Let U (4) be the unitary group of degree 4 in SL4(C). Take a maximal compact subgroup K=G n u (4) = s (u (2) x (2) . We denote by g, f the Lie algebra of G, K, ...
519
J. Math. Kyoto U n iv . (JMKYAZ)
37 - 3 (1997) 519-530
An explicit integral representation of Whittaker functions for the representations of the discrete series —the case of SU(2 ,2) — By Takahiro
1.
HAYATA 1 and
T akayuki
ODA
Introduction
In a se n se , th is p a p e r is a supplem ent to th e p a p e r [1 2 ] o f Yamashita. A lso it is an analogue of a re su lt in [6]. W e c o n sid e r t h e L ie g ro u p G = S U ( 2 ,2 ) . T h e la r g e discrete series representation o f G h a s a W hittaker m odel w ith re sp ec t t o a nondegenerate c h a ra c te r o f th e m a x im a l u n ip o te n t subgroup N o f G . U sin g t h e Schmid o p e ra to r, Y a m a s h ita [1 2 ] e x p lic itly c o m p u te d t h e differential equations satisfied by the minimal K type vectors in the W hittaker m odel of the discrete series representations. T he purpose of this paper is to push this com putation one step further to o b t a in a n e x p lic it in te g r a l r e p r e s e n ta tio n o f t h e W hittaker functions representing these vectors belonging to th e m in im a l K -ty p e (Theorem s 4.4 a n d 4 . 5 ) . T h e r e i s a g e n e ra l in te g ra l re p re se n ta tio n d u e t o Jacquet for W h itta k e r fu n c tio n s. B u t th is re p re se n ta tio n is so m e tim e s in tra c ta b le for h ig h e r ra n k g ro u p s. W e h o p e o u r form ula is u se fu l for the investigation of L factors of autom orphic representations o f t h e d is c re te s e rie s a t t h e real places. T h e c o n te n t o f t h is p a p e r is a s follow s: I n § 2 , w e b rie fly re v ie w the s tr u c tu r e o f S U ( 2 ,2 ) , th e d is c re te s e rie s a n d t h e representations o f th e maximal compact subgroup K . B asic notations and definitions a re found in [1 ,2 ] , w h ic h w e fo llo w . In § 3 , w e review th e re su lts o f Y am ashita and of K o s ta n t o n th e d im e n s io n o f th e s p a c e o f W h itta k e r v e c to rs . W e a ls o calculate th e r a d ia l A -p a rt o f t h e S c h m id o p e ra to r e x p lic itly . I n § 4 , we describe the holonomic system of differential equations of W hittaker functions w h ic h h a s a p p e a r e d i n [ 1 2 ] . F u rth e rm o re , w e s h o w t h a t t h e integral representation o f th e a n aly tic W h itta k er fu n ctio n c an b e o b ta in ed fro m the differential equations under th e parity condition of a nondegenerate character of N. B e c a u se w e b e lo n g to th e c u ltu re o f a u to m o rp h ic fo rm s, the m axim al -
-
Communicated by Prof. T. Hirai, September 27,1996
JSPS Research Fellow
520
Takahiro Hayata and Takayuki Oda
compact subgroup K appears in the right hand of G and the unipotent group N in the left s id e . T h is is different from [12]. The authors thank Hiroshi Y am ashita for constant communications.
2.
The group SU(2,2) and its discrete series 2 .1 . Structure of Lie group and Lie algebra.
Let G be the special
unitary group SU(2,2) realized as, G = { g SL 4 (C) Ig*12,2 g
=
I,,,= diag (1, 1,
12,2}
—
1,
,
where g*= to denotes the adjoint of a matrix g. W e fix some notation for this group and its discrete series representations, used throughout this paper. L et U (4 ) b e th e unitary group o f degree 4 in S L 4 (C ). T a k e a maximal compact subgroup K = G n u (4) = s (u ( 2 ) x ( 2 ) . W e denote by g, f the Lie -
algebra of G, K, respectively. Let 0 ( x ) = tx be a Cartan involution and g-=t+p is the C artan decomposition of g. W e set, a = + RH2 with, 1/1 = X 2 3 ± X 3 2 , H2 = X14 ± X41, w here the Xii's are elementary matrices given by, X i•=
(
5
5
1P id ) W , 4 5 4
with Kronecker's delta öi p.
T hen a is a maximally R-split abelian subalgebra of g contained in p. the restricted root system zl =d (g, a) is expressed as,
Then
A= A (g, a) = {±21± 22, ± 22i, ±222). -
-
w h e r e 2 ; i s t h e d u a l of H . W e c h o o s e a p o s it iv e s y s te m d + a n d a fundamental system —fund A of A as follows:
A+={2 ± 22, 221, 222), 1
- -
22, 222).
fund —
W e also denote the corresponding nilpotent subalgebra by n=EBEA,- gB. Here gs is th e root subspace o f g corresponding to [3E d + . T h e n one obtains an Iwasawa decomposition of g and G:
g = n + a + t,
G = NAK ,
with A =exp a, N = e x p r t. Now let Ei A / —
1
X13 +
1 X31, E2 — H24 A/
1 -K24 +1/ 1 X42,
E 3
1/2
(X 1 2 X 2 1 X 1 4 + X 2 3 ± X 3 2 X 4 1 X 3 4 + X 4 3 )
E4
1/
1 /2
— -
(X
12
-
1X -
2 i
X 14 X 23 ±X 32 ±X 41 X 34 X 43) ,
E 5 1 / 2 (X 1 2 X 2 1 ±X 1 4 ± X 2 3 + X 3 2 ±X 4 1 + X 3 4 X 4 3 ) , E6
— 1/
1 /2
(X 12
X 2 1 + X 1 4 X 2 3 ±X 3 2 X 4 1 ±X 3 4 + X 4 3 ) ,
521
W hittaker functions for the representations of discrete series where H o =
—
1 (X ii — X ) fo r 1
Then it is easily seen that
g22; = R E; (j =1,2) , gÂ1l-2—RE3+RE4, gAi_22=RE5 - FRE6. L e t u s now parametrize 2 . 2 . Parametrization of discrete series. subalgebra t defined a com pact C artan T ake of S U ( 2 ,2 ) . th e discrete series by t = R,/ — 1 hi ± Ri/ — 1 h 2 -ER,/ — 1/2,2,
with h X 1
11
X22, h
2
= X33 X44
and let tc b e its complexification. Then th e absolute root system , of type A 3, is expressed as,
A = A (g c, tc) = { [± 2 , 0 ; 0], [0 , ± 2 ; 0 ], [± 1 , ± 1 ; ± 2 ]). where 13= [r, s; u] means r= [3 (h IF =
s =13 (h 2 ) and u = /3(/2,2) .
Let
1[2, 0; 0], [0 ,2 ; 0 ], [± 1 , ± 1 ; 2 ]). - +21 " = [2 , 0 ; 0 ] , [0 , 2 ; 0 ])
W e w rite the set of com pact positive roots by w e fix it h e re a fte r. T he W eyl group where,
c
IN=1-47 (gc, tc)
and
is generated by s , s , 5 i
2
3
= [— r, s; u],
siEr, s;
s2 [r, s; it] -= [(r — s +u ) / 2 , ( — r+s+u) /2; r+s ], S3
— [r, — s; u ].
[r, s;
of degree 4 by the map:
W e identify 1/1-7 and the symmetric group
j + 1 ) . T h e c o m p a ct W e y l g r o u p is g iv e n b y W = ( s , 5 ) , also s identified canonically with th e subgroup S2 X S2. '4 containing There are exactly six positive system s Ai', L1ji ..... 21 i
c
.
-
defined by W/ =
1
Aï=tv i d , where the elements w +
1, w
1
=
S3, Win = S2S3, Wry = S2S3,
3
W a re given as,
j
Wv
= 525351, WVI S 2 5 1
5 5
3 2.
W e denote by Lt ; the noncompact positive roots in By definition, the space of the Harish-Chandra param eters E , is given by, .
E c = {AE MA is A -regular, K-analytically integral and L1 -dominant}. Put
Ev= {A E
I
dominant).
W e also p u t p G j = 2 E B E3 1,3 (resp. p K =2 E s . 3:1(3) , th e half sum of positive r o o ts ( r e s p . th e half sum of com pact positive roots.) T hen th e space E c c t t a r e d iv id e d in to s ix p a r t s : E = U isfsvE.r. W e n o te t h a t E (re sp . E v i) - 1
- 1
-
c
i
522
Takahiro Hayata a n d Takayuki Oda
corresponds t o t h e holomorphic (resp. anti holomorphic) discrete series. For A E UisfsviEj, we denote the corresponding discrete series by rn and call th is A the Harish Chandra param eter of r n . A s determ ined i n [H, §10.4] the Gelfand-Kirillov dimensions of the discrete series representations n"A are given as follows: -
-
4
e
GK dim (zit) = { 6
(A
-
5
UENO,
.2-71
U
),
E Ent U Ely) .
Therefore the representations belonging to Ell U Ev is a large representation in the sense of Vogan [8, T h . 6.2, f)], hence has an algebraic W hittaker model. (Harish-Chandra param eters of discrete series of SU(2,2) are described as in Figure 1.)
FIGURE 1. Harish-Chandra param eters in tt
2 .3 . Representations of the maximal compact subgroup. d , d EZ
and d EZ. For d = [d1, d2; d E t , define 1
2
Let
3
k 0
rd
(hi )A dik2
=
'rd (4) r d (e- ) f e k 2 =
rd
( 2k
(d ) r ( [ 2 ,2 ) fk i k2
k by the following rule:
dj) t k ik d
(j = 1, 2) ,
j)— )_1_,,S11,,.2+,•2/9
f(tedi)k2 =
j
E
,
k
fe-
1,,k2-52,,
(d ) d 3f k i k2.
(1)
523
W hittaker functions for the representations of discrete series Here, Va = {f(kdi1210
j} C is the standard b a sis (se e [1 , § 3 ]) and
hl ,
7
2
, e 1+ = X 12 , e2+
= X 34,
ei_ = i ei+
Then according to [1, Prop. 3.1], I? is exhausted by
are the generators of tc.
("cd•Vd)ld = [di, d2; d3], d1±d2±d3 is even}.
T h e a d jo in t representation Ad = Ad pc o f K o n p c is decom posed into a direct sum of two irreducible subrepresentations: pc= p+ +p_, where, P+=CX13±CX14 FCX23+CX24,
P--=`P+.
-
In fact, Ad ± = Adlp+ is isomorphic to r11,1, ±21, respectively. F o r late r use, we fix the K-isomorphisms (±: p,--*v [ ,,,, + 2 , as follows: C
(
-(11) . 11)
f io ,
(X 2 3 , X 1 3 , X 2 4 , X 1 4 )
(AT4 1 , X 3 1 , X 4 2 , X 3 2 )
1 -4
r(11) (fÔ 101),.110
AP ,
—
)
—fan
( Ll, 1, Prop. 3.10]). [
The irreducible decomposition of tc module V a OPC is given a s follows: -
V a
pc = Va o p + V,-
V d op±
0
V E r+ E I,S i-E 2 . U ± 2 ]•
£1,62E I ± 1)
The projectors ®P+— )1/
P
€1 62)
r.3 '
:
Vd e p _
—
,
u+21,
v[r+Ei,s+E2, u-2],
are explicitly given by [1, Lemma 3.12].
3 . Radial A part of the differential operator Di, ,d -
Let ri be a unitary character of N = e x p n. F o r F (g ) cC7,,„(AAG/K), let
n,aF (9) =ER x ,F(g) ®Xk, {Xk}: orthonormal basis of p be the S c h m id o p e ra to r. Put
) ( f) ;,/,d= ° 7, 7,d w ith the projectors Pd
PY : V
V .
=
)
fie 3 /
L e t r A b e t h e d is c re te s e rie s re p re s e n ta tio n o f G w h e r e A E ,E j i s a Harish C handra p a ra m e te r. T h e n d = [r , s ; u ] = A ± PG ,, — 2pK, called the B lattner param eter o f r n , is th e highest w eight of the m inim al K type of ityi. For a W hittaker vector Hom(g,K) (7r1, (A G )) , define (N\G/K) by the following: -
-
(v*, O
(g)) =0 (1) * ) (g )
T h e algebraic W hittaker function
(1)* E V g
E G).
fo r th e representation o f th e discrete
524
Takahiro Hayata and Takayuki Oda
se rie s is u n iq u e ly d e te rm in e d a t th e v a lu e a EA =exp ( a ) b y v ir t u e of the Iwasawa decomposition.
Theorem 3.1 ( [11] ) . Let AE E j . H om o
Then,
C77(N \G )) 7-=-ker (O M ,
w here d is the Blattner param eter of rn. According to the re su lt of Kostant [4, T h. 6.8.1], the dimension formula can be obtained:
Theorem 3.2. dimc (Homwo (7rt C (N \ G ))) =
(j=
4 0
,
V),
otherwise.
P r o o f. It is su ffic ie n t to conside th e c a se o f A E Ell U Ev because of the largeness of 7rA. In order to specify the dimension, consider F # = exp (ac) = (diag (1,
— 1 ,1 , —
1) , a = i/- 1 ( 1 2
12) )
Define another representation 7r " b y 7r( " ) (g) i t (a g a ) . Then, we see from (
r[r,s u l
( a .Xa) 1
)
l
r[s,r, -id (X)
-= T w v w [ r , „ ]
(X)
th a t th e Harish - Chandra param eter o f 7rna) b e lo n g s to E v . U sin g th e same argument in the proof o f [2, Th. 4.2], we obtain the theorem. It is also know n that the rapidly-decreasing solution is unique if exists. For a = (ai, a2)=exp( (loga i )111 - 1- (loga2)H2) E A , le t 0 a5a/aa; and
L1= 1/2a, /1= 1/2
(a2± 722a), -0= (ai/a2) 2 , J'='(ai/a2) 2 .
W e also put, for a character )7 of N, 772= 1/ — 17 (E2)
(E5) +1/ — 1 7) (Eo),
(E5) —A/-172 (E6),
no=
T h e follow ing lem m a is obtained by d ire c t c a lc u la tio n sim ila r to [1, Lemma 6.5].
525
Whittaker functions for the representations of discrete series
Lemma 3 .3 .
For
F (g) = E lock a (g).fi jEC7,2- (N\G/K) , d = [r, s; u] , we d
d
have,
(k—r) (s — /).0 (k r) (1+1) (L1 (2k 21-1 r-F3s —
—
P ' ' V +c (
-
--
-
u+6) /4)
—
-
(k + l) (s
-
1) (L i (2k 21 r+s (k+1) (1+1) J23' —
(k
—
(s
—
—
u 12) /4)
—
-
-
1) s3
k) (1+ 1 ) ( I I + (2k - 21 — r+ s — u +2)/4) (k + 1 ) (l — s) (L + (2k — 21 3r s u 6) /4) (k+1) (l+1),23' (r
—
1
4.
—
—
—
—
Integral representation of discrete series Whittaker function
I n t h e follow ing, 77 i s a s s u m e d t o b e nondegenerate. A ccording to Theorem 3.2, w e treat the cases of J= H a n d V . M o re o v er, sin c e w e have ( E 2 ) , th e W hittaker functions o f 7 r4 (A E E v) can be obtained E ) , b y taking th e p a ra m e te rs (s, r, — u, — 1) ) in from TE (A ' = c p la c e o f (r, s , u , 17 ). T h u s w e o n ly tre a t th e c a s e o f A c Ell. Then, the Blattner param eter of rrn is cl = A + [0, 0; 2].
r) ( " ) (E 2 ) = A
—
i
,
ll
2
2
Lemma 4.1.
The projector P d( 1 1 ) decomposes into four projectors as follows:
= p -,-) (
Proof.
p(-,-) e p(-,+) p(-F,-)
.
(2)
W e find that
di+ir= 1[1, —1; 2], [1, 1; ±2], [-1, 1; 2], [0 , 2; 0] , [ 2 ,0 ; 0]
and that
A
11
=
{ [ i ,
—1; 2], [ 1 ,1 ; ±2], H 1, 1; 2]).
T hus the lemma follows. A ccording to Theorem 3.1, W hittaker functions a re characterized by the differential equations derived by the com position of the Schm id operator and projectors w hich appears in the decomposition of P P . Let (a) = E rack,, (a)fka. For notation, w e w rite ( 0) k a = ck ,i. Then, ck,i's )
satisfy the following system which is equivalent to 0;71,140=0:
Takahiro Hayata and Takayuki Oda
526 ( r'+.
(C2 :
kJ
1
(b i :
2
=
) kl
-
-
(P - - - ) . 17 0) k,i
0,
) kl
(P -
-
)
.
—
1)
°
0) k,1-1-1
0) k,1 + ( 1 + 1 )
°
0) k,i+i
(s
—
0, o,
( k +1 ) ( P +- ) . v ) k +i,i=o ,
v
(p( - ) .V J4 k,l — (r — k ) (P ± ' ) °
(P) ki-id= 0,
-
where we write V =V d for simplicity. Given a d = [r, s; 14], we put, ,
bo=b o ( d ) = ( r ± s + u ) / 2 , b l = b i ( d ) = ( b2=b 2 (d ) = (r s + u )/ 2 , b 3 = b 3 (d ) = ( —
—
—
r+ s+ u )/2 , r — s +u) /2.
(3
)
B y L em m a 3.3 as w ell as [1, L em m a 6.5] , the coefficients {ek,/} satisfy the following concrete equations: (k r) (1+1) (L 1+ (b3— s— k+1 - 3) /2)c k,14-1 —
1(L i+ (62 — k+ 1 - 1) / 2) ck-FLI + (k+1) (1+1) sYc k+1,1+1+ (k — r) (s — 1) s23ck,i = 0,
(Ci : 1) kJ F
+ (k + 1 ) (s
—
(62—k+1+1) /2)C k,I+1
(r—k) (C i. 1 ) k l
(C 2 :
2
) kl
1) kl (C i:
2
) kl
+ (k+ 1) C k+ 1,I+ 1+ (1? + 1) (.3 1) C k+ 1,1
(k+1)
(1+1) (LI (s
(60+r-1?-1+1)12)(4+1d— (k
1) (L1
—
r).Ock,I=0,
(s —1) s23ck ,i + (k-1- 1) (s
(b 2 — k+1+1) /2)c
—
—
=
(b i +k+1+3) / 2)c ki-1,1
—
-
1)ck-H.,1=0,
(1 +1) sYc k+1,1+1=0.
Each equation (C t: q ) is derived from (C t: q). Next, define hk,/ =ktl! (r — k)!(s
—
1)! e'dnz/zaTb1-k+1-2aib2+k-Ick,i.
(4)
Then the system satisfied by hkd's is given as follows: ( a 1 + 2 b 3 - 2 ) h k ,i + 1 — ( a d a 2 ) 2 h k + 1 ,1 + 1 + ( a i / a 2 ) 2 h k ,i
(Hi: 1) kl
(H i: 1)1.a
—
2172A + 2b2— 2k + 21) (ada2) 2 hk+1,1=0
(al/a2) hk+1,1+1 1 2 (1± 1 ) (ai/a2) hki-1,/ — 2
2
- -
s
(,) (I12 : 1) k0
(Hi: 2)
k,
a 2 h k ,O + (ai/a2)
2
hk+1,0 —
(al-2 r-f -2 k +2 )h k +1 ,1 +
,
0 (O
k
—1) ,
527
Whittaker functions for the representations of discrete series
7
(11 : 1 ) k l
( ai/ a2 ) 2 h k ,,+
2 (r— k ) (ai/a2) hk-F1d —0 2
(0
(ai/a2) h , = 0
(H i: 1) ri
2
s
s-1 ). (Hi: 2) k l (0 ( ai-21)hk+1,, titk+1,,±1—o (HP q) k i is a d ir e c t consequence o f (CI,: q) Ia. C oncluding, w e obtain the differential equations satisfied by the W hittaker functions.
Proposition 4.2. h , satisfies the following: k
Let
= Ek ,ick atk j. d
Define h c i b y (4).
Then
i
2n2 ai 2b 3 — 2) (ai/a2) k k +id = 0 ( 0 - k r 1, 0 a2hk,,,i+ (a i/a2) 2 (a 1 + 2 )h k + i,,-0 (a1 2 r+ 2 k + 2 ) h k i - 1 , i + h k , i = 0 ( 0 k r - 1) , (ô 21) h k+1,1 1) (0 - 1. ,3 a 2 h k , O + (a da2) hk+1,0= 0
(a1 I 2b3 -
-
—
2) hk,i+1 —(2 a rk az
2
—
-
(n) (iii)
(iv)
(V) (vi)
-
1
-
2
a2hr,i+i
(ai/a2) hr,, = 0 2
E q u a tio n (i) can be obtained from E quations (H P: 1) k l, (H t: 1 ) k l a n d (115 : 1) E quation (ii) is fro m (Hi: 2) k ! a n d (H i: 1) The others are clear. Proof.
E quations (iii) and (iv) in P roposition 4.2 tell us that hr,o determines the system {hk,i}. By the proposition above, w e see that from (iii) a n d (v), (5!,32—
(ada2) ) hr,o = 0,
(5)
2
and from (i) , (iii) a n d (iv) , (ai ±2b 3 — 2) aihr,o + (2 a , + a 2 -2 )7 2 a Z + 2 0 -2 ) (ai/a2) 7ohr,o= O. 2
Operating a t o (6), we obtain the following: 2
(6)
528
Takahiro Hayata and Takayuki Oda
Corollary 4.3. (a1a2—
((a, +a2)
(2b3
2
no(cii/a2)
2
) hr,0 = 0,
2) (0 1 + a 2 )
-
(7)
272 aZa ) h , = O.
—
2
2
E quation (6 ) can be recovered from ( 8 ) by operating check that this system becomes holonomic of rank 4. To get an integral representation, first we consider -
a,.
W e can also
u du
q5(u)exp(71°`d
*/(a i a2 ) =
(8)
r o
(9
4aZ ) u
)
f o r OcC - (R , ). T h e n "W form ally satisfies t h e differential equation (7). Suppose s a t is f y ( 8 ) , t h e n 0 s h o u ld b e th e s o lu tio n o f th e following differential equation, 0
42
d 20
4
+46 du d u
77 u0= 0.
3
Putting v=.,/Fs and 0(u) =vd
b3+1/20
v
,
( ) w e see that E quation (10) becomes
\ + 1/4—(b 3 — 1) 2 )
± ( 1
2
0.
2
4
dV2
(10)
2
2
V
If 72 >0 (i.e. Tm (12 (E2))