An Extension of the OMNeT++ INET Framework for Simulating ... - CoRE

4 downloads 0 Views 2MB Size Report
Mar 21, 2011 - Hochschule für Angewandte Wissenschaften Hamburg. Hamburg University of Applied Sciences. Simulating Real-time. Ethernet. Till Steinbach ...
An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy 4th international OMNeT++ Workshop Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, Thomas C. Schmidt {till.steinbach,hermand.dieumo,korf,schmidt} @informatik.haw-hamburg.de Hamburg University of Applied Sciences

Barcelona, Spain, March, 21st 2011

RE

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

RE

Agenda

Simulating Real-time Ethernet

1 Introduction

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

2 Background

Background Concept & Model

3 Concept & Model

Results & Evaluation Conclusion & Outlook

4 Results & Evaluation 5 Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

2 / 22

Motivation Why a new in-vehicle communication technology?

RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

3 / 22

Motivation Why a new in-vehicle communication technology?

RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

“Actually already today the electrical system in the whole car is not adequately controllable” and “The complexity continues to increase” 1 Richard Bogenberger (2008) BMW Group Research and Technology

1

Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Jens Badstübner: “Kollaps im Bordnetz: Schluss mit Can, Lin und Flexray”. 2008.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

4 / 22

Motivation Why Ethernet?

RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

Mature technology

Introduction Background

High transmission bandwidth

Concept & Model

Low prices for Ethernet components

Results & Evaluation

Many development/diagnostic tools and expert developers

Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

5 / 22

RE

Agenda

Simulating Real-time Ethernet

1 Introduction

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

2 Background

Background Concept & Model

3 Concept & Model

Results & Evaluation Conclusion & Outlook

4 Results & Evaluation 5 Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

5 / 22

Real-time Ethernet Real-time extensions for standard switched Ethernet

RE Simulating Real-time Ethernet

Standard switched Ethernet has no real-time capabilities There are extensions of various operational areas Extensions can be classified in: token-based technologies e.g. EtherCAT 2 bandwidth-limiting technologies e.g. Avionics Full DupleX Switched Ethernet (AFDX) 3 time-triggered technologies e.g. Profinet, SynqNet, RTnet, POWERLINK, TTEthernet 1

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

6 / 22

TTEthernet A time-triggered real-time Ethernet protocol

RE Simulating Real-time Ethernet

Basis by the Technical University Vienna (2004) Today development by TTTech Computertechnik Currently standardization by the Society of Automotive Engineers

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model

3 traffic classes: Time-triggered (TT) highest priority, time-triggered, cyclic, offline planned, requires synchronised time Rate-constrained (RC) event-triggered, bandwidth-based (AFDX) Best-effort (BE) lowest priority, standard Ethernet

Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

7 / 22

RE

TTEthernet Synchronisation

Simulating Real-time Ethernet

End System Sync Client

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background

1. PCF (time) End System Sync Master

Switch Compression Master

Concept & Model

End System Sync Client

Results & Evaluation Conclusion & Outlook

1. PCF (time)

End System Sync Master

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

8 / 22

RE

TTEthernet Synchronisation

Simulating Real-time Ethernet

End System Sync Client

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

2. PCF (new Time)

Introduction Background

Switch Compression Master

End System Sync Master

2. PCF (new Time)

2. PCF (new Time)

Concept & Model

End System Sync Client

Results & Evaluation Conclusion & Outlook

2. PCF (new Time)

End System Sync Master

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

8 / 22

RE

TTEthernet Critical-Traffic

Simulating Real-time Ethernet

Critical-Traffic (time-triggered and rate-constrained) is offline configured Critical-Traffic uses Ethernet destination address Critical-Traffic is determined by CT-Marker (4 Byte) Message is determined by CT-ID (2 Byte)

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

maximum 1518 Byte Preamble 8 Byte

CT-Adress 6 Byte CT-Marker 4 Byte

SRC-Adress 6 Bytes CT-ID 2 Byte

Ty pe 2 Byte

Payload 46 - 1500 Byte

CRC 4 Byte Standard Ethernet fields TTEthernet fields

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

9 / 22

RE

TTEthernet In-vehicle example application

Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

Chassis

TT

TT

Introduction

t Cycle

0

LIN-BUS

TTE-Switch

TTE-Switch

TT

Gateway Door

RC

BE

BE

TT

Concept & Model

BE

t 0

Cycle

RC

Diagnosis

BE

BE

Results & Evaluation Conclusion & Outlook

t

0

Background

TT BE

0

t

Time-Triggered Message

RC

Rate-Constrained Message

BE

Best-Effort Message

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

10 / 22

RE

Agenda

Simulating Real-time Ethernet

1 Introduction

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

2 Background

Background Concept & Model

3 Concept & Model

Results & Evaluation Conclusion & Outlook

4 Results & Evaluation 5 Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

10 / 22

RE

Concept & Model TTEthernet integration in INET

TTE Host B

Simulating Real-time Ethernet

TTEthernet Application

TTEthernet Application

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

TTEthernet API

TTEthernet API

TTE Host A

TTE Switch

Application Layer

Introduction Background Concept & Model

TTEthernet LLC TTE-Protocol Layer

TTEthernet MAC Relay Unit

TTEthernet LLC TTE-Protocol Layer

Data Link Layer

Physical Layer

Results & Evaluation Conclusion & Outlook

MAC

MAC

MAC

Physical Link

Physical Link

Physical Link

TTEthernet model

extended INET model

INET model

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

11 / 22

Concept & Model TTEthernet model — Clock model

RE Simulating Real-time Ethernet

Clock: TTEthernet is a synchronised time-triggered protocol Each device has its own clock Clocks have inaccuracy (clock drift) Clock drift has significant impact on protocol behaviour

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Model of clock drift must be accurate t 0 = t + δ ∗ (∆tTick + ∆tDrift )

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

12 / 22

RE

Concept & Model TTEthernet model — Clock model

Simulating Real-time Ethernet

Clock: TTEthernet is a synchronised time-triggered protocol Each device has its own clock

Introduction

Clocks have inaccuracy (clock drift)

Background

Clock drift has significant impact on protocol behaviour

Concept & Model Results & Evaluation

Model of clock drift must be accurate Cycle

Cycle

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

Conclusion & Outlook

Cycle

t Event

Event Constant tick length

Event Variable drift factor

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

12 / 22

Concept & Model TTEthernet model — Switch model

RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

TTEthernet-Switch: Usage of the introduced clock model Combines standard INET and critical traffic switch Bypassing of Buffer in MAC-Layer to preserve priorities

Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

13 / 22

RE

Concept & Model TTEthernet Model — Switch design

Simulating Real-time Ethernet

TTEEthernetSwitch

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

TTEMACRelayUnit CT-Switch: MACRelayUnit

BE-Switch: MACRelayUnit

Introduction

MAC Port 1

MAC Port 2

MAC Port n-1

DelegatorOut

DelegatorIn

DelegatorOut

... ...

Concept & Model

DelegatorIn

DelegatorOut

DelegatorIn

DelegatorIn

DelegatorOut

Background

Results & Evaluation Conclusion & Outlook

MAC Port n

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

14 / 22

RE

Concept & Model TTEthernet Model — Buffers

Simulating Real-time Ethernet

Incoming messages CT-Switch

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

BE-Switch Introduction Background Concept & Model

DelegatorOut

Results & Evaluation Conclusion & Outlook

EtherMAC

Frame-Buffer Frame-Buffer

Outgoing message

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

15 / 22

RE

Concept & Model TTEthernet Model — Buffers

Simulating Real-time Ethernet

Incoming messages CT-Switch

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

BE-Switch Introduction Background

DelegatorOut

Concept & Model

RC-Buffer

BE-Buffer

Results & Evaluation Conclusion & Outlook

EtherMAC Frame-Buffer

Outgoing message

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

15 / 22

RE

Agenda

Simulating Real-time Ethernet

1 Introduction

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

2 Background

Background Concept & Model

3 Concept & Model

Results & Evaluation Conclusion & Outlook

4 Results & Evaluation 5 Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

15 / 22

RE

Results Sample Topology

Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

TTE-Host Sender

TTE-Host Receiver

TT

Background Concept & Model

TT

Results & Evaluation

TT

EtherHost Sender

Switch BE

Switch BE

BE

EtherHost Receiver

Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

16 / 22

RE

Results Latency TTEthernet and INET switch 4 5 0

S ta n S ta n T T E T T E

4 4 0 4 3 0

L a t e n c y [ µs ]

4 2 0 4 1 0

d a rd d a rd th e rn th e rn

Simulating Real-time Ethernet

m a x . m in . e t m a x . e t m in .

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background

4 0 0

Concept & Model

3 9 0

Results & Evaluation Conclusion & Outlook

3 8 0 3 7 0 3 6 0 3 5 0 0

1 0

2 0

3 0

4 0

5 0

6 0

L in k u tiliz a tio n [% ]

7 0

8 0

9 0

1 0 0

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

17 / 22

RE

Results Latency distribution 1 0 0

1 0 0

R e la tiv e tr a ffic p e r c la s s [% ]

9 0

9 8

8 0

1 2

7 0 6 0

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt

1 0

Introduction

8

Background 6

Concept & Model 4

Results & Evaluation

5 0 4 0 3 0

Simulating Real-time Ethernet

T im e - T r ig g e r e d R a te - C o n s tr a in e d B e s t-E ffo rt

Conclusion & Outlook 2

2 0 0

1 0 0

5 0 0

7 5 0

3 5 0

3 7 5

1 0 0 0

4 0 0

4 2 5

1 2 5 0

4 5 0

1 5 0 0

L a t e n c y [ µs ]

4 7 5

1 7 5 0

5 0 0

5 2 5

2 0 0 0

5 5 0

2 2 5 0

2 5 0 0

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

18 / 22

Evaluation Comparison simulation model, analytical model and measurement

RE Simulating Real-time Ethernet

Frame simulation payload model 350 µs Schedule minimum 360.5 µs maximum 593.0 µs 9 µs Schedule minimum 19.5 µs maximum 252.0 µs

analytical model

hardware measurement

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background

360.245 µs 592.885 µs

360 µs 592 µs

19.245 µs 251.885 µs

-

Concept & Model Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

19 / 22

RE

Agenda

Simulating Real-time Ethernet

1 Introduction

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction

2 Background

Background Concept & Model

3 Concept & Model

Results & Evaluation Conclusion & Outlook

4 Results & Evaluation 5 Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

19 / 22

Conclusion & Outlook

RE Simulating Real-time Ethernet

Real-time Ethernet is a realistic candidate for in-vehicle backbone Presented model tightly conforms to TTEthernet specification Analytical model Hardware measurements

Simulation results have been carefully evaluated

Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Framework is currently being prepared for a first public release If you are interested visit: http://www.informatik.haw-hamburg.de/tte4inet.html Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

20 / 22

Outlook Simulating camera based vehicle-environment detection

RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

21 / 22

RE

Thank you!

Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation

Thank you for your attention!

Conclusion & Outlook

Website of research group: http://www.informatik.haw-hamburg.de/core.html Website for simulation model: http://www.informatik.haw-hamburg.de/tte4inet.html Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

22 / 22

Suggest Documents