An Efficient and Practical Process for the Synthesis of ...

3 downloads 0 Views 364KB Size Report
Zhan-Hui Zhang, Liang Yin, Yong-Mei Wang*. Department of Chemistry and the State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin ...
PAPER

1949

An Efficient and Practical Process for the Synthesis of Bis(indolyl)methanes Catalyzed by Zirconium Tetrachloride AnEf icentandPracticalProces fortheSynthesi ofBis(indoly)methanes Zhang, Liang Yin, Yong-Mei Wang* Zhan-Hui Department of Chemistry and the State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China Fax +86(22)23502654; E-mail: [email protected] Received 24 December 2004; revised 10 March 2005

Abstract: Zirconium tetrachloride is used as a catalyst for the electrophilic substitution reaction of indole with aldehydes or ketones at ambient temperature to afford the corresponding bis(indolyl)methanes in good to excellent yields. Key words: indole, aldehydes, ketones, bis(indolyl)methanes, electrophilic substitution, zirconium tetrachloride

Indole and its derivatives are important intermediates in organic synthesis and exhibit various physiological properties and pharmacological activities.1 Over the past decade, a number of natural products containing bis(indolyl)methanes or bis(indolyl)ethanes have been isolated from marine sources.2 Bis(indolyl)methanes are found in cruciferous plants and are known to promote beneficial estrogen metabolism3 and induce apoptosis in human cancer cell. Therefore the preparation of these intermediates has received increased attention from synthetic organic chemists and biologists. The reaction of indole with aldehydes or ketones produces azafulvenium salts, which then undergo further addition with the second indole molecule to afford bis(indolyl)ethanes.4 Generally, this reaction is promoted using protic acids,5 Lewis acids (such as zinc chloride, indium chloride, indium triflate, dysprosium triflate, lanthanide triflate, lithium perchlorate, ferric chloride,6 or heteropolyacid7), and heterogeneous catalysts (zeolites, clay, and supported reagents8). Other catalysts such as iodine,9 NBS,10 potassium hydrogen sulfate,11 triphenyl phosphonium perchlorate,12 CAN,13 and hexamethylenetetraamine-bromine14 have also been used to catalyze this reaction. This reaction also proceeds in ionic liquids such as 1-butyl-3-methylimidazolium tetrafluoroborate or 1-butyl-3-methylimidazolium hexafluorophosphate15 or in the solid-state by employing a highpressure mercury lamp.16 Recently, rare-earth perfluoroocanoates [RE(PFO)3],17 trichloro-1,3,5-triazine,18 and ionic liquids in conjunction with In(OTf)3 or FeCl3·6H2O19 were employed for this transformation. Although these methods are suitable for certain syntheses, there sometimes exist some drawbacks such as long reaction time (e.g. 10 days5a), expensive reagents (e.g. dysprosium triflate6d), low yields of products in some cases, high catalyst loading, corrosive reagents, and large amounts of solid supports, which would eventually result in the genSYNTHESIS 2005, No. 12, pp 1949–1954xx. 205 Advanced online publication: 24.06.2005 DOI: 10.1055/s-2005-869959; Art ID: F18804SS © Georg Thieme Verlag Stuttgart · New York

eration of a large amount of toxic waste. For this reason, superior catalysts, which are cheap, less toxic, easily available, air-stable, and water-tolerant, are desirable. In recent years, zirconium tetrachloride has been explored extensively in organic reactions.20 Industrially its applications are steadily increasing.21 Furthermore, the high abundance of zirconium(IV) compounds in the earth’s crust make them less costly and easily available as well as this they also display low toxicity.22 In particular, zirconium tetrachloride has been found to be a more effective catalyst than conventional Lewis acids in promoting various transformations including the synthesis of nitriles,23 Biginelli reaction,24 the synthesis of chloromethyl esters,25 selective deprotection of tert-butyldimethylsilyl ethers,26 cleavage of prenyl ethers and para-methoxybenzyl ethers,27 one-pot conversion of tert-butyldimethylsilyl ethers and tetrahydropyranyl ethers to the corresponding acetates,28 nucleophilic-opening of epoxides,29 conversion of aldehydes to geminal-diacetates and dipivalates,30 the deprenylation of ethers and esters,31 the iodination of alcohols,32 selective tosylation of alcohols,33 Boc-protection of amines,34 cyclization of ortho-allylphenols,35 conversion of epoxides into b-chlorohydrins,36 and the preparation of MOM ether.37 In continuation of our interest in the use of Lewis acids as efficient catalysts in various transformations,38 we herein report the synthesis of bis(indolyl)methanes from indole and carbonyl compounds in the presence of a catalytic amount of zirconium tetrachloride (5 mol%) at room temperature (Scheme 1). R1 ZrCl4

O N 1

H

+ R1

R2 2

R2

CH3CN, r.t.

N H

N 3

H

Scheme 1

Initially, we carried out the reaction of indole with benzaldehyde in the presence of 5 mol% of zirconium tetrachloride in different anhydrous solvents at room temperature. The results are shown in Table 1. Among the solvents examined, acetonitrile proved to be the most effective. Similar results were observed in dichloromenthane, but with longer reaction times, however, utilizing other solvents proved to be quite unsatisfactory.

1950

PAPER

Z.-H. Zhang et al.

Table 1 Effect of Solvent on the Conversion of Indole and Benzaldehyde to Phenyl-3,3¢-diindoylmenthanea Time (h)

Yield (%)b

Entry

Solvent

1

CH3CN

0.5

96

2

CH3COOC2H5

1

86

3

CH2Cl2

1

92

4

CH3OH

4

80

5

C2H5OH

4

76

6

THF

20

84

7

DMF

25

42

a

All reactions were carried out using a catalytic amount of ZrCl4 (5.0 mol% based on the amount of indole) at r.t. b Isolated yields.

Next, we carried out the zirconium tetrachloride catalyzed electrophilic substitution reaction of indole with a variety of aldehydes or ketones to better understand both the scope and the generality of this method (Table 2). As shown in Table 2, a series of aromatic, aliphatic and heterocyclic aldehydes underwent electrophilic substitution reaction with indole smoothly to afford a wide range of substituted bis(indolyl)methanes in good to excellent yields. Many of the pharmacologically relevant substitution patterns on the aromatic ring could be introduced with high efficiency by using this procedure. The electron deficiency and the nature of the substituents on the aromatic ring affect the conversion rate; aromatic aldehydes Table 2

The reaction conditions are mild enough not to induce any isomerization of conjugated aldehydes (2z) and damage to moieties such as methoxy (2n, 2o, and 2t), methylenedioxy (2p), and allyloxy (2w), which often undergo cleavage under strong acidic reaction conditions. In the absence of zirconium tetrachloride, the reaction did not yield any product at room temperature even after a long reaction time. The efficacy of various Lewis acids was tested for this conversion, and the results are shown in Table 3. Among these catalysts, zirconium tetrachloride was found to be superior in terms of yield and reaction rate; a result of the mild Lewis acidity of the zirconium ion, which activates the carbonyl group to promote the reaction.

Zirconium Tetrachloride Catalyzed Synthesis of Bis(indolyl)methanes 2

Entry

having electron-withdrawing groups on the aromatic ring (i.e. NO2, F) react faster than benzaldehyde and an electron-donating substituent (i.e. CH3, OCH3, OH) deactivated aryl aldehydes remarkably. Furthermore, unsaturated aldehydes, such as cinnamaldehyde, gave the corresponding bis(indolyl)methanes without polymerization under the above reaction conditions. The heterocyclic aldehydes such as furfural and 2-thiophenecarboxaldehyde also worked well without the formation of any side products. 4-(Diethylamino)benzaldehyde (2ab), however, remained unaffected even when the reaction mixture was stirred at room temperature for one day; the starting material could be quantitatively recovered. This result may be due to the coordination of zirconium ion with the diethylamino group, which deactivates the catalyst. Ketones required longer reaction times, which is most probably due to the electron-donating and steric effects of the methyl group.

3 1

2

R

R

Time (min)

Yield (%)

1

Ph

H (2a)

30

2

2-NO2C6H4

H (2b)

3

3-NO2C6H4

4

Mp (°C) a

Recrystallization solvent Found

Reported

96

EtOAc–hexane

125–126

125–1278j

20

95

EtOH–CCl4

141–143

140–14216a

H (2c)

10

93

Et2O–EtOH

260–262

265–2668j

4-NO2C6H4

H (2d)

15

94

hexane

220–222

222–22813

5

2-ClC6H4

H (2e)

25

93

EtOAc–hexane

73–75

72–749a

6

3-ClC6H4

H (2f)

28

94

EtOAc–hexane

89–91

7

4-ClC6H4

H (2g)

25

96

MeOH–H2O

103–106

8

2,4-Cl2C6H3

H (2h)

20

95

EtOAc–hexane

103–105

9

3,4-Cl2C6H3

H (2i)

20

94

EtOAc–hexane

155–157

10

4-FC6H4

H (2j)

25

93

EtOAc–hexane

72–74

11

2-OH-5-ClC6H3

H (2k)

35

92

EtOAc–hexane

80–82

12

2-MeC6H4

H (2l)

45

94

EtOAc–hexane

100–102

13

4-MeC6H4

H (2m)

40

95

EtOAc–hexane

96–98

Synthesis 2005, No. 12, 1949–1954

© Thieme Stuttgart · New York

104–1058b

154–1566f

78–809a

95–976f

PAPER Table 2

1951

An Efficient and Practical Process for the Synthesis of Bis(indolyl)methanes Zirconium Tetrachloride Catalyzed Synthesis of Bis(indolyl)methanes (continued) 2

3 1

2

Mp (°C) a

Entry

R

R

14

2-OMeC6H4

H (2n)

50

94

EtOAc–hexane

134–136

15

4-OMeC6H4

H (2o)

45

94

MeOH–H2O

190–193

191–1938j

16

3,4-(OCH2O)C6H3

H (2p)

60

90

EtOAc–hexane

102–104

97–996f

17

2-OHC6H4

H (2q)

120

91

benzene–hexane

342–344

3495a

18

3-OHC6H4

H (2r)

60

97

EtOAc–hexane

101–103

985a

19

4-OHC6H4

H (2s)

80

86

EtOAc–hexane

120–122

122–12413

20

3-MeO-4-OHC 6H3

H (2t)

45

95

EtOAc–hexane

102–103

99–1016c

21

CH3(CH2)4

H (2u)

80

90

EtOAc–hexane

67–69

68–706f

22

CH3(CH2)5

H (2v)

90

92

EtOAc–hexane

68–70

66–686h

23

CHO

50

95

EtOAc–hexane

153–155

30

90

benzene–hexane

320–322

32214

60

89

hexane

186–188

188–1908c

120

81

EtOAc–hexane

96–98

995a

45

94

EtOAc–hexane

236–239

2406f

24 h

–b

6h

89

EtOAc–hexane

165–167

167–16813

6h

92

EtOAc–hexane

116–118

118–1206f

Time (min)

Yield (%)

Recrystallization solvent Found

Reported

OCH2CH=CH2

(2w) 24 O

CHO

(2x) 25 S

CHO

(2y) 26

CHO

(2z) 27

CHO

28

(2aa) 4-Et2NC6H4

H (2ab)

29

CH3

CH3(2ac)

30 O

31

(2ad) Ph

CH3 (2ae)

6h

85

EtOH

188–190

190–19213

32

4-NO2C6H4

CH3 (2af)

6h

87

EtOAc–hexane

232–235

234–2366a

a b

Isolated yield after purification. No reaction.

This reaction was further explored for the synthesis of tetraindolyl compounds 6 and 7 by the condensation of terephthalaldehyde 4 and 2,2¢-di(formylphenoxy) propane 5 with four equivalents of indole under similar conditions in excellent yields (Scheme 2).

In conclusion, zirconium tetrachloride has been employed for the first time as a novel and efficient catalyst for the synthesis of bis(indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes or ketones. This method is applicable to a wide range of aldehydes, including aromatic, aliphatic, a,b-unsaturated and hetero-

Synthesis 2005, No. 12, 1949–1954

© Thieme Stuttgart · New York

1952

PAPER

Z.-H. Zhang et al.

Table 3 Effect of Different Lewis Acids on the Reaction of Indole with Benzaldehydea Entry

Yield (%)b

Catalyst

Time (h)

1

None

10

0

2

BiCl3

5

87

3

Bi(NO3)5·5H2O

4

86

4

CuCl2

2

93

5

InCl3

6

91

6

InBr3

2

92

7 8

In(OTf)3

0.42 0.8

716c 78

9

CoCl2·6H2O

24

37

10

ZnCl2

24

11

11

ZnBr2

24

20

12

FeCl3

24

73

13

Cu(OTf)2

5

90

14

NiCl2·6H2O

24

trace

15

Mg(ClO4)2

24

46

16

Ga(ClO4)3

8

90

17

Pr(ClO4)3

8

92

18

LaCl3

15

8

19

LiBr

24

18

20

LiCl

24

16

21

SrCl2·6H2O

15

0

22

Ti(SO4)2

4

92

23

AlCl3

15

89

24

ZrO(NO3)2·2H2O

20

73

25

ZrSO4·4H2O

8

84

26

ZrOCl2·8H2O

20

62

27

Zr(NO3)5·5H2O

5

88

28

ZrCl4

0.5

96

Scheme 2

a

The reaction was carried out according to the typical experimental procedure. b Isolated yields.

cyclic substrates, and ketones. The attractive features of this procedure are the mild reaction conditions, high conversions, cleaner reaction profiles, inexpensive and environmentally friendly catalyst, all of which make it an attractive strategy for the preparation of bis(indolyl)methanes.

Synthesis 2005, No. 12, 1949–1954

© Thieme Stuttgart · New York

Melting points were recorded on X-4 apparatus and are uncorrected. IR spectra were recorded on a Bio-Rad FTS 135 spectrophotometer using KBr optics. NMR spectra were recorded with a Bruker spectrometer at 300 (1H NMR) and 75 (13C NMR) MHz using TMS as internal standard. Mass spectra were recorded on a VG-7070E mass spectrometer. Elemental analyses were performed on a Yanaca CDRDER MT-3 analyzer. Synthesis of Bis(indolyl)methanes 3; General Procedure A mixture of indole (2.0 mmol), aldehyde or ketone (1.0 mmol), and ZrCl4 (0.023 g, 0.1 mmol) in MeCN (5 mL) was stirred at r.t. for the appropriate time (Table 2). After completion of the reaction, as indicated by TLC, the mixture was quenched with H2O (5 mL) and extracted with EtOAc (2 × 10 mL). The combined organic layer was separated and dried (Na2SO4), concentrated in vacuo, and the product was purified by column chromatography on silica gel (EtOAc–cyclohexane, 1:9) to give pure bis(indolyl)methanes. 3,3¢-Bisindolyl-3-chlorophenylmethane (3f) IR: 742, 1010, 1093, 1294, 1337, 1417, 1455, 1592, 2923, 3054, 3409 cm–1. 1

H NMR (300 MHz, CDCl3): d = 6.02 (s, 1 H), 6.57 (s, 2 H), 7.00 (t, J = 7.8 Hz, 2 H), 7.06–7.22 (m, 6 H), 7.36 (d, J = 7.8 Hz, 4 H), 7.90 (br s, 2 H, NH).

13

C NMR (75 MHz, CDCl3): d = 40.1, 111.3, 119.1, 119.6, 120.0, 122.3, 123.8, 126.6, 127.0, 129.0, 129.7, 134.2, 136.8, 146.3.

EIMS: m/z (%) = 358 [33, (M + 2)+], 356 (100, M+), 245 (24), 239 (6). Anal. Calcd for C23H17ClN2: C, 77.41; H, 4.80; N, 7.85. Found: C, 77.48; H, 4.85; N, 7.82. 3,3¢-Bisindolyl-2,4-dichlorophenylmethane (3h) IR: 739, 794, 864, 1096, 1456, 1586, 2848, 3055, 3405 cm–1. 1

H NMR (300 MHz, CDCl3): d = 6.27 (s, 1 H), 6.84 (s, 2 H), 7.03 (t, J = 7.8 Hz, 4 H), 7.37 (d, J = 7.8 Hz, 6 H), 7.45 (d, J = 2.1 Hz, 1 H), 7.95 (br s, 2 H, NH).

PAPER

An Efficient and Practical Process for the Synthesis of Bis(indolyl)methanes

13

C NMR (75 MHz, CDCl3): d = 36.5, 110.0, 111.4, 117.9, 119.6, 119.9, 122.4, 124.0, 127.2, 129.5, 131.4, 132.6, 134.8, 136.9, 140.2.

3,3¢-Bisindolyl(methyl)phenylmethane (3ae) IR: 741, 1010, 1336, 1455, 2848, 2923, 3053, 3410 cm–1.

EIMS: m/z (%) = 390 (100, M+), 392 [61, (M + 2)+], 274 (41), 245 (50), 176 (24), 117 (56).

1

Anal. Calcd for C23H16Cl2N2: C, 70.60; H, 4.12; N, 7.16. Found: C, 70.62; H, 4.20; N, 7.18. 3,3¢-Bisindolyl-4-fluorophenylmethane (3j) IR: 737, 862, 1039, 1502, 1600, 1502, 1456, 3059, 3440 cm–1. 1

H NMR (300 MHz, CDCl3): d = 5.87 (s, 1 H), 6.65 (s, 2 H), 6.96 (t, J = 8.4 Hz, 2 H), 7.02 (d, J = 7.8 Hz, 2 H), 7.20 (t, J = 7.8 Hz, 2 H), 7.27–7.32 (m, 2 H), 7.36 (d, J = 8.7 Hz, 4 H), 7.94 (br s, 2 H, NH). 13

C NMR (75 MHz, CDCl3): d = 39.6, 111.3, 115.0, 115.3, 119.5, 120.1, 122.2, 123.8, 127.1, 130.3, 136.9, 139.9, 160.0.

EIMS: m/z (%) = 340 (2, M+), 121 (100), 117 (38), 95 (12), 89 (42), 77 (9). Anal. Calcd for C23H17FN2: C, 81.16; H, 5.03; N, 8.23. Found: C, 81.22; H, 5.10; N, 8.16. 3,3¢-Bisindolyl-2-methylphenylmethane (3l) IR: 740, 1092, 1337, 1455, 1484, 1600, 2923, 3040, 3414 cm–1. 1

H NMR (300 MHz, CDCl3): d = 2.05 (s, 3 H), 5.87 (s, 1 H), 6.68 (s, 2 H), 7.02 (t, J = 8.1 Hz, 2 H), 7.16–7.21 (m, 6 H), 7.37 (d, J = 8.1 Hz, 4 H), 7.94 (br s, 2 H, NH).

13

1953

H NMR (300 MHz, CDCl3): d = 2.29 (s, 3 H), 6.54 (s, 2 H), 6.86 (t, J = 7.8 Hz, 2 H), 7.06 (t, J = 7.8, 2 H), 7.14–7.18 (m, 4 H), 7.23– 7.34 (m, 5 H), 7.78 (br s, 2 H, NH).

13

C NMR (75 MHz, CDCl3): d = 28.8, 43.7, 111.2, 118.9, 121.5, 122.1, 123.4, 124.7, 125.8, 126.5, 127.8, 128.1, 137.1, 148.1.

EIMS: m/z (%) = 336 (85, M+), 243 (100), 245 (48), 220 (58), 77 (38). Anal. Calcd for C24H20N2: C, 85.68; H, 5.99; N, 8.33. Found: C, 85.66; H, 5.98; N, 8.40. 3,3¢,3¢¢,3¢¢¢-Tetraindolyl(terephthalyl)dimethane (6) Colorless solid (contains 2 EtOAc molecules; EtOAc–hexane, 1:2); mp 138–139 °C (Lit.16b 138–140 °C). IR: 742, 776, 1295, 1455, 1720, 2849, 2920, 3052, 3411 cm–1. 1

H NMR (300 MHz, acetone-d6): d = 1.29 (t, J = 7.2 Hz, 6 H, CH3), 2.05 (s, 6 H, CH3), 4.04–4.09 (m, 4 H, CH2), 5.89 (s, 2 H, ArCH), 6.81 (t, J = 7.8 Hz, 4 H), 6.91 (t, J = 7.8 Hz, 4 H), 7.05 (t, J = 7.8 Hz, 4 H), 7.34–7.38 (m, 12 H), 9.97 (br s, 4 H, NH). 13

C NMR (75 MHz, acetone-d6): d = 14.4, 20.8, 40.8, 60.5, 112.0, 119.2, 120.0, 120.3, 121.9, 124.3, 124.5, 128.1, 129.2, 138.0, 143.4, 170.8. EIMS: m/z (%) = 566 (3, M+), 452 (10), 336 (68), 245 (10), 117 (8), 116 (100), 89 (50).

C NMR (75 MHz, CDCl3): d = 19.5, 36.2, 110.9, 119.2, 119.8, 121.9, 123.8, 125.8, 126.0, 127.2, 128.3, 130.1, 134.4, 136.0, 136.7, 142.0.

Anal. Calcd for C48H46N4O4: C, 77.60; H, 6.24; N, 7.54. Found: C, 77.62; H, 6.40; N, 7.48.

EIMS: m/z (%) = 336 (3, M+), 121 (100), 117 (57), 108 (34), 91 (17), 89(78), 77 (21).

2,2¢-Bis[(3,3¢-diindolyl)methylphenoxy]propane (7) Colorless solid (EtOAc–hexane); mp 145–147 °C.

Anal. Calcd for C24H20N2: C, 85.68; H, 5.99; N, 8.33. Found: C, 85.63; H, 6.03; N, 8.46.

IR: 742, 1240, 1467, 1596, 2849, 2924, 3055, 3415 cm–1.

3,3¢-Bisindolyl-2-methoxyphenylmethane (3n) IR: 745, 1102, 1337, 1456, 1486, 1595, 2932, 3056, 3407 cm–1. 1

H NMR (300 MHz, CDCl3): d = 3.82 (s, 3 H), 6.35 (s, 1 H), 6.64 (s, 2 H), 6.81 (t, J = 7.2 Hz, 1 H), 6.95 (t, J = 8.1 Hz, 1 H), 7.01 (d, J = 7.8 Hz, 2 H), 7.12–7.22 (m, 4 H), 7.33 (d, J = 8.1 Hz, 2 H), 7.40 (d, J = 7.8 Hz, 2 H), 7.84 (br s, 2 H, NH). 13

C NMR (75 MHz, CDCl3): d = 32.3, 56.0, 110.0, 110.8, 111.1, 119.2, 119.8, 120.2, 120.6, 121.9, 123.7, 127.3, 129.9, 132.5, 136.9, 157.1. +

+

EIMS: m/z (%) = 352 (35, M ), 351 [100, (M – 1) ], 335 (41), 245 (10), 236 (35), 220 (52). Anal. Calcd for C24H20N2O: C, 81.79; H, 5.72; N, 7.95. Found: C, 81.86; H, 5.78; N, 7.98. 3,3¢-Bisindolyl-4-allyloxyphenylmethane (3w) IR: 745, 791, 1455, 1506, 1608, 2849, 3052, 3418 cm–1.

1

H NMR (300 MHz, acetone-d6): d = 2.81–2.84 (m, 2 H), 3.86 (t, J = 8.7 Hz, 4 H), 6.34 (s, 2 H), 6.58 (d, J = 7.8 Hz, 2 H), 6.75–6.89 (m, 10 H), 7.02–7.12 (m, 8 H), 7.36 (t, J = 7.8 Hz, 8 H), 9.87 (br s, 4 H, NH). 13 C NMR (75 MHz, acetone-d6): d = 29.0, 33.1, 65.0, 112.1, 112.2, 119.2, 119.6, 120.1, 120.6, 121.9, 124.6, 127.8, 128.2, 129.8, 134.0, 138.0, 157.0.

EIMS: m/z (%) = 716 (3, M+), 482 (5), 480 (41), 117 (9), 116 (100), 89 (26). Anal. Calcd for C49H40N4O2: C, 82.10; H, 5.62; N, 7.82. Found: C, 82.12; H, 5.58; N, 7.80.

Acknowledgment The authors thank the National Natural Science Foundation of China (20472032) and the State Key Laboratory of Elemento-Organic Chemistry for financial support.

1

H NMR (300 MHz, CDCl3): d = 4.45 (dt, J = 5.2, 1.5 Hz, 2 H), 5.41 (dd, J = 14.2, 1.5 Hz, 2 H), 5.83 (s, 1 H), 6.01–6.12 (m, 1 H), 6.55 (s, 2 H), 6.83 (d, J = 8.4 Hz, 2 H), 7.02 (t, J = 7.2 Hz, 2 H), 7.18 (t, J = 6.0 Hz, 2 H), 7.37 (t, J = 8.4 Hz, 2 H), 7.37 (d, J = 8.4 Hz, 4 H), 7.91 (br s, 2 H, NH). 13

C NMR (75 MHz, CDCl3): d = 39.5, 69.0, 111.2, 114.6, 117.8, 119.4, 120.2, 122.1, 123.7, 127.2, 129.8, 133.7, 136.6, 136.9, 157.1. EIMS: m/z (%) = 378 (100, M+), 337 (29), 261 (42), 219 (63), 116 (83). Anal. Calcd for C26H22N2O: C, 82.51; H, 5.86; N, 7.40. Found: C, 82.56; H, 5.88; N, 7.36.

References (1) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970. (2) Ge, X.; Yannai, S.; Rennert, G.; Gruener, N.; Fares, F. A. Biochem. Biophys. Res. Commun. 1996, 228, 153. (3) Zeligs, M. A. J. Med. Food 1998, 1, 67. (4) Remers, W. Chem. Heterocycl. Compd. 1972, 25, 1. (5) (a) Kamal, A.; Qureshi, A. A. Tetrahedron 1963, 19, 513. (b) Noland, W. E.; Venkiteswaran, M. R.; Richards, G. G. J. Org. Chem. 1961, 26, 4241. (c) Noland, W. E.; Venkiteswaran, M. R. J. Org. Chem. 1961, 26, 4263. Synthesis 2005, No. 12, 1949–1954

© Thieme Stuttgart · New York

1954

PAPER

Z.-H. Zhang et al.

(6) (a) ZnCl2: Du, D.-M.; Meng, S.-M.; Wang, Y.-M.; Meng, J.B.; Zhou, X.-Z. Chin. J. Chem. 1995, 13, 520. (b) InCl3: Babu, G.; Sridhar, N.; Perumal, P. T. Synth. Commun. 2000, 30, 1609. (c) In(OTf)3: Nagarajan, R.; Perumal, P. T. Tetrahedron 2002, 58, 1229. (d) Dy(OTf)3: Mi, X.-L.; Luo, S.-Z.; He, J.-Q.; Cheng, J.-P. Tetrahedron Lett. 2004, 45, 4567. (e) Ln(OTf)3: Chen, D.; Yu, L.; Wang, P. G. Tetrahedron Lett. 1996, 37, 4467. (f) LiClO4: Yadav, J. S.; Reddy, B. V. S.; Murthy, C. V. S. R.; Kumar, G. M.; Madan, C. Synthesis 2001, 783. (g) FeCl3: Xia, M.; Wang, S.-B.; Yuan, W.-B. Synth. Commun. 2004, 34, 3175. (h) InF3: Bandgar, B. P.; Shaikh, K. A. J. Chem. Res., Synop. 2004, 34. (7) H3PMo12O40·xH2O: Zolfigol, M. A.; Salehi, P.; Shirl, M. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 2273. (8) (a) Zeolite: Karthik, M.; Tripathi, A. K.; Gupta, N. M.; Palanichamy, M.; Murugesan, V. Catal. Commun. 2004, 5, 371. (b) See also: Reddy, A. V.; Ravinder, K.; Reddy, V. L. N.; Goud, T. V.; Ravikanth, V.; Venkateseswarlu, Y. Synth. Commun. 2003, 33, 3687. (c) Montmorillonite K-10: Chakrabary, M.; Sarkar, S. Tetrahedron Lett. 2002, 43, 1351. (d) See also: Chakrabarty, M.; Gosh, N.; Basak, R.; Harigaya, Y. Tetrahedron Lett. 2002, 43, 4075. (e) See also: Maiti, K. A.; Bhattacharyya, B. J. Chem. Res., Synop. 1997, 424. (f) Zeokarb-225: Magesh, C. J.; Nagarajan, R.; Karthik, M.; Perumal, P. T. Appl. Catal., A. 2004, 266, 1. (g) Amberlyst-15: Farhanullah, S. A.; Maulik, P. R.; Ram, V. J. Tetrahedron Lett. 2004, 45, 5099. (h) Amberlyst-15 and NaHSO4·SiO2: Ramesh, C.; Baneree, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557. (i) [SO3H]–MSU: Li, J.; Zhou, M.; Li, B.-G.; Zhang, G.-L. Synth. Commun. 2004, 34, 275. (j) Bentonitic clay: Penieres-Carrillo, G.; GarcíaEstrada, J. G.; Gutiérrez-Ramírez, J. L.; Alvarez-Toledano, C. Green Chem. 2003, 5, 337. (k) CeCl·7H2O/NaI/SiO2: Bartoli, G.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L. Synthesis 2004, 895. (9) (a) Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Tetrahedron 2004, 60, 2051. (b) Bandgar, B. P.; Shaikh, K. A. Tetrahedron Lett. 2003, 44, 1959. (10) Koshima, H.; Matsuaka, W. J. Heterocycl. Chem. 2002, 39, 1089. (11) Nagarajan, R.; Perumal, P. T. Chem. Lett. 2004, 33, 288. (12) Nagarajan, R.; Perumal, P. T. Synth. Commun. 2002, 32, 105. (13) Ramesh, C.; Ravindranath, N.; Das, B. J. Chem. Res., Synop. 2003, 72. (14) Bandgar, B. P.; Bettigeri, S. V.; Joshi, N. S. Monatsh. Chem. 2004, 135, 1265. (15) Yadav, J. S.; Reddy, B. V. S.; Sunitha, S. Adv. Synth. Catal. 2003, 345, 349.

Synthesis 2005, No. 12, 1949–1954

© Thieme Stuttgart · New York

(16) (a) Meng, J.-B.; Du, D.-M.; Xiong, G.-X.; Wang, W.-G.; Wang, Y.-M.; Koshima, H.; Matsuura, T. J. Heterocycl. Chem. 1994, 31, 121. (b) Meng, J.-B.; Wang, W.-G.; Xiong, G .-X.; Wang, Y.-M.; Fu, D.-C.; Du, D.-M.; Wang, R.-J.; Wang, H.-G.; Koshima, H.; Matsuura, T. J. Photochem. Photobiol. A: Chem. 1993, 74, 43. (17) Wang, L.-M.; Han, J.-W.; Tian, H.; Sheng, J.; Fan, Z.-Y.; Tang, X.-P. Synlett 2005, 337. (18) Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Lett. 2004, 45, 7729. (19) (a) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Wang, S.-Y.; Loh, T.P. Synlett 2003, 2077. (b) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Jiang, Z.-Q.; Loh, T.-P. Eur. J. Org. Chem. 2004, 1584. (20) Bora, U. Synlett 2003, 1073. (21) Chakraborti, A. K.; Gulhane, R. Synlett 2004, 627. (22) Emsley, J. The Elements, 3rd ed.; Clarendon: Oxford, 1998. (23) Tsuji, C.; Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synth. Commun. 2002, 32, 3871. (24) Reddy, C. h. V.; Mahesh, M. M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett. 2002, 43, 2657. (25) Mudryk, B.; Rajaraman, S.; Soundararajan, N. Tetrahedron Lett. 2002, 43, 6317. (26) Sharma, G. V. M.; Srinivas, B.; Krishna, R. R. Tetrahedron Lett. 2003, 44, 4689. (27) (a) Babu, K. S.; Raju, B. C.; Srinivas, P. V.; Rao, J. M. Tetrahedron Lett. 2003, 44, 2525. (b) Sharma, G. V. M.; Reddy, C. G.; Krishna, P. R. J. Org. Chem. 2003, 68, 4574. (28) Reddy, Ch. S.; Smitha, G.; Chandrasekhar, S. Tetrahedron Lett. 2003, 44, 4693. (29) Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315. (30) Smitha, G.; Reddy, Ch. S. Tetrahedron 2003, 59, 9571. (31) Sharma, G. V. M.; Reddy, Ch. G.; Krishna, P. R. Synlett 2003, 1728. (32) Firouzabadi, H.; Iranpoor, N.; Jafarpour, M. Tetrahedron Lett. 2004, 45, 7451. (33) Das, B.; Reddy, M. R.; Reddy, V. S.; Ramu, R. Chem. Lett. 2004, 33, 1526. (34) Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Lett. 2004, 45, 6963. (35) Meshram, H. M.; Premalatha, K. P.; Rameshbabu, K.; Eeshwaraiah, B.; Yadav, J. S. Synth. Commun. 2004, 34, 3091. (36) Smiyha, G.; Reddy, Ch. S. J. Chem. Res., Synop. 2004, 300. (37) Sharma, G. V. M.; Reddy, K. L.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Lett. 2004, 45, 9229. (38) (a) Yin, L.; Zhang, Z.-H.; Wang, Y.-M.; Pang, M.-L. Synlett 2004, 1727. (b) Zhang, Z.-H.; Yin, L.; Wang, Y.-M.; Liu, J.Y.; Li, Y. Green Chem. 2004, 6, 563. (c) Zhang, Z.-H.; Yin, L.; Li, Y.; Wang, Y.-M. Tetrahedron Lett. 2005, 46, 889.

Suggest Documents