ǿŗǰ Řǰ řȀǰ k ǿŗǰ Řǰ řȀ , are given so ȱȱȱȱΜ0i ǻȉǼȱȱȱȱȱȱ ȱΜǻȉǼǯȱȱĜȱȱȱȱ ȱݍଵ ൌ ݎଵ ݔ ȱ ɗ ȱ
ǻşǯǼ
ݍଶ ൌ ݎଶ ݔ ݔଶ ȱ
ǻşǯǼ
ݍଷ ൌ ݎଷ ݔ ݔଷ ȱ
ǻşǯǼ
Relative error (in numerical value)
ǻŝǼ 0.002
0.001
0.000
-0.001
-0.002
-0.003
0
2
4
6
8
10
12
14
16
Ĝ
i
x0i
x0i+ŗ
Μi
Μi+ŗ
cŘi
cři
ŗ
0
ř
ŗǯŘśřřŗŚ
ŖǯřŖŚśş
ŖǯŖŗŚŞŚŚŞŜś
ƺŖǯŗŚŝŞŗŘřŘş
Ř
ř
Ş
ŖǯřŖŚśş
ŖǯŗŘřŗřŘ
ŖǯŖŖŗśşŝřŗř
ƺŖǯŖŚŗśŘŗŚşş
ř
Ş
ŘŖ
ŖǯŗŘřŗřŘ
ŖǯŖŚşŞŝŜ
ŖǯŖŖŖŗřŘŗŜŚ
ƺŖǯŖŖŞřŖŗřŘŝ
608
20
)LJXUH5HODWLYHHUURUDVDIXQFWLRQRIxRIWKHSURSRVHG DSSURDFK
7DEOH3DUDPHWHUVDQGFRHIILFLHQWVYDOXHVRIWKHSURSRVHGDSSURDFK Segment
18
x
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
Alamilla-López Jorge Luis
1
\(x)
Proposed approach Numerical
0.1
0
2
4
6
8
10
12
14
16
18
20
x
)LJXUH1XPHULFDODQGWKHSURSRVHGDSSURDFKRIIXQFWLRQ
Μȱǻ)
Input data: compute probability p for a given x value
Read values: ݔ ǡ ݔశభ ǡ ߰ǡ ߰ାଵ ǡ ܿଶ ǡ ܿଷ , ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ, (Table 1)
Compute: Coefficients ݎ , ݆ ൌ ሼͲǡ ǥ ǡ͵ሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 10) Coefficients ݍ , ݆ ൌ ሼͳǡ ǥ ǡ͵ሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 9) Coefficients ܿ , ݆ ൌ ሼͲǡͳሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 7-8)
Locate ȁݔȁ value in some interval: ሾݔ ǡ ݔశభ ሻ for ݅ ൌ ሼͳǡ ǥ ǡ͵ሽ
Compute: ( ݔEq.6)
ݔͲ
no
Compute: ൌ ͳ െ ߰ሺݔሻ ߮ሺݔሻ (Eq. 1)
yes Compute: ൌ ߰ሺȁݔȁሻ߮ሺݔሻ (Eq. 1)
)LJXUH)ORZFKDUWIRUFRPSXWLQJ 1RUPDOSUREDELOLWLHV
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
609
An Approximation to the Probability Normal Distribution and its Inverse
The parameters dji, j = ǿŖǰȱŗǰȱŘǰȱřȀǰȱȱȱȱi are ȱȱȱȱȱĜȱcїi , j = ǿŖǰȱŗǰȱŘǰȱřȀȱȱ the corresponding segment i, by means of the expressions
Input data: compute x value for a given probability p
Read values: ݔ ǡ ݔశభ ǡ ߰ǡ ߰ାଵ ǡ ܿଶ ǡ ܿଷ , ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ, (Table 1)
݀ ൌ Compute: Coefficients ݎ , ݆ ൌ ሼͲǡ ǥ ǡ͵ሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 10) Coefficients ݍ , ݆ ൌ ሼͳǡ ǥ ǡ͵ሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 9) Coefficients ܿ , ݆ ൌ ሼͲǡͳሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 7-8) Coefficients ݀ , ݆ ൌ ሼͲǡ ǥ ǡ͵ሽǡ ݅ ൌ ሼͳǡ ǥ ǡ ͵ሽ (Eqs. 13)
݀ଵ ൌ
Locate Ȱሺݔ ሻ ൏ Ȱሺݔశభ ሻ value in some interval: ሾݔ ǡ ݔశభ ሻ for ݅ ൌ ሼͳǡ ǥ ǡ͵ሽ, (flow diagram 1)
Compute: y (Eq.12)
no
ͳΤʹ
ݔൌݕ
yes ݔൌ െݕ
)LJXUH)ORZFKDUWIRUFRPSXWLQJWKHLQYHUVHRIWKHQRUPDO GLVWULEXWLRQ
ȱȱĚ ȱȱ ȱȱȱŝȱȱȱmented in a computer program. The purpose is to describe the steps to compute a Normal probability value for a given value of the variable. If a number of compuȱȱ¢ǰȱȱĜȱȱȱȱluation.
Inverses of normal probabilities ȱȱȱȱǰȱȱΜȱǻȉǼȱȱȱcribed in three contiguous segments by means of ȱΜ0i ǻȉǼǰȱi = ǿŗǰȱŘǰȱřȀǰȱȱ¢ȱǯȱǻŜǼǯȱȱȱ ȱǯȱǻŗǼȱȱȱ¡ȱ ݔൌ െȰିଵ ሾɗሺݔሻɔሺݔሻሿȱ
ǻŗŗǼ
and it can be computed as follows ݔൌ
ௗబ ଷ
ଵ
ௗమ ିௗయ ୪୬
ଷ
ටିௗభయ
െ ʹඥെ݀ଵ ܿ ݏ൮ ܿି ݏଵ ቌ
Ȱሺݔ ሻ Ȱሺݔሻ ൏ Ȱሺݔశభ ሻȱ
610
ቍ൲͕
ǻŗŘǼ
ͳ ͳ ൬ ܿଶ ൰ȱ ܿଷ ʹ భ ଷయ
െ
ௗబమ
ଽ
ȱ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻŗřǯǼ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻŗřǯǼ
݀ଶ ൌ
݀ଷ ͳ ͳ ቈͻܿଵ ݀ െ ʹȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻŗřǯǼ െ ʹ ൬ ʹߨ െ ܿ ൰ȱ ͷͶܿଷ ʹ ܿଷ
݀ଷ ൌ
ʹ ͳ ȱ ͷͶ ܿଷ
ȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱȱǻŗřǯǼ
ȱȱȱĜȱdji and cji , j = ǿŖǰȱŗǰȱŘǰȱřȀȱȱ ȱ¢ȱȱȱ¡ȱŗŗǰȱȱx values corresȱȱȱęȱ)x , which means that the numerical correspondences between these values is one to one ǻǼǯ ȱȱĚ ȱȱ ȱȱȱŞȱȱȱplemented in a computer program. The purpose is to describe the steps to compute the inverse normal value for a given probability. This algorithm can be used al¢ȱȱȱȱȱ¢ȱǻ ǰȱŗşşŝǼȱ to simulate values of the Normal distribution. If a numȱȱȱȱ¢ǰȱȱĜȱȱȱ further evaluation.
Conclusions This work has proposed simple expressions that allow computing normal probabilities, even in the tail of the distribution, and their corresponding inverses. Such expressions are impressively manageable and useful for engineering applications. The proposed approach is simple because the resulting mathematical expressions are simple too, and its relative errors of ȱ ȱ ¡ȱ ȱ ȱ ȱ ȩΉRǻxǼȱ ǀȱ Řǯśȱ uŗŖ_ over a wide range of the random variable. The ȱȱȱ ȱȱȩΉǻxǼȱǀȱşǯśȱuŗŖƺŚ_ for x ǀȱřǰȱ ȱȱ ȱȱȩΉǻxǼȱǀȱŜǯŚȱuŗŖ_ for x tȱřǯȱȱproach does not have the inconveniences of typical approximations used in several applications that lead to relatively small absolute errors but significant relative errors, which become important in the tail of the probability distribution and are difficult ȱ ǯȱ ȱ ȱ ȱ ȱ ȱ ȱ estimations of small probabilities are required, so
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
Alamilla-López Jorge Luis
this new approximation is a powerful tool to compute probabilities or/and their inverses in engineering applications.
References ĵȱǯȱȱȱǯǯȱHandbook of mathematical functions, ŗŖȱǯǰȱ ȱǰȱȱǰȱŗşŝŘǰȱǯȱşŘśȬşŝŜǯ
ȱǯǯȱThe art of computer programming, Vol. 2, Seminumerical algorithmsǰȱřȱǯǰȱȬ¢ǰȱŗşşŝǰȱǯȱŗȬȱŝŜŚǯ £ȱǯȱȱȱ¡ȱȱȱ ȱǯȱ Structural SafetyǰȱȱşǰȱŗşşŗDZȱřŗśȬřŗŞǯ ȱ ǯ ǯȱȱȱǯǯȱHandbook of the normal distribution, Statisȱ ¡ȱ ȱ ǰȱ Řȱ ǯǰȱ ȱ ǰȱ ȱ ǰȱŗşşŜǰȱǯȱŗȬŚŘŝǯ ȱǯȱȱȱȱǯȱStructural SafetyǰȱȱŘǰȱŗşŞśDZȱŗŜśȬŗŜŝǯ ȱ ǯǯȱȱȱ¡ȱȱȱȱtion function. ȱȱǭȱȱ¢, volume ŗŜǰȱŗşşřDZȱŗŗşȬŗŘřǯ
Citation for this article: Chicago style citation $ODPLOOD/ySH] -RUJH /XLV $Q DSSUR[LPDWLRQ WR WKH SUREDELOLW\ QRUPDOGLVWULEXWLRQDQGLWVLQYHUVHIngeniería Investigaciyn y Tecnología;9, ISO 690 citation style $ODPLOOD/ySH] -/ $Q DSSUR[LPDWLRQ WR WKH SUREDELOLW\ QRUPDO GLVWULEXWLRQDQGLWVLQYHUVHIngeniería Investigaciyn y Tecnología YROXPHQ;9,Q~PHUR RFWXEUHGLFLHPEUH
About the author Ȭà£ȱ ȱǯ The author is a civil engineer with master and doctorate deȱȱȱȱǯȱ ȱȱȱȬȱȱȱȱ¡ȱleum Institute and teacher of postgraduate course in civil engineering at the School ȱȱȱȱȱȱȱ¢ȱǯȱ ȱȱȱȱŘȱȱȱǻȱ¢ȱȱǼǯȱȱ ȱȱȱȱȱȱȱ on the modeling and assessment of the uncertain mechanical behavior of structural systems, on the stochastic modeling of loads and natural degrading phenomena, natural hazards, and on decision-making risk analysis. He published more than twenty papers in refereed journals.
Ingeniería Investigación y Tecnología, volumen XVI (número 4), octubre-diciembre 2015: 605-611 ISSN 1405-7743 FI-UNAM
611