An Asymptotic Expansion of Continuous Wavelet

1 downloads 0 Views 182KB Size Report
Sep 9, 2016 - for large values of the dilation parameter a by using Lopez and Pagola ...... error terms for asymptotic expansion of Mellin convolutions , J. Math.
(3s.) v. 36 3 (2018): 27–39. ISSN-00378712 in press doi:10.5269/bspm.v36i3.31221

Bol. Soc. Paran. Mat. c

SPM –ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

An Asymptotic Expansion of Continuous Wavelet Transform for Large Dilation Parameter Ashish Pathak, Prabhat Yadav, M. M. Dixit

abstract: In this paper , we derive asymptotic expansion of the wavelet transform for large values of the dilation parameter a by using Lopez and Pagola technique. Asymptotic expansion of Mexican Hat wavelet and Morlet wavelet transform are obtained as a special cases.

Key Words: Asymptotic expansion, Wavelet transform, Fourier transform, Mellin transform. Contents 1 Introduction

27

2 Asymptotic expansion of wavelet transform for large a

28

3 Application 35 3.1 Asymptotic Expansion of Mexican Hat Wavelet Transform . . . . . . 35 3.2 Asymptotic Expansion of Morlet Wavelet Transform . . . . . . . . . 37 1. Introduction The wavelet transform of g with respect to the wavelet φ is defined by (Wφ g)(b, a) = a−1/2

Z



g(t) φ

−∞



t−b a



dt, b ∈ R, a > 0.

(1.1)

provided the integral exists [1]. Using Fourier transform it can also be expressed as Z a1/2 ∞ ibω ˆ (1.2) e gˆ(ω)φ(aω)dω, (Wφ g)(b, a) = 2π −∞ where gˆ(ω) =

Z



e−itω g(t)dt.

−∞

The Asymptotic expansion for the integral of the form Z ∞ I(ξ) := eiτ t f (t)h(ξt)dt, τ ∈ R, τ 6= 0+, as ξ → 0+,

(1.3)

0

2010 Mathematics Subject Classification: 44A05;41A60. Submitted March 03, 2016. Published September 09, 2016

27

Typeset by BSP style. M c Soc. Paran. de Mat.

28

A. Pathak, P. Yadav, M. M. Dixit

was obtained by Lopez and Pagola [ [5],Theorem 2,3] under certain conditions on f and h. Then the asymptotic expansion of (1.2) for large a can be obtained by ˆ setting f (t) = gˆ(t) for fixed b ∈ R and h(t) = φ(t). Here we assume that f (t) and h(t) has an expansion of the form f (t) =

n−1 X

cr tηr + fn (t),

r=0

as t → 0+,

(1.4)

and that as t → ∞, h(t) =

n−1 X

di t−ρi + hn (t),

(1.5)

i=0

where η r < η r+1 , ∀r ≥ 0 and ρi < ρi+1 , ∀ i ≥ 0. Also assume that f (t) = O(t−α ), t → ∞, α ∈ R,

(1.6)

h(t) = O(t−β ), t → 0+, β ∈ R,

(1.7)

and

with α, β, η 0 and ρ0 satisfying the relations: β − η 0 < 1 < α + ρ0 and −η 0 < α and β < ρ0 . The aim of the present paper is to derive asymptotic expansion of the wavelet transform (1.2) for large value of dilation parameter a . In section 2, we assume that ˆ possess asymptotic expansion of the form (1.4) and (1.5) as ω → 0+ gˆ(ω) and φ(ω) and ω → ∞ and derive the asymptotic expansion of (Wφ g) (b, a) as a → ∞+. In section 3, we obtain asymptotic expansion of Mexican Hat and Morlet wavelet transform. 2. Asymptotic expansion of wavelet transform for large a Let us rewrite (1.2) in the form: √ Z ∞ a ˆ eibω φ(aω)ˆ g(ω)dω (Wφ g) (b, a) = 2π 0  Z ∞ −ibω ˆ + e φ(−aω)ˆ g(−ω)dω  0    = Wφ+ g (b, a) + Wφ− g (b, a),

(2.1) (2.2)

where   Wφ+ g (b, a) =

√ Z ∞ a ˆ eibω φ(aω)ˆ g (ω)dω, 2π 0

(2.3)

Asymptotic Expansion of Continuous Wavelet Transform

  Wφ− g (b, a) =

√ Z ∞ a ˆ e−ibω φ(−aω)ˆ g (−ω)dω. 2π 0

29

(2.4)

ˆ are locally integrable in (−∞, ∞) and Assume that gˆ(ω), φ(ω) gˆ(ω) =

n−1 X

cr ω ηr + gˆn (ω), as ω → 0+,

r=0

(2.5)

and that as ω → ∞, ˆ φ(ω) =

n−1 X

ˆ (ω), di ω −ρi + φ n

(2.6)

i=0

where ρi < ρi+1 , ∀ i ≥ 0 and η r < η r+1 , ∀ r ≥ 0. Also assume that gˆ(ω) = O(ω −α ),

ω → ∞, α ∈ R, α + ρ0 > 1,

(2.7)

ˆ φ(ω) = O(ω −β ),

ω → 0+, β ∈ R, β − η 0 < 1.

(2.8)

and

Now by using [ [5],Theorem 2,3], we can also prove the theorem for asymptotic expansion of wavelet transform for large value of dilation parameter a. ˆ Theorem 2.1. . Assume that (i) gˆ(w) and φ(w) are locally integrable on (0, ∞), ˆ (ii) gˆ(w) satisfies (2.5) and (2.7),(iii) φ(w) satisfies (2.6) and (2.8). Then, for any n, m ∈ N such that ρn−1 − η m < 1 < ρn − η m−1 , Z



e

ibω

ˆ gˆ(ω)φ(ω)dω

=

0

n−1 X r=0

×

ibω/a ˆ cr M [φ(ω)e ; 1 + ηr ] −

a−ηr −1 +

m−1 X i=0

I(i)−1

− ×

R(r)−1



X j=0

X p=0

 dp Bp (1 + η r ; a; b)



g(ω)eib ; 1 − ρi ] di M [ˆ

 cj Aj (1 − ρi ; b)

a−ρi + Rn,m (a),

Bp (x; a; b) Aj (x; b)

 x−ρp b = e Γ(x − ρp ) , a Γ(x + η j ) = eiπ(x+ηj )/2 . bx+ηj iπ(x−ρp )/2

(2.9)

30

A. Pathak, P. Yadav, M. M. Dixit

R(r) is the index r for which ρi − η r ≤ 1 < ρi − η r−1 and I(i) is the index i for which ρi−1 − η r < 1 ≤ ρi − η r . If ρi − η r = 1 for some pair (i, r) then in (2.9), the sum of the terms   R(r)−1 X ibω/a ˆ cr M [φ(ω)e ; 1 + ηr ] − dp Bp (1 + η r ; a; b) a−ηr −1 p=0

  I(i)−1 X ibw cj Aj (1 − ρi ; b) a−ρi , g (ω)e ; 1 − ρi ] − di M [ˆ

+

(2.10)

j=0

must be replaced by a

−ρi

   I(i)−1 X ibω cj Aj (1 − ρi ; b) − cr loga g(ω)e ; 1 − ρi ] − di M [ˆ j=0

 π ibω/a ˆ −cr di [i − logb − γ] + cr lim M [φ(ω)e ; z + 1 + ηr ] z→0 2  r−1 X di − dp Bp (z + 1 + η r ; a; b)) − , z p=0

(2.11)

and the remainder term Rn,m (a) as a → ∞+ is given by  O(a−ρi + a−ηr −1 ), when − η r 6= −ρi + 1,  Rn,m (a) = . O(a−ρi log a), when − η r = −ρi + 1.

(2.12)

ˆ (ω) + φ ˆ ˆ Proof: Define gˆ0 (ω) = gˆ(ω) and φ 0 α−1 (ω) = φ(ω). For any i there exists r such that ρi−1 − η r ≤ 1 < ρi − η r−1 . For the given (i, r), the following integral exists: Z



0

ˆ (aω). eibω gˆr (ω) φ i

(2.13)

(a). For a given (i, r) satisfying ρi−1 − η r ≤ 1 < ρi − η r−1 , do the following: If ρi − η r < 1 go to (b). If ρi − η r > 1 go to (c). If ρi − η r = 1 go to (d). ˆ (aω) = di (aω)−ρi + φ ˆ (aω) in (2.13) and (iii) of Lemma(2) of [5], we (b). Use φ i i get Z

∞ 0

ˆ (aω) eibω gˆr (ω) φ i

  I(i)−1 X cj Aj (1 − ρi ; b) g (ω)eibω ; 1 − ρi ] − = di a−ρi M [ˆ j=0

+

Z

0



ˆ (aω)dω, eibω gˆr (ω) φ i+1

(2.14)

31

Asymptotic Expansion of Continuous Wavelet Transform

iπ(1−ρi +ηj )

Γ(1−ρ +η )

i j 2 where Aj (1 − ρi ; b) = e . b1−ρi +ηj Go to (a) with i replaced by i + 1. (c). use gˆr (ω) = cr ω ηr + gˆr+1 (ω) in (2.13) and (iii) of lemma (3) of [5],we get  Z ∞ ibω/a ˆ (aω) = cr a−ηr −1 M [φ(ω)e ˆ ; 1 + ηr ] eibω gˆr (ω) φ i

0

R(r)−1

X

− +

Z

p=0 ∞

0

where, Bp (1 + η r ; a; b) = e

iπ(1+η r −ρp ) 2

 dp Bp (1 + η r ; a; b)

ˆ (aω)dω, eibω gˆr+1 (ω) φ i

(2.15)

 (1+ηr −ρp ) . Γ(1 + η r − ρp ) ab

Go to (a) with r replaced by r + 1. ˆ (aω) = di (aw)−ρi + φ ˆ (aω) and then gˆr (ω) = cr ω ηr + gˆr+1 (ω) in (d). use first φ i i+1 (2.13) , we get Z ∞ Z ∞ ˆ (aω) = ˆ (aω)]dω eibω gˆr (ω) φ eibω [di (aω)−ρi gˆr (ω) + cr ωη r φ i

0

Z0 ∞

+

0

i+1

ˆ (aω)dω. eibω gˆr (ω) φ i+1

Define the function   −ρi −ρi ηr ˆ Ei,r (z, ω) = ω di a ω gˆr (ω) + cr ω φi+1 (aω) z ∈ C. z

Then Z ∞ Z ˆ (aω)dω = eibω gˆr (ω) φ i 0



eibω Ei,r (0, ω)dω +

0 ηr

Z

∞ 0

ˆ (aω)dω. eibω gˆr (ω) φ (2.16) i+1

η r +1

On the one hand gˆr (ω) = cr ω + O(ω ); when ω → 0+. On the other hand ˆ (ω) = −di ω−ρi + O(ω −ρi −1 ); when ω → 0+. Hence,Ei,r (z, .) ∈ L1 [0, ∞) for φ i+1 Max (ρi − ηr + 1, ρi − 1 − ηr ) − 1 < Re(z) < M in(ρi − η r − 1, ρi + 1 − ηr ) − 1. Choose two numbers z0 and z1 , satisfying Max (ρi − η r + 1, ρi − 1 − η r ) − 1 < z0 < 0 and 0 < z1 < M in(ρi − ηr −  1, ρi + 1 − ηr ) − 1. Then we have that for z0 < Re(z) < z 1: |Ei,r (ω, z)| ≤ Hi,r (ω) = |Ei,r (ω, z0 )| for ω ∈ [0, 1] and |Ei,r (ω, z1 )| for ω ∈ [1, ∞) and that Hi,r (ω) ∈ [0, ∞). using the dominated convergence theorem, we get Z ∞ Z ∞ eibω Ei,r (0, ω)dω = lim eibω Ei,r (z, ω)dω z→0 0 0 Z ∞ −ρi = a lim [di ω z−ρi eibω gˆr (ω) z→0

0

+cr a−z ωz+η r e

ibω a

ˆ (ω)]dω. φ i+1

(2.17)

32

A. Pathak, P. Yadav, M. M. Dixit

ˆ From ρi = 1+η r and from Lemma 2 and 3 of [5], we have that M [φ(ω); z+1+ηr ] and M [ˆ g(ω); z + 1 − ρi ] have a common strip of analyticity: a − ηr − 1 < Re(z) < η r + b. we have that a − η 0 − 1 < 0 < η 0 + b and then the point z = 0 belongs to that strip of analytic. Therefore,

Z



0

ˆ (aω)dω eibω gˆr (ω)φ i

=

  di M [ˆ gr (ω)eibω ; z + 1 − ρi ]

a−ρi lim

z→0

I(i)−1



X

cj Aj (z + 1 − ρi ; b) − dj e

j=0

+cr a

−z



R(r)−1

X

− +

Z

p=0 ∞

0

iπz 2

Γ(z) bz



ibω ˆ a ;z + 1 + η ] M [φ(ω)e r

 dp Bp (z + 1 + η r ; a; b)

ˆ (aω)dω. eibω gˆr (ω)φ i+1

(2.18)

Using a−z = 1 − z log(a) + O(z 2 ); when z → 0 and ˆ M [φ(ω)e

ibω a

; z + 1 + ηr ] = =

Z



e

0

ibω a

ˆ (ω)ω z+ηr dω gˆr (ω)φ i

di + 0(1); when z → 0. z

(2.19)

We find that the above expression can be rewritten as

Z

0



e

ibω

ˆ (aω)dω gˆr (ω)φ i

= a

−ρi

  I(i)−1 X ibω cj Aj (1 − ρi ; b) gr (ω)e ; 1 − ρi ] − di M [ˆ j=0

 ibω ˆ a ;z + 1 + η ] − cr log a + cr lim M [φ(ω)e r 

z→0

R(r)−1



X p=0

− cr di [

dp Bp (z + 1 + η r ; a; b) −

di z



 Z ∞ iπ ˆ (aω)dω. − log b − γ] + eibω gˆr (ω)φ i+1 2 0 (2.20)

Asymptotic Expansion of Continuous Wavelet Transform

33

Hence, (Wφ+ g)(b, a)

= =

Z ∞  a1/2 ibω ˆ e gˆ(ω)φ(aω)dω 2π 0  n−1  1 X ibω ˆ a ;1 + η ] cr M [φ(ω)e r 2π r=0 R(r)−1

− +

X p=0

m−1 X i=0

 g (ω)eibω ; 1 − ρi ] di M [ˆ

I(i)−1



X j=0

 dp Bp (1 + η r ; a; b) a−ηr −1/2

  −ρi +1/2 cj Aj (1 − ρi ; b) a + Rn,m .

(2.21)

If ρi − η r = 1 for some pair (i, r) then in (2.21), the sum of the terms   R(r)−1 X ibω/a ˆ cr M [φ(ω)e ; 1 + ηr ] − dp Bp (1 + η r ; a; b) a−ηr −1/2 p=0



g(ω)e + di M [ˆ

I(i)−1 ibω

; 1 − ρi ] −

X j=0

 cj Aj (1 − ρi ; b) a−ρi +1/2 ,

(2.22)

must be replaced by    I(i)−1 X cj Aj (1 − ρi ; b) − cr loga g(ω)eibω ; 1 − ρi ] − a−ρi +1/2 di M [ˆ j=0



π ibω/a ˆ − logb − γ] + cr lim M [φ(ω)e ; z + 1 + ηr ] z→0 2  r−1 X di − dp Bp (z + 1 + η r ; a; b) − , z p=0 −cr di [i

(2.23)

and the remainder term Rn,m (a) as a → ∞+ is given by Rn,m (a) =

 O(a−ρi +1/2 + a−ηr −1/2 ), when − η r 6= −ρi + 1,  . −ρi +1/2 O(a log a), when − η r = −ρi + 1.

(2.24)

ˆ and f (ω) = gˆ(−ω), we get the asymptotic Similarly by setting h(ω) = φ(−ω) − expansion of Wφ g (b, a), as a → ∞+ ,

34

A. Pathak, P. Yadav, M. M. Dixit



Z ∞  a1/2 ˆ e−ibω gˆ(−ω)φ(−aω)dω 2π 0   n−1 −ibω 1 X ˆ a ; 1 + ηr ] cr (−1)ηr M [φ(−ω)e 2π r=0

 Wφ− g (b, a) = =

R(r)−1

X



p=0

 (−1)−ρp dp Bp (1 + η r ; a; b)

× a−ηr −1/2 + I(i)−1

X



j=0

m−1 X i=0

 g(−ω)e−ibω ; 1 − ρi ] (−1)−ρi di M [ˆ

 (−1)ηj cj Aj (1 − ρi ; b)

 × a−ρi +1/2 + Rn,m .

(2.25)

If ρi − η r = 1 for some pair (i, r) then in (2.25), the sum of the terms  −ibω ηr ˆ a ; 1 + ηr ] cr (−1) M [φ(−ω)e R(r)−1

− +

X

−ρp

(−1)

p=0

 dp Bp (1 + η r ; a; b) a−ηr −1/2

(2.26)

  I(i)−1 X (−1)ηj cj Aj (1 − ρi ; b) a−ρi +1/2 , g(−ω)e−ibω ; 1 − ρi ] − (−1)−ρi di M [ˆ j=0

(2.27) must be replaced by a

−ρi +1/2

  −ρi g (−ω)e−ibω ; 1 − ρi ] (−1) di M [ˆ

I(i)−1



X j=0

(−1)ηj cj Aj (1 − ρi ; b) − (−1)ηr cr loga



 −ibω/a ˆ +(−1)ηr cr lim M [φ(−ω)e ; z + 1 + ηr ] z→0



r−1 X p=0

(−1)−ρp dp Bp (z + 1 + η r ; a; b) − (−1)−ρi

−(−1)ηr −ρi cr di [i

 π − logb − γ] . 2

di z

 (2.28)

35

Asymptotic Expansion of Continuous Wavelet Transform

Therefore by using (2.21) and (2.25) in (2.2), we get the required asymptotic expansion of wavelet transform for large a→ ∞+ is 1 (Wφ g) (b, a) = 2π

 n−1 X r=0

R(r)−1

− +

X p=0 m−1 X i=0



j=0

  1 η r −ρp −iπ(1+η r −ρp ) a−ηr − 2 dp Bp (1 + η r ; a; b) 1 + (−1) e 

g(ω)eibω ; 1 − ρi ] + (−1)−ρi M [ˆ g (−ω)e−ibω ; 1 − ρi ] di M [ˆ

I(i)−1

X

 ibω/a −ibω/a ˆ ˆ ; 1 + η r ] + (−1)ηr M [φ(−ω)e ; 1 + ηr ] cr M [φ(ω)e

  1 η j −ρi −iπ(1+η j −ρi ) a−ρi + 2 cj Aj (1 − ρi ; b) 1 + (−1) e

 + Rn,m (a) .

(2.29)

If ρi − η r = 1 for some pair (i, r) then in (2.29), the corresponding sum of (2.22) and (2.26) must be replace by   1 g(ω)eibω ; 1 − ρi ] + (−1)−ρi M [ˆ g(−ω)e−ibω ; 1 − ρi ] a−ρi + 2 di M [ˆ I(i)−1



X j=0

  cj Aj (1 − ρi ; b) 1 + (−1)ηj −ρi e−iπ(1+ηj −ρi ) 

ibω/a −ibω/a ˆ ˆ +cr lim M [φ(ω)e ; z + 1 + η r ] + (−1)ηr M [φ(−ω)e ; z + 1 + ηr ] z→0



r−1 X p=0

  dp Bp (z + 1 + η r ; a; b) 1 + (−1)ηr −ρp e−iπ(z+1+η r −ρp ) .

(2.30) ✷

3. Application Using the aforesaid technique, we find the asymptotic expansions of Mexican Hat wavelet and Morlet wavelet transform. 3.1. Asymptotic Expansion of Mexican Hat Wavelet Transform −t2

We consider φ(t) = (1 − t2 ) e 2 to be a Mexican Hat wavelet.Since Fourier √ −ω2 ˆ transform of Mexican Hat φ(ω) = 2π ω2 e 2 is locally integrable in (−∞, ∞) ˆ as ω → ∞+ [1] and has an asymptotic expansion of φ(ω) ∞

X ¯ˆ φ(ω) = dr ω −2r+1 , r=0

(3.1)

36

A. Pathak, P. Yadav, M. M. Dixit



where, dr = ar e 2 (2r−1) Γ(2r − 1) and ar =

(−1)r+1 r (2r−1) . r! 2r−1

ˆ φ(ω) = O(1) as ω → 0 + .

(3.2)

Now, assume gˆ(ω) satisfies (2.5) and (2.7) with η 0 > 1. Then by using (2.29) and by means of formula [ [2],(10,30),pp.318,320], we get the asymptotic expansion of Mexican Hat wavelet transform at a → ∞+ is  n−1 X

×

    ηr √ 1√ 2 − 1 + (−1)ηr bi cr 21+ 2 π − a r=0     (3 + η r ) (4 + η r ) (4 + η r ) 3 b2 i2 Γ[ ]1F 1 , , 2 + 1 + (−1)ηr Γ[ ] 2 2 2 2a 2  R(r)−1  X iπ (3 + η r ) 1 b2 i2 − ap e 2 (2p−1) Γ[2p − 1] 1F 1 , , 2 2 2 2a p=0

×

  m−1 X 1 Bp (1 + η r ; a; b) 1 − (−1)−ηr e−iπη r a−ηr − 2 + ai

×

 iπ e 2 (2i−1) Γ[2i − 1] M [ˆ g(ω)eibω ; 2r] − M [ˆ g (−ω)e−ibω ; 2r]

  Wφ g (b, a) =

1 2π

×

i=0

I(i)−1

X



j=0

   2r− 12 η j −iπη j + Rn,m (a) , a cj Aj (2r; b) 1 − (−1) e (3.3)

where R(r) is the index r for which (1 − 2r) − η r ≤ 1 < (1 − 2r) − η r − 1 and I(i) is the index i for which −2r − η r < 1 ≤ (1 − 2r) − η r . If (−2r + 1) − η r = 1 for some pair (i, r) then, in (3.3), the corresponding sum of the terms must be replace by   iπ 1 g (ω)eibω ; 2r] − M [ˆ g(−ω)e−ibω ; 2r] a2r− 2 ai e 2 (2i−1) Γ[2i − 1] M [ˆ I(i)−1



+ × ×

X

cj Aj (2r; b)







j=0

1 2

2+z+η r

1 − (−1)ηj e−iπηj



  √ π 1 + (−1)ηr z→0       (3 + z + η r ) 1 b2 i2 1√ 1 Γ[ 2 − 1 + (−1)ηr 3 + z + ηr , , 2 − ] 1F 1 2 2 2 2a a     2 2 3 b i 1 (4 + z + η r ) 4 + z + ηr , , 2 ] 1F 1 bi Γ[ 2 2 2 2a 

cr lim 2

37

Asymptotic Expansion of Continuous Wavelet Transform



r−1 X

+

m−1 X

ap e

p=0

i=0

iπ 2 (2p−1)

  1 Γ[2p − 1] Bp (1 + η r ; a; b) 1 − (−1)−ηr e−iπηr a−ηr − 2

 iπ ai e 2 (2i−1) Γ[2i − 1] M [ˆ g(ω)eibω ; 2r] − M [ˆ g(−ω)e−ibω ; 2r]

I(i)−1



X

   1 1 − (−1)ηj e−iπηj a2r− 2 ,

cj Aj (2r; b)

j=0

(3.4)

and the remainder term Rn,m (a) as a → ∞+ is given by  O(a2r− 12 + a−ηr − 12 ), when − η r 6= 2r,  . Rn,m (a) = 2r− 21 O(a log a), when − η r = 2r.

(3.5)

3.2. Asymptotic Expansion of Morlet Wavelet Transform 2

t ˆ = In this application, we consider Morlet wavelet φ(t)= eiωo t− 2 . Since φ(ω)

√ 2π e is locally integrable in (−∞, ∞) and has an asymptotic expansion as ω → ∞+ [4]. −(ω−ω o )2 2

ˆ φ(ω) =

∞ X



ar e 2

(r+1)

Γ[r + 1]ω −(r+1) ,

(3.6)

r=0

where [r/2]

X (−1)j (iω o )r−2j , (2)j j!(r − 2j)! j=0

(3.7)

ˆ φ(ω) = O(1) as ω → 0 + .

(3.8)

ar =

and

Now, assume gˆ(ω) satisfies (2.5) and (2.7) with η 0 > 1. Hence, using (2.29) and formula [ [2],(11, 31), pp.318, 320], we get the following asymptotic expansion of

38

A. Pathak, P. Yadav, M. M. Dixit

Morlet wavelet transform for a → ∞+ as    n−1  2 −wo ηr 1 X (1 + η r ) ηr 2 2 (Wφ g) (b, a) = Γ[ 1 + (−1) ] cr 2 e 2π r=0 2     1√ (1 + η r ) 1 (bi + awo )2 ηr − , , × 1F 1 2 − 1 + (−1) 2 2 2a2 a    (2 + η r ) (2 + η r ) 3 (bi + awo )2 × Γ[ (bi + awo ) ] 1F 1 , , 2 2 2 2a2  m−1 X iπ (i+1) 2 ai e Γ[i + 1] M [ˆ g(ω)eibω ; −r] + i=0

− (−1)−r M [ˆ g(−ω)e−ibω ; −r] (3.9)    I(i)−1 X −r− 12 −η j −r −iπ(η j −r) a cj Aj (−r; b) 1 − (−1) e − + Rn,m , j=0

(3.10) where R(r) is the index r for which (r + 1) − η r ≤ 1 < (r + 1) − η r − 1 and I(i) is the index i for which r − η r < 1 ≤ (r + 1) − η r . If (r + 1) − η r = 1 for some pair (i, r) then in (3.9), the corresponding sum of the terms must be replace by   iπ −r− 12 (i+1) 2 a ai e Γ[i + 1] M [ˆ g (ω)eibω ; −r] − (−1)−r M [ˆ g (−ω)e−ibω ; −r] I(i)−1

− + × × −

X j=0

  −ηj −r −iπ(η j −r) cj Aj (−r; b) 1 − (−1) e

     2 wo √ 1 1 1 + z + ηr cr lim 2 2 (z+ηr ) e− 2 π 1 + (−1)ηr Γ z→0 2       1 (bi + awo )2 1√ 1 ηr − 1 + (−1) 1F 1 1 + z + ηr , , − 2 2 2 2a2 a          bi + awo 2  1 3 1 Γ 2 + z + η r 1F 1 2 + z + ηr , , bi + aw o 2 2 2 2a2   R(r)−1 X iπ (p+1) η r −p −iπ(z+η r −p) 2 ap e , Γ[p + 1]Bp (z + η r + 1; a; b) 1 − (−1) e p=0

(3.11) and the remainder term Rn,m (a) as a → ∞+ is given by

 O(a−r− 12 + a−ηr − 21 ), when − η r 6= −r,  Rn,m (a) = . 1 O(a−r− 2 log a), when − η r = −r.

(3.12)

Asymptotic Expansion of Continuous Wavelet Transform

39

Acknowledgments The author is thankful to the referees for their valuable comments and this research work is supported by U.G.C start-up grant. References 1. R.S.Pathak; Wavelet Transforms world scientific ,(2009). 2. Erde’lyi, A., W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms , Vol. 1. McGraw-Hill, New York (1954). 3. Wong, R., Explicit error terms for asymptotic expansion of Mellin convolutions , J. Math. Anal. Appl. 72,740-756.(1979) 4. Wong, R., Asymptotic Approximations of Integrals, Acad. Press, New York (1989). 5. Jose L. Lopez , Pedro Pagola, Asymptotic expansions of Mellin convolution integrals: An oscillatory case, Journal of Computational and Applied Mathematics 233 , 1562 –1569,(2010). 6. R S Pathak and Ashish Pathak, Asymptotic expansion of Wavelet Transform for small value a , The Wavelet Transforms, World scientific, 164-168, (2009). 7. R S Pathak and Ashish Pathak, Asymptotic expansion of Wavelet Transform with error term, The Wavelet Transforms ,World scientific,154-164, (2009). 8. R S Pathak and Ashish Pathak, Asymptotic Expansions of the Wavelet Transform for Large and Small Values of b, International Journal of Mathematics and Mathematical Sciences, 13 page, doi:10.1155/2009/270492. (2009)

Ashish Pathak (Corresponding Author) Department of Mathematics Institute of Science Banaras Hindu University Varanasi-221005, India. E-mail address: [email protected], pathak [email protected] and Prabhat Yadav, M M Dixit Department of Mathematics NERIST, Nirjuli- 791109, India. E-mail address: [email protected]

Suggest Documents