Mar 21, 2011 - Hochschule für Angewandte Wissenschaften Hamburg. Hamburg University of Applied Sciences. Simulating Real-time. Ethernet. Till Steinbach ...
An Extension of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy 4th international OMNeT++ Workshop Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, Thomas C. Schmidt {till.steinbach,hermand.dieumo,korf,schmidt} @informatik.haw-hamburg.de Hamburg University of Applied Sciences
Barcelona, Spain, March, 21st 2011
RE
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
RE
Agenda
Simulating Real-time Ethernet
1 Introduction
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
2 Background
Background Concept & Model
3 Concept & Model
Results & Evaluation Conclusion & Outlook
4 Results & Evaluation 5 Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
2 / 22
Motivation Why a new in-vehicle communication technology?
RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
3 / 22
Motivation Why a new in-vehicle communication technology?
RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
“Actually already today the electrical system in the whole car is not adequately controllable” and “The complexity continues to increase” 1 Richard Bogenberger (2008) BMW Group Research and Technology
1
Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Jens Badstübner: “Kollaps im Bordnetz: Schluss mit Can, Lin und Flexray”. 2008.
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
4 / 22
Motivation Why Ethernet?
RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
Mature technology
Introduction Background
High transmission bandwidth
Concept & Model
Low prices for Ethernet components
Results & Evaluation
Many development/diagnostic tools and expert developers
Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
5 / 22
RE
Agenda
Simulating Real-time Ethernet
1 Introduction
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
2 Background
Background Concept & Model
3 Concept & Model
Results & Evaluation Conclusion & Outlook
4 Results & Evaluation 5 Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
5 / 22
Real-time Ethernet Real-time extensions for standard switched Ethernet
RE Simulating Real-time Ethernet
Standard switched Ethernet has no real-time capabilities There are extensions of various operational areas Extensions can be classified in: token-based technologies e.g. EtherCAT 2 bandwidth-limiting technologies e.g. Avionics Full DupleX Switched Ethernet (AFDX) 3 time-triggered technologies e.g. Profinet, SynqNet, RTnet, POWERLINK, TTEthernet 1
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
6 / 22
TTEthernet A time-triggered real-time Ethernet protocol
RE Simulating Real-time Ethernet
Basis by the Technical University Vienna (2004) Today development by TTTech Computertechnik Currently standardization by the Society of Automotive Engineers
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model
3 traffic classes: Time-triggered (TT) highest priority, time-triggered, cyclic, offline planned, requires synchronised time Rate-constrained (RC) event-triggered, bandwidth-based (AFDX) Best-effort (BE) lowest priority, standard Ethernet
Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
7 / 22
RE
TTEthernet Synchronisation
Simulating Real-time Ethernet
End System Sync Client
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background
1. PCF (time) End System Sync Master
Switch Compression Master
Concept & Model
End System Sync Client
Results & Evaluation Conclusion & Outlook
1. PCF (time)
End System Sync Master
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
8 / 22
RE
TTEthernet Synchronisation
Simulating Real-time Ethernet
End System Sync Client
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
2. PCF (new Time)
Introduction Background
Switch Compression Master
End System Sync Master
2. PCF (new Time)
2. PCF (new Time)
Concept & Model
End System Sync Client
Results & Evaluation Conclusion & Outlook
2. PCF (new Time)
End System Sync Master
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
8 / 22
RE
TTEthernet Critical-Traffic
Simulating Real-time Ethernet
Critical-Traffic (time-triggered and rate-constrained) is offline configured Critical-Traffic uses Ethernet destination address Critical-Traffic is determined by CT-Marker (4 Byte) Message is determined by CT-ID (2 Byte)
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
maximum 1518 Byte Preamble 8 Byte
CT-Adress 6 Byte CT-Marker 4 Byte
SRC-Adress 6 Bytes CT-ID 2 Byte
Ty pe 2 Byte
Payload 46 - 1500 Byte
CRC 4 Byte Standard Ethernet fields TTEthernet fields
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
9 / 22
RE
TTEthernet In-vehicle example application
Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
Chassis
TT
TT
Introduction
t Cycle
0
LIN-BUS
TTE-Switch
TTE-Switch
TT
Gateway Door
RC
BE
BE
TT
Concept & Model
BE
t 0
Cycle
RC
Diagnosis
BE
BE
Results & Evaluation Conclusion & Outlook
t
0
Background
TT BE
0
t
Time-Triggered Message
RC
Rate-Constrained Message
BE
Best-Effort Message
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
10 / 22
RE
Agenda
Simulating Real-time Ethernet
1 Introduction
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
2 Background
Background Concept & Model
3 Concept & Model
Results & Evaluation Conclusion & Outlook
4 Results & Evaluation 5 Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
10 / 22
RE
Concept & Model TTEthernet integration in INET
TTE Host B
Simulating Real-time Ethernet
TTEthernet Application
TTEthernet Application
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
TTEthernet API
TTEthernet API
TTE Host A
TTE Switch
Application Layer
Introduction Background Concept & Model
TTEthernet LLC TTE-Protocol Layer
TTEthernet MAC Relay Unit
TTEthernet LLC TTE-Protocol Layer
Data Link Layer
Physical Layer
Results & Evaluation Conclusion & Outlook
MAC
MAC
MAC
Physical Link
Physical Link
Physical Link
TTEthernet model
extended INET model
INET model
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
11 / 22
Concept & Model TTEthernet model — Clock model
RE Simulating Real-time Ethernet
Clock: TTEthernet is a synchronised time-triggered protocol Each device has its own clock Clocks have inaccuracy (clock drift) Clock drift has significant impact on protocol behaviour
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Model of clock drift must be accurate t 0 = t + δ ∗ (∆tTick + ∆tDrift )
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
12 / 22
RE
Concept & Model TTEthernet model — Clock model
Simulating Real-time Ethernet
Clock: TTEthernet is a synchronised time-triggered protocol Each device has its own clock
Introduction
Clocks have inaccuracy (clock drift)
Background
Clock drift has significant impact on protocol behaviour
Concept & Model Results & Evaluation
Model of clock drift must be accurate Cycle
Cycle
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
Conclusion & Outlook
Cycle
t Event
Event Constant tick length
Event Variable drift factor
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
12 / 22
Concept & Model TTEthernet model — Switch model
RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
TTEthernet-Switch: Usage of the introduced clock model Combines standard INET and critical traffic switch Bypassing of Buffer in MAC-Layer to preserve priorities
Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
13 / 22
RE
Concept & Model TTEthernet Model — Switch design
Simulating Real-time Ethernet
TTEEthernetSwitch
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
TTEMACRelayUnit CT-Switch: MACRelayUnit
BE-Switch: MACRelayUnit
Introduction
MAC Port 1
MAC Port 2
MAC Port n-1
DelegatorOut
DelegatorIn
DelegatorOut
... ...
Concept & Model
DelegatorIn
DelegatorOut
DelegatorIn
DelegatorIn
DelegatorOut
Background
Results & Evaluation Conclusion & Outlook
MAC Port n
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
14 / 22
RE
Concept & Model TTEthernet Model — Buffers
Simulating Real-time Ethernet
Incoming messages CT-Switch
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
BE-Switch Introduction Background Concept & Model
DelegatorOut
Results & Evaluation Conclusion & Outlook
EtherMAC
Frame-Buffer Frame-Buffer
Outgoing message
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
15 / 22
RE
Concept & Model TTEthernet Model — Buffers
Simulating Real-time Ethernet
Incoming messages CT-Switch
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
BE-Switch Introduction Background
DelegatorOut
Concept & Model
RC-Buffer
BE-Buffer
Results & Evaluation Conclusion & Outlook
EtherMAC Frame-Buffer
Outgoing message
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
15 / 22
RE
Agenda
Simulating Real-time Ethernet
1 Introduction
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
2 Background
Background Concept & Model
3 Concept & Model
Results & Evaluation Conclusion & Outlook
4 Results & Evaluation 5 Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
15 / 22
RE
Results Sample Topology
Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
TTE-Host Sender
TTE-Host Receiver
TT
Background Concept & Model
TT
Results & Evaluation
TT
EtherHost Sender
Switch BE
Switch BE
BE
EtherHost Receiver
Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
16 / 22
RE
Results Latency TTEthernet and INET switch 4 5 0
S ta n S ta n T T E T T E
4 4 0 4 3 0
L a t e n c y [ µs ]
4 2 0 4 1 0
d a rd d a rd th e rn th e rn
Simulating Real-time Ethernet
m a x . m in . e t m a x . e t m in .
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background
4 0 0
Concept & Model
3 9 0
Results & Evaluation Conclusion & Outlook
3 8 0 3 7 0 3 6 0 3 5 0 0
1 0
2 0
3 0
4 0
5 0
6 0
L in k u tiliz a tio n [% ]
7 0
8 0
9 0
1 0 0
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
17 / 22
RE
Results Latency distribution 1 0 0
1 0 0
R e la tiv e tr a ffic p e r c la s s [% ]
9 0
9 8
8 0
1 2
7 0 6 0
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt
1 0
Introduction
8
Background 6
Concept & Model 4
Results & Evaluation
5 0 4 0 3 0
Simulating Real-time Ethernet
T im e - T r ig g e r e d R a te - C o n s tr a in e d B e s t-E ffo rt
Conclusion & Outlook 2
2 0 0
1 0 0
5 0 0
7 5 0
3 5 0
3 7 5
1 0 0 0
4 0 0
4 2 5
1 2 5 0
4 5 0
1 5 0 0
L a t e n c y [ µs ]
4 7 5
1 7 5 0
5 0 0
5 2 5
2 0 0 0
5 5 0
2 2 5 0
2 5 0 0
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
18 / 22
Evaluation Comparison simulation model, analytical model and measurement
RE Simulating Real-time Ethernet
Frame simulation payload model 350 µs Schedule minimum 360.5 µs maximum 593.0 µs 9 µs Schedule minimum 19.5 µs maximum 252.0 µs
analytical model
hardware measurement
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background
360.245 µs 592.885 µs
360 µs 592 µs
19.245 µs 251.885 µs
-
Concept & Model Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
19 / 22
RE
Agenda
Simulating Real-time Ethernet
1 Introduction
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction
2 Background
Background Concept & Model
3 Concept & Model
Results & Evaluation Conclusion & Outlook
4 Results & Evaluation 5 Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
19 / 22
Conclusion & Outlook
RE Simulating Real-time Ethernet
Real-time Ethernet is a realistic candidate for in-vehicle backbone Presented model tightly conforms to TTEthernet specification Analytical model Hardware measurements
Simulation results have been carefully evaluated
Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Framework is currently being prepared for a first public release If you are interested visit: http://www.informatik.haw-hamburg.de/tte4inet.html Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
20 / 22
Outlook Simulating camera based vehicle-environment detection
RE Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation Conclusion & Outlook
Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
21 / 22
RE
Thank you!
Simulating Real-time Ethernet Till Steinbach, H. Dieumo Kenfack, F. Korf, T. C. Schmidt Introduction Background Concept & Model Results & Evaluation
Thank you for your attention!
Conclusion & Outlook
Website of research group: http://www.informatik.haw-hamburg.de/core.html Website for simulation model: http://www.informatik.haw-hamburg.de/tte4inet.html Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences
22 / 22