Aug 17, 2009 - Product and company names listed are trademarks or trade names .... that puts the best computer programs to shame. â ...... University of Tulsa,.
An Indexed Bibliography of Genetic Algorithm Implementations compiled by
Jarmo T. Alander Department of Electrical Engineering and Automation University of Vaasa P.O. Box 700, FIN-65101 Vaasa, Finland phone: +358-6-324 8444, fax: +358-6-324 8467
Report Series No. 94-1-IMPLE (DRAFT 2009/08/17 11:16 ) available via anonymous ftp: site ftp.uwasa.fi directory cs/report94-1 file gaIMPLEbib.pdf
c 1994-2009 Jarmo T. Alander Copyright
Trademarks Product and company names listed are trademarks or trade names of their respective companies.
Warning While this bibliography has been compiled with the utmost care, the editor takes no responsibility for any errors, missing information, the contents or quality of the references, nor for the usefulness and/or the consequences of their application. The fact that a reference is included in this publication does not imply a recommendation. The use of any of the methods in the references is entirely at the user’s own responsibility. Especially the above warning applies to those references that are marked by trailing ’†’ (or ’*’), which are the ones that the editor has unfortunately not had the opportunity to read. An abstract was available of the references marked with ’*’.
Contents 1 Preface 1.1 Your contributions erroneous or missing? 1.1.1 How to cite this report? . . . . . . 1.2 How to get this report via Internet? . . 1.3 Acknowledgement . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
2 Introduction
1 2 2 2 2 4
3 Statistical summaries 3.1 Publication type . . . . . 3.2 Annual distribution . . . . 3.3 Classification . . . . . . . 3.4 Authors . . . . . . . . . . 3.5 Geographical distribution 3.6 Conclusions and future . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
5 5 5 5 7 8 8
4 Indexes 4.1 Books . . . . . . . . . 4.2 Journal articles . . . . 4.3 Theses . . . . . . . . . 4.3.1 PhD theses . . 4.3.2 Master’s theses 4.4 Report series . . . . . 4.5 Patents . . . . . . . . 4.6 Authors . . . . . . . . 4.7 Subject index . . . . . 4.8 Annual index . . . . . 4.9 Geographical index . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
9 9 10 13 13 13 13 14 17 35 50 52
. . . . . . . . . . .
. . . . . . . . . . .
Bibliography
55
Appendixes
131
A Bibliography entry formats
131
i
List of Tables 2.1
Queries used to extract this subbibliography from the source database.
3.1 3.2 3.3 3.4 3.5
Distribution of publication type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Annual distribution of contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The most popular subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The most productive genetic algorithm implementations authors. . . . . . . . . . . . . . The geographical distribution of the authors working on genetic algorithm implementations
A.1 Indexed genetic algorithm special bibliographies available online
ii
. . . . . . . . . .
4 5 6 6 7 8
. . . . . . . . . . . . . . 135
Chapter 1
Preface “ Living organism are consummate problem solvers. They exhibit a versatility that puts the best computer programs to shame. ” John H. Holland, [1]
The material of this bibliography has been extracted from the genetic algorithm bibliography [2], which when this report was compiled (August 17, 2009) contained 20903 items and which has been collected from several sources of genetic algorithm literature including Usenet newsgroup comp.ai.genetic and the bibliographies [3, 4, 5, 6]. The following index periodicals and databases have been used systematically • A: International Aerospace Abstracts: Jan. 1995 – Sep. 1998 • ACM: ACM Guide to Computing Literature: 1979 – 1993/4 • BA: Biological Abstracts: July 1996 - Aug. 1998 • CA: Computer Abstracts: Jan. 1993 – Feb. 1995 • CCA: Computer & Control Abstracts: Jan. 1992 – Dec. 1999 (except May -95) • ChA: Chemical Abstracts: Jan. 1997 - Dec. 2000 • CTI: Current Technology Index Jan./Feb. 1993 – Jan./Feb. 1994 • DAI: Dissertation Abstracts International: Vol. 53 No. 1 – Vol. 56 No. 10 (Apr. 1996) • EEA: Electrical & Electronics Abstracts: Jan. 1991 – Apr. 1998 • EI A: The Engineering Index Annual: 1987 – 1992 • EI M: The Engineering Index Monthly: Jan. 1993 – Apr. 1998 (except May 1997) • Esp@cenet patents – Apr. 2002 • IEEE: IEEE and IEE Journals – Fall 2002 • N: Scientific and Technical Aerospace Reports: Jan. 1993 - Dec. 1995 (except Oct. 1995) • NASA NASA ADS www bibliography database: – Dec. 2002 • P: Index to Scientific & Technical Proceedings: Jan. 1986 – Dec 1999 (except Nov. 1994) • PA: Physics Abstracts: Jan. 1997 – June 1999 • PubMed: National Library of Medicine Jan. 2000 – Oct. 2000 • SPIE Web The International Society for Optical Engineering – June 2002 1
2
1.1
Genetic algorithm implementations
Your contributions erroneous or missing?
The bibliography database is updated on a regular basis and certainly contains many errors and inconsistences. The editor would be glad to hear from any reader who notices any errors, missing information, articles etc. In the future a more complete version of this bibliography will be prepared for the genetic algorithm implementations research community and others who are interested in this rapidly growing area of genetic algorithms. When submitting updates to the database, paper copies of already published contributions are preferred. Paper copies (or ftp ones) are needed mainly for indexing. We are also doing reviews of different aspects and applications of GAs where we need as complete as possible collection of GA papers. Please, do not forget to include complete bibliographical information: copy also proceedings volume title pages, journal table of contents pages, etc. Observe that there exists several versions of each subbibliography, therefore the reference numbers are not unique and should not be used alone in communication, use the key appearing as the last item of the reference entry instead. Complete bibliographical information is really helpful for those who want to find your contribution in their libraries. If your paper was worth writing and publishing it is certainly worth to be referenced right in a bibliographical database read daily by GA researchers, both newcomers and established ones. For further instructions and information see ftp.uwasa.fi/cs/GAbib/README.
1.1.1
How to cite this report?
You can use the BiBTEX file GASUB.bib, which is available in our ftp site ftp.uwasa.fi in directory cs/report94-1 and contains records for GA subbibliographies for citing with LATEX/BibTEX.
1.2
How to get this report via Internet?
Versions of this bibliography are available via anonymous ftp or www from the following site: media ftp
country Finland
site ftp.uwasa.fi
directory /cs/report94-1
file gaIMPLEbib.pdf
The directory also contains some other indexed GA bibliographies shown in table A.1. In case you do not find a proper one please let us know: it may be easy to tailor a new one.
1.3
Acknowledgement
The editor wants to acknowledge all who have kindly supplied references, papers and other information on genetic algorithm implementations literature. At least the following GA researchers have already kindly supplied their complete autobibliographies and/or proofread references to their papers: Dan Adler, Patrick Argos, Jarmo T. Alander, James E. Baker, Wolfgang Banzhaf, Helio J. C. Barbosa, Hans-Georg Beyer, Christian Bierwirth, Peter Bober Joachim Born, Ralf Bruns, I. L. Bukatova, Thomas B¨ ack, Chhandra Chakraborti, Nirupam Chakraborti, David E. Clark, Carlos A. Coello Coello, Yuval Davidor, Dipankar Dasgupta, Marco Dorigo, J. Wayland Eheart, Bogdan Filipiˇc, Terence C. Fogarty, David B. Fogel, Toshio Fukuda, Hugo de Garis, Robert C. Glen, David E. Goldberg, Martina GorgesSchleuter, Hitoshi Hemmi, Vasant Honavar, Jeffrey Horn, Aristides T. Hatjimihail, Heikki Hy¨otyniemi Mark J. Jakiela, Richard S. Judson, Bryant A. Julstrom, Charles L. Karr, Akihiko Konagaya, Aaron Konstam, John R. Koza, Kristinn Kristinsson, Malay K. Kundu, D. P. Kwok, Jouni Lampinen, Jorma Laurikkala, Gregory Levitin, Carlos B. Lucasius, Timo Mantere, Michael de la Maza, John R. McDonnell, J. J. Merelo, Laurence D. Merkle, Zbigniew Michalewics, Melanie Mitchell, David J. Nettleton, Volker Nissen, Ari Nissinen, Tatsuya Niwa, Tomasz Ostrowski, Kihong Park, Jakub Podg´orski, Timo Poranen, Nicholas J. Radcliffe, Colin R. Reeves, Gordon Roberts, David Rogers, David Romero, Sam Sandqvist, Ivan Santib´ an ˜ez-Koref, Marc Schoenauer, Markus Schwehm, Hans-Paul Schwefel, Michael T. Semertzidis, Davil L. Shealy, Moshe Sipper, William M. Spears, Donald S. Szarkowicz, El-Ghazali Talbi, Masahiro
Acknowledgement
3
Tanaka, Leigh Tesfatsion, Peter M. Todd, Marco Tomassini, Andrew L. Tuson, Kanji Ueda, Jari Vaario, Gilles Venturini, Hans-Michael Voigt, Roger L. Wainwright, D. Eric Walters, James F. Whidborne, Stefan Wiegand, Steward W. Wilson, Xin Yao, Xiaodong Yin, and Ljudmila A. Zinchenko. The editor also wants to acknowledge Elizabeth Heap-Talvela for her kind proofreading of the manuscript of this bibliography and Tea Ollanketo and Sakari Kauvosaari for updating the database. Prof. Timo Salmi and the Computer Centre of University of Vaasa is acknowledged for providing and managing the online ftp site ftp.uwasa.fi, where these indexed bibliographies are located.
Chapter 2
Introduction “Many scientist, possibly most scientist, just do science without thinking too much about it. They run experiments, make observations, show how certain data conflict with more general views, set out theories, and so on. Periodically, however, some of us—scientists included—step back and look at what is going on in science.” David L., Hull, [7]
The table 2.1 gives the queries that have been used to extract this bibliography. The query system as well as the indexing tools used to compile this report from the BiBTEX-database [8] have been implemented by the author mainly as sets of simple awk and gawk programs [9, 10]. string MANUAL implementation /hardware implementation population size crossover mutation fitness coding text book gaPARAbib gaGPbib gaTHEORYbib gaIMPLEbib
field citeKey ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE ANNOTE citeKey citeKey citeKey citeKey
class Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation
Table 2.1: Queries used to extract this subbibliography from the source database.
Hint
4
Chapter 3
Statistical summaries This chapter gives some general statistical summaries of genetic algorithm implementations literature. More detailed indexes can be found in the next chapter. References to each class (c.f table 2.1) are listed below: • Implementation 1407 references ([11]-[1417]) Observe that each reference is included (by the computer) only to one of the above classes (see the queries for classification in table 2.1; the textual order in the query gives priority for classes).
type book section of a book part of a collection journal article proceedings article report manual PhD thesis MSc thesis others total
number of items 56 6 34 420 710 71 9 26 19 60 1411
Table 3.1: Distribution of publication type.
3.1
Publication type
This bibliography contains published contributions including reports and patents. All unpublished manuscripts have been omitted unless accepted for publication. In addition theses, PhD, MSc etc., are also included whether or not published somewhere. Table 3.1 gives the distribution of publication type of the whole bibliography. Observe that the number of journal articles may also include articles published or to be published in unknown forums.
3.2
Annual distribution
Table 3.2 gives the number of genetic algorithm implementations papers published annually. The annual distribution is also shown in fig. 3.1. The average annual growth of GA papers has been approximately 40 % during late 70’s - early 90’s.
3.3
Classification tor of this bibliography. Keywords occurring most are shown in table 3.3.
Every bibliography item has been given at least one describing keyword or classification by the edi5
6
Genetic algorithm implementations
year 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 total
items 1 0 0 0 0 0 1 0 0 0 2 3 0 1 0 6 20 79 120 168 129 73 46 12 12 14
year 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009
items 1 0 0 0 0 0 0 0 1 0 0 0 1 3 8 14 46 98 147 159 124 65 34 14 8 1 1411
Table 3.2: Annual distribution of contributions. 6Genetic algorithm implementations ccc c ccc c c 1000 c c c number of papers c c (log scale) c cccc sssss c 100 cc sss ss cc s s s c c ccc s c s sss s c cc cccc 10 s s cc c s c c c c cc s s c c c s 1ss c cc s s ss s1960
2009/08/17
1970
1980 YEAR
1990
2000
Figure 3.1: The number of papers applying genetic algorithm implementations (•, N = 1419 ) and total GA papers (◦, N = 20903 ). Observe that the last few years are most incomplete in the database.
Total implementation analysing GA coding crossover parallel GA population size mutation fitness genetic programming patent comparison neural networks engineering text book TSP fitness landscape optimization image processing scheduling quantum computing protein folding evolution strategies fitness function generations control chemistry hybrid mutations evolution analysing GP signal processing robotics machine learning fuzzy systems VLSI design CAD graphs proteins hardware evolvable hardware diversity optics selection recombination pattern recognition mutation rate FPGA theory telecommunications VLSI medicine layout design encoding electromagnetics controllers tutorial system identification review operators lattice model electronics coevolution classifiers classification bibliography
1291 459 209 196 193 127 108 95 85 80 57 57 54 49 45 39 37 36 34 32 28 28 28 26 25 25 23 20 18 16 15 14 14 14 14 14 14 13 12 12 12 11 10 9 9 9 9 9 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6
Authors
3.4
7
Authors
Table 3.4 gives the most productive authors.
total number of authors Goldberg, David E. Alander, Jarmo T. Fogarty, Terence C. Spears, William M. Fogel, David B. Herrera, Francisco Lozano, Manuel B¨ack, Thomas Michalewicz, Zbigniew Stadler, Peter F. Ueda, Kanji Koza, John R. Ohkura, Kazuhiro Yao, Xin Arslan, T. Banzhaf, Wolfgang Jong, Kenneth A. De Kobayashi, Shigenobu Mathias, Keith E. Ryan, Conor Schaffer, J. David Surry, Patrick D. Whitley, Darrell L. Andre, David Angeline, Peter J. Bland, I. M. Deb, Kalyanmoy Eshelman, Larry J. Grefenstette, John J. Megson, G. M. M¨ uhlenbein, Heinz Nordin, Peter Satou, Makihiko Schoenauer, Marc Schwefel, Hans-Paul Scott, Stephen D. Tsutsui, Shigeyoshi Verdegay, Jose Luis Akamatsu, N. Anon. Beyer, Hans-Georg Born, Joachim Bornholdt, Stefan Chellapilla, Kumar ´ Eiben, Agoston E. Francone, Frank D. Kateman, Gerrit Langdon, William B. Lucasius, Carlos B. Maini, Harpal Singh Miller, Julian F. M¨anner, R. Ogawa, Toshiyuki Oppacher, Franz Pal, Nikhil R. Park, Cheol Hoon Poli, Riccardo Radcliffe, Nicholas J. Ross, Peter
2153 17 16 16 12 10 10 10 9 9 9 9 8 8 8 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8
3.5
Genetic algorithm implementations
Geographical distribution
Table 3.5 gives the geographical distribution of authors, when the country of the author was known. Over 80% of the references of the GA source database are classified by country. 2009/08/17
country Total United States Japan United Kingdom Germany Finland China Australia Italy Spain Canada South Korea Austria France India Taiwan The Netherlands Sweden Ireland Russia Switzerland Others
special n % 1347 100.00 402 29.84 167 12.40 145 10.76 133 9.87 50 3.71 46 3.41 35 2.60 33 2.45 32 2.38 27 2.00 21 1.56 20 1.48 20 1.48 19 1.41 19 1.41 15 1.11 13 0.97 11 0.82 11 0.82 10 0.74 104 7.70
comparison δ[%] ∆[%] +2.24 +0.11 +0.58 +2.96 −0.05 −1.54 +0.15 −0.41 +0.62 +0.42 −0.72 +0.87 −1.03 −0.16 −0.74 +0.11 +0.47 +0.61 +0.34 −0.16 −1.85
+8 +1 +6 +43 −1 −31 +6 −14 +35 +27 −32 +143 −41 −10 −34 +11 +94 +290 +71 −18 −19
all N 19723 5444 2424 2007 1363 741 977 484 564 348 311 449 120 496 310 424 197 98 42 95 178 1880
% 100.00 27.60 12.29 10.18 6.91 3.76 4.95 2.45 2.86 1.76 1.58 2.28 0.61 2.51 1.57 2.15 1.00 0.50 0.21 0.48 0.90 9.55
Table 3.5: The geographical distribution of the authors working on genetic algorithm implementations (n) compared (δ and ∆) to all authors in the field of GAs (N ). In the comparison column: δ% = nNT otal %special−%all and ∆ = (1 − N nT otal ) × 100%. ∆ is the relative (%) deviation from the expected number of special papers. Observe that joint papers may have authors from several countries and that not all authors have been attributed to a country.
3.6
Conclusions and future
The editor believes that this bibliography contains references to most genetic algorithm implementations contributions upto and including the year 1998 and the editor hopes that this bibliography could give some help to those who are working or planning to work in this rapidly growing area of genetic algorithms.
Chapter 4
Indexes 4.1
Books
Genetic Algorithms + Data Structures = Evolution Programs, [1383, 1392, 1416]
The following list contains all items classified as books.
Genetic Algorithms and Robotics: A heuristic strategy for optimization, [1409] Genetic Algorithms in Search, Optimization, and Machine Learning, [1411]
Adaptation in Natural and Artificial Systems, An Introduction to Fuzzy Sets,
[1412, 1413]
Genetic Programming II, Automatic Discovery of Reusable Programs, [1382]
[1404]
An Introduction to Genetic Algorithms,
[1393, 1401]
Genetic Programming III,
An Introduction to Genetic Algorithms for Scientists and Engineers, [1371] An Introduction to Natural Computation,
Artificial Life, An Overview,
Genetic Programming ˜ An Introduction, Genetic algorithm,
[1397]
Applications of Modern Heuristic Methods,
[1407] [1399]
[1414]
Genetic algorithms in optimization, simulation and modelling, [1381]
[1387]
[1385]
Genetic algorithms. Concepts and designs,
C++ Power Paradigms, [890]
[1013]
Genetic Programming and Data Structures,
Computational Intelligence for Optimization,
[1396]
[1403]
Convergence Properties of Evolutionary Algorithms, [1211]
Genetic Programming: On Programming Computers by Means of Natural Selection and Genetics, [1415]
Evolution and Optimum Seeking,
Genetischer Algoritmen und Evolutionsstrategien,
[1388]
Evolutionary Algorithms in Theory and Practice,
Handbook of Evolutionary Computation,
[1394]
Evolutionary Algorithms, The Role of Mutation and Recombination, [1139]
Handbook of Genetic Algorithms,
[1398]
[1410]
Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, [1376]
Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, [1384]
How To Solve It: Modern Heuristics,
Evolutionary Optimization in Dynamic Environments, [497]
[1370]
Illustrating Evolutionary Computation with Mathematica,
Evolutionary Search and the Job Shop,
[776]
[1391]
Komplexe adaptive Systeme,
Evolutionsstrategie ’94, [1379]
New Ideas in Optimization,
Evolution¨ are Algorithmen, Darstellung, Beispiele, betriebswirtschaftliche Anwendungm¨ oglichkeiten, [1378] Evolvable Hardware,
[1380]
[1405]
Noisy Optimization with Evolution Strategies,
[692]
Explorations in Quantum Computing,
[1395]
[503]
Optimierung mit genetischen und selektiven Algorithmen, [1377]
[1400]
Fundamentals of Artificial Neural Networks,
Practical Genetic Algorithms,
[1386]
[1402]
Genetic Algorithm,
[1417]
Quantum Computing,
Genetic Algorithms,
[1389]
Soft Computing and Intelligent Systems Design,
9
[1372, 1408] [1375]
10
Genetic algorithm implementations
Telecommunications Optimization: Heuristic and Adaptive Techniques, [1369]
Chemical Physics Letters,
The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, SymbolicC++ and Reduce Programs, [802]
Chin. J. Comput. (China),
[1007]
Chin. J. Electron. (China),
[408]
Chromatographia,
[1088]
Theory of Deductive Systems and its Applications,
Complex Systems,
[34, 70, 306, 335, 1313, 644, 248, 1340,
[1268]
[1367]
Chemometrics and Intelligent Laboratory Systems, [20, 232]
651]
Principia Evolvica, Simulierte Evolution mit Mathematica, [955]
Complex Systems (USA),
[113]
Comput. Appl. Biosci., [1122] total 51 books
Comput. Ind. (Netherlands),
[967]
Comput.-Aided Civ. Infrastruct. Eng. (USA), Computer,
Journal articles
4.2
[1138, 870]
Computer Applications in the Biosciences (CABIOS), [946] Computer Artif. Intell. (Slovakia),
The following list contains the references to every journal article included in this bibliography. The list is arranged in alphabetical order by the name of the journal.
Computer Graphics,
Computer Methods and Programs in Biomedicine, Computer Networks and ISDN Systems, Computer Physics Communications,
ACM SIGAPL APL Quote Quad, Acta Electron. Sin. (China),
Computers Chem.,
[850, 869, 872, 204]
Computers & Operations Research,
[578]
Contemporary Physics, [811]
Advances in Applied Mathematics,
Control Engineering Practice,
[1157]
Advances in Engineering Computational Technology, [393]
Control Theory Appl. (China),
AI Expert,
Cybernetics and Systems,
[848, 866, 888, 1086, 1111]
[1171,
445, 478] [884, 927, 934, 1029, 1078]
Applied Mathematics and Computation, Applied Optics, Arpakannus,
[1317]
[819]
[998]
Auton. Robots (Netherlands),
[595]
Biochemistry,
[157] [774, 999]
Ethology and Sociobiology, Eur. J. Oper. Res. ,
[491,
[656]
[1203]
EURASIP Journal on Advances in Signal Processing, [823] [241]
European Journal of Operational Research,
Biological Cybernetics,
[436, 1260, 1337, 454, 658, 659]
BioSystems,
[314, 110, 429]
European Journal of Operations Research,
[116, 347, 399, [1349]
European Journal of Operations Research (Netherlands), [970]
Europhysics Letters,
[860]
[756]
[35, 1149, 801, 91, 720, 1355]
1326]
Bioinformatics,
[761]
[839]
374, 1053]
[189, 223]
Atmospheric Environment Part A General Topics,
BYTE,
[519, 522]
EE Times,
Engineering Applications of Artificial Intelligence,
[203, 218]
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, [493]
BT Technology Journal,
Ear & Hearing,
Electronic Engineering Times,
[47]
Automatisierungstechnik,
[851, 966]
Electronics Letters,
Artificial Intelligence Review,
[237]
Dr. Dobb’s Journal,
Electron Commun Jpn Part III Fundam Electron Sci., [149]
[33, 1151, 806]
Artif. Life Robot. (Japan),
[1231]
Electric Power Systems Research,
[1295, 1327, 1092, 470]
Applied Soft Computing,
[880]
[648]
Discrete Applied Mathematics,
[1347]
Annals of Mathematics and Artificial Intelligence, APL Quote Quad,
[1050, 1344]
[1298, 302, 1302, 327,
330, 357, 582]
Advanced Technology for Developers, [1041, 1043, 1077, 456]
Analytica Chimica Acta,
[293, 295, 104, 364]
Computers & Mathematics with Applications,
[51]
Adv. Eng. Softw. (UK),
[1366]
Computers & Industrial Engineering,
[131]
[1269]
[530]
Computers & Chemistry,
[1251]
Acta Electronica Sinica (China), Acta Physica Sinica,
[1279, 772, 1361]
[57]
Computers and Geotechnics,
[789]
[903]
[886]
[873]
Computer-Aided Innovation of New Materials,
[964]
ACM Trans. Math. Softw.,
[1022]
[1120]
Computer-Aided Design, @CSC,
[1330]
[506, 1232]
Evolutionary Computation,
[1142, 534, 87, 331, 1207, 987, 405, 406, 407, 1241, 1246, 424]
Expert Systems with Applications,
[390]
Fortschritte der Physik, Progress of Physics,
[798, 799, 804]
Journal articles
11
Fortschrittsberichte der VDI-Zeitschriften, Future Generation Computer Systems, Fuzzy Sets and Systems,
[598, 604]
Information and Software Technology, Information Sciences,
[428]
Genetic Programming and Evolvable Machines,
[775, 779,
279, 789, 52, 54] [649]
Int. J. Electr. Eng. Educ. (UK), Int.
J. Mod.
Phys.
[410]
[494, 43, 62, 1163, 1321] [1027]
Int. J. Mod. Phys. C (Singapore),
Geophysical Journal International,
[495]
Information Processing & Management,
[1057]
[958]
C, Phys.
Comput.
(Singapore),
[835, 905]
Geophysics,
[1350]
Human Feredity,
[1160]
Int.J. Syst. Sci. (UK),
[1059]
International Journal of Computers, Systems and Signals,
IBM Journal,
[783]
IBM Journal of Research and Development, IEE Proc., Commun. (UK),
[1060]
[150]
International Journal of Electronics,
[465]
International Journal of Fuzzy Systems,
IEE Proc., Comput. Digit. Tech. (UK), IEE Proceedings J: Optoelectronics,
[969]
[256]
[816]
[1352]
International Journal of Production Research,
[1072]
International Journal of Quantum Chemistry,
[647]
J. Comput. Inf. Technol. CIT (Croatia),
[815]
IEEE Trans. Neural Netw. (USA),
[146]
International Journal of Modern Physics C, [768, 771, 1144]
IEEE Computational Intelligence Magazine, IEEE Control Systems Magazine,
[481]
International Journal of Intelligent Systems,
IEE Proceedings, Computers and Digital Techniques, [297]
IEEE Spectrum,
[404]
[1331]
J. Comput. Inf. Technol. CIT (Croatia)Acoust. (Singapore), [613]
[1238]
IEEE Transactions on Antennas and Propagation, [36, 661]
J. Inf. Sci. Eng. (Taiwan),
IEEE Transactions on Communications,
J. Inst. Electron. Eng. Korea C (South Korea),
[138]
[414] [1250]
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [1040]
J. KISS(A), Comput. Syst. Theory (South Korea),
IEEE Transactions on Consumer Electronics,
J. Korea Inst. Telemat. Electron. (South Korea),
[190]
IEEE Transactions on Evolutionary Algorithms,
[38]
IEEE Transactions on Evolutionary Computation,
[22, 24, 483, 276, 1286, 498, 499, 46, 282, 60, 1211, 385, 592, 1242, 614, 1256]
IEEE Transactions on Geoscience and Remote Sensing, [31] IEEE Transactions on Industrial Electronics,
[119, 196]
IEEE Transactions on Knowledge and Data Engineering, [573]
J. KISS(B) Softw. Appl. (South Korea), J. Opt. Technol. (USA),
[212]
J. Optim. Theory Appl.,
[403]
[65, 878, 939]
IEEE Transactions on Neural Networks,
[844, 1301, 307,
1221]
IEEE Transactions on Power Systems,
[758, 352, 961, 243,
[310, 353, 1334]
[200]
Journal of Complex Systems,
[594] [1310, 1346]
Journal of Computer-Aided Molecular Design, Journal of Global Optimization,
Journal of Intelligent and Fuzzy Systems, Journal of Magnetic Resonance,
Journal of Molecular Biology,
[788]
IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, [300]
[268, 1353]
Journal of Optics A: Pure and Applied Optics, Journal of Parallel and Distributed Computing, Journal of Propulsion Technology,
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, [1280]
Journal of Structural Engineering,
Inf. Sci. (USA),
[186]
INFOR,
[69]
[666]
Journal of Optimization Theory and Applications,
Journal of Sound and Vibration,
[1343]
[561]
[53]
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science”, , [231]
Image and Vision Computing,
[560, 575]
[624]
IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, [509] IEICE Transactions on Electronics,
[40, 608]
[782]
Journal of Mathematical Chemistry, Journal of Modern Optics,
[1329]
[1153]
Journal of Mathematical Biology,
[734]
[205]
[941, 1325, 1336]
Journal of Chemical Physics,
IEEE Transactions on Systems, Man, and Cybernetics B, Cybernetics, [605]
IEICE Trans. Electron. (Japan),
[1307]
Journal of Chemical Information and Computer Sciences,
Journal of Intelligent & Fuzzy Systems,
1098]
IEEE Transactions on Systems, Man, and Cybernetics,
[402]
J. Tsinghua Univ., Sci. Technol. (China),
Journal of Computational Chemistry,
IEEE Transactions on Magnetics,
[923]
Journal of Soviet Mathematics,
[971, 974]
[786] [788]
[1266, 1267] [899]
Journal of Structural Engineering - ASCE, Journal of Systems Architecture,
[187]
[1075]
[711]
Journal of the Chemical Society - Faraday Transactions, [377]
12
Genetic algorithm implementations
Journal of the Chemical Society – Perkin Transactions 1, [1316]
Robotics and Autonomous Systems, Russian Microelectronics (USA),
Journal of the Operational Research Society,
[266]
Journal of Theoretical Biology, [532, 876, 901, 571, 1208, 603, 653, 654, 657]
Science,
[808]
Scientific American,
[1261, 1106]
Scientific Computing World,
Knowledge-Based Systems (UK),
[227]
Kwart. Elektron. Telekomun. (Poland),
Sensors and Actuators A, [1196]
[959]
[67]
SIAM News,
[1126]
Kybernetes,
[457]
SIAM Review,
[502]
Laryngoscope,
[524]
SIGICE Bulletin,
[864]
Lettre du Transputer et des Calculateurs Distribu´ es, [1127]
Signal Processing,
[1110]
Machine Learning,
SIGPLAN Notices,
[219]
[240, 1365]
Math. Commun. (Croatia),
[230]
Math. Comput. Model. (UK), Mathematical Biosciences,
[1137]
Smart Engineering System Design, Soft Computing,
[464]
Mathware & Soft Computing, Mechatronics,
SIGPLAN OOPS Messenger,
[1172, 566]
SuperMenu,
[859, 952]
Syst. Comput. Jpn. (USA),
Microprocess. Microsyst. (UK),
The Annals of Applied Probability,
[991]
Microprocessing and Microprogramming Journal, [1046] Mini-Micro Syst. (China),
[215]
Molecular Ecology,
EURO-Micro
[1281, 1143]
Nature Biotechnology,
[277, 281]
Neural Networks,
[32, 172]
The Mathematica Journal,
Optical Engineering,
[202]
Optics Letters,
[66]
Parallel Computing,
[646]
Parallel Processing Letters,
[118]
[395, 412]
Transaction of the Institute of Electrical Engineers of Japan C, [101] Transaction of the Institute of Electronics, Information and Communication Engineers D-I (Japan), [697, 655] Transactions of Nanjing University of Aeronautics and Astronautics, [169, 170] Transactions of the Institute of Electrical Engineers of Japan C, [311]
[442]
[378, 400] [809]
Physical Review B,
[810]
Physical Review E,
[591, 391, 1234, 1244, 612]
Transactions of the Institute of Electrical Engineers of Japan D, [570]
[482, 37, 1148, 504, 1240, 1345]
Physics in Medicine & Biology,
[28]
[1210]
Proceedings of the National Academy of Sciences of the United States of America, [42, 286, 1156, 1297, 398, 1274] [853] [1152, 356]
Proteins: Structure, Function, and Genetics, Rec. Electr. Commun. Eng. Conversazione,
Transactions of the Institute of Electronics, Information, and Communication Engineers D-I, [397] Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), [164, 207]
Proc. Inst. Mech. Eng. I, J. Syst. Control Eng. (UK),
Protein Science,
[1324] [996]
Transactions of the Institute of System, Control, and Information Engineers (Japan), [568, 622] Transactions of the Society of Instrument and Control Engineers (Japan), [845] Vaasan Yliopistolehti,
[511]
Wall Street Journal,
[1001]
Wuhan Univ. J. Nat. Sci. (China), Zeitschrift f¨ ur Naturforschung, @CSC,
[793]
[1009]
Res. Rep. Inf. Sci. Electr. Eng. Kyushu Univ. (Japan), [745]
[332, 369, 1254,
Trans. Inst. Electron. Inf. Commun. Eng. D-I (Japan),
[1182]
Pattern Recognition,
Protein Engineering,
[1282, 278]
235]
Physical Review A,
Physical Review Letters,
[557]
Trans. Inst. Electr. Eng. Jpn. C (Japan),
Neural Process. Lett. (Netherlands),
[362]
[932]
[1073]
Theoretical Computer Science,
Nippon Kikai Gakkai Ronbunshu A Hen, [965]
[821]
The International Journal of Advanced Manufacturing Technology, [1284]
The Journal of Chemical Physics,
Nature,
Nuclear Technology,
[1235]
Systems and Computers in Japan,
The International Journal of Mathematical Applications in Science and Technology, [98]
[520]
Operations Research,
[778, 1147]
[1068]
Memoirs of the Faculty of Engineering, Okayama University, [1175]
[700]
[617]
[1141, 505, 1248]
Structural and Multidisciplinary Optimization,
[111]
Mikroelektronika (Russia),
[948]
[702]
total 421 articles in 249 series
[918, 1191]
Theses
4.3
13
Theses
Tampere University of Technology,
The following two lists contain theses, first PhD theses and then Master’s etc. theses, arranged in alphabetical order by the name of the school.
University of Alberta,
[554]
University of Helsinki,
[565]
University of Nebraska-Lincoln,
[856]
[696]
University of North Carolina at Charlotte,
[755]
University of Tampere, [943]
4.3.1
PhD theses
Air Force Instutute of Technology,
[1289]
Catholic University of Nijmegen,
[1323]
Chinese University of Hong Kong, Colorado State University,
[255]
George Mason University,
[1237]
[803]
[838]
Vanderbilt University,
[1108] [251]
total 19 thesis in 18 schools [1155]
[849]
North Dakota State University of Agriculture and Applied Sciences, [449, 1076, 1130] [313]
Tampere University of Technology,
4.4
Report series
The following list contains references to all papers published as technical reports. The list is arranged in alphabetical order by the name of the institute.
[714]
Akademie der Wissenschaft der DDR,
[1071]
The Pennsylvania State University, The University of Memphis,
Universit¨ at W¨ urzburg,
Vienna University of Economics and Business Admimistration, [919]
Louisiana State University of Agricultural and Mechanical College, [638]
The Ohio State University,
[1112]
[510, 805, 691]
Hong Kong Polytechnic University,
Syracuse University,
[1085]
Universit¨ at M¨ unchen,
Victoria University of Wellington,
Helsinki University of Technology,
Illinois Institute of Technology,
University of Tulsa,
[1135]
Australian Defence Force Academy, Carnegie-Mellon University,
[71]
[337]
Universidad de Granada, [817]
Catholic University Nijmegen,
University of California, [842]
Edinburgh Parallel Computing Centre,
University of Illinois at Chicago, University of Missouri - Rolla, University of New Hamshire,
University of Stirling,
[1136]
Indian Institute of Technology,
[446]
[1113, 1114]
[550]
[250]
Kyoto University,
[48]
Leiden University,
[338]
Michigan State University,
[840, 916]
Naval Research Laboratory,
[336]
Naval Research Laboratory AI Center,
This list includes also “Diplomarbeit”, “Tech. Lic. Theses”, etc.
Navy Research Laboratory,
Brigham Young University,
[1048]
[713]
North Carolina State University,
[462]
Helsinki University of Technology,
[837]
Ruhr-Universit¨ at Bochum, [767, 852]
Massachusetts Institute of Technology,
[115]
Rutgers University,
[447]
[1044]
Rensselaer Polytechnic Institute,
[1121]
[877]
Plymouth Engineering Design Centre, Politecnico di Milano,
[474]
[1259]
Physical Optics Corporation, Air Force Institute of Technology,
George Mason University,
[1362]
International Computer Science Institute (ICSI),
Master’s theses
Concordia University,
[1124, 1125]
[193]
total 26 thesis in 22 schools
4.3.2
[1087]
Friedrich-Alexander-Universit¨ at Erlangen-N¨ urnberg, [1118]
Kernforschungsanlage J¨ ulich, University of New Mexico,
[1035]
[547]
[1109]
[1179]
[371]
Sandia National Laboratories,
[1101, 1103]
[639]
14
Genetic algorithm implementations
Stanford University,
[908]
Code compaction by evolutionary algorithm,
TUCS,
[208]
Combination optimizing device,
Tennessee University,
[1354]
Determination system for combination optimizing problem,
[39]
[669]
[889]
The University of Rochester, Tulane University,
[1038]
[913, 458]
[707]
Device and method for searching optimum solution and program recording medium, [673]
Universidad de Granada, [114] University of Alabama, [1338, 450, 1061, 1063, 1358, 1360] University of California, [1067] University of Cambridge,
Device and method for executing genetic algorithm,
Device, method, and program storage medium for executing genetic algorithm, [685] Distributed genetic programming,
[236]
[1012]
University of Dortmund, [340, 1032, 1070]
Employing synthetic genes in genetic algorithms, information encoding and non-replicative encryption, [45]
University of Edinburgh, [861]
Extensible markup language genetic algorithm,
University of Granada,
Fast processing method for genetic algorithm,
[106, 108]
University of Illinois at Urbana-Champaign, [246, 643, 1062]
Fitness function circuit, [496]
University of Michigan, [1105]
Genetic algorithm execution device,
University of Nebraska-Lincoln,
[972, 981]
[780] [862]
[722]
Genetic algorithm machine and its production method, and method for executing a genetic algorithm, [749]
University of San Diego, [239]
Genetic algorithm processing method,
University of Tampere, [917, 950]
Genetic algorithm processor,
University of Vaasa,
Information processing device and method applying genetic algorithm, [672]
[264, 662, 663, 664, 665]
Universit¨ at Hildesheim, [1306] Universit¨ at Karlsruhe,
[683]
[679]
Information processing system with combination limitation,
[834]
[858]
Universit¨ at Osnabr¨ uck, [1081]
Information processor,
Information processor, its method and its distribution medium, [668]
Universit¨ at W¨ urzburg,
[879]
Universit´ e McGill,
[317]
Vanderbilt University,
[1066, 1107]
Washington State University,
[221]
total 70 reports in 48 institutes
[887]
Mathematical plan calculation device, distribution plan system, medium stored with mathematical plan program, and medium stored with distribution plan program, [735] Method and apparatus for preforming mutations in a genetic algorithm-based underwater tracking system, [1227]
4.5
Patents
Method and apparatus for testing evolvable configuration bitstreams, [688]
The following list contains the names of the patents of genetic algorithm implementations. The list is arranged in alphabetical order by the name of the patent. Adaptation evaluation device,
[736]
Adaptive computing systems, computer readable memories and processes employing hyperlinear chromosomes, [737]
Adaptive problem solving method and apparatus utilizing evolutionary computation techniques, [677] Analytical value estimating method and computer readable recording medium recording program doe executing the same, [684] Arrangement optimization problem processing method and computer readable recording medium recording arrangement optimization problem processing program, [676]
Method and device for operating genetic algorithm,
[752]
Method and device for optimization processing using genetic algorithm, [975] Method and device for optimizing process using genetic algorithm, [982, 983] Method and device for searching optimum solution,
[962]
Method and device for supporting personnel placement, and storage medium recorded with personnel placement support program, [750] Method for prognosing the course of a data sequence and device for carrying out said method, [670] Optimization method and device using object-oriented genetic algorithm, [1016] Optimization problem solving method and optimization device, [920] Optimization system using genetic algorithm, Optimizing device,
[726]
[747]
Patents
15
Optimizing device and method thereof by genetic algorithm based on unbalanced evolution theory, [727] Optimizing device having immunity combined with genetic algorithm and storage medium stored with optimizing program having immunity combined with genetic algorithm, [744] Optimizing method and optimizing device,
[894]
Optimizing method using genetic algorithm and is device, [746]
Optimizing problem resolution processor,
[693]
Optimizing processing method for genetic algorithm, [898] Optimizing processing method using genetic algorithm and device therefor, [986] Optimum solution search method and optimum solution search apparatus as well as storage medium in which optimum solution search program is stored, [678] Optimum solution search method/device, Parameter optimizing device,
[671]
[925]
Plan improving method, genetic information improving method, plan improving device and recording medium for improving plan, [682] Prediction device for optimum parameter combination, [741]
Problem solving device, [667] Problem solving operation apparatus using a state transition, [674] Processor for genetic algorithm,
[765]
Relational function searching device and method therefor, [729]
Stacking scheduling device and method using genetic algorithm, [687] System optimal adjustment method and device thereof, [686]
System optimization method and device, Temporary scaffold arranging device, OD table integer estimating device, total 58 patents
[680]
[731] [694]
16
Genetic algorithm implementations
Authors
4.6
17
Authors
The following list contains all genetic algorithm implementations authors and references to their known contributions.
Aarts, E. H. L.,
Anderson, D.,
[237]
Azad, R. Muhammed Atif,
[754]
Abe, Tamotsu,
[1321]
Anderson, Jonathan D., [823]
Bac, Fam Quang,
Abkevich, Victor I.,
[398]
Anderson, K. S.,
[417]
B¨ ack, Thomas,
Abramson, David,
[1028]
Anderson, Peter G.,
[929, 567]
Abu-Lebdeh, G.,
[1330]
Anderson-Cook, Christine M.,
Adachi, Munemori, Adachi, Nobue, Adami, Christoph, Adeli, H.,
[707, 752]
Andre, David,
[512]
[908, 141,
949, 988, 992, 1407]
[844]
[527, 910, 1187, 1195, 1394, 607, 1032, 1257, 1258]
Backofen, Rolf,
[1283]
Bacon, Dave,
[37]
Bade, S. L.,
[988, 992]
Andres-Toro, B.,
[787]
Bakirtzis, A.,
[605]
Anelli, P.,
[1022]
Balandin, Alexander A., [1002]
Angeline, P. J.,
[587, 392]
Balazs, M.-E.,
[373]
Baleja, James D.,
[157]
[674] [1143]
[55]
[436]
Adeli, Hojjat,
[899]
Adewuya, A. A.,
[115]
Balio, R. Del,
[442]
Affenzeller, Michael,
[783]
Angus, J. E.,
[1172]
Balland, L.,
[20]
Agapie, A.,
[1142]
Anheyer, Thomas,
[1170]
Ballard, Dana Harry,
[1397]
Aggarwal, Charu C.,
[362]
Ann, SouGuil,
[91]
Baluja, Shumeet,
[337, 343]
Aguado-Bayon, L. Enrique,
Angeline, Peter J.,
[345, 363,
376, 979, 386, 416]
[88]
Agui, Takeshi,
[1417]
Aguirre, Hernan,
[1280]
Ahour, M. A.,
[796]
Ahuja, Sanjay P.,
[291]
Anon.,
[11, 1001, 16,
Banzhaf, Wolfgang, Ansari, Nirwan,
[1396]
Anzai, Kenji,
[953]
[149]
Barker, A. L.,
[630]
Barnatan, V.,
[188]
Barral, D.,
[49]
Barrett, M. D.,
[808]
Barrett, Sean D.,
[811]
Bartlett, Geoff,
[875]
Bar-Yam, Y.,
[504]
Baskaran, Subbiah,
[381]
Baskent, Deniz,
[522]
Bastos, J. P. A.,
[65]
[238]
Arabas, J.,
[1230]
Ait-Boudaoud, D.,
[867]
Arabas, Jaroslaw,
[1296, 315]
Aizawa, Akiko,
[551]
Archibald, James K.,
[823]
[574, 575,
1214, 1235, 1243] [608]
Akbarzadeh, Mohammad-R.,
[874]
Arenas, M. G.,
[791]
Argos, Patrick,
[1332]
Arnold, Dirk V.,
[503]
Arslan, T.,
[1294, 525, 704, 610, 1024, 661, 264, 1276, 662, 663, 757, 664, 1277, 1278, 665, 265]
Alfonseca, Manuel,
[1029]
[689, 690,
698, 897, 712, 715, 719]
Alander, Jarmo T.,
[769, 514, 342, 340, 1188, 361, 1399]
Baraglia, R.,
Antonisse, Hendrik James,
[603]
Akamatsu, Norio,
[186]
1050, 18]
Aita, Takuyo,
Akamatsu, N.,
Bandyopadhyay, Sanghamitra,
Arvind,
[782]
Ashlock, Dan,
[233]
Batenburg, F. H. D. van,
[876]
Batistela, N. J.,
[65]
Bauer, J.,
[1147]
Bayer, Steven E.,
[1033]
Baylog, John G.,
[1227]
Beasley, David,
[84]
Alippi, Cesare,
[870, 1030]
Ashrafzadeh, F.,
[174]
Almeida, F.,
[900]
A¸sveren, Tolga,
[346]
Alonso, Jos´ e,
[66]
Avdagic, Zikrija,
[1158]
Altuna, J.,
[49]
Averin, D. V.,
[1006]
Alvarez, A.,
[772]
Awatsuji, Y.,
[759]
Becker, Bernd,
[675, 721]
Alvila, S. L.,
[65]
Axelsson, Jakob,
[1333]
Becker, Douglas E.,
[1109, 1110]
Amin, Minesh B.,
[971]
Axmann, Joachim K.,
[965]
Beckerleg, M.,
[825]
Amini, Mohammad M., [399]
Aydin, M. Emin,
[287]
Behera, Narayan,
[571]
Anand, Vic,
Aytug, Haldun,
[116]
Belew, Richard K.,
[239, 240]
[472]
18
Genetic algorithm implementations
Belfiore, N. P.,
[187, 403]
Bowden, Charles M.,
[1004]
Carrera, Cecilia,
[347]
Belmont-Moreno, E.,
[1144]
Bowie, James U.,
[1297]
Carter, Bob,
[334]
Benekohal, R. F.,
[1330]
Bradshaw, J.,
[578]
Carter, Jonathan Neil,
[327]
Bengali, David,
[774]
Bramer, M. A.,
[947]
Carter, R. J.,
[775] [241]
Bennett, III, Forrst H., [501]
Branke, J¨ urgen,
[497, 834]
Cartwright, Hugh M.,
Bennett III, Forrest H.,
Breeden, Joseph L.,
[536, 546]
Caruana, Richard A.,
[257, 467, 258]
Briegel, H.-J.,
[1008]
Caruana, Rich,
[337, 343]
Brigger, P.,
[89]
Carvalho, Andr´ e C. P. L. F.,
Britton, J.,
[808]
Casta˜ non, David A.,
[971]
Brown, Christopher M., [1038, 1039]
Castellanos, J.,
[989]
Brown, K. R.,
[810]
Catasti, P.,
[1020]
Brown, Kenneth R.,
[37]
Caulfield, H. John,
[892]
Bruce, I. D.,
[424]
Cavalli-Sforza, L. Luca, [1156]
Brunelli, Antonio,
[1279]
Cede˜ no, Walter,
[579]
Brusic, Vladimir,
[999]
Celino, M.,
[930]
Bubak, M.,
[912, 954]
Cemes, R.,
[867]
Bhandari, Dinabandhu, [1163]
Bucci, M.,
[953]
Cerf, N. J.,
[804]
Bhattacharjya, Anoop K., [1109, 1110]
Buckles, Bill P.,
[913, 438]
Cerf, Rapha¨ el,
[932]
Bui, Thang Nguyen,
[316]
Chae, Soo-Ik,
[91]
Bhattacharrya, Siddartha,
Chaikla, Nipadan,
[621]
[988, 992,
1407]
Bentley, Peter J.,
[359]
Bergmann, Neil,
[1026]
Bernabeu, Eusebio,
[66]
Bersini, Hugues,
[269, 437]
Besada-Portas, E.,
[787]
Besmi, M. R.,
[882]
Bessi` ere, Pierre,
[1126]
Beyer, Hans-Georg,
[38, 1222,
593, 220, 234]
Bhakoo, Manmohan,
[1329]
[70, 116]
Bhattacharyya, Siddhartha,
[274]
Bianchini, Ricardo,
[1038, 1039]
Bierwirth, Christian,
[117]
Biles, J. A.,
[567]
Binh, To Thanh,
[998]
Bisch, Paulo M.,
[1234]
Bitterman, Thomas A., [638] Blakestad, R. B.,
[808]
Blanco, A.,
[32]
Bland, I. M.,
[717, 720,
969, 732, 740, 742]
Bull, David R.,
[84, 119, 132]
Bull, L.,
[505]
Bundaleski, Nenad,
[1253]
Burkowski, F. J.,
[418]
Burton, A. R.,
[576, 585]
Buxton, Bernard,
[944]
Buydens, Lutgarde M. C., [351, 1347] C´ adenas-Montes, Miguel,
[826]
Cain, Greg,
[909]
Calabretta, R.,
[118]
Camacho, E. F.,
[161]
Blekas, K.,
[126]
Campanini, Renato,
[835]
Blume, Christian,
[1065]
Camussi, A.,
[1122]
Boeringer, D. W.,
[1149]
Cantu-Paz, E.,
[1319]
Bonhoeffer, Sebastian,
[653]
Cao, U. J.,
[997]
Chakraborty, Uday K., [62] Chambers, Lance,
[902]
Chan, H.,
[885]
Chan, Hue Sun,
[286]
Chan, K. C.,
[293]
Chan, Kit Yan,
[287, 289]
Chan, Shun Heng,
[1155]
Chan, Shu-Park,
[465]
Chang, Mei-Shiang,
[128]
Chang, N. B.,
[158, 178]
Chatterjee, Amitabha,
[378]
Chatterjee, Sangit,
[347]
Chau, H. F.,
[214]
Chaudhury, Santanu,
[378]
Chellapilla, K.,
[631, 635]
Chellapilla, Kumar,
[63, 365, 1213,
Bonifacio, Rodolfo,
[53]
Cao, Y. J.,
[1027]
Bonissone, Stefano R.,
[280]
Caorsi, Salvatore,
[31]
Bonsma, E.,
[761]
Capi, G.,
[795]
Chen, B.,
[786]
Carpes Jr., W. P.,
[65]
Chen, Cha’o-Kuang,
[1317]
Chen, Chieh-Li,
[1317]
Born, Joachim,
[1034, 1035,
385, 1242]
1036, 1037, 639]
Carpio, Carlos Adriel Del,
[941]
Bornberg-Bauer, Erich, [286, 577] Bornholdt, Stefan, Boston, A. N.,
Carr, William L.,
[439]
Chen, Goong,
[793]
Carrasco, A.,
[150]
Chen, H. W.,
[158]
Carrasco, R. A.,
[49]
Chen, Haiyan,
[1157]
[1148, 552,
591, 1240, 1244] [873]
[1161]
Authors
19
Chen, Huye-Kuo,
[128]
Cobb, Helen G.,
[1259]
Dahal, K. P.,
[154]
Chen, J. H.,
[1181]
Coco, Wayne M.,
[281]
Dai, Jianrong,
[28]
Chen, Mu-Song,
[401]
Coghill, G. G.,
[968, 733]
Dai, Xiaoming,
[285]
Chen, R. W.,
[178]
Cohen, N.,
[159]
Daida, Jason M.,
[485, 1220,
627]
Chen, S.,
[415, 626]
Cohoon, J. P.,
[630]
Chen, Wen-Jan,
[202]
Cohoon, James P.,
[1040]
Chen, Wen-Pin,
[524]
Coley, D. A.,
[1371]
Chen, Y. Y.,
[199]
Coli, M.,
[90]
Chen, Y.,
[883]
Colin, Andrew,
[1041]
Chen, Yung-Yaw,
[74]
Collard, Philippe,
[515, 288, 600]
Chen, Z. P.,
[232]
Collins, E. G.,
[1000]
Darden, Thomas A.,
[157]
Chen, Z.,
[940]
Collins, J. J.,
[129, 152, 185]
Darwen, Paul J.,
[547, 549, 553]
Cheng, Po-Jen,
[202]
Collins, J.,
[825]
Darzins, Aldis,
[281]
Cheng, Runwei,
[295]
Colvin, M. E.,
[647]
Dasgupta, Dipankar,
[537]
Chengke, Wu,
[1251]
Comellas, F.,
[242]
Daud, Taher,
[822]
Chi, Ping-Chung,
[640]
Conway, Daniel G.,
[1298]
Davidor, Yuval,
Chiaverini, J.,
[808]
Cook, Diane J.,
[1299]
Chincarini, A.,
[878]
Cooper, K. D.,
[219]
Copland, H.,
[1209]
Chipperfield, Andrew J., [836, 868]
Daktariunas, A.,
[212]
D’Ambrosio, Joseph G., [555] Damsbo, M.,
[790]
Dandekar, Thomas,
[429, 1332]
Danowitz, Joshua,
[105]
D’Antone, I. D.,
[835]
[1300, 441,
1409]
Davies, R.,
[880]
Davis, Lawrence,
[1042, 1043]
Davis, M.,
[1164]
De, Susmita,
[564]
Cho, Hyun-Joon,
[1229]
Corcoran, III, Arthur Leo,
Cho, Sung-Bae,
[491, 509]
Corne, David W.,
[1167]
Choi, Boung Mo,
[797]
Corne, David,
[1405]
Choi, Doo Hyun,
[1250]
Corne, D.,
[1252]
DeCegama, Angel,
[1074]
Choi, H. S.,
[1083]
Corno, Fulvio,
[914]
Dediu, A. H.,
[911, 724]
Choi, Y.,
[788]
Corwin, Edward M.,
[1049]
Dediu, A. Horia,
[1217]
Cosmao, J.-M.,
[20]
Delbem, A. C. B.,
[813, 820, 828]
Costa, Ernesto,
[267]
Delchambre, A.,
[245]
Cotta, Carlos,
[1241]
De Falco, Ivanoe,
Coury, D. V.,
[813, 820, 828]
Crist, Michael J.,
[281]
Cronje, G. A.,
[958]
Crowley, William L.,
[45]
Crummey, T. P.,
[868]
Chongstitvatana, Prabhas,
[831, 832]
Chopard, Bastien,
[893]
Chuang, Angela S.,
[758]
[79, 1134]
Deb, Kalyanmoy,
Chung, D.,
[788]
Cieni, Wen-Jan,
[231]
Ciesla, W.,
[912, 954]
Cirac, J. I.,
[1008]
Circelli, D.,
[953]
Clark, James H.,
[1340, 1341]
Clark, Taane G.,
[1160]
Clark, T.,
[452]
Cui, Yan,
Clearwater, Scott H.,
[1400]
Clement, Stuart J.,
[113, 220,
234, 1062, 1340, 1341]
[1140, 1151,
1228, 1248]
Delgado, M.,
[32]
De Iorio, Maria,
[1160]
Della Cioppa, Antonio,
[1140, 1151,
1228, 1248]
Delmaire, H.,
[317]
Despain, Alvin M.,
[1014]
Deugo, Dwight,
[93, 102]
[286]
Devcic, Zlatko,
[524]
Culberson, Joseph C.,
[331, 440]
DeVoe, Ralph G.,
[1018]
[211]
Cvetkovic, Dragana,
[1138]
D’haeseleer, Patrik,
[303]
Clergue, Manuel,
[515, 288]
Cwik, T.,
[748]
Diao, Zijian,
[793]
Clergue, M.,
[600]
Dabs, Tanja,
[838, 879]
Dickinson, John,
[137]
Cline, D. D.,
[1101, 1102]
Dagli, C. H.,
[364]
Diessel, O.,
[806]
Clote, Peter,
[1283]
D’Agostino, G.,
[930]
Digby, David,
[488]
Cui, Jun,
[1055, 1056,
1057]
20
Genetic algorithm implementations
Dike, B. A.,
[545]
Edmonds, Christopher A.,
Falc´ on, W.,
[49]
Di Caro, G.,
[835]
Edmondson, L. Vincent, [446]
Falkenauer, E.,
[422]
Falkenauer, Emanuel,
[56, 245]
Fan, Alex,
[435]
Fan, Hui-Yuan,
[1150, 1153]
[1260, 1261]
Fang, Hsiao-Lan,
[1167]
Eiler, Cheryl L.,
[522]
Fang, Yi-Chin,
[1295]
Eisenberg, David,
[1297]
Farrall, Martin,
[1160]
Farrell, Patrick G.,
[88]
Fathi, M.,
[1247]
Faulkner, T. R.,
[1310]
Feddersen, S.,
[1380]
Fekry, H.,
[796]
Feng, Rui,
[285]
Ferkinhoff, David J.,
[1227]
Dimopoulos, Michael,
[283]
Edwards, Brent,
Ding, H.,
[839]
´ Eiben, Agoston E.,
Dinner, Aaron R.,
[1324]
Di´ osi, Lajos,
[799]
Diplock, G.,
[942]
Dizdarevic, S.,
[223]
Djuriˇsi´ c, Aleksandra B., [1253] Dodd, Nigel,
[1090]
Doi, Hirofumi,
[685, 80, 1274]
Dolin, Brad,
[501]
Dontas, Kejitan,
[244]
Dorai, Kavita,
[782]
Dorey, Robert E.,
[1351, 1352]
Dorigo, Marco,
[1405, 1044,
1045, 1046]
Dowling, Jonathan P.,
[1004]
Doya, K.,
[795]
Doye, Jonathan P. K.,
[557]
Drechsler, Nicole,
[675]
Drechsler, Rolf,
[675, 721]
Drezner, T.,
[69]
Drezner, Z.,
[69]
Duan, Lu-Ming,
[224]
Duarte Flores, Susana,
[516]
Duda, Richard O.,
[1373, 1374]
Dumont, Guy A. M.,
[859]
Dunham, B.,
[1060]
D¨ ur, W.,
[1008]
[1156]
[522] [338, 348,
388, 421, 431]
Eigen, Manfred,
Eisenhammer, Thomas, [470] Eklund, Neil H.,
[1146]
Elagin, V. M.,
[700, 702]
ElGindy, H.,
[806]
El-Hawary, M. E.,
[243]
El-Keib, A. A.,
[839]
Elliott, Peter,
[1329]
Fernandez, Francisco,
[1288]
Ellis, C.,
[447]
Fernandez, Thomas,
[1291]
Elo, Sara,
[841]
Fern´ andez-de-Vega, F., [1287]
Eloranta, Timo,
[917, 943, 950]
Fernando, Pradeep,
[822, 827]
Emam, H.,
[796]
Ferreira, Candida,
[34]
Embrechts, Mark J.,
[1146]
Ficek, Rhonda Janes,
[449]
Emiliani, U.,
[1022]
Field, P.,
[72]
Endo, T.,
[207]
Filho, J. R.,
[1052]
English, T. M.,
[539, 366]
Filip, Radim,
[798]
Finch, J. W.,
[882]
Finck, I.,
[1172]
Fitzhorn, P.,
[263]
Fiur´ aˇsek, Jaromi´ır,
[798, 804]
Flann, N. S.,
[931]
Fleming, P. J.,
[807]
English, Thomas M.,
[1049]
Engst, Norbert,
[1118]
Enk, S. J. van,
[1008]
Erbatur, F.,
[393]
Erickson, J. A.,
[1063]
Eriksson, R.,
[508]
Fleming, Peter J.,
[836, 868]
Esbensen, H.,
[963]
Flockton, Stuart J.,
[738]
Escazut, Cathy,
[600]
Fogarty, Terence C.,
Durrani, T. S.,
[1047]
Duˇsek, Miloslav,
[798]
Duvigneau, R.,
[507]
Duvigneau, Regis,
[507]
Esposito, A.,
Dvoˇr´ ak, Vaclav,
[881, 915, 976]
Esquivel, S. C.,
[367, 433]
Dyabin, M. I.,
[700, 702]
Estel, L.,
[20]
Dymek, A.,
[1048]
Evans, J. R.,
[689, 690]
East, Ian R.,
[1186, 1308]
Evans, Neal C.,
[770, 1327]
East, Ian,
[1089, 1091]
Fabbricatore, P.,
[878]
Eaton, Malachy,
[152, 185]
Fagarasan, Florin,
Eaton, M.,
[129]
Ebata, Tomokazu,
[862]
Eshelman, Larry J.,
[39, 467, 258,
468, 259, 469]
[287, 289, 82, 543, 1194, 589, 629, 633, 637, 1053, 1262, 1335, 1054, 1055, 1056, 1057]
Fogel, D. B.,
[392, 635]
[187, 403]
Fogel, David B.,
[1370, 63, 314, 1384, 110, 1204, 1213, 1222, 416, 631]
Fogel, Gary B.,
[63]
Fontain, Eric,
[1336]
Foo, Han Yang,
[963]
Forrest, Stephanie,
[641, 645]
[120]
Foster, James A.,
[779, 137]
Fairley, Andrew,
[448]
Foucart, L.,
[791]
Falco, I. De,
[442]
Francois, O.,
[1245]
Authors
21
Francone, Frank D.,
[342, 340,
Ganesh, T. S.,
[290]
Golub, M.,
[123]
Gantovnik, Vladimir B., [512]
G´ omez, A.,
[266]
Gao, Feng,
[51]
G´ omez-Iglesias, Antonio, [826]
Gao, Yong,
[1221, 1238]
Gong, W.-B.,
[566]
Garcia, F.,
[900]
Gonida, Fernando,
[1404]
Garcia, O. N.,
[318]
Goodman, Erik D.,
[840, 94, 916]
Garg, S.,
[92]
G¨ o¨ os, Janne,
[558]
Garigliano, Roberto,
[461]
Gordon, D. Benjamin,
[268]
1188, 361, 1399]
Franke, Katrin,
[816]
Franklin, M.,
[656]
Freedman, Steven J.,
[157]
Freeland, Stephen J.,
[52]
Freeman, James,
[1073]
Freisleben, Bernd,
[483, 601,
1058]
Gorges-Schleuter, Martina,
[1064,
Freitag, K.,
[213]
Garino, Pierangelo,
[190]
Friedberg, R. M.,
[1059, 1060]
Garlick, Mark A.,
[959]
Gotesman, M.,
[539]
Friedman, Michael,
[1092]
Garnier, Josselin,
[1246]
Goto, M.,
[411, 432]
¨ Fuat Uler, G¨ ok¸ce,
[939]
Garrett, C. A.,
[210]
Gottlieb, J.,
[148]
F¨ uchslin, Rudolf M.,
[42]
Gaspar, Alessio,
[600]
Gough, N. E.,
[991]
Fuente, D. de la,
[266]
Gasteiger, Johann,
[1325]
Gounares, Alexander,
[677]
Fuentes, Olac,
[648]
Gates, Jr., George H.,
[155, 175]
Graham, Paul S.,
[699, 709, 713]
Fujimoto, Yoshiji,
[987]
Gathercole, Chris,
Gravel, Marc,
[1326]
Graves, Marshall,
[994]
Green, D.,
[1023]
Greenwell, R. N.,
[1172]
[349, 1318,
1322, 586]
Fukuda, Toshio,
[642]
Fukumi, M.,
[568, 575,
1214]
Fukumi, Minoru,
[574, 1235,
1243, 608]
Fukunaga, Alex S.,
[538]
Gawelczyk, Andreas,
[1173, 1304]
Ge, Y. Z.,
[1000]
Geary, R. A.,
[1047]
Gemme, G.,
[878]
Gen, Mitsuo,
[295, 218]
Genshe, Chen,
[1368]
Gero, John S.,
[103]
Gerth, R.,
[104]
Fukunaga, Alex,
[739]
Fukuoka, Yuji,
[687]
Fukushima, M.,
[48]
Funes, Pablo,
[602]
Fung, Rong-Wong,
[67]
Furie, Barbara C.,
[157]
Ghosh, Ashish,
Furie, Bruce,
[157]
Furst, M., Furuhashi, Takehashi,
Greenwood, Garrison W.,
[555]
Grefenstette, John J.,
[611, 1042,
1066, 249, 1067, 1099]
Griffiths, I. J.,
[991]
Griffiths, Robert C.,
[1160]
Groß, Hans-Gerhard,
[495]
Gruau, Fr´ ed´ eric C.,
[124]
Gr¨ uner, Walter,
[654]
[564, 987, 590]
Gruska, Josef,
[1408]
Ghosh, Samiran,
[54]
Guccione, Steven A.,
[688, 1025]
[1357]
Ghozeil, Adam,
[1204]
Guerra-Salcedo, C.,
[626]
[765]
Gielewski, Harry,
[1174]
Guizhong, Liu,
[1231]
Gillespie, Jaysen,
[580]
Gulley, M. S.,
[1005]
Giusti, Giuliano,
[835]
Gultyaev, A. P.,
[876]
Glette, Kyrre,
[818]
Gultyaev, Alexander P., [901]
Glover, Fred,
[1405]
Gumm, Martin,
[190]
G¨ ockel, Nicole,
[721]
Guntsch, M.,
[806]
Gohtoh, Tomokazu,
[1190, 1206]
Guo, Guang-Can,
[224]
Gupta, Mahesh C.,
[1349]
Gupta, Yash P.,
[1349]
Gurdal, Zafer,
[512]
Gutierrez, D.,
[647]
Geyer-Schulz, Andreas,
Furuhashi, Takeshi,
[884, 960,
1078]
[684, 171,
176, 1236]
Furusawa, Mitsuru,
[80]
Furutani, Hiroshi,
[270]
Furuya, Tatsumi,
[708]
Gabbouj, Moncef,
[526]
Gabrielli, Alessandro,
[705]
Gold, S¨ onke-Sonnich, Galar, R.,
1065]
[1118]
[1337]
Goldberg, David E.,
[23, 43, 1319, 1338, 450, 1411, 1339, 246, 247, 1061, 643, 644, 248, 1062, 1063, 1340, 1341]
Galbiati, R.,
[118]
Gallard, R. H.,
[367, 433]
Gammack, John G.,
[1055, 1057]
Goldberg, Robert,
[216]
Gutkowski, W.,
[1147]
Gandolfi, Enzo,
[705]
Goltz, M. N.,
[210]
G¨ uvenir, H. Altay,
[319]
22
Genetic algorithm implementations
Gwiazda, T. D.,
[284]
Hasancebi, O.,
[393]
Hitafuji, M.,
[993]
Gzickman, H. R.,
[556]
Hasegawa, S.,
[1254]
Ho, C. K.,
[35]
Ha, Jih-Lian,
[67]
Hashem, M. M. A.,
[1215]
Ho, C. W.,
[420]
Hassoun, Mohamad H., [1386]
Hobbs, Matthew F.,
[251]
Hatta, K.,
[395, 411]
Hobday, Steven,
[377]
Haupt, Randy L.,
[183, 1402]
Hoffmeister, Frank,
[17, 1070]
Haupt, S. E.,
[183]
H¨ ohn, Christian,
[350]
Haupt, Sue Ellen,
[1402]
Holland, J. R. C.,
[451]
Hauser, R.,
[843]
Holland, John H.,
Haataja, Juha,
[964, 1009,
1068]
Hachino, T.,
[203]
Hahnert, W. F.,
[1342]
Hahnert, III, W. H.,
[1302]
Haimin, Li,
[1251]
Hai-Ping, Xu,
[215]
Halliday, Jonathan,
[211]
Hamacher, Kay,
[612]
H¨ am¨ al¨ ainen, Timo,
[896, 711, 714]
[1412, 645,
1413]
Haynes, T.,
[379]
Haynes, Thomas,
[382, 426]
Hayworth, Ken,
[739]
Hayya, K.,
[432]
Holst, Terry L.,
[44]
Holzscheiter, M. H.,
[1005]
Hon, K. K. B.,
[1072]
Honavar, Vasant,
[1212]
Honeyman, Marco,
[999]
Hamam, Yskandar,
[1320]
Hammel, Ulrich,
[527]
Hammer, J¨ urgen,
[999]
Hedar, A.,
[48]
Hong, Inki,
[320]
Hammerman, Natalie,
[216]
Hegde, Shailesh U.,
[1040]
Hong, Tzung-Pei,
[1201, 414]
Han, Chang-Fu,
[67]
Heinzl, Armin,
[23]
Hong, Yi,
[1292]
Han, Mun-sung,
Heinzmann, F.,
[1380]
Hongprayoon, P.,
[194]
[453]
[1195]
Hooper, William,
[391]
Heistermann, J¨ urgen,
[994]
Han, Seung Kee,
Hektor, Harm J.,
[281]
Hordijk, Wim,
[594]
Hendtlass, T.,
[1209]
Horihan, Jason W.,
[518]
Henry, R. A.,
[931]
Hornby, Gregory S.,
[554]
H¨ orner, Helmut,
[919, 14]
Heckendorn, Robert B.,
[1331, 632,
636]
Han, Zhangang,
[173]
Hancock, Peter J. B.,
[1263, 250]
Handschuh, Sandra,
[1325]
Haneda, H.,
[396]
Horng, Jorng-Tzong,
[1249]
Hansdah, R. C.,
[1166, 1031]
Herrera-Viedma, E.,
[73]
Horrocks, David H.,
[698, 712]
Hansen, Nikolaus,
[1173, 1304]
Herrmann, Frank,
[990]
Hoshino, T.,
[595]
Happel, Robert,
[624]
Hesser, J.,
Hotaling, Stephen P.,
[1004]
Harada, T.,
[57]
Hou, Edwin S. H.,
[1396]
Hardy, Yorick,
[768, 771]
Harik, Georges,
[1319]
Harju, Toni,
[525]
Harris, Christopher,
[944]
Harris, G.,
[652]
Harris, R.,
[292, 447]
Harris, Stephen P.,
[241]
Harrison, Leonard C.,
Herrera, Francisco,
[22, 73, 106, 108, 111, 114, 125, 146, 189, 206]
[706, 1264,
1069, 1265]
Hichi, Masahiro,
[682]
Higuchi, Takahide,
[228]
Higuchi, Tetsuya,
[681, 814, 708]
Higuchi, T.,
[716]
Hikita, Satoshi,
[671]
Hildebrand, L.,
[213, 1247]
Hill, A.,
[1343]
Hillebrand, E.,
Hsu, Ching-Chi,
[1334]
Hsu, YuHong,
[417]
Hu, Xiaobo (Sharon),
[555]
Hu, Y. T.,
[940]
Huang, Ching-Lien,
[961]
Huang, Junqi,
[210]
Huang, Pai-Yi,
[199]
Huang, Runhe,
[933, 1054]
[1381]
[999]
Hinterding, Robert,
Houck, Christopher R., [877]
[1174, 1183,
Hart, Peter E.,
[1373, 1374]
Hart, W. E.,
[1255]
Hirabayashi, H.,
[412]
Huber, R.,
[562]
Hart, William E.,
[222]
Hiroyasu, Makoto,
[1176]
Huffer, A.,
[647]
Hart, William Eugene,
[842]
Hirsh, Haym,
[371]
Hughes, Jeremy Peter James,
H¨ artfelder, Michael,
[1058]
Hirvensalo, Mika,
[1372, 208]
Hughes, R. J.,
[1005]
Hartley, Stephen J.,
[439]
Hiskey, Rchard G.,
[157]
Huihe, Shao,
[285]
109, 1193]
[1012]
Authors
23
Hung, Shih-Lin,
[844, 1071]
Iwanow, Z.,
[1147]
Joseph, D.,
[956]
Hunter, Andrew,
[12, 13]
Iwasa, Yoh,
[581]
Jost, J. D.,
[808]
Hunter, K. O.,
[1255]
Iwata, Masaya,
[681, 814, 708]
Joyce, G. F.,
[695]
Judson, Richard S.,
[1310, 647,
Hurley, S.,
[166, 646]
Izumi, K.,
[1215]
Hurley, Steve,
[1226]
Jacob, Christian,
[776, 907, 955]
Juell, Paul L.,
[1129]
Husbands, Philip,
[1095, 477]
Jacob, C.,
[980]
Juill´ e, Hugues,
[922, 602]
Husimi, Yuzuru,
[603]
Jagielski, Romuald,
[383]
Jukes, Ken,
[589]
Hutchings, J. L.,
[988, 992]
Jain, L. C.,
[209]
Julstrom, Bryant A.,
Hwang, Chan Sik,
[1250]
Jakob, Willfried,
[1065]
Hwang, Chong-Sun,
[355, 374, 402]
James, D. F. V.,
[1005]
Hwang, Jenn-Kang,
[1152]
Jamshidi, Mohammad,
[874]
Hwang, Ming-Jing,
[1152]
Jan, Naeem,
[532]
1345, 1346]
[333, 1309,
153]
Jung, Soonchul,
[275]
Jung, Sung Hoon,
[801]
J´ unior, Valfredo Pilla,
[829]
Junshui, Ma,
[1231]
Jurkus, P.,
[212]
Kadaba, Nagesh,
[1076]
Kahng, Andrew B.,
[538, 320]
Hy¨ otyniemi, Heikki,
[47]
Janikow, Cezary Z.,
[62, 252, 1344]
Hyun, Chul Ju,
[357]
Jansen, Thomas,
[499]
Jantarang, S.,
[194]
Jean, Kuang-Tsang,
[74]
Kaiser, C. E.,
[175]
Jelasity, M.,
[615]
Kaiser, Jr., Charles E.,
[155]
Jenkins, W. M.,
[548, 1075]
Kajihara, Nobuki,
[681]
Jensen, Frank,
[1406]
Kajitani, Isamu,
[681, 814, 708]
Jeon, In Ja,
[797]
Kakazu, Yukinori,
[531, 533]
Jewajinda, Yutana,
[830, 831, 832]
Kakde, O. G.,
[68]
Jha, Rakesh,
[971]
Kallel, Leila,
Iazzetta, A.,
[1140, 1228,
1248]
Iba, Hitoshi, Ibaraki, Toshihide, Iblisdir, S., Ichikawa, Y., Ichimura, Takumi,
[409] [311, 1203] [804] [845] [596]
Ida, K.,
[218]
Idlebi, Niba,
[863]
Iima, Hitoshi,
[332, 122]
Ikebukuro, Kazunori, Ikram, I. M., Inoue, K., Inza, I., Irizuki, Yasuharu, Irwin, George W.,
[205]
Jin, Lin-Ming,
[465]
Jin, Yaochu,
[489]
Jing-Hao, Jin,
[215]
Kampen, Antoine H. C. van,
Jing-xia, Wang,
[792]
Kampis, George,
[254]
John, David,
[1189]
Kanazawa, Hiroyuki,
[722]
Johns, A. T.,
[360]
Kang, L.,
[883]
Johnson, Judith A.,
[780]
Kang, Tae-Won,
[355, 374]
Johnson, Mark E.,
[1303]
Kanzaki, Y.,
[396]
Johnson, Mark S.,
[853]
Kao, Cheng-Yan,
[1152, 1334]
Johnson, R. Colin,
[819]
Kao, Cheng-Yen,
[1249]
Johnson, Timothy,
[477]
Kao, C.-Y.,
[1141]
Johnston, Victor S.,
[656]
Kappler, Cornelia,
[1195, 1205]
Joines, Jeffery A.,
[877]
Karaboga, D.,
[1210]
Kargupta, Hillol,
[54, 221]
Karimi, Koohyar,
[524]
Karpinskii, N. G.,
[700, 702]
Karplus, Martin,
[1324]
Karp´ıˇsek, Zdenˇ ek,
[599]
[223] [684] [60]
[845]
Ishimaru, T.,
[759]
Ismail, H. S.,
[1072]
Isobe, R.,
[996]
Itano, W. M.,
[808]
Ito, A.,
[101]
Ito, Minoru,
[821]
Iwamoto, Takashi,
Jiaying, Wang,
[396]
Ishii, Y.,
Itoh, Hiroyasu,
[232]
[921]
[1098]
Ito, T.,
Jiang, J. H., [1316]
Ishihara, Toshihisa,
Jones, A.,
[166]
Jones, M. S.,
[1216]
Jones, Terry,
[341, 550]
[409] [674] [496, 749]
Jong, Kenneth A. De, Iwamoto, T.,
[728, 734]
[598, 1246,
619]
443, 244, 444, 445, 471]
Kallel, L.,
[370]
Kalus, A.,
[947]
Kalyanmoy,
[38]
Kamp, Christel,
[1148]
[336, 906,
[351]
24
Genetic algorithm implementations
Karray, Fakhreddine O., [1375]
Kimble, H. J.,
[1008]
Konstam, Aaron H.,
[439]
Karube, Isao,
[1316]
Kindermann, J.,
[1097]
Kopfer, Herbert,
[117]
Kaski, Kimmo,
[896, 711]
Kingdon, J.,
[1381, 1051]
K¨ oppen, Mario,
[816]
Katayama, Kengo,
[397, 412, 425]
Kinnear, Jr., Kenneth E.,
Korn, Ulrich,
[998] [924]
Kateman, Gerrit,
[850, 869,
[529]
Kinnebrock, Werner,
[1377]
Kornilov, A. R.,
Kinsner, W.,
[956]
Koskim¨ aki, Esa,
[558]
Kiranyaz, Serkan,
[526]
Kovacs, Tim,
[486]
Kirkby, S.,
[182]
Kowalski, S. V.,
[847]
Kishimoto, N.,
[1254]
Koza, John R.,
Kiss, Yaroslav P.,
[95]
Kita, Hajime,
[25, 76, 191]
Kita, H.,
[423, 622]
Kitagawa, Minoru,
[1098]
Kitamura, Shinzo,
[1176]
Kitano, Hiroaki,
[668]
Kizu, S.,
[207]
Klapuri, Harri,
[711]
1087, 1347, 1088]
Katkoori, Srinivas,
[822, 827]
Kawabe, T.,
[163]
Kawaji, S.,
[570]
Kawamura, Takao,
[812]
Kawato, Hiroyuki,
[672]
Kay, Michael G., Kazadi, S. T., Kazarlis, S., Kazimierczak, Jan, Kazusane, Takada,
[877] [407] [605] [723] [735]
Keane, Martin A.,
[988, 992,
1407]
Keith, Mike J.,
[846]
Klimasauskas, Casimir C., [1077, 456]
Keller, Robert E.,
[1399]
Klimeck, G.,
[748]
Kelly, P.,
[566]
Knight, James,
[64]
Kempe, J.,
[810]
Knight, Leslie R.,
[1085, 1133]
Kershenbaum, Aaron,
[75]
Knill, E.,
[808, 1020]
Kerzic, Travis,
[1061]
Ko, Eun-Joung,
[318]
Kessler, Matthew,
[426]
Ko, Myung-Sook,
[355, 374, 402]
Keymeulen, Didier,
[822, 827]
Kobayashi, Naoki,
[296]
Khamisani, W.,
[297]
Kobayashi, Shigenobu,
[273, 25, 301,
151, 191, 192, 217]
Kher, Shubhalaxmi,
[1284]
Khor, E. F.,
[1286]
Khuri, Sami,
[455]
Khuskivadze, Amiran, Kidwell, Michelle D., Kikuchi, Yasuhiro,
[491]
Kim, J. R., Kim, J., Kim, Jung H.,
[1196]
Krahenbuhl, L.,
[592]
Kramer, M. D.,
[762]
Krasnogor, Natalio,
[222]
Krawczyk, Jacek R.,
[1344]
Kreinovich, Vladik,
[648]
Krejsa, Jiˇr´ı,
[133]
Kreutz, Martin,
[1179, 1199]
KrishnaKumar, K.,
[92, 895]
Krishnamoorthy, C. S., [1362] Kr¨ oger, Berthold,
[1079, 1080,
1081]
Krone, J¨ org,
[1082]
Kubo, Shunichi,
[894]
Kubota, T.,
[759]
Kueblbeck, C.,
[937] [670]
Kuester, Rebecca L.,
[438]
Kobayashi, Yasuyoshi,
[687]
Kuh, E. S.,
[963]
Kobayashi, Y.,
[369]
Kuijpers, C. M. H.,
[223]
Koehler, Gary J.,
[70, 116]
Kuijpers, Cindy M. H., [353]
Kohlmorgen, Udo,
[834]
Kumar, Anil,
Koide, T.,
[395, 411, 432]
Kumar, Anup,
Koizumi, H.,
[728, 734]
Kok, Pieter,
[811]
[685]
Kim, Hee-Su,
Koziel, S.,
Kuehrer, Martin,
[1299]
[837]
[1230]
[423]
[784, 794]
Kim, Dai H.,
Kozdrowski, S.,
Kobayashi, S.,
[290]
Khoo, L. P.,
[1382, 908, 112, 949, 988, 992, 1407, 1415]
Kolarik, Thomas,
[1078]
Kolarov, K.,
[583]
Kolaskar, A. S.,
[935]
[218] [788, 788] [763]
Koljonen, Janne,
[782] [291, 113,
1349]
Kumar, N. V.,
[1019]
Kumar, R.,
[1019]
Kumar, Sanjay,
[899]
Kumbla, Kishan K.,
[874]
Kumon, Toshiaki,
[683]
Kundu, M. K.,
[97]
[1294, 521,
Kim, Junhwa,
[923]
Kim, S. J.,
[788]
Kolonko, M.,
[335]
Kundu, Malay K.,
[404, 413, 427]
Kim, Yeo Keun,
[357]
Konig, Rainer,
[429]
Kunt, M.,
[89]
Kim, Yeongho,
[357]
Konjicija, Samim,
[1158]
Kureichik, V. M.,
[1285]
525]
Authors
25
Kuri, Angel,
[389, 390]
Lee, Shane,
[201]
Lillie, Anita S.,
[1156]
Kuriyama, K.,
[597]
Lee, T. H.,
[1286]
Lim, Jong Hwa,
[1250]
Kuriyama, Y.,
[596]
Lei, Tu,
[792]
Lim, S. K.,
[145] [199]
Kvasniˇ cka, Vladim´ır,
[156, 179]
Leibfried, D.,
[808]
Lin, C. S.,
Kwiat, P. G.,
[1005]
Leite, J. V.,
[65]
Lin, Chen-Sin,
[302]
Kwok, D. P.,
[1083, 1084]
Leite, Patrisia T.,
[1161]
Lin, Feng-Tse,
[1334]
Kwong, Sam,
[196]
Leiva, A.,
[367]
Lin, G.,
[883]
Lin, Guangming,
[918, 368,
Kwong, S.,
[1013]
Leiva, H. A.,
[433]
Laflamme, R.,
[1020]
Leiva, S.,
[989]
Lin, Jin-Mu,
[1317]
Lai, L. L.,
[985]
Lemarchand, L.,
[1137]
Linardis, Panagiotis,
[283]
Lai, Loi Lei,
[352]
Lenski, Richard E.,
[1143]
Linden, D. S.,
[177] [519]
1256]
Laine, Tei,
[565]
Leong, Wen-Fung,
[1293]
Lineaweaver, Sean,
Lam, K. P.,
[517]
Leou, Jin-Jang,
[400]
Lint, J. H. van,
[237]
Lamont, G. B.,
[175, 210]
Lepri, Stefano,
[764]
Lipson, Hod,
[1281, 513]
Lamont, Gary B.,
[155]
Leu, M. C.,
[1192]
Lis, J.,
[1184]
Lamoreaux, S. K.,
[1005]
Leung, K. S.,
[420]
Liu, J.,
[755]
Liu, Junhong,
[1290]
Liu, Liren,
[666]
Liu, Xingzhao,
[300]
Liu, Yong,
[681, 1256]
Liu, Zhi-Feng,
[196]
Loader, R.,
[1252]
Lobianco, C. G.,
[127]
[990]
Logar, Antonette M.,
[1049] [567]
Lampinen, Jouni,
[1150, 1153,
Leung, Yee,
[1221]
Leung, Yiu-Wing,
[46]
Leutbecher, M.,
[470]
Leuze, Michael R.,
[1099, 1100]
1154, 1290]
Lane, Alex,
[848, 888,
1086]
Langdon, William B.,
[384, 387,
197, 406, 1403]
Levenick, Jim, Langer, C.,
[322]
[808]
Levi, Delon, Langevin, A.,
[317]
Larra˜ naga, Pedro,
[353]
[760, 688,
1025]
Levi, Paul,
Larra˜ naga, P.,
[223]
Levin, Michael,
[225]
Loggi, Laura W.,
Lattaud, C.,
[1233]
Levine, David Mark,
[849]
L´ opez-Orozco, J. A.,
[787]
Lau, T. L.,
[1202]
Levinson, G.,
[304]
Low, Kay-Soon,
[824]
Laumanns, M.,
[1145]
Levinson, William E.,
[281]
Lawrence, P. D.,
[859]
Levy, Ron,
[764]
Lu, Ruqian,
[173]
Lazarescu, V.,
[226]
Li, E. Herbert,
[1253]
Lu, Y. L.,
[29]
Lazarov, M.,
[470]
Li, Guaqiang,
[666]
Lu, Yung-Hsiang,
[518]
Leclerc, Francois,
[540]
Li, Guo-Jie,
[479]
Lu, Zheng,
[140]
Lee, Chang-Yong,
[391]
Li, Guo,
[1191]
Lucas, S. M.,
[135] [61]
Lozano, Manuel,
[22, 73, 106, 108, 111, 114, 125, 146, 189, 206]
Lee, Chong-hyun,
[453]
Li, Jun,
[40]
Lucas, Simon M.,
Lee, C.,
[788]
Li, Leping,
[157]
Lucasius, Carlos B.,
Lee, Dah-Jye,
[823]
Li, Yan-Da,
[1180]
Ludvig, J.,
[706]
Lee, J. B.,
[985]
Li, Y.,
[232]
Luke, Sean,
[372]
Lee, Joo-Young,
[509]
Li, Yong,
[1135]
Lunacek, Monte,
[64]
Lee, K. H.,
[420]
Liang, Ko-Hsin,
[618]
Lund, Henrik Hautop,
[541]
Lee, Michael A.,
[1348]
Liang-Jie, Zhang,
[323]
Lynch, Lucy A.,
[347]
Lee, S. G.,
[1284]
Liao, Fong Hang,
[401]
Ma, J. T.,
[352, 985]
Lee, S. W.,
[35]
Liepins, Gunar E.,
[478]
Ma, Jianhua,
[933]
[850, 869,
1087, 1347, 1088]
26
Genetic algorithm implementations
Mabuchi, H.,
[1008]
MacCallum, Robert M., [800]
Masetti, Massimo, Maslov, S. Yu.,
[705] [1266, 1267,
1268]
MacDonald, John, Macfarlane, Donald,
[1295]
Mason, Andrew J.,
[236]
Mason, Andrew,
[324]
[1089, 1090,
1091]
Mackensen, Elke,
[675, 721]
Mason, J. S.,
[452]
Maclay, David,
[1351, 1352]
Massa, Andrea,
[31]
Macleod, I.,
[883, 918]
Massar, S.,
[804]
MacNiven, Scott,
[1316]
Masters, Timothy,
[1093]
Maekawa, Keiji,
[76]
Masuda, T.,
[101]
Maher, Mary Lou,
[542]
Mathias, Keith E.,
Mahesh, T. S.,
[782]
Mahfoud, Samir W.,
[305]
Mahlab, Uri,
[188, 1092]
Mahnig, T.,
[1285]
Maimon, O.,
[1357]
Maini, Harpal Singh,
Mak, Terrence S. T., M¨ aki, Toni,
86, 255, 263, 660]
Matouˇsek, Radek,
[599]
Matsuda, K.,
[395]
Matsueda, Hideaki,
[1010]
[457]
Merelo, J. J.,
[791, 1017]
Merkle, L. D.,
[175]
Merkle, Laurence D.,
[155]
Merz, Peter,
[483, 601]
Messa, Kenneth C.,
[458]
Meza, J. C.,
[1310, 647]
Michalewicz, Zbigniew,
[1370, 1296, 1383, 1193, 1392, 628, 252, 1344, 1416]
Michielssen, Eric,
[36, 256]
Middendorf, M.,
[806]
Mignot, Bernard,
[863]
Mihaila, D.,
[911, 724,
1217]
Mikami, Masuhiro,
[925]
Matsumura, Yoshiyuki, [500]
Mikami, Sadayoshi,
[543]
Matsuo, Kazuhiro,
[707]
Mikkola, Topi,
[767]
Mattfeld, Dirk C.,
[117, 1391]
Miles, J. C.,
[578]
[1253]
Maturana, F.,
[967]
Milik, M.,
[891]
[517]
Maunder, R. B.,
[968, 733]
Mill, Frank,
[130, 1095]
[511]
Mauri, G.,
[180]
Miller, Brad L.,
[1319]
May, Alex C. W.,
[853]
Miller, J. F.,
[1011]
Mayer, H. A.,
[562]
Miller, Julian F.,
[294, 306, 85,
313, 87]
Majewski, Marijan L.,
[39, 528, 81,
Mercer, R. E.,
M¨ akinen, Erkki,
[950]
Maley, Carlo,
[1208]
Man, K. F.,
[1013]
Man, Kim-Fung,
[196]
Mancini, Stefano,
[53]
Manderick, Bernard,
[535, 650]
Mangano, Salvatore R., [851] M¨ anner, R.,
[843, 706,
1264, 1069, 1265]
[487, 492,
629, 633, 637]
Mayne, Howard R.,
[200]
Mayo, Stephen L.,
[268]
Mayoh, Brian,
[926]
Mazumder, Pinaki,
[297, 885]
McCaskill, J. S.,
[730]
McCaskill, John S.,
[42]
McClurkin, G. D.,
[1047]
M¨ antykoski, Janne,
[852]
McDonald, J. R.,
[154]
Mao, Zhi-Hong,
[1180]
McGarrah, D. B.,
[1346]
Marchand, Arnaud,
[56]
McKay, R. I. (Bob),
[484]
Marchette, David J.,
[139]
McKeown, G. P.,
[1216]
Mariappan, S. V. S.,
[1020]
McLaren, CVhristine E., [524]
Marland, C.,
[1090]
Medsker, C.,
Mar´ın, Jes´ us,
[614]
Megson, G. M.,
[1094] [717, 720,
969, 732, 740, 742]
Marques, R. M. Lopes,
[1088]
Martin, Martin C.,
[846]
Martin, Ralph R.,
[84, 132]
Martin, W. N.,
[630]
Meier, Karlheinz,
[781]
Martin, Worthy N.,
[1040]
Mendes, R.,
[854]
Marume, Koji,
[669]
Menth, Stefan,
[1333]
Mehdi, Q. H., Mehrotra, Kishan,
[991] [294, 306, 85,
Mills, Graham,
[1028]
Mills, Holland,
[19]
Milutinovich, Veljko,
[1138]
Ming-chen, Zhu,
[792]
Mingyang, Xu,
[205]
Minkel, J. R.,
[815]
Mirkovic, Jelena,
[1138]
Mirny, Leonid Alex,
[398]
Mitchell, Melanie,
[1393, 1401,
641, 645]
Mitl¨ ohner, Johann,
[927]
Mitra, Suman K.,
[97]
Mitsumoto, D.,
[595]
Mittra, Raj,
[256]
Miwa, Masahiro,
[765]
Mlynek, Daniel,
[190]
Mohammed, Osama A., [939]
87]
Mohan, C. K., Mohan, Chilukuri K.,
[419] [294, 306, 85,
87]
Mojarradi, Mohammad, [822]
Authors
27
Moldovan, D.,
[847]
Nam, Dongkyung,
[481]
Noever, David,
[381]
Molgedey, Lutz,
[1197]
Nam, Dong-Kyung,
[584]
Nolfi, S.,
[118]
Molitor, Paul,
[346]
Nandi, Suchismita,
[404, 413]
Nomura, T.,
[160]
Mombers, Friedrich,
[190]
Nang, Jongho,
[923]
Nonaka, Shiro,
[731]
Nanjundiah, Vidyanand, [571]
Nordin, Peter,
Monticello, Daniel J.,
[281]
[26, 342, 340,
1188, 361, 1399]
Moon, Byung Ro,
[320]
Nara, Koichi,
[1098]
Moon, Byung-Ro,
[275, 282, 316]
Narayanan, Ajit,
[344]
Moore, Jason H.,
[886]
Narayanaswamy, S.,
[92]
Moore, Mark,
[344]
Narihisa, Hiroyuki,
[397, 412, 425]
Moraga, Claudio,
[206]
Nash, H. H.,
[906]
Moraga, C.,
[213]
Naudts, B.,
[598, 619]
Morales, D.,
[900]
Naumann, A.,
[967]
Nsakanda, Aaron Luntala,
Moret, Marcelo A.,
[1234]
Nawa, Norberto Eiji,
[1236]
Numao, M.,
[597]
Mori, N.,
[622]
Ndeh-Che, F.,
[352]
Nygard, Kendall E.,
[1129]
Moriki, T.,
[745]
Neff, Bryan D.,
[520]
Oates, M.,
[1252]
Morishima, Amy,
[466]
Negoita, Mircea Gh.,
Obayashi, Shigeru,
[33]
Mouhab, N.,
[20]
Obenland, Kevin M.,
[1014]
Obradovi´ c, Zoran,
[1315]
O’Brien, E. J.,
[1328]
Oda, Juhachi,
[328]
Odetayo, Michael O.,
[1311, 1356]
O’Dwyer, D. W.,
[1328]
Ofria, Charles,
[1143]
Ogasawara, K.,
[570]
Moult, John,
[459, 1353,
1269]
M¨ uhlenbein, Heinz,
[1285, 1096,
1097, 1270, 460, 651]
Mulawka, Jan J.,
[1296, 315,
978] [962]
Munro, William J.,
[811]
Munteanu, C.,
[226]
Munteanu, Cristian,
[21, 21]
Murakawa, Masahiro ,
[708]
Murata, Yoshihiro,
[821]
Murga, R. H.,
[223]
Murga, Roberto H.,
[353]
Murthy, C. A.,
[97]
Musenich, R.,
[878]
Na, KyungMin,
[91]
Nagano, T.,
[595]
Nagao, Tomoharu,
[164, 1417]
Nagase, Yukinori,
[812]
Nagrath, I. J.,
[1019]
Nakabayashi, Ayumi,
[735]
Nakamura, Takashi,
[33]
Nakamura, Taro,
[763]
Nelson, Brent,
[699, 709]
Nelson, K. M.,
[855]
Nelson, Kevin M.,
[110]
Nˇ emec, Viktor,
Norrg˚ ard, Filip,
[525]
Norrie, D. H.,
[967]
North, T.,
[1060]
Nose, Matsuo,
[1321]
Nowrouzian, Behrouz,
[174] [1326]
[928]
Neubauer, Andr´ e,
[107]
Neubauer, A.,
[1218, 1225]
Neves, J.,
[854]
Newton, C.,
[618]
Nguyen, Khanh V.,
[375]
Ogiwara, Haruo,
[149]
Nicolau, Miguel,
[59]
Oguro, R.,
[203]
Niesse, John Arthur,
[193, 200]
Oh, Sang-Hoon,
[584]
Nikolaev, N. I.,
[588, 604]
Ohara, Shigeyuki,
[672]
Nilsson, Martin,
[482]
Ohi, Hajime,
[674]
Nishikage, T.,
[957]
Ohki, M.,
[1254]
Nishikawa, Y.,
[568]
Ohkita, M.,
[1254]
Nishikawa, Y,
[622]
Nishikawa, Yoshikazu,
[76]
Ohsaki, M.,
[560, 569]
Nishimura, Toshihiro,
[674, 722]
Ohya, K.,
[560, 569]
Niskanen, Antti O.,
[805]
Ojala, Pekka,
[896, 711]
Nissen, Volker,
[1378]
Okada, D.,
[396]
Nissinen, Ari S.,
[856]
Okada, Hiroyuki,
[674, 920, 735]
Nix, Allen E.,
[1354]
Okushi, E.,
[775, 728, 734]
Nobue, A.,
[78]
Okushi, Etsuko,
[496, 749]
Nobuo, Sannomiya,
[687]
Oleskovicz, M.,
[813, 820, 828]
Ogawa, Toshiyuki,
[975, 982,
983, 986, 746]
Ohkura, Kazuhiro,
[500, 1165, 1185, 1190, 945, 1206, 1223, 617]
[1300, 358,
750]
Nakayama, Y.,
1217, 743]
[704]
Nettleton, David John, [461]
Munakata, Hideaki,
Nakano, Ryohei,
[120, 724,
Nordman, Mikael,
[411, 432]
28
Genetic algorithm implementations
Olhofer, Markus,
[489]
Park, Jeon-gue,
[453]
Pingkang, Li,
[50]
Oliker, S.,
[1357]
Park, Jong-man,
[453]
Pipe, Anthony G.,
[82, 1314]
Park, Kihong,
[334]
Pisacane, F.,
[930]
Piskunov, A. I.,
[924]
Pitcher, Trevor E.,
[520]
Plantec, A.,
[1137]
Plassman, G. E.,
[778]
Platel, Michael Defoin,
[288]
Pleij, C. W. A.,
[876]
Pleij, Cornelis W. A.,
[901]
Pohlheim, H. P.,
[836]
Pokrasniewicz, Jacek,
[315]
Oliveira, Tiago Carvalho, Oliver, I. M.,
[829]
[451]
Park, Lae-Jeong,
[321, 339,
1307, 584]
Oliver-Morales, Carlos, [58] Olsson, Bj¨ orn,
Parkinson, Wendy,
[519]
Parmee, Ian C.,
[380]
[480, 490,
494, 508]
Omatsu, S.,
[568]
Parodi, R.,
[878]
Omatu, S.,
[957]
Parsons, Michael G.,
[40]
O’Neill, A. W.,
[1355]
Parsons, Rebecca J.,
O’Neill, Michael,
[1015]
Ono, I.,
[272, 369, 423]
Ono, Isao,
[151, 191,
192, 217]
Ono, N.,
[272]
Opaterny, Thilo,
[1118]
Oppacher, Franz,
[298, 77, 93,
325, 102]
O’Reilly, Una-May,
[325]
Orfila, A.,
[772]
Orlin, James B.,
[362]
Osei, A.,
[892]
Oˇsmera, Pavel,
[179, 198]
Ost, Alexander,
[1118]
Ostermeier, Andreas,
[1303, 606,
623, 625]
Pastorino, Matteo,
[31]
Patel, Shail,
[1329]
Patnaik, L. M.,
[1166, 573]
Patnaik, Lalit M.,
[310]
Pollack, Jordan B.,
[19]
Patton, Arnold L.,
[94]
Pavlov, Alexander V.,
[773] [326, 462]
Peachey, T. C.,
[1174, 1193]
Pedersen, Lee G.,
[157]
Pedrycz, Witold,
[1404]
Pegalajar, M. C.,
[32]
[1173, 1304]
Pelikan, Martin,
[1376]
Otoba, K.,
[993]
Peliti, L.,
[506]
Oussaid` ene, Moloud,
[893]
Peliti, Luca,
[559, 1232]
Oyama, Akira,
[33]
Pelletier, Joelle N.,
[277]
Ozeri, R.,
[808]
Pelta, David A.,
[222]
[175]
Perales, Alberto Guill´ en, [817]
Pachter, R.,
[279, 384,
387, 394, 406] [1281, 922,
602]
Patton, Anne,
Pawlowsky, Marc Andrew,
Poli, Riccardo,
Pollatschek, M. A.,
[970]
Polovyanyuk, A. I.,
[700, 702]
Ponnuswamy, Subburajan,
[971]
Poon, Josiah,
[542]
Poon, Pui Wah,
[327]
Popela, Pavel,
[599]
Porter, Reid,
[1026]
Posp´ıchal, Jiˇr´ı,
[156, 179]
Pottier, B.,
[1137]
Potts, Mark J.,
[774]
Potvin, Jean-Yves,
[540]
Price, Kenneth,
[966]
Price, Wilson,
[1326]
Priest, Stephen D.,
[1366]
Prinetto, Paolo,
[914]
Pachter, Ruth,
[155]
Perego, R.,
Pai, Yang-Chieh,
[1295]
P´ erez, Juan Manuel S´ anchez,
Prugel-Bennet, A.,
[276]
Pal, K. F.,
[454]
Perkins, Sonya,
[1028]
Pryor, R. J.,
[1101, 1102]
Perov, V. L.,
[436]
Pucello, N.,
[930]
Peterson, C. G.,
[1005]
Pujol, J. C. Figueira,
[394]
Petridis, V.,
[605]
Pulkkinen, Jenni,
[526]
Petry, Frederick E.,
[913, 438]
Pullan, W. J.,
[204]
Pulliam, Thomas H.,
[44]
Pal, Nikhil R.,
[1163, 404,
413, 427, 428]
Pal, Sankar K.,
[564, 186]
Palazzari, P.,
[90]
Palmer, Charles C.,
[75]
Palmieri, F.,
[1238]
Palmieri, Francesco,
[953]
Pettey, Chrisila Cheri Baxter, [1301, 307,
1100]
Parisi, D., Park, Cheol Hoon, 339, 1307, 584]
[1099,
Punch, III, William F., [94]
Pham, D. T.,
[1210]
Piazzi, A.,
[127]
Piccolboni, A.,
[180]
Pienkos, Philip T.,
[281]
Qi, Yulu,
[621]
Pierreval, Henri,
[995]
Qian, Feng,
[666]
Pyeatt, Larry,
463]
Paris, Jean-Luc,
[826]
Qi, Xiaofeng,
[995]
[124] [1301, 307,
1238, 463]
[118] [481, 321,
Authors
29
Qingchun, Meng,
[131]
Reusch, B.,
[1247]
Rothlauf, Franz,
[23]
Quintana, Chris,
[648]
Rhee, Phill Kyu,
[797]
Roupec, Jan,
[133]
Rabelo, L. C.,
[104]
Ribeiro-Filho, J.,
[863]
Rowe, Jon,
[1186, 1308]
Rabinowitz, F. M.,
[903]
Ribeiro Filho, Jose L.,
[857]
Rowlands, Hefin,
[201]
Roychowdhury, S.,
[1229]
Rabitz, Herschel,
[1345]
Ribeiro Filho, Jos´ e L.,
[870, 1030,
1051]
Rabow, Alfred A.,
Roychowdhury, Vwani P.,
[356]
Radcliffe, Nicholas J.,
[861, 312,
833, 143, 144]
Richards, Dana S.,
[1040]
Ridao, M. A.,
[161]
Roysam, Badrinath,
[1109, 1110]
Rubio-Solar, Manuel,
[826]
Ragg, Thomas,
[936]
Rieffel, Eleanor G.,
[501]
Raghavendra, C. S.,
[1315]
Riolo, Rick L.,
[1105, 1106]
Raghuwanshi, M. M.,
[68]
Riopel, D.,
[317]
Raidl, G. R.,
[121]
Riquelme, J.,
[161]
1271]
Rajeev, S.,
[1362]
Ritter, Gilles,
[764]
Rudolph, G¨ unther,
Rajeshuni, Ramesham,
[827]
Riznyk, Volodymyr V., [95]
[1253]
Ro, Satoshi,
[858]
Ralston, Patricia A. S., [1302, 1342]
Robbins, P. F.,
[147]
Ramesh, Prem,
Robbins, Phil,
[1177]
Roberts, Stephen G.,
[96]
Robertson, George G.,
[1364, 1365]
Robinson, Alan,
[789]
Roca, R.,
[242]
Rocaries, Francois,
[1320]
Rochet, S.,
[563, 142]
Roda, J.,
[900]
Rakic, Aleksandar D.,
Rana, Soraya,
[290] [1331, 632,
636]
Ranjithan, S., Ranka, Sanjay,
[256] [294, 306, 85,
87]
Rankin, R.,
[652]
Rao, B. B. Prahlada,
[1166, 1031]
Rasheed, Khaled,
[371, 430]
Ratle, Alain,
[493]
Ratle, A.,
[609]
Rattray, Magnus,
[572]
Rauch, E. M.,
[504]
Ravis´ e, Caroline,
[1224]
Rayward-Smith, Vic J., [1216] Rebaudengo, Maurizio, [914] Rechenberg, Ingo,
[1379]
Reddy, S. M.,
[297]
Red’ko, V. G.,
[700, 702]
Redmill, David W.,
[119, 132]
Reese, G. M., Reeves, Colin R., Reidys, Christian M., Reinartz, Karl Dieter, Reinefeld, A.,
Rodr´ıguez-V´ azquez, Katya,
Rudnick, William Michael,
[989]
Rodriguez, C.,
[900]
Rodriguez-Paton, A.,
[989] [308]
Romero, G.,
[1017]
Ronald, Simon,
[162]
Ronald, S.,
[182]
R¨ onkk¨ onen, Jani,
[1154]
Rosa, Agostinho,
[21, 21]
Rosati, M.,
[930]
Rosato, V.,
[930]
Rosa-Zurera, Manuel,
[66]
Rosenberg, R. S.,
[464]
Rosmaita, Brian J.,
[1107, 1108]
Ross, Brian J.,
[1003]
[1118] [904]
[577]
[999]
Ruhoff, P. T.,
[790]
Rummler, Andreas,
[785]
Rummukainen, Mikko,
[41]
Russo, Marco,
[705, 725] [55, 59, 134,
Ryou, J.-K.,
[788]
Ryyn¨ anen, Matti,
[1312]
Saarinen, Jukka,
[896, 711]
Sadot, D.,
[188]
Sadowski, N.,
[65]
Saez-Landete, Jos´ e,
[66]
Sait, Sadiq M.,
[1390]
Saito, Hideo,
[296]
Saito, Seiji,
[673]
Saitoh, F.,
[235]
Sakamoto, Akio,
[300]
Sakamoto, Jiro,
[328]
Sakamoto, Shinichi,
[680, 686]
Sakanashi, H.,
[531, 533]
Sakawa, Masatoshi,
[1389]
Sakuma, Jun,
[273]
Sakurai, A.,
[655]
Salami, Mehrdad,
[909]
Salami, M.,
[718]
Salazar-Lazaro, C. H.,
[748]
Salcedo-Sanz, Sancho,
[66]
Salcic, Z. A.,
[968, 733]
[1167, 349,
1318, 1322, 586]
Ross, P.,
[30, 1145,
181, 184, 984, 1015]
[502]
Renner, Alexander,
[1207, 1219,
Rudy, George,
Ryan, Conor,
[350, 1363]
[1292]
[1211]
Ruprai, Bahadar Singh, [1012]
[1103, 1104]
Ren, Qingsheng,
[643, 644]
1211]
Romaniuk, Steve G.,
Ross, Peter,
Rudolph, G., Rudolph, G¨ unter,
[58]
Rodrigo, J.,
[229]
[434]
30
Genetic algorithm implementations
Salomon, Ralf,
[136]
Samal, Ashok,
[701, 710,
Schmeck, H.,
[806]
Serechenko, V. A.,
[700, 702]
Schmidhuber, J¨ urgen,
[1112]
Seront, Gr´ egory,
[437]
Schmitt, Lawrence J.,
[399]
Set¨ al¨ a, Henri,
[704]
Schmitt, Lothar M.,
[278]
Seth, Sharad,
Schnecke, V.,
[904]
Schnier, Thorsten,
[103]
Schober, Andreas,
[1260]
972, 981, 1021]
Sampan, S.,
[167]
Sampson, J. R.,
[457]
Sanchez, Eduardo,
[764]
Sanchez, E., S´ anchez, Luciano,
[563] [24]
Schoenauer, Marc,
[309, 1198,
Sandberg, V. D.,
[1005]
Sangalli, Nicoletta,
[1178]
Schoenmakers, P. J.,
[1088]
Sankaran, Hariharan,
[822, 827]
Sch¨ offel, U.,
[470]
Sannomiya, Nobuo,
[332, 122]
Sch¨ oneburg, E.,
[1380]
Schoof, Jochen,
[879]
Santib´ an ˜ez-Koref, Ivan,
[1036, 1037,
639]
[701, 710,
972, 981, 1021]
370, 1224, 1246, 619]
Schraudolph, Nicol N.,
Shackleford, Barry J.,
[736]
Shackleford, B.,
[775, 728, 734]
Shackleford, J. Barry,
[496, 749]
Shahookar, Khushro,
[297]
Shakhnovich, Eugene I., [398] Shamir, Joseph,
[892, 1092]
Shang, Yi,
[479]
Shapiro, Bruce A.,
[774, 946]
Shapiro, Jonathan,
[572]
[239, 240,
Saravanan, N.,
[110]
Sareni, Bruno,
[592]
Schubert, Tobias,
[675]
Shealy, David L.,
[770, 1327]
Sasagawa, Fumiyoshi,
[676, 722]
Schulte, L.,
[730]
Shebl´ e, Gerald B.,
[243]
Sato, K.,
[101]
Sch¨ urmann, Felix,
[781]
Sheehan, K.,
[738]
Sharma, Sanjay Kumar, [60]
1067]
Sato, S.,
[409]
Schuster, Peter,
[530]
Shenfield, A.,
[807]
Satoh, Hiroshi,
[301]
Schutz, M.,
[1187]
Sheppard, J.,
[620]
Satoh, H.,
[369]
Schwaiger, R.,
[562]
Sheung, Julian,
[435]
[928]
Shi, Guoyong,
[122]
Shi, Tan Kiat,
[905]
Shi, Wei,
[1181]
Shi, Xizhi,
[140]
Shibata, Naoki,
[821]
Shibata, Takanori,
[1321, 642]
Shimamoto, Takashi,
[300]
Shimizu, Nobuhiko,
[76]
Shimodaira, Hisashi,
[973]
Shimodaira, H.,
[1200]
Satou, Makihiko,
[925, 722,
726, 744, 747, 1016]
Satyadas, Antony,
[895]
Sawai, Hidefumi,
[887]
Sawai, H.,
[207]
Sayama, H.,
[504]
Scarbata, Gerd,
[785]
Schaeffer, J. David,
[39]
Schaetz, T.,
[808]
Schaffer, J. David,
[466, 257,
Sch¨ aftner, Christoph,
[1118]
Schamschula, M. P.,
[892]
Schauer, M. M.,
[1005]
Schemmel, Johannes,
[781]
Scheraga, Harold A.,
[356]
Scheuermann, B.,
[806]
Schielke, P. J.,
[219]
[1145, 1388,
910, 1113, 1114, 1115]
Schwehm, Markus,
[871, 1116,
1117, 1118, 1119]
Schwenderling, Peter,
[1079, 1080,
1081]
Scott, Stephen D.,
[696, 701,
Sebag, Mich´ ele,
[309]
Sebag, Mich` ele,
[1198]
Sebag, Mich´ ele,
[1224]
Seffens, William,
[488]
Sekanina, Luk´ aˇs,
[523]
Shingawa, Akio,
[674]
Semeraro, Quirico,
[1178]
Shiose, Atsushi,
[1098]
Semmler, Klaus,
[1333]
Shoenauer, Marc,
[791]
Sen, Mrinal K.,
[1350, 649]
Shyu, Ming-Suen,
[400]
Sen, Sandip,
[79, 382]
Sikchi, Prakash,
[677]
Silva, Clarence de,
[1375]
Silva, T. V.,
[820, 828]
Silverman, H.,
[703]
Sen, S.,
[379]
[364]
Sendhoff, Bernhard,
Schippers, C. A.,
[348, 431]
Schittko, C.,
[937]
Schlierkamp-Voosen, Dirk, Schmeck, Hartmut,
Schwefel, Hans-Paul,
710, 972, 981, 1021]
467, 258, 468, 259, 469]
Schierholt, K.,
Schwarz, Josef,
[460]
[834]
[489, 1179,
1199]
Shinagawa, Akio,
[676, 678,
722, 735]
Sengoku, Hiroaki,
[667]
Sim, H. C.,
[145]
Seo, K.,
[775, 728, 734]
Simmons, C. M.,
[1005]
Sepehri, N.,
[859]
Sim˜ oes, Anabela,
[267]
Authors
31
Sim˜ oes, E. V.,
[813, 820, 828]
So, Sung-Sau,
Steeb, W. -H.,
[905]
Simpson, Angus R.,
[1366]
Sobieszczanski-Sobieski, J.,
Steeb, W.-H.,
[802, 958]
Simpson, R. J.,
[424]
Sol´ e, Ricard V.,
[614]
Steeb, Willi-Hans,
[768, 771] [1122]
[1324] [778]
Sims, Karl,
[1120]
Solka, Jeffrey L.,
[139]
Stefanini, F. M.,
Singh, Montek,
[378]
Solms, F.,
[905]
Stefanski, P. A.,
[906]
Singh, Y. P.,
[35]
Somani, Arun K.,
[290]
Stegmann, S. A.,
[545]
Singleton, Andrew,
[860, 19]
Someya, Hiroshi,
[271]
Stender, Joachim,
[1381]
Stephanie, Dogimont,
[190]
Sternieri, A.,
[1022]
Sipper, Moshe,
[764]
Sirtori, Enrico,
[1044, 1045]
Sitkoff, N.,
[703]
Sizmann, R.,
[470]
Sklar, Elizabeth,
[602]
Skomorokhov, A. O.,
[934]
Slan´ y, Karel,
[523]
Slavov, V.,
[588, 604]
Slimane, M.,
[142]
Smirnov, S. E., Smith, Alice E., Smith, A., Smith, Brian L.,
Somugiyatsuto, Tankitsutowanitsuchi, [729] Song, I. Y.,
[1094]
Stockwell, David R. B., [873]
Song, Jianjian,
[963]
Stoffa, Paul L.,
[1350, 649]
Song, Yong-Hua,
[360]
Stoica, Adrian,
[822, 827, 739]
Sonza Reorda, Matteo,
[914]
Stoica, A.,
[748]
Soper, A. J.,
[147]
Storcz, M. J.,
[810]
Sopta, L.,
[230]
Stork, David G.,
Sorokin, Sergey N.,
[661]
Storn, Rainer,
[966]
Soto, I.,
[150]
Stott, Ian P.,
[1329]
Soule, Terence,
[137]
Stramaglia, S.,
[1022]
Souza, B. F.,
[813]
Straˇs, Robert,
[974]
Souza, S. A.,
[813, 820, 828]
Stroud, Philip D.,
[498]
Sowa, K.,
[912, 954]
Subramanian, D.,
[219]
Sugahara, Kazunori,
[812]
Sugawara, Kumi,
[694]
[789, 372]
Sugihara, Kazuo,
[951]
Spiessens, Piet,
[535, 650]
Sugimura, Tatsuo,
[1280]
Spiller, Timothy P.,
[811]
Sullivan, Charles. C. W.,
Spinoza, E.,
[777]
Spooner, E.,
[940]
Sprave, Joachim,
[1115]
[924] [1272] [703] [737]
Smith, D. J.,
[451]
Smith, Derek,
[1226]
Smith, Howard,
[157]
Smith, J. E.,
[613]
Smith, Jeff,
[1074]
Smith, Jim E.,
[1194]
Smith, Jim,
[516, 222]
Smith, John,
[951]
Smith, R. E.,
[839]
Spears, William M.,
[1139, 329, 336, 1237, 443, 444, 445, 1121, 471, 472, 473, 474]
Spector, Lee,
Spring, J., Smith, Richard A.,
Sun, B.,
[786]
Sun, Rong,
[285]
Sundararajan, V.,
[935]
Surkan, Alvin J.,
[784, 794]
Surry, Patrick D.,
[130] [431]
[861, 312, 833, 143, 144, 1124, 1125]
[1361]
Suzuki, Hideaki,
[581]
[281]
Suzuki, Keiji,
[531]
[310, 573]
Sycara, Katia P.,
[556]
Syswerda, Gilbert,
[475, 476]
Sprinkhuizen-Kuyper, Ida G., Smith, Robert Elliot,
[1314]
[652]
Sprinkhuizen-Kuyper, I. G., Smith, Richard W.,
[1373, 1374,
1123]
[388]
[1063, 1358,
Squires, Charles H.,
1359, 1360]
Smith, Robert E.,
[545, 211]
Srinivas, M.,
Smith, Roger,
[377]
Stadler, Peter F.,
Smith, S. F.,
[415, 626]
[502, 530, 544, 561, 594, 405, 624, 653, 654]
Stafylopatis, A., Smucker, M.,
[233]
Smuda, Ellen,
[1360]
627]
Sneppen, K.,
[1240]
Stanic, Bozidar V.,
Snider, G.,
[775]
Snoad, Nigel, So, K.,
[126]
Szarkowicz, Donald S.,
[98, 260, 261,
262]
Szuba, Tadeusz,
[974]
Tachibana, Tatsuhiro,
[821]
[1253]
Tagami, T.,
[99, 163]
State, Luminita,
[1305]
Tagawa, K.,
[396]
[482]
Stauffer, Dietrich,
[532]
Taguchi, Junichi,
[667]
[806]
Stayton, L.,
[314]
Tai, Ray P.,
[362]
Stanhope, Stephen A.,
[485, 1220,
32
Genetic algorithm implementations
Tai, Shen-Chuan,
[202, 231]
Terashima-Marin, H.,
[434]
Tajima, Koji,
[707]
Tezuka, Masaru,
[682]
Takagi, Hideyuki,
[680, 686,
1348]
Thangiah, Sam Rabindranath, [1129, 1130]
Ueda, Kanji,
[500, 1165, 1185, 1190, 945, 1206, 1223, 616, 617]
Umeda, N.,
[203]
Unger, Ron,
[459, 1353,
Takagi, H.,
[560, 569]
Thijssen, B. A.,
[388]
Takahashi, Hirotoshi,
[687]
Thomas, G. M.,
[104]
Urgant, O. V.,
[700, 702]
Takahashi, M.,
[272]
Thompson, S. G.,
[947]
Usami, Yoshiaki,
[731]
Takahashi, Osamu,
[25]
Thompson, S.,
[227]
Utrecht, U.,
[1168]
Takata, H.,
[203]
Thuerk, Marcel,
[1260]
Vaccaro, R.,
[442]
Takeda, F.,
[957]
Tintore, J.,
[772]
Vaessens, R. J. M.,
[237]
Vala, J.,
[810]
Valenzuela, C. L.,
[166]
Valenzuela, Christine,
[1226]
Takeuchi, M.,
[655]
Tolio, Tullio,
Talbi, El-Ghazali,
[1126, 1127]
Tomassini, Marco,
Tamaki, Hisashi,
[76]
Tan, K. C.,
[1286]
Tanaka, Chin-Ichi,
[1274]
Tanaka, Hidetoshi,
[741]
Tanaka, H.,
[590]
Tanaka, Kiyoshi,
[1280]
Tanaka, K.,
[993]
Tanaka, Masahiro,
[1175, 1389]
Tanese, Reiko,
[1128]
Tang, Anthony,
[435]
Tomita, Keiichi,
[1182]
Valenzuela-Rendon, M., [434]
Tommiska, Matti,
[766, 691, 938]
Valtonen, Martti,
Tong, Zhang,
[215]
Vanbatenburg, F. H. D., [901]
Toro, M.,
[161]
VanLandingham, H. F., [167]
Torresen, Jim,
[818, 751, 753]
van den Broek, Wilhelmus H. A. M.,
Tosaka, Nobuyoshi,
[1182]
Toshine, N.,
[411, 432]
Tossavainen, Teppo,
[510]
Toth, B.,
[615]
Tout, K.,
[863] [1310]
Tang, Jiafu,
[582]
Treasurywala, Adi M.,
Tang, K. S.,
[1013]
Treleaven, Philip C.,
Tang, Kit-Sang,
[196]
Tangen, U.,
[730]
Tanie, Kazuo,
[1321]
Tanino, Tetsuzo,
[1175]
Tanomaru, J.,
[99]
Tansri, H.,
[293]
1228, 1248, 442]
[870, 1030,
1051]
van den Honert, Chris,
Vanneschi, Leonardo,
[338]
[1288, 515]
Vassilev, Vesselin K.,
[487, 492,
629, 633, 637]
Vatan, Farrokh,
[229]
Vavak, Frank,
[589]
Vavak, F.,
[613]
Treptow, J.,
[1035]
Vega-Rodr´ıguez, Miguel A.,
Trint, K.,
[1168]
Velasco, T.,
[104]
Trojanowski, K.,
[628]
Velde, A. Van der,
[1195]
Troutt, Marvin D.,
[274]
Vemuri, V. Rao,
[579]
Troya, Jos´ e M.,
[1241]
Venkatachalam, A. R.,
[330]
Tsai, Chen-Mu,
[1295]
Venkataramanan, M. A., [1298]
Tsai, Chi-Hung,
[1152]
Venkateswaran, R.,
[1315] [142, 1132]
[563]
Tsai, Huai-Kuang,
[1152]
Venturini, Gilles,
Tate, David M.,
[1272]
Tsang, Edward P. K.,
[1202]
Verdegay, Jose Luis,
Tateishi, Masahiko,
[889]
Tsuji, T.,
[203]
Tatsuzawa, Yoshihiro,
[217]
Tsutsui, Shigeyoshi,
Tautou, L.,
[995]
[27, 43, 987,
590, 209, 228]
Teller, Astro,
[519]
van Kemenade, Cees H. M.,
Tassier, C.,
Taylor, C. J.,
[15]
[1323]
[51]
[1140, 1151,
[1288, 515,
893, 1131]
Tang, Chao-Jing,
Tarantino, E.,
[1178]
1269]
Tupa, D.,
[1005]
Turega, Mike,
[96]
[1343] [141]
Turton, B. C. H.,
[698, 897,
[826]
[73, 106, 108,
111, 114, 146]
Verdegay, Jose-Luis,
[189]
Verma, Brijesh,
[978]
Vieira, Fernando de M. C.,
[1234]
Villani, Marco,
[835]
Vincente-Garcia, Raul,
[816]
Vinko, T.,
[615]
Terano, T.,
[597]
Teraoka, Masaya,
[727, 729]
Uchikawa, Yoshiki,
[171]
Visonneau, Michel,
[507]
Terasaki, Takeshi,
[727, 729]
Ucoluk, G.,
[165]
Visonneau, M.,
[507]
712, 715, 719]
Authors
Vit´ anyi, Paul,
33
[1282]
Wang, P. Z.,
[1005]
Whitley, Darrell L.,
[81, 86, 124,
632, 636, 263, 660]
Vladimirova, T.,
[576, 585]
Vleuten, Ren´ e J. van der,
[138]
Wang, P.,
[1083, 1084]
Wang, Q.,
[952]
Voget, Stefan,
[1306]
Wang, Xuejun,
[140]
Voget, S.,
[1313]
Wang, Y.-G.,
[786]
Voigt, Christopher A., Voigt, Hans-Michael,
[268] [1170, 1035,
Vose, Michael D.,
[1162, 1171,
Vrajitoru, Dana, Vukovic, S., Vuori, Jarkko, Wada, Ken-Nosuke, Wada, Mitsuo, Wada, Yoshiko, Wagener, Markus, Wagner, G. P., Wagner, T., Wahdan, A. M., Wainwright, Roger L.,
Wijkman, Pierre A. I.,
[299]
Wilhelm, F. K.,
[810]
Wilke, Claus O.,
[1143]
Wilke, Peter,
[865]
Wilkerson, R.,
[652]
Will, Sebastian,
[1283]
Williams, Colin P.,
[1400]
Williams, Donald E.,
[872, 1367]
Wilson, Steve,
[1111]
Win, Nyi Nyi,
[1169]
Wineberg, Mark,
[77]
Wineland, D. J.,
[808]
Winfield, A.,
[82]
Wirbel, L.,
[756]
Wong, Brian J. F.,
[524]
Wong, Hermean,
[1192]
Wong, K. C.,
[145] [352, 253]
[1239]
Wang, Zunliang,
[28]
Waranabe, Masahiro,
[680]
Ward, David,
[168]
Warrington, Stephen,
[130]
Wasiewicz, Piotr,
[978]
Watanabe, Masahiro,
[686]
Watanabe, M.,
[1215]
Waters, M.,
[620]
Watson, Andrew H.,
[380]
Watson, D. W.,
[931]
Watson, L. T.,
[1000]
Watson, Layne T.,
[512]
Watson, Mark,
[890]
Watson, T.,
[83]
Wong, Kit Po,
Wazlowski, M.,
[703]
Wong, Suzannah Yin Wa,
Weber, Jos H.,
[138]
[148] [410] [230] [100, 938] [80, 1274] [543] [1274] [1325] [405] [937] [796] [864, 1133,
1134]
[528]
Wang, Zhe,
534, 478, 1273]
Voss, N.,
Whitley, L. Darrel,
[46, 1159]
[1079, 1080,
1081]
[64]
Wang, Yuping,
1036, 1037, 639]
Vornberger, Oliver,
Whitley, Darrell,
[352]
Wong, Wing Hung,
[286]
Wakabayashi, S.,
[395, 411, 432]
Wegener, Ingo,
[499]
Wong, Yin Wa,
[253]
Wakefield, Gregory H.,
[519]
Weger, Mark de,
[650]
Wong, Yuk Yin,
[803]
Wakefield, Jonathan P., [359]
Wehrens, Ron,
[1347]
Wright, G.,
[534]
Wakunda, J.,
[977]
Wei, Jingxuan,
[1159]
Wu, Felix,
[758]
Wales, David J.,
[557]
Wei, Yan,
[170]
Wu, Jin Chu,
[774, 946]
Walker, J.,
[233]
Weicker, K.,
[634]
Wu, Q. H.,
[997, 1027]
Wallet, Bradley C.,
[139]
Weicker, N.,
[634]
Wu, Shao-Yan,
[408]
Walsh, Paul,
[984]
Weile, Daniel S.,
[36]
Wu, Xingen,
[28]
Walter, Thomas,
[1118]
Weinberger, E. D.,
[657, 658]
Wyatt, Danica,
[513]
Walters, David C.,
[243]
Weinberger, Ed,
[659]
Xi, Yu-Geng,
[948]
Wan, Frank Lup Ki,
[859]
Wenran, Wang,
[205]
Xiao, Yong Liang (Leon),
Wang, Bo-Hyeun,
[1229]
Wenzel, W.,
[612]
Xinhai, Chen,
[1368]
Wang, Dingwei,
[582]
Werner, D. H.,
[1149]
Xiuxia, Du,
[50]
Wang, G. S.,
[360]
Wesselkamper, T. C.,
[105]
Xu, Dexiang,
[71]
Wang, Hong-Shung,
[1201, 414]
Whaley, K. Birgitta,
[37, 809, 810]
Xu, D.-J.,
[786]
Wang, Jia Lan,
[1143]
White, A. G.,
[1005]
Xu, X.,
[786]
Wang, Kang L.,
[1002]
White, Ronald P.,
[200]
Xu, Zhuo-Qun,
[408]
Wang, Lui,
[1033]
White, Tony,
[298]
Xu, Zongben,
[1191]
Wang, P. Y.,
[360]
Whitley, Darrel L.,
[1331]
Xu, Zong-Ben,
[1221]
[872, 1367]
34
Genetic algorithm implementations
Xuan, Guo,
[1007]
Yin, X. F.,
[1284]
Zell, A.,
[977]
Yagiura, Mutsunori,
[311, 1203]
Yokobayashi, Yohei,
[1316]
Zeng, Jin,
[1292]
Yahiaoui, Khaled,
[1320]
Yoon, Hyun-Sook,
[282]
Zhai, W.,
[566]
Yamada, Takeshi,
[693, 358]
Yoshida, Koji,
[192, 217]
Zhang, Byoung-Tak,
[651]
Yamada, T.,
[1300]
Yoshida, Yukiko,
[898, 707, 752]
Zhang, B.,
[878]
Yamamoto, Takahiko,
[812]
Yoshihara, Ikuo,
[763]
Zhang, Du,
[762]
Yamamura, Masayuki,
[271, 301, 228]
Yoshikawa, Akira,
[679]
Zhang, Fuji,
[1157]
Yan, Wei,
[169]
Yoshikawa, Tomohiro,
[171]
Zhang, Jun,
[809]
Yanagiya, Masayuki,
[1275]
Yoshimoto, F.,
[57]
Zhang, Lei,
[354]
Yan-Da, Li,
[323]
Yoshimoto, Y.,
[57]
Zhang, Liang-Jie,
[1180]
Yang, Feng,
[1239]
Yoshimura, Kazuyuki,
[750]
Zhang, Quan,
[51]
Yang, Hong-Tzer,
[961]
Yoshinaga, Toshiaki,
[731]
Zhaoda, Zhu,
[170]
Yang, Jihoon,
[1212]
Yoshino, Toshiki,
[608] [354]
[1152, 1249]
Yoshino, T.,
Zheng, Weimin,
Yang, Jinn-Moon,
[575] [962]
[323]
[1141]
Yoshioka, Takeshi,
Zhi-Hong, Mao,
Yang, J.-M.,
[708]
[1136]
[961]
Yoshizawa, Shuji,
Zhou, Yejin,
Yang, Pai-Chuan,
Yoskida, N.,
[745]
Zhu, Yunping,
[28]
Yao, Xin,
[883, 547, 549, 553, 918, 368, 618, 1256]
Youssef, Habib,
[1390]
Zhu, Zhaoda,
[169]
Yao, X.,
[716]
Yu, R. Q.,
[232]
Zhuang, Hualiang,
[824]
Yap, Keng C.,
[195]
Yu, Ying Lin,
[1239]
Zhuang, Wenjun,
[963]
Yasuda, Mitsuhiro,
[496, 749]
Yukiko, Y.,
[78]
Zi-Cai, Wang,
[215]
Yasuda, M.,
[775, 728, 734]
Yulin, Liu,
[50]
Ziegler, Jens,
[514]
Yasumoto, Keiichi,
[821]
Yulu, Qi,
[1169]
Zimmerman, David C., [195]
Yasunaga, Moritoshi,
[763, 818]
Yun, Wei-Min,
[948]
Zinchenko, Ljudmila A., [1285]
Yasunaga, M.,
[697]
Yuodis, L.,
[212]
Zinchenko, Lyudmila A., [661]
Yasuoka, T.,
[745]
Yurramendi, Yosu,
[353]
Zoller, P.,
[1008]
Yasuura, H.,
[775, 728]
Zalzala, A. M. S.,
[952, 1023]
Zou, Runmin,
[285]
Yau, Wei-Yun,
[824]
Zamparelli, Michele,
[172]
Zubairy, M. Suhail,
[793]
Ye, Ju,
[1175]
Zamparelli, M.,
[1195]
Zurek, W. H.,
[1020]
Yen, Gary G.,
[1293]
Zanati, S.,
[1137]
Zydallis, Jesse B.,
[1289]
Yeo, B. K.,
[29]
Zeanah, Jeff,
[866]
Yeralan, Sencer,
[302]
Zebulum, Ricardo Salem,
[822, 827]
total 1399 articles by 2153 different authors
Subject index
4.7
35
Subject index
All subject keywords of the papers given by the editor of this bibliography are shown next.
”*puuttuu (Aikala www),
[48]
convergence,
[1209, 1211,
1219, 1331]
acoustics,
[403, 495]
[1227]
crossover, actuators piezo-electric, adaptation,
[67] [1413, 1193,
617]
adaptive coding,
292, 334, 373, 401, 418, 433, 265,
[445, 447, 463, 304, 314, 324, 326, 330, 333, 106, 108, 351, 354, 366, 368, 389, 390, 187, 392, 191, 393, 405, 412, 413, 415, 416, 417, 419, 422, 423, 424, 425, 427, 266, 276, 278, 282, 287, 289, 68, 290, 267, 271, 274, 284]
[260, 261, 262]
diploidy,
[179]
aerodynamic diversity, airfoil, aerodynamics,
[1266, 1267, 1268, 1211, 1249, 226, 1253, 1140]
[167, 788]
covergence, underwater,
mutations,
[1248] [1101, 1102,
[106, 108,
356, 973, 1221]
niche,
[68]
no-crossover,
[285]
parameters,
[1277]
permutation,
[1226]
population size,
[1276, 1278, 1302, 1303, 1304, 1192, 356, 1221, 1328, 1330, 610, 1331, 1285, 1289, 265, 1293, 1294, 521, 1295]
population size,
[1292]
power spectrum,
[391]
dominance,
[133]
real coding,
[27, 30]
dynamic fitness,
[508]
recombination,
507]
shape design,
[44]
transonic,
[33]
dynamic fitness function,
[607]
dynamical fitness,
[622]
elitism,
[1294]
factor analysis,
[1349]
aerospace rendezvous,
[1022]
alloys,
[1361]
[545, 599, 604, 606, 626, 627, 631, 635, 504, 512, 521, 485]
analalysing evolution [555]
[559]
fitness landscape, analysig GA mutation, analysing ES, Markov chain, mutation,
[1248]
[530, 544, 551, 552, 561, 563, 571, 581, 591, 594, 598, 600, 612, 615, 619, 624, 630, 632, 636, 483, 487, 499, 502, 492]
[387, 406] [304, 1222,
species,
[68]
statistically,
[399]
subpopulations,
[604]
analysing GP bloat,
[1288, 800]
coding,
[58]
[503]
fitness landscapes,
[550]
crossover,
[288]
[1142]
fitness moments,
[573]
fitness,
[514, 484]
forking,
[987]
fitness landscape,
[523]
mutation,
[372, 515]
[1215, 593,
1239, 1247]
gender,
[69]
genetic linking,
[513]
hardness,
[434]
analysing evolution mutation,
[64]
schema theory, 1238, 278]
fitness,
fitness function,
ridges,
selection,
[1368]
AGAPE,
fitness,
[554, 405,
1237, 431, 1139]
population size, population size vs.
analysing GA,
[457, 757, 247, 1354, 1257, 1273, 534, 331, 1308, 350, 1197, 134, 151, 420, 1284, 1158]
infinite population size,
[1318, 1287,
1288, 1291]
[1156]
[1306,
1313]
generations,
[1322]
schema theory,
[384, 279]
information theory, [1305]
analysing GP/crossover, [372]
island model,
analysing QC
analysing GA adaptation,
[1245]
adaptive GA,
[1142]
ANOVA,
[155, 399]
Markov chain,
[1331] [1282, 1142,
278, 285, 62]
Markov chains,
[436, 116,
1221]
boundaries,
[43]
mutation, building blocks,
[513, 1289,
64, 21]
coding,
[109, 185,
[1162, 1269, 1171, 1180, 109, 1191, 1195, 1205, 1207, 1228, 1237, 1238, 1242, 1246, 1251, 1138, 1139, 1144, 278, 1146, 1148, 1151, 1155, 265, 1159]
195, 197, 55, 59]
mutation rate, continuous space,
[1301, 307]
error correction,
[208]
analyzing
[1192, 1199, 1208, 1220, 1221, 1229, 1244, 1252]
crossover, animats,
[301] [602]
ant colony FPGA, ant systems, antenna
[806] [1405, 1285]
36
Genetic algorithm implementations
array,
[1149]
antennas adaptive,
[36]
biochemistry, docking,
[872]
peptides,
[999]
optimization,
[159]
bioinformatics
wire,
[177]
DNA,
APLOGEN,
[1122]
application,
structural,
[1001]
[901, 157, 990, 1325, 193, 200, 1329, 204, 774, 1152, 269]
chemometrics,
[1323]
Chorus,
[55]
chromosome
[517]
variable length,
biology
[1053]
evolution,
[1156]
geotechnics,
[1366]
fitness,
[520]
medical imaging,
[1343]
mutation rate,
[1208]
chromosomes
[1001]
polyploid,
applications
biotechnology,
manufacturing,
[1136]
real-time,
[897]
art,
[1120]
fashion,
[491]
artificial intelligence,
[353]
artificial life,
[620, 1281]
animats,
[602]
text book,
brachistochrone,
[260, 262]
breeder GA,
[460]
building blocks,
[351, 610] [641]
[16]
astronomy,
[959]
astrophysics,
[959]
atomic clusters,
[557, 193]
[1362, 1040, 260, 1071, 256, 261, 262, 1333, 878, 558, 1285]
CAD face,
[524]
automata coding,
[216]
finite state,
[518]
finite state machines, automatic design, autonomous robot, basics,
[61] [1348] [1132] [1411]
Bayes networks,
[353]
BEA,
[721]
shape design,
[878]
splines,
[57]
VLSI,
[465]
carbon
cellular automata,
[377]
FPGA,
[1026]
bin-packing,
binary encoding,
[79]
sparse sets,
[1188]
face image,
[818]
classifier implementation AGIL,
[1132]
ALECSYS,
[1044, 1045] [1105, 1364, [884] [1044, 1045,
neural networks,
[172]
molecular,
[831, 832]
chemical process optimization,
clustering, fuzzy,
[491]
[261]
[1336, 647,
1361, 1347, 20]
[193] [767] [126]
clusters atomic, co-evolution,
chemistry,
[824]
fitness, coding,
[557, 193] [494] [501]
[249, 244, 236, 240, 248, 250, 243, 254, 74, 75, 77, 80, 84, 88, 93, 95, 116, 121, 133, 137, 145, 152, 164, 205, 219, 23]
chemometrics,
[232]
chromatography,
[1088]
combinatorial,
[1316]
[1118]
drug design,
[11]
2D,
[241, 139]
[238]
physical,
[842, 930, 377]
autocorrelation,
[66]
[1079, 1080,
245, 1081]
2D,
rule sets,
design,
[1166, 300]
[662, 663, 665]
[1323]
cluster
channel routing,
special,
plastic,
clothes
[504]
[264]
[664]
[319]
neural networks,
clusters,
coding,
parallel GA,
[1212]
inventory,
classifiers,
[1105]
[663, 1024]
[428]
cost-sensitive,
APL,
CFS-C,
implementation,
[848]
1365, 927]
[264]
[662]
substitution,
classifier systems,
codes,
genetic programming,
[776, 955]
1132, 854, 227]
cellular GA,
bibliography
[400]
classifier
[1065]
CAD,
88bit,
[280]
building blocks hypothesis, C Darwin II,
[853]
classification,
breeding multi parent,
56 bits,
ciphers
block truncation coding, [202]
[1385]
ASTRA,
[1177]
chromosome length
coding
Subject index
37
binary,
[123, 185, 209]
non-binary,
[70]
color images,
binary vs. real,
[183]
nonadditive,
[229]
color system
CDMA,
[188]
nonbinary,
[72]
LHS,
[400]
RBG,
[400]
[400, 202]
chromosome differentiation, [186]
optical,
[35]
column tables,
[156]
optimal,
[90]
combinatorial optimization,
complex,
[29]
parameter free,
[207]
comparison
complex systems,
[47]
permutations,
[117, 165, 166]
compression,
[39]
position independent,
delta,
[255, 263]
protein folding,
diploid,
[78, 118, 198,
201]
diploidy,
[134, 179,
181, 184, 36]
DNA,
[171, 176]
E-code,
[185]
equivalence class,
[143]
error correcting,
[214, 51]
error correction,
[208, 41]
expert systems,
[128]
finite state machine, [216] floating point,
[253, 123]
fractal,
[132, 159]
fuzzy,
[60]
gender,
[436]
basin-hopping,
[200]
classical methods,
[256]
coding,
[222]
quantum computing, [214, 229]
coding in TSP,
[76]
quaternary,
conventional graph plotting, [917,
[55, 59]
[180]
[213]
943]
real,
[251, 256, 259, 241, 71, 73, 79, 82, 114, 91, 98, 99, 104, 106, 107, 108, 109, 110, 111, 113, 115, 125, 126, 136, 142, 144, 146, 151, 155, 160, 163, 167, 169, 170, 172, 175, 177, 187, 189, 191, 192, 193, 194, 199, 204, 206, 210, 215, 217, 226, 227, 228, 230, 232, 20, 21, 22, 28, 31, 32, 33, 38, 40, 43, 44, 46, 50, 57, 65, 67, 68, 25, 27, 30]
redundancy,
[221]
redundant,
[147]
relative,
[222]
diploid vs. haploid, [36] direct search,
[1310]
dynamic fitness,
[526]
encoding,
[129]
evolution strategies, [92, 110, 399] exhaustive search,
[291]
GAMS in control,
[1344]
Gray coded,
[99]
Gray vs. binary coding,
[62]
SAT,
[148]
scheduling,
[122]
self-encoding,
[140]
[69]
set based,
[135]
implementation: software hardware, [709]
gene duplication,
[112]
shape,
[130]
in protein folding,
GP,
[58]
signeg digit,
[174]
in protein sequence design,
graph,
[233]
simplex,
[48]
incremental GA,
graphs,
[156]
spanning trees,
[218]
Levenberg-Marquartd,
stochastic,
[92]
symmetric,
[131]
Metropolis,
[334]
TCM,
[150]
Monte Carlo,
[1329]
tree structured,
[173]
multistart,
[612]
trellis,
[138]
mutation,
[1217]
TSP,
[223]
neural networks,
[451]
variable length,
[101, 161]
Gray,
[257, 258, 86,
185, 62, 64]
hierarchical, integer, integer vs. real, interval, intervals, introns, machine code,
[83, 102] [154, 157] [200] [127, 158, 178] [24] [141]
[241, 225]
memory efficiency,
[211]
coding theory,
Morse,
[237]
[105]
neural net applications,
host-parasite,
vs.
[612] [268]
[1335] [1351, [1279]
opportunistic algorithm, order crossovers, other
[1299]
[117]
optimization
methods,
[204]
pairwise comparison, [319] parallel GA,
[1315]
parameters,
[399]
population size,
[1354]
[1095, 602,
620, 510] [96]
[713]
[103]
[182]
coevolution, multiple value,
[242]
[168]
coding?, multichromosome,
[120]
[153]
constant weight codes,
implementation,
1352]
[26]
matrix,
[641, 469, 599]
Marquardt-Levenberg,
variable length genomes, weights,
hill-climbing,
[480, 490]
quantum induced GA,
[344]
38
Genetic algorithm implementations
random search,
[647, 1297,
aircraft,
[92]
depth-fair,
[1342]
diversification role of,
[1210, 1229]
DNA,
[277, 281]
dynamic,
[290]
[426]
1329]
controllers, scheduling fitness function,
[646]
fuzzy, simulated annealing,
[1343, 647, 1098, 465, 435, 459, 839, 334, 351, 356, 584, 1234, 612, 760, 481]
simulated annealing; GA better,
PID,
[1083, 1084,
882]
experimental design, [287, 289]
robot,
[1281]
factorial design,
[546]
fuzzy logic controlled,
premature,
[1307]
Gaussian,
[423]
theory,
[278]
GP,
[340, 342, 349]
[623]
group theory,
[436]
guided,
[371]
harmonic,
[396]
heuristic,
[454, 125]
hierarchical,
[359]
[200]
convergence, stochastic tunneling, [612] subtree crossover,
[376, 386]
various GA versions, [399] cooperation, [459],
croosover [477]
complexity,
[1300, 510]
computational biology,
[1303]
permutation,
[275]
crossover, 450, 479, 440, 292, 315, 331, 345, 369, 410,
computational chemistry [1406]
computational geometry cutting problem,
[121]
computer graphics,
[1120, 776,
438, 455, 443, 448, 437, 445, 473, 474, 447, 453, 460, 461, 73, 299, 301, 302, 320, 322, 323, 325, 335, 337, 106, 341, 350, 352, 353, 146, 375, 379, 174, 394, 419, 430, 432, 270]
[464, 468, 476, 469, 304, 326, 343, 361, 403,
457, 472, 478, 291, 308, 330, 108, 363, 408,
crossover
L-systems,
interference,
[344]
JSS,
[339]
knowledge-based,
[306, 313, 362]
landscape,
[467]
learning,
[309]
3 parent,
[446]
linear,
[160]
constructive,
local (separabable fitness),
[656] [907]
active
schedule
[291]
computer science,
[1202]
adapting,
[291]
adaptive,
control,
immediate successor, [357]
[241, 296, 139]
computer networks,
operating systems,
[360]
2D,
955]
face,
[287]
[94]
comparison: crossover,
text book,
[307]
[377]
[321]
[1054, 1351, 1352, 856, 886, 1320, 1375]
[411]
[466, 452, 298, 310, 318, 329, 355, 374, 401, 402, 409, 414, 420]
Moebius,
[381]
multi parent,
[280, 289]
multi point,
[444]
multi-dimensional,
[316, 373]
analogous,
[441]
multi-parent,
[228, 431, 433]
analysis,
[187]
multi-step,
[358]
arithmetic,
[400]
multiparent,
[338, 348, 421]
biased,
[328]
multiple,
[367, 282]
binary,
[113]
multipoint,
[400]
inverted pendulum, [825]
Cartesian,
[356]
multivariate,
[439]
lighting,
[525]
changing,
[364]
n point,
[312]
nonlinear,
[570]
chemical,
[269]
niches,
[305] [157, 398]
discrete time, distributed, environmental,
[1344] [501] [241]
fuzzy,
[1368, 874,
199]
PID,
[163]
clique,
[434]
no,
pole-cart,
[1311]
color,
[378]
non-uniform,
[283]
pollution,
[158]
comparison,
[370]
none,
[365]
power generation,
[50]
comparison of 13 types,
power system stabilizer,
[882]
competing,
[388]
[300]
prosthesis,
[814]
constrained,
[380]
robot,
[203, 616, 501]
context preserving,
[303]
rule based,
[1302]
controlled,
[383]
cycle,
[451, 465, 378]
nonuniform,
[294]
one point,
[459, 384, 391]
one-point,
[387, 406, 279]
order,
[357, 399]
performance,
[412]
permutation, controller
[451, 456, 293, 327, 347, 357, 397, 273]
Subject index
39
permutations,
[428]
delta coding,
[81]
parameter identification,
PMX,
[442, 353, 378]
design,
[1281]
real,
[28]
engineering,
[743]
analogue,
[738]
real coding,
[220, 234]
fashion,
[491]
circuit simulation,
[15] [748] [487]
electronics,
representation,
[407]
differential equations,
[1317]
design,
review,
[458]
differential evolution,
[1405, 1290]
digital,
robustness,
[332]
mutation,
[1150, 1153,
1154]
scheduling, selection, self-, sequencing problems, simplex,
differential evolution?,
[255, 263]
digital electronics,
[629]
diploidy,
[1274]
Discipulus,
[779]
distribution loss,
[1098]
[395] [404] [346] [228] [376, 386]
systematic,
[429]
TSP,
[295]
two point,
[94]
two-point,
[435, 470]
diversity,
uniform,
[462, 449, 452, 463, 87, 319, 326, 336, 422, 268]
[463, 1363, 73, 845, 106, 108, 1308, 125, 146, 783]
diversity rank, DJM,
[344]
[1303, 999,
[151]
coding,
[52]
unimodal normal,
[272]
coding regions,
[56, 63]
crossover rate,
[317]
[157]
1,
[459]
emergence,
DNA computing,
[277, 281,
1148]
hierarchical,
[196]
permutation,
[94]
qubits,
[37]
engineering, aerospace,
[1111, 1368, 92, 739, 1248, 33, 44, 507, 1153, 822]
construction,
[1075]
electrical,
[1098]
mechanical,
DNA shuffling,
[277, 281]
nuclear,
DREAM,
[791]
power,
[1405]
cutting
[121]
cvoding real,
[491]
[1321]
drug design, cutting problem,
[1009]
[842, 999,
1001]
EALib,
[785]
distribution,
[873]
data fusion,
[1074]
economic modeling,
[927]
data structures,
[75]
economics
DCGA, deception, mutation, deceptive problems,
currency trading,
[1041]
portfolio,
[1077]
project selection,
[580]
[410] [973]
EDGA,
[1031]
EFFC,
[990]
Eigen,
[270]
electric machines,
[558]
[1185] [1186] [1354]
[470]
structural,
[915] [837]
[1362, 328,
telecommunications, [242] environment
ERIN,
[926] [873]
error correction coding quantum computing, [224] ESCAPADE,
[17]
EVA,
[977]
1000000, evolution,
electromagnetics, decision making,
solar power,
evaluations
decision binary,
[878, 166]
pollution control,
1369]
retrieval,
radio,
ecology
[772]
[1055, 1057,
[965]
899, 1182, 393, 1147]
DARWIN,
databases,
[1351, 1352,
[1098, 1333, 243, 839, 882, 1195, 558, 352, 940, 961, 965, 154, 985, 605, 215, 50, 1155, 813, 1161, 820, 828]
dress design,
[1335, 1075,
1366]
859, 195, 997]
substitution ciphers, [848]
by a robot,
[239, 247,
252, 245]
cryptology
cultural algorithms,
[616]
encoding,
1001]
unimodal,
[1329]
0.1,
[803]
DNA,
[465, 194]
[1200, 172]
1/4,
[311]
subtree,
elitism,
[65]
[1337]
[256, 939,
159, 177]
antennas,
[459]
[36, 661]
beauty,
[656]
differential,
[966]
40
Genetic algorithm implementations
fitness,
[559]
FIR,
[71]
stochastic,
[616]
fitness landscape,
[532, 603]
multiplier-less,
[867]
temporal,
[617]
genetic coding,
[42]
optical,
[470]
time varying,
[537]
mutations,
[1240]
transformations,
[513]
quasispecies,
[506]
finite state transducers, [61] fitness,
[643, 644, 538, 542, 549, 564, 578]
simulation,
[980, 398,
1143, 1156, 520]
accuracy,
[505]
fitness correlation,
[600]
fitness estimation,
[640]
fitness function,
time-scale,
[504]
aesthetics,
[524]
496, 488]
virus,
[1261]
approximative,
[512]
approximative,
evolution programming, [1281]
bitwise expected value,
evolution strategies,
cooling,
[649]
correlation,
[515]
covariance,
[64]
[1380, 1173, 910, 1314, 577, 959, 966, 593, 998, 1247, 634, 1281, 776, 955, 500]
evolution strategies Boolean,
[1198]
fitness function,
[527]
implementation,
[1113, 1114,
17, 1070, 1036, 1037]
mutation,
[1155]
mutations,
[1271]
noisy fitness,
[503]
[638]
[655, 562, [489]
dynamic,
[565, 570,
587, 607]
dynamic,
[541, 556, 580, 589, 590, 605, 613, 623, 625, 627, 628, 634, 497, 508]
exogenous,
[620]
filtered,
[533]
fractal,
[595]
fuction /noisy,
[500]
fuzzy,
[642, 558, 582]
expensive,
[652, 546]
filtered,
[531]
human,
[656, 602]
in feature selection, [621] interactive,
[491, 509, 525]
landscape,
[661]
multiple,
[536]
multivalued,
[639]
neural network,
[567, 576, 585]
noisy,
[503]
text book,
[1379]
fdynamic,
[495]
progressive,
[518]
tutorial,
[964]
inheritance,
[545]
subjective,
[509]
evolutionary landscapes, [286] evolutionary programming,
[1256]
evolutionary strategies, [1304, 1215] evolvable hardware,
[743, 751,
753, 760, 487, 692]
application,
[763, 764]
interactive,
[560, 569,
519, 522, 524]
interactive?,
[597]
landscape,
[657, 658, 645, 650, 659, 660, 550, 557, 579, 601, 610, 614, 629]
learning,
[609]
FPGA,
[814]
limited error,
[586]
image processing,
[689, 690]
linear,
[534]
robot control,
[825]
Monte Carlo,
[459]
Evolver,
[1043]
neural networks,
[507]
Evolvica,
[776, 955]
NK,
[391]
EXODUS,
[1107, 1108]
NK landscape,
[584]
experimental design,
[1363]
noisy,
expert systems, fuzzy,
[528, 566,
593, 631, 498] [1335, 1347]
noisy evaluation,
[572]
[128]
partial,
[548, 568,
fitness landscape,
[530, 535, 544, 551, 559, 561, 583, 588, 594, 604, 612, 615, 633, 482, 506, 510]
fitness landscape anisotrophy,
[654]
asymmetric,
[490]
correlated,
[653]
CX,
[350]
digital circuit,
[637]
dynamic,
[611]
fractal,
[595]
Fuji,
[603]
GA dynamics,
[591]
kriging,
[493]
local search,
[618]
NK,
[532, 584,
feature analysis,
[428]
feature selection,
[1323, 621]
rank,
[344]
NK model,
[494]
filter,
[1011]
royal road,
[596]
protein folding,
[516]
filters
574, 575, 608]
636, 480, 481]
Royal road functions,
[641]
recombination operator,
2D,
[119]
scaling,
[648, 540, 547]
theory,
[502]
adaptive,
[796]
sharing,
[543, 553]
VLSI design,
[487]
[554]
Subject index
41
fitness landscapes
GAME,
[1051, 1052,
genetic linkage
1367, 872]
genetic programming, fitness ranking,
crossover,
[529]
games,
[602]
GAPE,
[1040]
[539]
fitness sharing,
[592]
fitting,
[1088]
floorplan,
[963]
flowshop problem,
[1241]
fluid dynamics,
[1153]
genetic programming,
[1120, 1415, 1382, 318, 325, 340, 342, 112, 345, 1188, 124, 919, 922, 137, 141, 942, 361, 363, 365, 970, 168, 380, 1322, 382, 383, 384, 387, 984, 988, 406, 620, 1023, 1369, 776, 777, 1374, 955, 789, 1287, 1291, 523]
GARP implementation, GATES,
[873] [1087, 1088,
850, 869, 1323]
folding
GATutor,
[864]
GAucsd,
[1067]
proteins,
[1310]
GAuGE,
[59]
RNA,
[901, 946]
GAVaPS,
[1296]
[1118]
GAWindows,
[1086]
GEM,
[1152]
formal languages,
genetic programming /Discipulus,
[779]
bibliography,
[662]
bloat,
[1288]
Boolean functions,
[586]
C,
[1015]
C++, Fourier transform quantum, FPGA,
[988, 1011,
2880bits,
[514]
[1348]
coding,
[58]
[1412]
crossover,
49, 691]
general, design,
generations
crossoverless,
[517]
100, NIOS,
[825]
Xilinx,
[775, 517]
[1355, 243,
1234]
1000,
[241, 172,
1325]
Xilinx Virtex-II Pro, [818] FRA,
[303, 349,
426, 279, 288]
[826]
fitness function evaluation,
[846, 860, 14,
944]
classifier,
gene size
[808]
[276]
finite state machines,
[385] [61]
fitness landscape,
[529, 588]
FPGA,
[992]
120,
[1332]
global optimization, [978]
150,
[157, 1003]
implementation,
[515]
frequency assignment,
[166, 1369]
fullerenes,
[377]
fuzzy logic, control, fuzzy rules, control,
200,
[853]
2000,
[1366, 391]
2000-5000,
[1299]
20; 50; 100,
[1310]
30,
implementation?,
[960]
linear,
[288]
linear genome,
[769]
machine code,
[26]
[1212]
mutation,
[515]
300,
[1353]
parallel,
300-500,
[470]
300-600,
[1281]
[1146, 1375] [1368] [1348, 837] [874]
fuzzy systems,
[73, 111, 125, 563, 725, 158, 178, 196, 1236, 428, 40, 280]
fuzzy systems hybrid, modeling,
50,
[1324, 400]
50-200,
[296]
500,
[1321]
5000,
[1323]
50;100,
[1298]
6,
[1316]
[60] [120]
GA interactive,
[569]
GA-hard problems,
[330]
GACART,
[1311]
GAGS,
[1017]
GALLOPS,
[94]
GALME,
[1200]
GALOPPS,
[840]
GENESIS,
gambler’s ruin problem, [1319]
[156, 979,
1012]
[1066, 1042,
647, 1345]
human,
[1160]
genetic algorithm tutorial,
Perl,
[800]
Prolog,
[1112]
regression,
[501]
text book,
[1403, 1407]
transputers,
[921]
genetic programming?,
[265]
[1059, 1060,
723]
GeneticFPGA,
[1025]
genetics salmon,
genetic
[893, 908,
921, 949, 1405]
[520]
GENIE,
[626]
Genie,
[875]
GENITOR,
[477]
genome length
42
Genetic algorithm implementations
48 bits,
[1367]
Kalman filter,
[498]
review,
[816]
GENROUTE,
[449]
kriging,
[493]
stereo,
[823]
linear programming, [1136]
textures,
[937]
local search,
videoMPEG-2 /encoding,
geometrical optics illumination,
[770]
[842, 508,
1161]
geophysics, geosciences, GIGA, GLEAM,
[1065]
[1376]
Monte Carlo,
[459]
neural networks,
[507, 830]
simplex and conjugate gradient, [647]
algorithm,
[903]
graph partitioning,
[601]
graphs,
[378, 767]
simulated annealing,
[1334, 356,
1234, 760]
complete,
[1157]
directed,
[851]
implementation,
[156]
independent set,
[362]
max-clique,
[334]
partitioning,
[313, 885]
plot,
[917, 943, 950]
spanning trees,
[218]
weighted,
[1157] [257, 258, 86]
hydraulics,
[210]
clusters, hydrodynamics,
ground water, hydrophobic force, HYPERGEN,
[1101, 1102]
laser,
halftoning,
[296, 1280]
handbook,
[1410]
chain coding,
hardware,
[1217]
coding,
image retrieval content-based,
[509]
imaging coding?,
[235]
microwave,
[31]
immune systems,
[744, 1405]
implants cochlear,
[519, 522]
[1107, 1108, 1105, 18, 1030, 1134, 838, 840, 858, 862, 868, 875, 887, 889, 894, 898, 902, 911, 920, 925, 932, 939, 945, 962, 975, 977, 982, 983, 986, 994, 1016, 765, 783, 26, 787, 790]
[210] [1283] [1133, 1085,
implementation [128]
386 PC, ACM Algorithm 744,
[1075] [903]
[770]
ANSI C,
[1087]
[947]
AP1000,
[923]
APE100,
[1022]
image compression fractal,
[698, 689, 690]
implementation,
illumination
[879]
[708, 723, 724, 738, 739, 748, 1025, 681]
[200]
864]
identification,
by hardware,
impact drive mechanism, [67]
hydrology
GUI,
evolvable,
[859]
hydrocarbons
image analysis,
ground water remediation,
machine learning, [942]
global optimization
Gray code,
image registration
[1350, 241]
[879]
[97]
image processing,
[1343, 1082, 1109, 1110, 947, 993, 235] [61] [89, 119, 97,
202]
APL,
[1029, 1078, 901, 876, 884, 927, 784, 794]
APL2,
[934]
ARM7,
[689, 690]
ASPARAGOS,
[1064, 1096]
ASTOP,
[1034]
compression,
[39]
bacteria,
[1001]
evolving,
[730]
enchancement,
[400]
bibliography,
[663]
FPGA,
[1025]
encoding,
[212]
Borland C++ 3.1,
[948]
programmable logic, [938]
face extraction,
[812]
C,
reprogrammable,
[718]
filtering,
[172]
hierarchical,
[1260]
filters,
[797, 523]
HIPS,
[1347]
fractals,
[1118, 132]
host-parasite,
[494]
halftoning,
[296, 1280]
host-pathogen model,
[504]
hardware,
[715]
hybrid dynamic programming,
[1203]
[190]
[1040, 1042, 1062, 1063, 1072, 1106, 241, 1041, 243, 1058, 456, 19, 848, 853, 864, 869, 12, 888, 13, 959, 966, 970, 400, 1015]
C++,
[757, 1074, 1088, 1093, 1111, 846, 851, 860, 890, 917, 919, 924, 940, 943, 14, 944, 950, 978, 1007, 1017, 768, 771, 802]
image enhancement, [21]
C?,
[879]
image retrieval,
Cde*,
[1123]
[509]
fuzzy,
[106, 60]
pattern recognition, [574, 763, 764]
cellular automata,
[997]
fuzzy logic,
[360, 1290]
registration,
CODE V,
[770]
[712]
Subject index
Common LISP,
43
[1121]
Connection Machine, [1120, 1123, 1131, 926]
HP/Convex Exemplar,
[954]
Hypercube,
[1099, 1128, 1100, 1040, 1048, 1133, 1085, 847, 953]
Connection Machine CM-2, [841]
[241]
Cray Y-MP8/864,
[1071, 844]
CUBE multiprocessor,
[1101]
programming environments, [870]
Internet,
[956]
Prolog,
ion trap, iterated
[815]
prisoner’s
[957]
Java,
electro-optic,
[1092]
EOS,
[761]
FORTRAN,
[1059, 1060,
[951, 993, 1023, 791, 802, 803, 785]
Josephson junction, [805] [886]
LISP,
[1061]
MasPar,
[999]
FORTRAN 90,
[964]
[1117, 855,
871]
Fortran-77,
[772]
FORTRAN77,
[1098]
[699, 938, 717, 988, 992, 1011, 1025, 1026, 763, 764, 766, 775, 788, 792, 797, 806, 812, 813, 814, 692, 820, 821, 822, 823, 824, 825, 828, 829, 830, 831, 832, 290]
[922, 946,
990, 774]
Mathematica,
[1073, 907,
980, 776, 955]
MATLAB,
[1068, 1103, 1104, 836, 856, 867, 882, 895, 998]
Matlab,
PVM,
[852, 883, 893, 900, 904, 914, 918, 930, 936, 937, 958, 965, 984, 995]
QED,
[793]
quantum computer, [1000]
queen bee GA,
[1049, 1116,
MasPar MP-1,
[789]
quantum computing, [811]
LabView,
MasPar MP-2,
Fortran 77,
732, 760, 796, 818, 827,
[929]
1118, 1119, 913]
1135, 872, 935]
FPGA,
Push,
dilemma,
[1086]
DSP,
[987]
[1112, 1053,
1094, 974, 1003]
J language,
forking,
[708]
[963]
[845, 973]
[1043, 1077,
PLD,
IBM SP2,
diversity,
1050, 866]
[800]
programmable logic, [938]
[947]
Excel,
Perl,
[849]
DAP 510,
evolution strategies, [1035, 910]
[16, 19, 1013]
IBM SP1, Connection Machine CM-5, [899] Convex 200,
PC,
[877, 1009,
1027]
reprogrammable
[801]
architectures,
[909]
review,
[850]
RISC 6000,
[839]
RPL2,
[1124, 1125,
833, 861]
SIMD,
[931, 947]
Smalltalk-80,
[1136]
special hardware,
[896, 711]
Splash 2,
[699]
Splicer,
[1033]
Meiko,
[1057]
spreadsheet,
[1043]
microcontroller,
[991]
subdivision,
[987]
supercomputer,
[942]
superconductor,
[819]
MIMD,
[1031, 842,
GALOPPS,
[916]
GAME,
[1051, 1052]
molecular computing,
GAPS,
[762]
multiprocessor,
GAucsd,
[1067]
NCUBE multiprocessor,
GENESIS,
[1066]
NeuroGraph,
[865]
systolic arrays,
[740]
GENEsYs,
[1032]
NMR,
[782]
TinyGA,
[816]
GIDEON,
[1129, 1130]
object-oriented,
TMS320C30 DSP,
[874]
GP,
[777, 779, 769]
TRANSIM,
[976]
GRID,
[807, 826]
transputer,
[900]
transputer T800,
[1065, 1058]
hardware, 756, 699, 706, 713, 720, 727, 734, 741, 747, 753, 672, 680, 687,
[754, 693, 694, 755, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 714, 715, 716, 717, 718, 719, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 411, 748, 749, 750, 751, 432, 752, 666, 667, 668, 669, 670, 671, 673, 674, 676, 677, 678, 679, 681, 682, 683, 684, 685, 686, 688, 689, 690, 691, 692, 675]
843, 774] [989]
systolic architecture, [885] [778]
systolic array, [1102]
[1122, 1137, 854, 857, 891, 905, 906, 912, 967, 985, 1019, 758]
Occam, optical,
[921, 928] [837, 892,
[754, 969,
732, 742]
996, 759, 773]
transputers,
[1064, 1097, 1047, 1054, 1079, 1089, 1036, 1080, 1090, 1095, 1126, 1037, 1046, 1055, 1056, 1081, 1082, 1109, 1110, 1115, 1116, 1127, 1028, 1031, 1038, 1057, 1091, 834, 835, 859, 863, 880, 881, 908, 915, 928, 933, 941, 949, 952, 961, 976]
optoelectronic,
[666]
Paragon XP/S 10,
[172]
parallel,
[971, 795, 817]
PARAM,
[935]
Parix,
[904]
transputers /8,
[1039]
Pascal,
[878]
Turbo C,
[1083, 1084]
44
Genetic algorithm implementations
vehicle routing,
[767]
VHDL,
[696, 701,
lasers,
[1345]
management science,
[319]
lattice model,
[398]
manufacturing,
[995]
704, 972, 981, 1021] [1324]
assembly,
[357, 1284]
27-mer,
[459, 94]
cell formation,
[1326]
64-mer,
[459, 94]
mapping problem,
[1126]
fitness landscape,
[577]
Markov chains,
[425]
HP,
[516]
MAXSAT,
[632, 636]
mazes,
[82]
MCKP,
[1334] [1325]
128mer, VLSI,
[897, 781]
Wingz,
[1043]
XROUTE,
[1076]
YAGA,
[1069]
implemetation layout design, GAME,
[857]
incremental GA,
[1335]
1298, 293, 890]
individual aging,
[590]
induction,
[847]
industrial art,
[491]
job shop,
[1136]
MCSS,
VLSI,
[297]
measurement
learning,
[1046, 1132]
learning classifier systems fitness,
[486]
[525]
lens
information theory analysing GA,
[1305]
Cooke triplet,
[1295]
coding,
[85, 88]
Gauss,
[1295]
initial population, identical,
[1230] [459]
insertion
lens design aspherical,
[1327]
glasses,
[217]
[456]
LibGA,
interactive GA,
[560]
lighting
intervals,
[259]
introns,
[641, 361]
Lin-Kernighan algorithm,
[340, 342]
Lindenmayer systems,
[776, 955]
line balancing,
[245]
linear algebra,
[392]
rank ordered,
crossover, inverse problems ridges,
[64]
[864]
spectrum,
[1146]
brachistochrone,
[98]
genetic maps,
[1160]
hearing,
[519, 522]
mutations,
[1160]
plastic surgery,
[524]
prostehesis,
[814]
radiotherapy,
[28]
vision impairment,
[823]
memetic algorithms,
[312, 1405]
messy GA,
[1061, 1062]
messyGA,
[1289]
meta GA,
[442, 1260]
load forecast,
[1155]
inversion problems,
[1350, 649]
local hill-climbing,
[1135]
[757, 1276,
1058]
[451]
inversion,
meta GA?,
[1224]
meteorology,
[241]
cloud identification, [913] metrology frequency,
[813, 820, 828]
microbiology,
[1001]
MicroGA,
[1111]
Mijn operator,
[1228]
MIMD,
[442]
machine learning,
IP core FPGA,
[813, 820, 828]
medicine
control,
[510]
frequency, mechanics
LED
industrial economics complexity,
[1040, 1072,
[822]
[1071, 337, 343, 1314, 572, 1212, 1323, 389, 390, 602, 763]
job shop problem,
[1349]
job shop scheduling,
[321, 1178]
coding,
[54]
Josephson junction,
[1006]
inference,
[518]
JOX,
[273]
representations,
[103]
JPN,
[33]
macro cell layout,
[1118]
knapsack problem,
[1274]
macromolecules,
[530, 544]
dynamic systems,
[546]
knowledge discovery,
[1212]
hydrocarbons,
[200]
populations,
[546]
KORR,
[1070]
peptides,
[999]
molecular clusters,
[1367]
LAN,
[1369]
RNA,
[901]
molecular computing,
[269]
machine learning
minimum chemical distance, mobile phones camera, modeling,
[1295] [902]
[1336]
Subject index
45
molecular docking,
[1367]
normal,
molecular dynamics,
[157]
molecular evolution,
[1260, 1261]
molecule ground state, Monte Carlo,
[930]
motion estimation,
[1212]
optimal probability, [1172]
coding,
[124, 34]
problem specific,
[1230]
control,
[795]
step-size,
[1224]
crossover,
[308]
tree,
[365]
delayed reward,
[272]
trigonometric,
[1150, 1153]
design,
[575, 608]
uniform,
[1197]
fitness,
[651, 562, 585]
[199]
variable rate,
[1182, 1210]
FPGA,
[824]
[190]
mutation calculi,
generalization,
[834]
hardware,
[708]
hybrid,
[1324, 999]
[261, 1324]
motion control precision,
classification,
[1154]
[1266, 1267,
1268]
music,
[567]
mutation rate, composition,
[585]
mutation,
[457, 1262, 1259, 1264, 1257, 1265, 473, 440, 1260, 1261, 460, 461, 1272, 1273, 1274, 1275, 291, 1166, 1168, 315, 316, 1173, 1174, 1175, 1176, 331, 341, 109, 1198, 1202, 1209, 1213, 174, 1236, 407, 1255, 1157, 1270]
adaptive,
[1169, 310, 556, 1194, 1218, 420, 1245, 1250, 1251, 1254, 1142, 1149, 1158]
analysis,
[1171, 1151]
annealing,
[946]
big,
1232]
0.001,
[94, 1212, 400]
implementation,
[1093, 968]
0.016,
[268]
learning,
[844, 135, 596]
adaptive,
[1187]
mutation,
[1235]
large,
[1200]
optoelectronic,
[1355]
[1219, 1227]
pattern recognition, [574, 957]
mutations,
mutation
[1258, 317,
adaptive,
[1193, 1253,
Cauchy-Lorentz, changing rate,
[856, 1168,
96, 1281, 34, 1155]
training,
asymmetric,
[80]
bio-inspired,
[1140]
Cauchy,
[1211, 1249]
deterministic,
[1214]
directed,
[1204]
Gaussian,
[1249]
[1355, 1357, 890, 172, 1249, 32, 1153]
weights,
[1058, 842]
neurology
[1231]
Cauchy,
structure,
1141]
prosthesis control,
[1256]
[814]
news
[1234]
quantum computer, [819]
[364]
genome dependence, [1199] control,
quantum computing, [815]
[1145]
neutral, controlled,
[1165, 1185,
niche,
1190, 1206, 1223, 617]
[1147]
[1346, 348, 579]
deterministic,
[574, 575,
mutattion
1235, 1243]
neural network controlled, directed,
niching,
[553, 592]
NK-landscape,
[513]
NMR,
[1347]
NOESY,
[1347]
noise,
[1341]
[1250]
[1163, 1167]
nano dynamic,
[1184, 1196,
-electronics,
1201]
Gauss,
[1256]
Gaussian,
[1164, 1183, 1222, 1234, 1239, 1152]
navigation robot,
[1072]
[1179]
cutting, GP,
[595]
NP-complete problems, [652] nesting,
genom-dependent,
[748]
nuclear power,
[1195]
Occam,
[1091]
oceanogaphy,
[913]
[605]
[1188]
neural network gradient, high rate, large,
[1161]
design,
[568]
image processing,
[824]
offspring
[1143]
6,
[1205]
[356]
neural networks, macro-,
[376, 386,
1233]
[1076, 1090, 472, 1263, 250, 1071, 1074, 1123, 1184, 118, 936, 1214, 394, 56, 63]
ONEMAX, Onemax,
neural networks
[485] [1276, 1278,
modal,
[1170]
non-uniform,
[1196, 1225]
adaptive resonance, [576]
onemax problem,
[1285]
none,
[1186]
cellular,
OOGA,
[1042]
331, 550]
[172]
46
Genetic algorithm implementations
operating systems disc scheduling,
Paragen II, [719]
parallel,
patents,
[984] [1081, 1109,
pattern recognition,
1110]
operations research,
[375]
operators,
[660, 535]
GA, crossover,
[326, 382]
SAT,
[148]
TSP,
[223]
optical networks,
[1369]
optics,
[1092]
aberrations,
[1295]
filters,
[256]
illumination,
[770]
interference filters,
[470]
lasers,
[770]
lens design,
[1343, 1071,
378] [963]
parallel GA,
[1128, 1100, 1064, 1096, 1097, 1047, 1054, 1079, 1089, 1040, 1044, 1045, 1095, 1120, 1126, 439, 442, 1046, 1048, 1049, 1055, 1056, 1065, 1078, 1101, 1102, 1116, 1123, 1127, 1133, 1028, 1031, 1038, 1057, 1058, 1085, 1357, 1117, 1118, 1119, 1131, 833, 834, 835, 840, 841, 842, 843, 844, 847, 849, 852, 854, 857, 859, 861, 864, 868, 698, 871, 880, 881, 883, 892, 893, 94, 897, 899, 900, 904, 703, 913, 915, 916, 923, 926, 928, 930, 933, 935, 936, 937, 712, 1315, 941, 946, 947, 715, 719, 953, 954, 956, 961, 965, 971, 974, 976, 172, 990, 1327, 995, 998, 204, 210, 1405, 1007, 1022, 22, 774, 778, 797, 803, 807, 68, 817]
2D,
[145]
digit,
[764]
face,
[797, 818]
feature selection,
[413]
features,
[428]
peptides,
[1316]
bactericidal,
[1329]
permutation,
[1177]
crossover,
[297]
permutation crossover, permutation problems,
[438] [1178, 1203,
1216]
parallel GA
permutations,
[192, 1327,
217, 1295]
[1329]
8 CPUs,
[1039]
[1108, 1263,
436, 1181, 1189]
metrology,
[66]
bibliography,
[664]
PfGA,
[207]
spectroscopy,
[1146]
FPGA,
[827]
pharmacology,
[1325, 999]
hardware,
[697]
photography
optimisation multi-objective,
[481, 807]
island,
[378]
multiobjective,
[280, 1293]
isolation,
[1308]
object-oriented,
[912]
optical,
[759]
PVM,
[918, 958]
subpopulations,
[914]
transputers,
[863]
optimization,
[1335, 260, 1129, 1074, 1106, 261, 262, 1068, 1366, 855, 315, 169, 1270]
optimization combinatorial,
[849, 334, 610]
global,
[842, 978, 618]
many parameters,
[92]
mathematical
programming,
[758]
multi,
[1234]
parallel GP, parallle GA, parameter estimation, 856]
particle,
[878]
spin glass,
[591]
X-ray,
[1279]
[240]
plants
nonstationary,
[1165, 99]
3,
[446]
numerical,
[338, 164]
PARSIM,
[868]
Pareto,
[555, 1325]
particle swarm,
[526]
penalty,
[94]
particle swarm optimisation,
pH,
[1088]
patent,
real-time,
[706]
[266]
[939]
parameters,
[1072]
packing,
magnetics,
[104]
nesting,
[46]
[200]
Weibull,
[555]
orthogonal GA,
chemical,
planning,
multiobjective,
optimization,
[1345, 1346,
1367]
physics
[1103, 1104,
[178, 1286]
[517]
physical chemistry,
[931]
multi-objective,
[1396]
DNA,
[921, 921,
[841]
[525]
phylogenic tree
922, 949]
multi-modal,
text book,
light design,
[1095, 1065]
artificial,
[1058]
[776, 955]
polypeptides,
parents
[941]
Met-enkephalin, popular,
[1001]
quasispecies, [1293]
[693, 694, 858, 862, 887, 889, 894, 898, 920, 707, 925, 722, 962, 726, 727, 729, 975, 731, 982, 983, 986, 735, 736, 737, 1227, 741, 744, 746, 747, 749, 1012, 750, 1016, 752, 667, 668, 669, 670, 671, 672, 673, 765, 674, 676, 677, 678, 679, 680, 496, 39, 682, 683, 684, 685, 686, 687, 688]
[155]
[1261]
population diversity,
[78]
population size, 1339, 1340, 1358, 1309,
1365, 1341, 1359, 1311,
population size
[1338, 1364, 443, 1337, 1277, 1278, 435, 1342, 1349, 1356, 1363, 317, 1302, 1305, 1319, 1232, 1144]
Subject index
47
10,
[1348, 172,
sub-,
[604]
QSAR,
[11, 1329]
QSPR,
[11, 1324]
1326, 1327]
power 100,
[1121, 1336, 1343, 649, 1333, 243, 1088, 1367, 319, 1317, 1323, 1325, 1329]
hydrothermal, power plants,
1000,
[94]
100; 200,
[1065]
100;1000,
[1279] [1303]
10;50;100,
[1346]
12,
[1299]
150,
[470]
2,
[1312, 1234]
20-60,
[1362]
halftoning, process control,
object-oriented,
[1316] [1335, 1355, 1361]
30; 100,
[1315]
320,
[1039]
50,
[1297, 1298]
[1345, 456, 1366, 853, 1212, 157, 268]
500,
[819]
[296]
error correction,
[208]
[1053]
NMR,
[782]
Orion,
[819]
[1332, 1347,
391, 1234]
quantum computing,
[863]
CNOT,
ProloGA,
[1094]
coding,
proportional fitness,
[647]
[344, 784, 794] [1006] [214, 224,
229, 51]
protein folding,
[1332, 647, 1346, 1347, 1367, 530, 557, 351, 356, 935, 941, 429]
protein folding
coherence,
[1014, 37]
ENDOR,
[1004]
error correction coding,
[53]
Grover’s algorithm, [793]
coding,
[222]
fitness landscape,
[612]
hardware,
lattice model,
[459, 1353, 1269, 94, 577, 1324, 398, 1283, 286, 516]
peptide conformation,
[990]
review,
[180]
scaling,
[612]
structure prediction, [155] proteins,
[1008, 1020]
implementation,
homology modeling, [1297]
1352, 1357]
[768, 771]
16 qubits,
[974]
[1351, 241,
400,
quantum computer,
Prolog,
[1350, 459, 1353, 296, 1324, 1003, 1281, 1283]
40,
[215]
programming environment
200,
30,
quadratic programming, [582]
printing
10; 50; 200; 400; 1000,
24,
[1161]
[1347, 872,
[1002, 1004, 1005, 1006, 1008, 1010, 1014, 1018, 1020, 798, 799, 804, 805, 808, 809, 810]
ion trap,
[1005, 1018]
NMR,
[1020]
quantum dot,
[1010, 37]
quantum dots,
[1002]
review,
[41]
superconducting,
[810]
text book,
[1400]
50; 100,
[1310]
6-24,
[1334]
coagulation factor IX,
60,
[1368]
evolution,
[277, 281]
CNOT,
[1002]
66,
[400]
gloco-,
[157]
dynamics,
[1010]
70,
[1344]
ligands,
[1329]
8,
[1321]
side chain conformation,
8;20;40;100;200,
[1284]
structure,
adaptive,
[1360, 1307,
1193, 1290, 1292]
dynamic, infinite,
[1286]
[157]
quantum dots
quantum networks, [268]
[157]
structure comparison,
radiotherapy [891]
proteins folding [1300]
resising,
[1360] [1314, 1280,
side-chains,
[1152]
psychology biological,
[1148]
quasispecies algorithm, [1260, 1261]
structure prediction, [175]
[1301, 307,
optimal,
[1008]
quasispecies coevolution,
[853]
transmembrane sequences,
1306, 1313, 160]
small,
1316, 1001]
[519, 522]
planning,
[28]
random walks,
[1157]
ratio allocation,
[1041]
real coding,
[246, 248]
reasoning,
[353]
1282]
variable,
[1320, 1288]
varying,
[1296, 1308]
PUMA robot,
[952]
PVM,
[893]
recombination,
[101, 1254] [315, 316,
1173, 341]
QAP, populations
fuzzy,
[1336, 1135, 317, 483, 69]
adaptive,
[1194]
48
Genetic algorithm implementations
crossover vs. mutation, multi-parent,
[286]
routing
sexual selection,
manufacturing,
[209]
[656]
SGA,
[1326]
[1075, 243, 296, 874]
multiparent,
vehicle,
[421]
[1129, 449,
767]
permutation,
shape design,
[939, 33]
shape design ,
[1248]
[1241]
RPL2,
[1124, 1125]
recycling waste plastic, regression, splines, reliability, remote sensing, image analysis,
rule based systems [1323]
fuzzy,
[79]
[1369]
rules,
[1053]
[31]
fuzzy,
[824]
SAGA,
blind signal separation, [1236]
3SAT,
representation
[756]
feature selection,
[1212]
[391]
filters,
[71]
[1121, 148]
ICA,
[796]
[638]
speech,
[519, 522]
[638]
scheduling,
review analysing real coded GA, crossover,
[1095, 245, 1127, 1028, 436, 1349, 1118, 302, 311, 897, 352, 1216, 687]
[189]
[458]
[231]
compression,
large Boolean expressions,
[75]
[796]
block trunkation coding,
[1193]
SAT,
[616]
[1074, 1366,
bilinear estimation, [107]
sampling
[1368]
[1327]
886, 138, 149, 1227]
rules based system
entropic,
trees,
signal processing,
rule sets, [57]
report on activities,
lens,
[1229]
[11, 1279]
rendezvous spaceship,
shape design
scheduling
simple GA,
[36]
simulated annealing,
[1244]
simulation animal communication,
[225]
disc,
[719]
quantum computing, [811]
interval,
[985]
real coded GA,
[189]
JSS,
TSP,
[223]
[281],
[277]
maintenance,
[154]
[530]
multiprocessors,
[1299]
software validation,
[654]
neural,
[364]
solid state physics
parallel processes,
[646]
power generation,
[1161]
spectroscopy,
[1345]
schema,
[438]
NIR,
[1323]
schemata,
[185]
NMR,
[157]
SEGA,
[783]
seismology,
[649]
Discipulus,
RNA, fitness landscape,
[779]
secondary structure, [876] RNA folding, robotics,
[544, 774] [1409, 642,
176]
autonomous,
[1281]
control,
[952, 825]
manipulator control, [161] mobile,
[1314, 595,
1281]
motion planning,
[948, 1321]
planning,
[1065]
[321, 1178, 339, 117, 122, 1190, 1391, 358, 1206, 369, 967, 273]
selection,
[1257, 304,
345]
evolution,
[980]
software Evolver 2.1, software testing, execution time,
[866] [677] [495] [1369]
Josephson junction, [1006]
spin glass fitness landscape,
[653]
spin-glass,
[1260]
splines,
[823]
random,
[157]
spreadsheets,
[1050]
roulette wheel,
[157]
subdivision,
[1376]
sexual,
[68]
subpopulations,
[849]
SUGAL,
[12, 13]
trajectory planning, [441] tournament, walking,
[514]
[94, 1197,
391, 268]
survey sensoring,
robots
[1366]
coding, AIBO,
[514]
fluid velocity,
system identification, robustness,
[201]
set partitioning,
[162]
[1153] [1334, 849]
1352, 74, 859]
[477, 1351,
Subject index
fuzzy,
49
soft computing,
[1175]
telecommunication coding, telecommunications, CDMA, coding,
[300, 1369]
vehicle,
theory,
[1226]
[188]
teleconferencing,
[812]
test case [1260]
test functions [350]
testing [914]
[665]
evolution,
[1232]
formal GA,
[312]
SGA,
[534]
[1412, 1411, 1409, 1410, 1413, 1415, 1416, 1414, 1417, 1378, 1380, 1381, 1382, 1383, 1384, 1387, 1388, 1389, 1392, 1393, 1394, 1397, 1398, 1401, 1402, 1405, 1371, 1376]
[772]
prediction,
[772]
[1406]
[1404]
[1370] [1391]
neural networks,
[1386]
optimization,
[1377]
1372]
[462, 326]
unit commitment,
[961, 605]
vehicle routing,
[767]
virus evolution,
[1129]
time-table,
[435]
Visual Basic,
timetabling,
[1167, 434]
VLSI
TimGA,
[917, 943, 950]
linear,
[1148] [1086]
design,
[1390, 748,
transportation,
[902]
Trellis coding,
[149]
TSP,
systolic arrays,
[740]
testing,
[283]
[513]
[451, 1097, 438, 1076, 650, 442, 660, 638, 1334, 1057, 461, 1118, 295, 78, 313, 879, 1175, 333, 344, 347, 1309, 353, 928, 713, 153, 396, 397, 1003, 425, 285]
VLSI design,
[1040, 297,
928, 1217, 487]
channel routing,
[1031]
FPGA,
[988, 826]
hardware,
[751, 753]
layout,
[1118]
multiplier,
[633]
TSP 100 cities,
[456]
318 cities,
[454]
442 cities,
[1260]
asymmetric,
[436]
comparison,
quantum computing, [784, 794] water tank,
[477]
[399]
wave length,
[1323]
crossover,
[427, 275]
zoology
on hardware,
[699]
review,
[223]
pattern classification, [1373, 1374] quantum computing,
modified,
time windows,
[1395]
genetic programming, [1399, 1407]
JSS,
[475, 471]
[856]
chaos,
text book
heuristics,
uniform crossover,
[265]
transformations
text book,
fuzzy sets,
genetic algorithm,
1011, 629, 637, 518]
real world problems, [849]
computational chemistry,
[850, 888,
1371, 1375]
evolution strategies, [910]
bibliography,
time series,
[1130]
tutorial,
[1412, 1413,
[87, 100]
optical,
adaptive systems,
[1390]
1413, 1415, 70]
[933]
digital circuits,
telecommunications, [1369]
[188]
network design,
onemax,
TSProuting
VLSI design,
[49]
frequency assignment,
spin-glass,
[1375]
animal communication,
[1400, 1408,
[?]),
[521]
[225]
50
4.8
Genetic algorithm implementations
Annual index
The following table gives references to the contributions by the year of publishing.
1958,
[1059]
1959,
[1060]
1970,
[464]
1975,
[1412]
1978,
[1266, 457]
1980,
[1267, 1113, 1114]
1983,
[1066]
1984,
[1034]
1985,
[1338, 1107, 1108]
1987,
96, 894, 328, 1178, 895, 1388, 701, 1179, 329, 98, 896, 99, 897, 330, 100, 898, 13, 899, 900, 546, 331, 547, 1304, 332, 548, 333, 334, 335, 1180, 902, 1389, 101, 102, 903, 702, 904, 1390, 103, 1181, 703, 336, 1305, 905, 906, 104, 1182, 1306, 105, 337, 549, 338, 106, 1183, 1184, 907, 908, 339, 107, 340, 1185, 1186, 341, 342, 343, 108, 109, 1307, 550, 110, 111, 112, 113, 909, 704, 910, 264, 662, 663, 664, 665]
1996,
[115, 705, 911, 344, 551, 345, 346, 116, 1187, 1188, 117, 552, 912, 913, 118, 347, 914, 1189, 119, 553, 915, 916, 1308, 348, 917, 120, 121, 554, 122, 349, 1190, 123, 555, 124, 918, 1191, 556, 919, 920, 1192, 125, 706, 1193, 350, 921, 1194, 557, 922, 1309, 923, 126, 707, 351, 1195, 924, 558, 1196, 352, 353, 354, 127, 559, 128, 355, 129, 560, 925, 1391, 926, 1310, 1392, 130, 1393, 927, 1197, 708, 928, 1311, 929, 709, 561, 930, 131, 931, 932, 562, 356, 132, 133, 933, 134, 1312, 135, 563, 1313, 136, 710, 1198, 1199, 1200, 934, 137, 1314, 935, 564, 1201, 1394, 711, 1202, 936, 937, 565, 938, 712, 939, 1315, 138, 566, 139, 140, 357, 940, 1316, 1203, 358, 141, 359, 567, 1395, 941, 942, 943, 568, 1204, 14, 569, 944, 945, 1205, 570, 571, 713, 572, 142, 946, 573, 143, 714, 947, 715, 948, 716, 360, 949, 717, 950, 574, 951, 1206, 575, 718, 144, 145, 719, 146, 361, 952, 1207]
1997,
[15, 147, 576, 577, 362, 363, 1396, 953, 720, 578, 954, 1317, 364, 1208, 579, 365, 1209, 1397, 956, 1210, 721, 366, 367, 722, 957, 958, 368, 1211, 1211, 959, 1318, 960, 580, 148, 961, 962, 581, 963, 964, 1319, 149, 369, 150, 151, 152, 965, 582, 1212, 153, 1213, 154, 966, 1320, 155, 370, 723, 371, 583, 156, 584, 157, 372, 373, 1214, 724, 1215, 725, 1216, 726, 727, 967, 968, 969, 374, 158, 159, 1217, 1218, 375, 160, 376, 970, 971, 161, 1219, 972, 377, 162, 728, 973, 378, 1220, 379, 163, 164, 729, 974, 1321, 975, 730, 165, 976, 166, 167, 977, 168, 978, 380, 169, 731, 170, 1221, 171, 172, 173, 585, 979, 174, 381, 175, 1322, 980, 176, 732, 586, 1222, 382, 383, 1223, 177, 1224, 733, 178, 1225, 179, 587, 180, 384, 181, 981, 182, 734, 982, 588, 589, 1323, 385, 386, 183, 387, 983, 184, 984, 985, 1398, 986, 987, 988, 185]
1998,
[97, 388, 590, 389, 1324, 735, 390, 736, 737, 186, 1399, 187, 591, 592, 1226, 989, 391, 1400, 392, 1227, 188, 1228, 189, 990, 190, 738, 739, 740, 991, 191, 593, 1325, 393, 741, 594, 595, 1229, 742, 596, 192, 193, 1230, 394, 992, 194, 1231, 395, 993, 396, 195, 397, 196, 597, 398, 399, 598, 1232, 197, 1233, 1234, 1235, 743, 994, 1401, 744, 1326, 599, 400, 401, 402, 1327, 1236, 403, 745, 404, 1328, 198, 600, 601, 602, 199, 995, 405, 996, 1402, 406, 200, 407, 1329, 201, 408, 202, 409, 203, 603, 746, 997, 998, 999, 604, 410, 1403, 204, 1237, 411, 205, 1000, 1238, 1239, 1001, 1240, 1241, 206, 207, 1242, 412, 1243, 413, 1404, 605, 606, 607, 414, 608, 747, 208, 415, 209, 416]
1999,
[1002, 609, 1330, 610, 417, 1003, 1244, 418, 210, 419, 1004, 420, 211, 1005, 1006, 212, 1405, 421, 422, 1245, 213, 748, 1246, 611, 1007, 1008, 214, 423, 1009, 215, 612, 216, 1010, 1247, 424, 1248, 217, 749, 613, 1011, 614, 1012, 218, 615, 1406, 1249, 1250, 219, 1013, 1014, 750, 220, 616, 221, 617, 425, 426, 618, 1407, 222, 619, 223, 1251, 224, 427, 225, 1015, 1252, 1016, 620, 1017, 226, 621, 622, 428, 623, 624, 1018, 625, 429, 1019, 1020, 430, 626, 227, 228, 431, 627, 1021, 1022, 751, 628, 629, 229, 230, 630, 432, 231, 1331, 752, 232, 1023, 1253, 1024, 233, 631, 1025, 433, 1408, 234, 1254, 632, 1026, 434, 753, 633, 1255, 634, 635, 235, 636, 637, 1256, 1027]
2000,
[266, 267, 758, 759, 480, 20, 1279, 268, 21, 21, 1369, 760, 481, 761, 22, 23, 666, 1280, 269, 667, 668, 270, 271, 272, 273, 669, 24, 1281, 762, 670, 482, 1370, 763, 25, 483, 26, 1282, 484, 1283, 764, 274, 1284, 671, 275, 672, 673, 485, 27, 765, 486, 674, 675, 766, 767, 487, 1138, 768, 769, 1139, 488, 28, 29, 489, 490, 676, 30, 491, 1140, 1141, 770, 771, 492, 31]
2001,
[1142, 772, 32, 677, 276, 678, 773, 679, 33, 493, 774, 494, 775, 34, 776, 35, 1143, 1371,
[450, 249, 451, 1268, 1099, 466, 1112, 1128]
1988,
[1053, 1100, 1105, 1364, 257, 657]
1989,
[238, 640, 441, 1262, 1335, 1411, 1339, 1064, 458, 1096, 1097, 467, 258, 475]
1990,
[239, 438, 1259, 1409, 244, 1047, 1054, 246, 1061, 17, 1070, 1076, 455, 1079, 1089, 1362, 1365, 1121, 477, 658]
1991,
[757, 236, 1029, 1033, 1035, 1036, 16, 1040, 754, 1410, 1042, 443, 444, 1044, 1045, 448, 1337, 247, 643, 644, 1062, 1063, 1264, 1069, 251, 645, 252, 1080, 1087, 1350, 1090, 650, 255, 1095, 1354, 468, 1120, 471, 472, 260, 1126, 1129, 1130, 659, 263, 479]
1992,
[1276, 1277, 1278, 693, 1332, 1032, 1257, 240, 437, 1037, 439, 1043, 442, 445, 1046, 1048, 1049, 245, 1055, 1056, 1336, 641, 248, 1340, 1341, 1065, 1067, 1263, 250, 1265, 1343, 1413, 1071, 1072, 1074, 1344, 1075, 647, 1345, 1077, 1078, 1415, 1081, 1082, 1083, 1084, 649, 1351, 1416, 18, 1270, 1098, 1355, 462, 1101, 1102, 256, 1361, 1106, 1109, 1110, 1271, 465, 259, 1115, 1116, 473, 474, 1123, 476, 261, 262, 1127, 1132, 478, 1133, 660, 756, 1135]
1993,
1994,
1995,
[694, 1162, 435, 237, 1028, 1030, 1333, 1031, 436, 1258, 638, 639, 1038, 1039, 241, 1041, 242, 440, 243, 446, 1260, 1261, 447, 1050, 1334, 449, 1051, 1052, 1057, 1058, 642, 1068, 1342, 646, 1073, 755, 452, 453, 1346, 454, 253, 254, 1414, 456, 648, 1085, 1086, 1347, 1088, 1348, 1349, 1091, 1352, 1092, 1093, 1094, 459, 1353, 1269, 460, 651, 1417, 461, 1356, 1357, 463, 1358, 1359, 1360, 652, 1103, 1104, 1363, 1111, 469, 1117, 1118, 1119, 1366, 19, 470, 653, 654, 1122, 1124, 1125, 655, 1272, 1131, 656, 1273, 1274, 1134, 1367, 1368, 1136, 1275, 1137] [833, 291, 1296, 527, 1163, 70, 1297, 834, 835, 836, 1298, 837, 71, 838, 839, 840, 841, 72, 292, 842, 843, 73, 844, 845, 74, 695, 293, 528, 846, 1299, 529, 1377, 847, 848, 849, 850, 1164, 294, 851, 852, 853, 854, 1300, 855, 1378, 856, 1165, 75, 530, 1301, 295, 1166, 1379, 857, 1167, 696, 858, 296, 531, 1380, 859, 297, 860, 532, 861, 862, 298, 76, 863, 1168, 864, 299, 865, 77, 300, 301, 697, 302, 78, 1169, 866, 867, 868, 79, 303, 80, 304, 869, 305, 306, 81, 82, 307, 308, 533, 309, 310, 698, 1170, 1171, 83, 311, 84, 85, 86, 312, 870, 871, 1381, 534, 872, 313, 535, 11, 87, 1382, 1383, 314, 901, 114] [12, 873, 88, 874, 315, 875, 876, 536, 89, 316, 877, 878, 90, 879, 537, 880, 317, 881, 318, 882, 1384, 538, 883, 884, 539, 1172, 319, 885, 1302, 1173, 1174, 320, 886, 1175, 91, 887, 1176, 92, 321, 888, 1385, 540, 322, 323, 541, 1386, 889, 890, 542, 324, 543, 891, 325, 93, 892, 893, 699, 1303, 94, 326, 544, 327, 545, 1387, 700, 95, 1177,
Annual index
2002,
2003,
51
36, 37, 1144, 777, 778, 38, 495, 1285, 680, 779, 780, 496, 39, 40, 277, 781, 497, 1286, 278, 681, 1145, 682, 1372, 41, 1146, 498, 42, 1373, 279, 280, 43, 499, 683, 44, 782, 1147, 45, 281, 684, 685, 46, 47, 686, 687, 1374, 783, 955]
2004,
[265, 805, 806, 1156, 64, 1375, 1157, 65, 518, 1158, 1291, 661]
2005,
[807, 519, 808, 66, 67, 1159, 809, 810, 1376, 691, 811, 1160, 1292, 812]
[500, 48, 784, 785, 501, 502, 1148, 786, 49, 688, 1149, 503, 787, 504, 282, 1150, 1151, 788, 788, 689, 1152, 505, 506, 789, 50, 790, 283, 791, 51, 507, 507, 508, 52, 53, 509, 284, 510, 511, 792, 512, 285, 286, 793, 794, 54, 690]
2006, 2007,
[817, 522, 523, 818, 819, 820, 821, 1295]
[55, 513, 56, 1287, 57, 1288, 795, 796, 1153, 797, 1289, 1154, 798, 514, 1290, 58, 287, 515, 799, 288, 59, 800, 516, 60, 61, 1155, 801, 517, 62, 802, 803, 63, 804, 289]
2008,
[524, 822, 823, 525, 824, 526, 825, 826, 827, 828, 829, 830, 831, 832]
[813, 814, 815, 816, 68, 1161, 69, 520, 692, 1293, 1294, 521]
2009,
[290]
52
Genetic algorithm implementations
4.9
Geographical index
The following table gives references to the contributions by country.
• Australia: [484, 1028, 253, 1366, 293, 873, 875, 883, 542, 547, 902, 103, 549, 1183, 109, 909, 553, 918, 352, 716, 718, 1209, 368, 162, 978, 383, 182, 999, 211, 424, 618, 1026, 1256, 482, 806] • Austria: [1078, 653, 654, 530, 884, 544, 121, 919, 927, 561, 562, 14, 381, 594, 405, 624, 670, 783, 502] • Belgium: [269, 437, 245, 535, 422, 56] • Bosnia and Herzegovina: [1158] • Brazil: [1234, 777, 813, 1161, 820, 828, 829] • Bulgaria: [588, 604] • Canada: [462, 859, 532, 298, 317, 540, 325, 93, 326, 102, 903, 554, 1310, 956, 967, 174, 980, 1326, 609, 1003, 418, 493, 776, 277, 286, 1375, 520]
• Japan: [270, 271, 273, 25, 27, 500, 693, 1098, 694, 642, 1414, 1417, 655, 1274, 1275, 845, 1165, 295, 858, 296, 531, 862, 300, 301, 697, 78, 80, 533, 311, 1175, 887, 1176, 889, 543, 894, 328, 99, 898, 332, 1389, 101, 1182, 1185, 551, 122, 1190, 920, 707, 560, 925, 708, 933, 1200, 1316, 1203, 358, 941, 568, 569, 945, 570, 574, 1206, 575, 722, 957, 962, 581, 149, 369, 151, 1214, 1215, 726, 727, 160, 973, 163, 164, 729, 1321, 975, 731, 171, 176, 1223, 982, 983, 986, 987, 735, 736, 191, 741, 595, 596, 192, 395, 993, 396, 397, 597, 1235, 744, 1236, 745, 996, 409, 203, 603, 746, 411, 207, 412, 1243, 608, 747, 209, 423, 1010, 217, 749, 218, 750, 616, 617, 425, 1016, 622, 228, 432, 752, 1254, 235, 759, 1280, 667, 668, 272, 669, 763, 671, 672, 673, 765, 674, 676, 678, 679, 775, 680, 496, 278, 681, 682, 43, 683, 684, 686, 687, 48, 812, 814, 692, 818, 821] • Kuwait: [974] • Malaysia: [35]
• China: [1368, 323, 1180, 1191, 354, 131, 140, 948, 1317, 582, 169, 170, 1221, 173, 1231, 408, 205, 1238, 1239, 420, 1007, 215, 1251, 224, 232, 666, 1150, 50, 51, 792, 285, 1153, 1157, 1159, 1292, 1083, 1084, 435, 196, 214, 1253, 758, 46, 1155, 517, 803] • Croatia: [123, 230] • Denmark: [790, 541, 926, 1406] • Egypt: [796] • Finland: [757, 1276, 1277, 1278, 1068, 841, 852, 856, 896, 100, 704, 264, 662, 663, 664, 665, 917, 558, 1312, 711, 565, 938, 943, 714, 950, 15, 964, 208, 610, 1009, 1024, 766, 767, 1372, 41, 47, 510, 511, 1154, 1290, 265, 805, 661, 691, 1294, 521, 525, 526]
• Mexico: [389, 390, 434, 1144, 58] • New Zealand: [251, 324, 968, 733, 743, 825] • Norway: [751, 753] • Poland: [284, 1296, 1184, 912, 1196, 954, 1230, 628, 1147] • Portugal: [267, 854, 21] • Romania: [1305, 911, 120, 724, 1217, 226, 1142] • Russia: [1266, 1267, 1268, 436, 700, 702, 924, 934, 773] • Saudi Arabia: [1390]
• France: [507, 1126, 1127, 1132, 563, 1198, 142, 1320, 370, 1224, 598, 1233, 600, 1405, 1245, 1246, 619, 20, 515, 288] • Germany: [23, 675, 769, 489, 30, 785, 1270, 1113, 1114, 1034, 1112, 1064, 1096, 1097, 17, 1070, 1079, 1035, 1036, 1080, 1332, 1032, 1257, 1037, 1336, 1065, 1081, 1082, 1271, 1115, 1116, 1258, 639, 1260, 1261, 1058, 460, 651, 1117, 1118, 1119, 470, 527, 834, 838, 1377, 1378, 1379, 1380, 863, 865, 1170, 871, 1381, 879, 1173, 1388, 1179, 1304, 335, 904, 1306, 907, 107, 340, 342, 910, 346, 1187, 1188, 117, 552, 706, 1195, 1391, 1197, 1313, 1199, 1394, 936, 937, 1395, 1205, 361, 1207, 577, 721, 1211, 148, 965, 1218, 1219, 730, 977, 172, 1222, 1225, 1398, 1399, 591, 990, 593, 1325, 601, 998, 1240, 206, 607, 1244, 213, 612, 1247, 220, 429, 234, 634, 483, 1283, 38, 495, 1285, 781, 497, 1145, 42, 499, 955, 1148, 503, 514, 810, 816]
• Singapore: [308, 145, 963, 1284, 29, 1286, 824] • South Africa: [921, 768, 771] • South Korea: [275, 453, 91, 321, 339, 1307, 923, 355, 357, 584, 374, 391, 1229, 1250, 481, 491, 282, 788, 509, 797, 801] • Spain: [787, 242, 73, 114, 900, 106, 108, 111, 125, 353, 146, 161, 989, 189, 1241, 1008, 614, 222, 223, 1017, 266, 22, 24, 772, 32, 49, 791, 1287, 1288, 66, 817, 826] • Sweden: [26, 16, 1333, 299, 480, 490, 494, 508, 800] • Switzerland: [843, 89, 893, 136, 190, 764]
• Greece: [126, 605, 283]
• Taiwan: [1334, 844, 74, 128, 1201, 961, 158, 178, 400, 401, 199, 202, 414, 1249, 231, 1141, 1152, 67, 1295]
• Hungary: [454, 254, 615]
• Thailand: [1169, 194, 621, 830, 831, 832]
• India: [1362, 1031, 1163, 1166, 310, 113, 935, 571, 573, 378, 97, 590, 186, 404, 413, 427, 428, 1019, 68] • Ireland: [1015, 129, 134, 152, 181, 184, 984, 185, 1328, 55, 59] • Israel: [441, 1409, 1357, 1300, 970, 188] • Italy: [1140, 1044, 1045, 442, 1046, 1122, 1131, 835, 870, 878, 90, 1178, 705, 118, 914, 127, 559, 930, 953, 725, 180, 187, 1228, 1232, 1248, 1022, 1279, 31, 1151, 53]
• The Czech Republic: [976, 179, 599, 198, 1408, 881, 915, 928, 133, 523] • The Netherlands: [1087, 237, 1347, 1088, 850, 869, 876, 338, 348, 351, 1323, 388, 421, 431, 1282] • The Slovak Republic: [156] • Turkey: [319, 165, 393] • Ukraina: [95]
Geographical index
• United Kingdom: [492, 1053, 1262, 1335, 1054, 477, 236, 448, 1095, 1055, 1056, 1343, 1072, 1075, 1351, 1355, 241, 1041, 447, 1057, 646, 1352, 461, 1356, 1363, 1124, 1125, 833, 836, 72, 292, 853, 1167, 861, 867, 868, 82, 698, 83, 84, 312, 12, 88, 537, 880, 882, 327, 1387, 1177, 96, 897, 13, 548, 1186, 344, 119, 1308, 350, 1194, 557, 130, 1311, 132, 135, 1314, 1202, 712, 940, 359, 942, 572, 143, 947, 715, 360, 717, 144, 719, 952, 147, 576, 363, 720, 578, 1210, 959, 150, 154, 1216, 969, 377, 380, 585, 1322, 732, 384, 589, 387, 985, 1226, 738, 740, 991, 742, 394, 197, 406, 1329, 201, 997, 1403, 613, 1011, 1012, 1252, 227, 629, 1023, 633, 637, 1027, 1369, 486, 487, 276, 34, 279, 689, 505, 690, 287, 516, 60, 61, 289, 807, 811, 1160] • United States: [274, 485, 488, 464, 1412, 1066, 1338, 1107, 1108, 450, 249, 1099, 466, 1128, 1100, 1105, 257, 657, 1411, 1339, 458, 467, 258, 239, 1259, 244, 246, 1061, 1076, 455, 1121, 658, 1033, 1040, 754, 1410, 1042, 443, 444, 247, 643, 644, 1062, 1063, 645, 252, 1350, 255, 1354, 468, 1120, 471, 472, 1129, 1130, 659, 263, 240, 439, 1043, 445, 1048, 1049, 641, 248, 1340, 1341, 1067, 1413, 1071, 1344, 647, 1345, 1077, 1415, 649, 1416, 1101, 1102, 256, 1361, 1106, 1109, 1110, 465, 259, 473, 474, 1123, 478, 1133, 660, 1135, 1162, 638, 1038, 1039, 440, 243, 446, 449, 755, 1346, 456, 648, 1085, 1086, 1094, 459, 1353, 1269, 463, 1358, 1359, 1360, 1103, 1104, 1111, 469, 19, 1272, 656, 1273, 1134, 1367, 1136, 291, 70, 1297, 1298, 837, 71, 839, 840, 842, 695, 528, 846, 1299, 529, 847, 848, 849, 1164, 294, 851, 855, 75, 696, 297, 860, 76, 864, 302, 866, 79, 303, 304, 305, 306,
53
81, 1171, 85, 86, 534, 872, 313, 11, 87, 1382, 1383, 314, 874, 536, 877, 318, 1384, 538, 539, 1172, 885, 1302, 320, 886, 92, 888, 1386, 890, 891, 892, 699, 1303, 94, 545, 895, 701, 329, 98, 330, 899, 546, 333, 334, 1181, 703, 336, 906, 104, 105, 337, 908, 343, 550, 110, 112, 115, 345, 116, 913, 347, 916, 555, 124, 556, 1192, 1193, 922, 1309, 1392, 1393, 929, 709, 931, 356, 710, 939, 1315, 566, 139, 141, 567, 1204, 713, 946, 949, 951, 362, 1396, 364, 1208, 579, 366, 580, 1319, 1212, 153, 1213, 966, 155, 371, 583, 157, 373, 375, 376, 971, 972, 728, 1220, 379, 166, 167, 168, 175, 587, 981, 734, 385, 386, 988, 1324, 737, 1400, 392, 1227, 739, 193, 992, 195, 398, 399, 1401, 1327, 602, 200, 407, 204, 1237, 1000, 1001, 1242, 606, 415, 416, 1002, 1330, 417, 210, 419, 1004, 1005, 1006, 748, 611, 216, 219, 1014, 221, 1407, 225, 620, 623, 1018, 625, 1020, 430, 626, 627, 1021, 229, 630, 1331, 233, 631, 1025, 632, 1255, 635, 636, 268, 760, 1281, 762, 1370, 1139, 28, 770, 677, 774, 1143, 36, 37, 778, 39, 40, 1146, 498, 280, 44, 281, 685, 784, 501, 688, 1149, 504, 506, 512, 793, 794, 513, 1289, 62, 63, 1156, 64, 65, 518, 1291, 808, 809, 69, 1293, 822, 823, 827, 290] • Unknown country: [1059, 1060, 457, 756, 901, 1189, 932, 564, 138, 365, 1397, 367, 958, 1318, 723, 372, 159, 979, 586, 382, 177, 183, 592, 994, 403, 995, 410, 1404, 212, 1013, 426, 433, 761, 1371, 1373, 782, 1374, 789, 52, 54, 57, 795, 798, 799, 802, 519, 1376, 815, 522, 819, 524] • Yugoslavia: [1138]
905, 960, 402, 779, 804,
54
Genetic algorithm implementations
Bibliography [1] John H. Holland. Genetic algorithms. Scientific American, 267(1):44–50, 1992. ga:Holland92a. [2] Jarmo T. Alander. An indexed bibliography of genetic algorithms: Years 1957-1993. Art of CAD Ltd., Vaasa (Finland), 1994. (over 3000 GA references). [3] David E. Goldberg, Kelsey Milman, and Christina Tidd. Genetic algorithms: A bibliography. IlliGAL Report 92008, University of Illinois at Urbana-Champaign, 1992. ga:Goldberg92f. [4] N. Saravanan and David B. Fogel. A bibliography of evolutionary computation & applications. Technical Report FAU-ME-93-100, Florida Atlantic University, Department of Mechanical Engineering, 1993. (available via anonymous ftp site magenta.me.fau.edu directory /pub/ep-list/bib file EC-ref.ps.Z) ga:Fogel93c. [5] Thomas B¨ ack. Genetic algorithms, evolutionary programming, and evolutionary strategies bibliographic database entries. (personal communication) ga:Back93bib, 1993. [6] Thomas B¨ ack, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992. ga:Schwefel92d. [7] David L. Hull. Uncle Sam wants you. Science, 284(5417):1131–1133, 14. May 1999. [8] Leslie Lamport. LATEX: A Document Preparation System. User’s Guide and Reference manual. AddisonWesley Publishing Company, Reading, MA, 2 edition, 1994. [9] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming Language. AddisonWesley Publishing Company, Reading, MA, 1988. [10] Diane Barlow Close, Arnold D. Robbins, Paul H. Rubin, and Richard Stallman. The GAWK Manual. Cambridge, MA, 0.15 edition, April 1993. [11] Anon. Cerius2 Release 1.6, Drug Discovery Workbench QSAR+ User’s Reference, Chapter 16: Introduction to genetic function approximation, 1994. ga94eAnon. [12] Andrew Hunter. SUGAL Programming manual V2.1, 1995. †[?] ga95aAHunter. [13] Andrew Hunter. SUGAL User manual V2.1, 1995. †[?] ga95bAHunter. [14] Helmut H¨ orner. A C++ Class Library for Genetic Programming: The Vienna University of Economics Genetic Programming Kernel, 1996. (in German as [919];available via www URL: http://aif.wu-wien.ac.at/%7Egeyers/archive/gpk/vuegpk.html) ga96bHHorner. [15] Martti Valtonen et al. APLACTM Circuit Simulation and Design Tool, User’s Manual. Kotka, 1997. ga97APLAC. [16] Anon. C Darwin II – Genv¨ agen till Kunskap, 1991. †Novacast ga:CDarwinII91. [17] Frank Hoffmeister. The User’s Guide to Escapade 1.0 – A Runtime Environment for Evolution Strategies, November 1990. †Back/bib/unp ga:Hoffmeister90b. [18] Anon. MicroGA. Palo Alto, CA, 1992. †Xu93a ga:MicroGA. [19] Andrew Singleton, Holland Mills, and Anne Patton. Doodle garden – A screen saver using genetic programming, 1993. ga:Singleton93a. [20] L. Balland, L. Estel, J.-M. Cosmao, and N. Mouhab. A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters. Chemometrics and Intelligent Laboratory Systems, 50(1):121– 135, ? 2000. * ChA 180270p/00 ga00aBalland. [21] Cristian Munteanu and Agostinho Rosa. Towards automatic image enhancement using genetic algorithms. In Proceedings of the 2000 Congress on Evolutionary Computation CEC00, volume ?, pages 1535–1542, La Jolla, CA, ? 2000. IEEE, Piscataway, NJ. ga00aCMunteanu.
55
56
Genetic algorithm implementations
[22] Francisco Herrera and Manuel Lozano. Gradual distributed real-coded genetic algorithms. IEEE Transactions on Evolutionary Computation, 4(1):43–63, April 2000. ga00aFHerrera. [23] Franz Rothlauf, David E. Goldberg, and Armin Heinzl. Bad codings and the utility of well-designed genetic algorithms. pages 355–362, 2000. ga00aFRothlauf. [24] Luciano S´ anchez. Interval-valued GA-P algorithms. IEEE Transactions on Evolutionary Computation, 4(1):64–72, April 2000. ga00aLSanchez. [25] Osamu Takahashi, Hajime Kita, and Shigenobu Kobayashi. A real-coded genetic algorithm using distance dependent alternation model for complex function optimization. pages 219–226, 2000. ga00aOsamuTakahashi. [26] Peter Nordin. Machine code genetic programming. pages 480–501, 2000. ga00aPNordin. [27] Shigeyoshi Tsutsui. Sampling bias and search space boundary extension in real coded genetic algorithms. pages 211–219, 2000. ga00aSTsutsui. [28] Xingen Wu, Yunping Zhu, Jianrong Dai, and Zunliang Wang. Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning. Physics in Medicine & Biology, 45(9):2547–2558, September 2000. ga00aXingenWu. [29] Y. L. Lu and B. K. Yeo. Adaptive wide null steering for digital beamforming array with the complex coded genetic algorithm. In IEEE International Conference on Phased Array Systems and Technology, Proceedings, volume ?, pages 557–560, Dana Point, CA, USA, 21.-25.May 2000. IEEE, New York. †P90196 ga00aYLLu. [30] G¨ unther Rudolph. Theory of real-coded evolutionary algorithms. pages 245–255, 2000. ga00bGRudolph. [31] Salvatore Caorsi, Andrea Massa, and Matteo Pastorino. A computational technique based on a real-coded genetic algorithm for microwave imaging purpose. IEEE Transactions on Geoscience and Remote Sensing, 38(4):1697–1708, July 2000. ga00dSCaorsi. [32] A. Blanco, M. Delgado, and M. C. Pegalajar. A real-coded genetic algorithm for training recurrent neural networks. Neural Networks, 14(1):93–105, January 2001. ga01aABlanco. [33] Akira Oyama, Shigeru Obayashi, and Takashi Nakamura. Real-coded adaptive range genetic algorithm applied to transonic wing optimization. Applied Soft Computing, 1(?):179–187, ? 2001. ga01aAkiraOyama. [34] Candida Ferreira. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 13(2):87–129, 2001. †Ferreira ga01aCFerreira. [35] C. K. Ho, S. W. Lee, and Y. P. Singh. Optical orthogonal code design using genetic algorithms. Electronics Letters, 37(20):1232–1234, 27. September 2001. ga01aCKHo. [36] Daniel S. Weile and Eric Michielssen. The control of adaptive antenna arrays with genetic algorithms using dominance and diploidy. IEEE Transactions on Antennas and Propagation, 49(10):1424–1433, October 2001. ga01aDSWeile. [37] Dave Bacon, Kenneth R. Brown, and K. Birgitta Whaley. Coherence-preserving quantum bits. Physical Review Letters, 87(24):247902–1–4, 10. December 2001. ga01aDaveBacon. [38] Hans-Georg Beyer and Kalyanmoy. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on Evolutionary Algorithms, 5(3):250–270, June 2001. ga01aH-GBeyer. [39] J. David Schaeffer, Keith E. Mathias, and Larry J. Eshelman. Code compaction by evolutionary algorithm, 2001. (U. S. patent no. 6,260,031. Issued July 10 2001; available via www URL: http://appft1.uspto.gov/netahtml/PTO/search-adv.html) ga01aJDSchaeffer. [40] Jun Li and Michael G. Parsons. Complete design of fuzzy systems using a real-coded genetic algorithm with imbedded constraints. Journal of Intelligent and Fuzzy Systems, 10(1):13–37, ? 2001. * http://iospress.metapress.com ga01aJLi. [41] Mikko Rummukainen. Quantum error correction using local gates. In Tero T. Heikkil¨ a, Mikio Nakahara, and Martti M. Salomaa, editors, Quantum Computing, Physical Realizations, Report Series, Nro TKKF-A810, pages 33–o5. Helsinki University of Technology, Materials Physics Laboratory, Espoo (Finland), 2001. ga01aMikkoRummukainen. [42] Rudolf M. F¨ uchslin and John S. McCaskill. Evolutionary self-organization of cell-free genetic coding. Proceedings of the National Academy of Sciences of the United States of America, 98(16):9185–9190, 31. July 2001. ga01aRMFuchslin. [43] Shigeyoshi Tsutsui and David E. Goldberg. Search space boundary extension method in real-coded genetic algorithms. Information Sciences, 133(?):229–247, ? 2001. * TKKpaa ga01aShigeyoshiTsutsui.
Bibliography
57
[44] Terry L. Holst and Thomas H. Pulliam. Aerodynamic shape optimization using a real-number-encoded genetic algorithm. In 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, 11.-14. June 2001. AIAA. AIAA Paper 2001-2473 * A01-31030 ga01aTRHolst. [45] William L. Crowley. Employing synthetic genes in genetic algorithms, information encoding and nonreplicative encryption, 2001. (WIPO patent no. WO 01/39004. Issued May 31 2001) ga01aWLCrowley. [46] Yiu-Wing Leung and Yuping Wang. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 5(1):41–53, February 2001. ga01aYiu-WingLeung. [47] Heikki Hy¨ otyniemi. On the architecture of complex systems. Arpakannus, (2):5–8, 2001. (available via www URL: http://www.uwasa.fi/stes/) ga01bHHyotyniemi. [48] Technical report. [49] D. Barral, W. Falc´ on, J. Altuna, and R. A. Carrasco. On the implementation and optimisation of LDPC codes on a reconfigurable hardware for future communications systems. In Proceedings of the Third International Conference on 3G Mobile Communications Technologies, volume Conf. Publ. No. 489, pages 196–200, ?, 8.-10. May 2002. IEEE, Piscataway, NJ. ga02aDBarral. [50] Li Pingkang, Du Xiuxia, and Liu Yulin. AGC parameters optimization using real coded genetic algorithm. In Proceedings of the Power Systems Technology Conference (PowerCon 2002), volume 1, pages 646–650, ?, 13.-17. October 2002. IEEE, Piscataway, NJ. ga02aLiPingkang. [51] Quan Zhang, Chao-Jing Tang, and Feng Gao. Quantum turbo codes. Acta Physica Sinica, 51(1):15–19, January 2002. (in Chinese) * A02-46918 ga02aQuanZhang. [52] Stephen J. Freeland. The Darwinian genetic code: An adaptation for adapting? Genetic Programming and Evolvable Machines, 3(2):113–128, 2002. †toc ga02aSJFreeland. [53] Stefano Mancini and Rodolfo Bonifacio. Temporal imperfections in constructing correction codes. Journal of Modern Optics, 49(9):1587–1592, 20. July 2002. ga02aStefanoMancini. [54] Hillol Kargupta and Samiran Ghosh. Toward machine learning through genetic code-like transformations. Genetic Programming and Evolvable Machines, 3(3):231–258, 2002. †toc ga02bHillolKargupta. [55] Conor Ryan and R. Muhammed Atif Azad. Sensible initialisation in Chorus. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 394–403, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aConorRyan. [56] Emanuel Falkenauer and Arnaud Marchand. Clustering microarray data with evolutionary algorithms. In Gary B. Fogel and David W. Corne, editors, Evolutionary Computation in Bioinformatics, pages 219–230. Morgan Kaufmann Publishers, New York, 2003. †TKKpaa ga03aEFalkenauer. [57] F. Yoshimoto, T. Harada, and Y. Yoshimoto. Data fitting with a spline using a real-coded genetic algorithm. Computer-Aided Design, 35(8):751–760, July 2003. †TKK/TKO ga03aFYoshimoto. [58] Katya Rodr´ıguez-V´ azquez and Carlos Oliver-Morales. Divide and conquer: genetic programming based on multiple branches encoding. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 218–228, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aKRodriguez-Vazquez. [59] Miguel Nicolau and Conor Ryan. How functional dependency adapts to salience hierarchy in the GAuGE system. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 153–163, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aMNicolau. [60] Sanjay Kumar Sharma and George W. Irwin. Fuzzy coding of genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(4):344–355, August 2003. ga03aSKSharma. [61] Simon M. Lucas. Evolving finite state transducers: some initial explorations. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 130–141, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aSMLucas. [62] Uday K. Chakraborty and Cezary Z. Janikow. An analysis of Gray versus binary encoding in genetic search. Information Sciences, 156(3-4):253–269, 15. November 2003. * www /ScienceDirect ga03aUKChakraborty.
58
Genetic algorithm implementations
[63] Gary B. Fogel, Kumar Chellapilla, and David B. Fogel. Identification of coding regions in DNA sequences using evolved neural networks. In Gary B. Fogel and David W. Corne, editors, Evolutionary Computation in Bioinformatics, pages 193–218. Morgan Kaufmann Publishers, New York, 2003. †TKKpaa ga03bGBFogel. [64] Darrell Whitley, Monte Lunacek, and James Knight. Ruffled by ridges: How evolutionary algorithms can fail. In Kalyanmoy Deb et al, editor, Genetic and Evolutionary Computation - GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 294–306, Seattle, WA, 26.-30. June 2004. Springer-Verlag, Berlin. ga04aDWhitley. [65] J. V. Leite, S. L. Alvila, N. J. Batistela, W. P. Carpes Jr., N. Sadowski, and J. P. A. Bastos. Real coded genetic algorithm for Jiles-Atherton model parameter identification. IEEE Transactions on Magnetics, 40(2):888–891, March 2004. ga04aJVLeite. [66] Jos´e Saez-Landete, Sancho Salcedo-Sanz, Manuel Rosa-Zurera, Jos´e Alonso, and Eusebio Bernabeu. Optimal design of optical reference signals by use of a genetic algorithm. Optics Letters, 30(20):2724–2726, 15. October 2005. ga05aJSaez-Landete. [67] Jih-Lian Ha, Rong-Wong Fung, and Chang-Fu Han. Optimization of an impact drive mechanism based on real-coded genetic algorithm. Sensors and Actuators A, 121(?):488–493, ? 2005. ga05aJih-LianHa. [68] M. M. Raghuwanshi and O. G. Kakde. Genetic algorithm with species and sexual selection. In Proceedings of the 2006 IEEE Conference on Cybernetics and Intelligent Systems (CIS), pages 1–8, ?, June 2006. IEEE, Piscataway, NJ. ga06aMMRaghuwanshi. [69] T. Drezner and Z. Drezner. Gender-specific genetic algorithms. INFOR, 44(2):117–127, May 2006. * ISI ga06aTDrezner. [70] Siddartha Bhattacharrya and Gary J. Koehler. An analysis of non-binary genetic algorithms with cardinality v . Complex Systems, 8(4):227–256, August 1994. * EEA 37285/95 CCA 36469/95 ga94aBhattacharrya. [71] Dexiang Xu. Optimization of FIR digital filters using a real parameter parallel genetic algorithm and implementations. PhD thesis, The University of Memphis, 1994. ? †NASA ADS ga94aDXu. [72] P. Field. Nonbinary transforms for genetic algorithm problems. In Terence C. Fogarty, editor, Evolutionary Computing. Selected Papers of the AISB Workshop, pages 38–50, Leeds (UK), 11.-14. April 1994. SpringerVerlag, Berlin. * CCA 11907/95 ga94aField. [73] Francisco Herrera, E. Herrera-Viedma, Manuel Lozano, and Jose Luis Verdegay. Fuzzy tools to improve genetic algorithms. In Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing (EUFIT’94), volume 3, pages 1532–1539, Aachen (Germany), 20.-23. September 1994. ELITEFoundation. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file eufit94.ps.Z) ga94aHerrera. [74] Kuang-Tsang Jean and Yung-Yaw Chen. Variable-based genetic algorithm. In Proceedings of the 1994 IEEE International Conference on Systems, Man, and Cybernetics, volume 2, pages 1597–1601, San Antonio, TX, 2.-5. October 1994. IEEE, New York. * EI M096129/95 ga94aJean. [75] Charles C. Palmer and Aaron Kershenbaum. Representing trees in genetic algorithms. In ICEC’94 [1429], pages 379–384. ga94aPalmer. [76] Hisashi Tamaki, Hajime Kita, Nobuhiko Shimizu, Keiji Maekawa, and Yoshikazu Nishikawa. A comparison study of genetic codings for the traveling salesman problem. In ICEC’94 [1429], pages 1–6. ga94aTamaki. [77] Mark Wineberg and Franz Oppacher. A representation scheme to perform program induction in a canonical genetic algorithm. In Davidor et al. [1430], page ? †conf. prog. ga94aWineberg. [78] Y. Yukiko and A. Nobue. A diploid genetic algorithm for preserving population – pseudo-meiosis GA. In Davidor et al. [1430], pages 36–45. * CCA 36479/95 ga94aYukiko. [79] Arthur Leo Corcoran, III and Sandip Sen. Using real-valued genetic algorithms to evolve rule sets for classification. In ICEC’94 [1429], pages 120–124. ga94bCorcoran. [80] Hirofumi Doi, Ken-Nosuke Wada, and Mitsuru Furusawa. Asymmetric mutations due to semiconservative DNA replication: double-stranded DNA type genetic algorithms. In ?, editor, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 359–364, Cambridge, MA, USA, 6.-8. July 1994. MIT Press, Cambridge, MA. * CCA 43469 ga94bDoi. [81] Keith E. Mathias and Darrell L. Whitley. Initial performance comparisons for the delta coding algorithm. In ICEC’94 [1429], pages 433–438. ga94bMathias.
Bibliography
59
[82] Anthony G. Pipe, Terence C. Fogarty, and A. Winfield. Balancing exploration with exploitation – solving mazes with real numbered search spaces. In ICEC’94 [1429], pages 485–489. ga94bPipe. [83] T. Watson. Genetic algorithms and the representation of hierarchies. In ?, editor, Proceedings of the 2nd Singapore International Conference on Intelligent Systems (SPICIS’94), pages B165–B170, Singapore, 14.17. November 1994. Japan-Singapore AI Centre, Singapore. †CCA 61009/96 ga94bWatson. [84] David Beasley, David R. Bull, and Ralph R. Martin. Complexity reduction using expansive coding. In Terence C. Fogarty, editor, Proceedings of the AISB Workshop on Evolutionary Computation; Selected Papers, pages 304–319, Leeds (UK), 11.-13- April 1994. Springer-Verlag, Berlin. * CCA 11914/95 ga94cBeasley. [85] Harpal Singh Maini, Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Soft decision decoding of linear block codes using genetic algorithms. In Proceedings of the 1994 IEEE International Symposium on Information Theory, page 397, Trondheim (Norway), 27. June-1. July 1994. IEEE, New York. * EEA 48807/95 ga94cMaini. [86] Keith E. Mathias and Darrell L. Whitley. Transforming the search space with gray coding. In ICEC’94 [1429], pages 513–518. ga94cMathias. [87] Harpal Singh Maini, Chilukuri K. Mohan, Kishan Mehrotra, and Sanjay Ranka. Genetic algorithms for soft-decision decoding of linear block codes. Evolutionary Computation, 2(2):145–164, Summer 1994. ga94eMaini. [88] L. Enrique Aguado-Bayon and Patrick G. Farrell. Reducing the complexity of trellises for block codes. In Proceedings of the 1995 IEEE Symposium on Information Theory, page 347, Whistler, BC (Canada), 17.-22. September 1995. IEEE, Piscataway, NJ. * EI M190278 ga95aAguado-Bayon. [89] P. Brigger and M. Kunt. Morphological contour coding using structuring functions optimized by genetic algorithms. In Proceedings of the 1995 IEEE International Conference on Image Processing, volume 1, pages 534–537, Washington, DC, 23.-26. October 1995. IEEE, Los Alamitos, CA. †EI M036743/95 ga95aBrigger. [90] M. Coli and P. Palazzari. Searching for the optimal coding in genetic algorithms. In ICEC’95 [1446], pages 92–96. †prog. ga95aColi. [91] KyungMin Na, Soo-Ik Chae, and SouGuil Ann. Modified delta coding algorithm for real parameter optimisation. Electronics Letters, 31(14):1169–1171, 1995. ga95aKMNa. [92] K. KrishnaKumar, S. Narayanaswamy, and S. Garg. Solving large parameter optimization problems using a genetic algorithm with stochastic coding. In Winter et al. [1443], pages 287–303. ga95aKrishnaKumar. [93] Franz Oppacher and Dwight Deugo. Automatic change of representation in genetic algorithm. In Pearson et al. [1434], pages 218–222. ga95aOppacher. [94] Arnold L. Patton, William F. Punch, III, and Erik D. Goodman. A standard GA approach to native protein conformation prediction. In Eshelman [1436], pages 574–581. ga95aPatton. [95] Volodymyr V. Riznyk and Yaroslav P. Kiss. Application of combinatorial sequencing theory for synthesis of a protective codes. In Oˇsmera [1439], pages 127–131. ga95aRiznyk. [96] Stephen G. Roberts and Mike Turega. Evolving neural network structures: An evaluation of encoding techniques. In Pearson et al. [1434], pages 96–99. ga95aRoberts. [97] Suman K. Mitra, C. A. Murthy, and M. K. Kundu. Fractal based image coding using genetic algorithm. In P. P. Das and B. N. Chatterji, editors, Recent Advances in Pattern Recognition, Image Processing and Computer Vision, pages 86–91. Narosa Publishing House, New DelhiSingapore, 1998. †[?] ga95aSKMitra. [98] Donald S. Szarkowicz. Investigating brachistochrone trajectories with a multi-stage real-parameter genetic algorithm. The International Journal of Mathematical Applications in Science and Technology, ?(?):?, ? 1995. (Submitted for publication) ga95aSzarkowicz. [99] T. Tagami and J. Tanomaru. Enhanced performance of genetic algorithms in non-stationary environments. In ?, editor, Proceedings of the ISCA International Conference, pages 51–54, San Francisco, CA, 12.14. June 1995. International Society of Computers and Their Applications (ISCA), Raleigh, NC. †CCA 77701/95 ga95aTagami. [100] Jarkko Vuori. Genetic algorithm for codebook design in spread spectrum correlator receiver. In Oˇsmera [1439], pages 165–168. ga95aVuori. [101] T. Masuda, A. Ito, and K. Sato. An acquiring method of fuzzy reasoning rules by genetic algorithm with variable gene length. Transaction of the Institute of Electrical Engineers of Japan C, 115-C(11):1265–1272, 1995. †CCA28722/95 ga95bMasuda.
60
Genetic algorithm implementations
[102] Franz Oppacher and Dwight Deugo. The evolution of hierarchical representations. In ?, editor, Advances in Artificial Life. Proceedings of the Third European Conference on Artificial Life, volume 929 of Lecture Notes in Artificial Intelligence, pages 302–313, Granada (Spain), 4.-6. June 1995. Springer-Verlag, Berlin. †CCA 77702/95 ga95bOppacher. [103] Thorsten Schnier and John S. Gero. Learning representations for evolutionary computation. In Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, pages 387–394, Canberra, ACT, Australia, 13.-17. November 1995. World Scientific, Singapore. †CCA9297/97 ga95bSchnier. [104] G. M. Thomas, R. Gerth, T. Velasco, and L. C. Rabelo. Using real-coded genetic algorithms for Weibull parameter estimation. Computers & Industrial Engineering, 29(?):377–381, 1995. †CCA86999/95 ga95bThomas. [105] T. C. Wesselkamper and Joshua Danowitz. Some new results for multiple-valued genetic algorithms. In Proceedings of the 1995 25th International Symposium on Multiple-Valued Logic, pages 264–269, Bloomington, IN, 23.-25. May 1995. IEEE, Los Alamitos, CA. †EI M162202/95 ga95bWesselkamper. [106] Francisco Herrera, Manuel Lozano, and Jose Luis Verdegay. Fuzzy connectives based crossover operators to model genetic algorithms population diversity. Technical Report DECSAI-95110, University of Granada, Department of Computer Science and Artificial Intelligence, 1995. (to appear in Mathware & Soft Computing) †[?] ga95cHerrera. [107] Andr´e Neubauer. Real-coded genetic algorithms for bilinear signal estimation. In D. Schipanski, editor, Tagungsband des 40. Internationalen Wissenschaftlichen Kolloquiums, volume 1, pages 347–352. Ilmenau (Germany), ? 1995. †[?] ga95cNeubauer. [108] Francisco Herrera, Manuel Lozano, and Jose Luis Verdegay. Dynamic and heuristic crossover operators for controlling the diversity and convergence of real-coded genetic algorithms. Technical Report DECSAI95113, University of Granada, Department of Computer Science and Artificial Intelligence, 1995. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file HD-crossovers.ps.Z) †[?] ga95dHerrera. [109] Robert Hinterding. Representation and self-adaptation in genetic algorithms. In Korea-Australia EC’95 [1444], pages 77–90. ga95dHinterding. [110] N. Saravanan, David B. Fogel, and Kevin M. Nelson. A comparison of methods for self-adaptation in evolutionary algorithms. BioSystems, 36(?):157–166, ? 1995. ga95eFogel. [111] Francisco Herrera, Manuel Lozano, and Jose Luis Verdegay. The use of fuzzy connectives to design realcoded genetic algorithms. Mathware & Soft Computing, 1(3):239–251, ? 1995. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file Mathware95.ps.Z) ga95eHerrera. [112] John R. Koza. Gene duplication to enable genetic programming to concurrently evolve both the architecture and work-performing steps of a computer program. In ?, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, volume 1, pages 734–740, Montreal, Que (Canada), 20.-25. August 1995. Morgan Kaufmann Publishers, San Mateo, CA, USA. †CCA66432/97 ga95eJohnKoza. [113] Kalyanmoy Deb and Anup Kumar. Real-coded genetic algorithms with simulated binary crossover: studles on multimodal and multiobjective problems. Complex Systems (USA), 9(6):431–454, 1995. †CCA53372/97 ga95fDeb. [114] Francisco Herrera, Manuel Lozano, and Jose Luis Verdegay. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Technical Report DECSAI 95107, Universidad de Granada, ETS de Ingenier´ıa Informa´ atica, 1994. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file RCGA.ps.Z) ga95hHerrera. [115] A. A. Adewuya. New methods in genetic search with real-valued chromosomes. Master’s thesis, Massachusetts Institute of Technology, 1996. †[67] ga96aAAAdewuya. [116] Haldun Aytug, Siddartha Bhattacharrya, and Gary J. Koehler. A Markov chain analysis of genetic algorithms with power of 2 cardinality alphabets. European Journal of Operational Research, 96(1):195–201, 10. January 1996. ga96aAytug. [117] Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation representations for scheduling problems. In Voigt et al. [1431], pages 310–318. ga96aBierwirth. [118] R. Calabretta, R. Galbiati, S. Nolfi, and D. Parisi. Two is better than one: a diploid genotype for neural networks. Neural Process. Lett. (Netherlands), 4(3):149–155, 1996. †CCA44774/97 ga96aCalabretta. [119] David R. Bull and David W. Redmill. Optimization of image coding algorithms and architectures using genetic algorithms. IEEE Transactions on Industrial Electronics, 43(5):549–558, October 1996. ga96aDRBull.
Bibliography
61
[120] Florin Fagarasan and Mircea Gh. Negoita. A genetic algorithm with variable length genotypes. applications in fuzzy modeling. In Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 405–409, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA34092/98 ga96aFagarasan. [121] G. R. Raidl. Skillful genotype decoding in EAs for solving the cutting problem. In ?, editor, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 113–120, San Diego, CA (USA), 29. February- 3. March 1996. MIT Press, Cambridge, MA. †CCA105612/97 ga96aGRRaidl. [122] Guoyong Shi, Hitoshi Iima, and Nobuo Sannomiya. A new encoding scheme for solving job shop problems by genetic algorithm. In Proceedings of the 35th IEEE Conference on Decision and Control, volume 4, pages 4395–4400, Kobe, Japan, 11.-13. December 1996. IEEE, New York, NY. †CCA35235/97 ga96aGShi. [123] M. Golub. An implementation of binary and floating point chromosome representation in genetic algorithm. In Proceedings of the 18th International Conference on Information Technology Interfaces, pages 417–422, Pula, Croatia, 18.-21. June 1996. Univ. Zagreb, Zagreb (Croatia). †CCA26515/97 ga96aGolub. [124] Fr´ed´eric C. Gruau, Darrell L. Whitley, and Larry Pyeatt. A comparison between cellular encoding and direct encoding for genetic neural networks. In Koza et al. [1452], page ? †conf.prog ga96aGruau. [125] Francisco Herrera and Manuel Lozano. Heuristic crossovers for real-coded genetic algorithms based on fuzzy connectives. In Voigt et al. [1431], pages 336–345. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file paper 86.ps.Z) ga96aHerrera. [126] K. Blekas and A. Stafylopatis. Real-coded genetic optimization of fuzzy clustering. In Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 461–465, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA43136/98 ga96aKBlekas. [127] C. G. Lobianco and A. Piazzi. A hybrid genetic/interval algorithm for semiinfinite optimization. In Proceedings of the 35th IEEE Conference on Decision and Control, volume 1, pages 2136–2138. [128] Mei-Shiang Chang and Huye-Kuo Chen. A new encoding method of genetic algorithms towards parameter identification of fuzzy expert systems. In Proceedings of the 1996 Asian Fuzzy Systems Symposium, pages 406–411, Kenting, Taiwan, 11.-14. December 1996. IEEE, New York, NY. †CCA40877/97 ga96aM-SChang. [129] M. Eaton and J. J. Collins. A comparison of encoding schemes for genetic algorithms. In Proceedings of the International Neural Network Society 1996 Annual Meeting, pages 1067–1070, San Diego, CA (USA), 15.-18. September 1996. Lawrence Erlbaum Assoc. (Mahwah, NJ, USA). †CCA514397/98 ga96aMEaton. [130] Frank Mill, Stephen Warrington, and Richard A. Smith. Component shape encodings for genetic algorithms. In Ian Parmee and M. J. Denham, editors, Adaptive Computing in Engineering Design and Control ’96 (ACEDC’96), 2nd International Conference of the Integration of Genetic Algorithms and Neural Network Computing and Related Adaptive Techniques with Current Engineering Practice, page ?, Plymouth (UK), 26.-28. March 1996. ? †conf.prog ga96aMill. [131] Meng Qingchun. An approach on genetic algorithm with symmetric codes. Acta Electronica Sinica (China), 24(10):27–31, 1996. (In Chinese) †CCA9149/97 ga96aQingchun. [132] David W. Redmill, David R. Bull, and Ralph R. Martin. Genetic algorithms for fast search in fractal image coding. In Rashid Ansari and Mark J. Smith, editors, Visual Communications and Image Processing, volume SPIE-2727, pages 1367–1376, ?, ? 1996. The International Society for Optical Engineering, Bellingham, WA. * EEA86547/96 ga96aRedmill. [133] Jan Roupec and Jiˇr´ı Krejsa. Dominance and recessivity in genetic algorithms. In Oˇsmera [1440], pages 197–199. ga96aRoupec. [134] Conor Ryan. The degree of oneness. In Proceedings of the First Online Workshop on Soft Computing (WSC1), pages 43–48, WWW (World Wide Web), 19.-30. August 1996. Nagoya University. ga96aRyan. [135] S. M. Lucas. Evolving neural network learning behaviours with set-based chromosomes. In ?, editor, Proceedings of the 4th European Symposium on Artificial Neural Networks, volume ?, pages 291–296, Bruges, Belgium, 24.-26. April 1996. D Facto, Brussels. †CCA87097/96 ga96aSMLucas. [136] Ralf Salomon. The influence of different coding schemes on the computational complexity of genetic algorithms in function optimization. In Voigt et al. [1431], pages 227–235. ga96aSalomon. [137] Terence Soule, James A. Foster, and John Dickinson. Code growth in genetic programming. In Koza et al. [1452], page ? †conf.prog ga96aSoule. [138] Ren´e J. van der Vleuten and Jos H. Weber. Optimized signal constellations for trellis coded modulation on AWGN channels. IEEE Transactions on Communications, 44(6):646–648, June 1996. ga96aVleuten.
62
Genetic algorithm implementations
[139] Bradley C. Wallet, David J. Marchette, and Jeffrey L. Solka. A matrix representation for genetic algorithms. In ?, editor, Automatic object recognition VI, volume SPIE-2756, pages 206–214, Orlando, FL, 9. -10. April 1996. The International Society for Optical Engineering, Bellingham, WA. * A96-31780 ga96aWallet. [140] Xuejun Wang, Xizhi Shi, and Zheng Lu. The self-encoding genetic algorithm. In Proceedings of the International Conference on Neural Information Processing, volume 2, pages 832–837, Hong Kong, 24.27. September 1996. Springer-Verlag, Berlin (Germany). †EEA21114/97 ga96aXuejunWang. [141] David Andre and Astro Teller. A study in program response and the negative effects of introns in genetic programming. In Koza et al. [1452], page ? †conf.prog ga96bAndre. [142] S. Rochet, M. Slimane, and Gilles Venturini. Epistasis for real encoding in genetic algorithms. In Proceedings of the 1996 Australian New Zealand Conference on Intelligent Information Systems, pages 268–271, Adelaide (Australia), 18.-20. November 1996. IEEE, New York, NY. †P74645 ga96bSRochet. [143] Patrick D. Surry and Nicholas J. Radcliffe. Formal algorithms + formal representations = search strategies. In Voigt et al. [1431], pages 366–375. ga96bSurry. [144] Patrick D. Surry and Nicholas J. Radcliffe. Real representations. In Richard K. Belew and Michael D. Vose, editors, Proceedings of the fourth Foundations of Genetic Algorithms Workshop, pages 343–364, Alcala Park, San Diego, 2.-5. August 1996. Morgan Kauffman, San Mateo, CA. † ga96cPatrickDSurry. [145] S. K. Lim, K. C. Wong, and H. C. Sim. Recognising two-dimensional objects using genetic algorithm based on a new encoding scheme. In Proceedings of the IASTED International Conference: Signal and Image Processing, pages 92–96, Orlando, FL, 11.-14. November 1996. IASTED, Anaheim, CA (USA). †CCA70005/98 ga96cSKLim. [146] Francisco Herrera, Manuel Lozano, and Jose Luis Verdegay. Dynamic and heuristic fuzzy connectives based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms. International Journal of Intelligent Systems, 11(?):1013–1041, ? 1996. (available via anonymous ftp site decsai.ugr.es directory pub/arai/tech rep/ga-fl file IJIS.ps.Z) ga96dHerrera. [147] A. J. Soper and P. F. Robbins. A redundant representation for use by genetic algorithms on parameter optimisation problems. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 202–205, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97aAJSoper. [148] J. Gottlieb and N. Voss. Representations, fitness functions and genetic operators for the satisfiability problem. In ? [1437], pages 55–68. †prog ga97aGottlieb. [149] Haruo Ogiwara and Kenji Anzai. Modeling of time-correlated fading channel for analysis of trelliscoded modulation system. Electron Commun Jpn Part III Fundam Electron Sci., 80(10):1–8, 1997. †EI M019962/98 ga97aHaruoOgiwara. [150] I. Soto and A. Carrasco. Searching for TCM codes using genetic algorithms. IEE Proc., Commun. (UK), 144(1):6–10, 1997. †EEA45582/97 ga97aISoto. [151] Isao Ono and Shigenobu Kobayashi. A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover. In Thomas B¨ ack, editor, Proceedings of the Seventh International Conference on Genetic Algorithms, pages 246–253, East Lansing, MI, 19.-23. July 1997. Morgan Kaufmann Publishers, Inc., San Francisco, CA. †[?] ga97aIsaoOno. [152] J. J. Collins and Malachy Eaton. A global representation scheme for genetic algorithms. In ?, editor, Proceedings of the International Conference on Computational Intelligence, Lecture Notes in Computer Science, page ?, Dortmund (Germany), 28.-30. April 1997. Springer-Verlag, Berlin. (to appear) †conf. prog. ga97aJJCollins. [153] Bryant A. Julstrom. Strings of weights as chromosomes in genetic algorithms for combinatorial problems. In Alander [1449], pages 33–48. (available via anonymous ftp site ftp.uwasa.fi directory cs/3NWGA file Julstrom.ps.Z) ga97aJulstrom. [154] K. P. Dahal and J. R. McDonald. Generator maintenance scheduling of electric power systems using genetic algorithms with integer representation. page 456. [155] Charles E. Kaiser, Jr., Gary B. Lamont, Laurence D. Merkle, George H. Gates, Jr., and Ruth Pachter. Exogenous parameter selection in a real-valued genetic algorithm. In Proceedings of 1997 International Conference on Evolutionary Computation, pages 569–574, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. ga97aKaiser. [156] Vladim´ır Kvasniˇcka and Jiˇr´ı Posp´ıchal. Simple implementation of genetic programming by column tables. In Oˇsmera [1441], pages 71–76. ga97aKvasnicka.
Bibliography
63
[157] Leping Li, Thomas A. Darden, Steven J. Freedman, Barbara C. Furie, Bruce Furie, James D. Baleja, Howard Smith, Rchard G. Hiskey, and Lee G. Pedersen. Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain of coagulation factor IX using molecularBLdynamics simulation with initial Ca2+ positions determined by genetic algorithm. Biochemistry, 36(8):2132–2138, 25. February 1997. ga97aLepingLi. [158] N. B. Chang and H. W. Chen. The application of fuzzy interval genetic algorithm for waterpollution control in the river basin. In Proceedings of the First International Conference on Operations and Quantitative Management, volume 1-2, pages 653–660, Jaipur, India, 5.-8. January 1997. Indiana University Northwest, Division Business & Economics. †P82171 ga97aNBChang. [159] N. Cohen. Fractal coding in genetic algorithm (GA) antenna optimization. In Proceedings of the 1997 IEEE Antennas and Propagation Society International Symposium Digest, volume 1, pages 1692–1695, Montreal, Que (Canada), 13.-18. July 1997. †Johnson/bib ga97aNCohen. [160] T. Nomura. An analysis on linear crossover for real number chromosomes in an infinite population size. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 111–114, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44449/97 ga97aNomura. [161] J. Riquelme, M. A. Ridao, E. F. Camacho, and M. Toro. Using genetic algorithms with variable-length individuals for planning two-manipulators motion. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 26–30, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97aRiquelme. [162] Simon Ronald. Robust encodings in genetic algorithm: a survey of encoding issues. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 43–48, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44437/97 ga97aSRonald. [163] T. Kawabe and T. Tagami. A real coded genetic algorithm for matrix inequality design approach of robust PID controller with 2 degrees-of-freedom. In Proceedings of the 1997 IEEE International Symposium on Intelligent Control, pages 119–124, Istanbul (Turkey), 16.-18. July 1997. IEEE, New York, NY. †P77769 ga97aTKawabe. [164] Tomoharu Nagao. Homogeneous encoding for genetic algorithm based numerical optimization. Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), J80DII(1):56–62, 1997. In Japanese †CCA18530/97 ga97aTNagao. [165] G. Ucoluk. A method for chromosome handling of r-permutations of n-element set in genetic algorithms. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 55–58, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44438/97 ga97aUcoluk. [166] C. L. Valenzuela, A. Jones, and S. Hurley. Breeding permutations for minimum span frequency assignment. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 308–311, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97aValenzuela. [167] H. F. VanLandingham and S. Sampan. Evolutionary algorithms for design. In Proceedings of the IEEE SOUTHEASTCON 97, pages 191–195, Blacksburg, VA (USA), 12.-14. April 1997. IEEE, New York, NY. †EEA101465/97 ga97aVanLandingham. [168] David Ward. A program to decode Morse code developed with a genetic programming technique. In Koza [1445], page ? †Koza ga97aWard. [169] Wei Yan and Zhaoda Zhu. A real-valued genetic algorithm for optimization problem with continuous variables. Transactions of Nanjing University of Aeronautics and Astronautics, 14(1):1–5, 1997. †A9734984 ga97aWeiYan. [170] Yan Wei and Zhu Zhaoda. A real-valued genetic algorithm for optimization problem with continuous variables. Transactions of Nanjing University of Aeronautics and Astronautics, 14(1):1–4, 1997. †CCA78622/97 ga97aYanWei. [171] Tomohiro Yoshikawa, Takeshi Furuhashi, and Yoshiki Uchikawa. The effects of combination of DNA coding method with pseudo-bacterial GA. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 285–290, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †EEA56313/97 ga97aYoshikawa. [172] Michele Zamparelli. Genetically trained cellular neural networks. Neural Networks, 10(6):1143–1151, August 1997. ga97aZamparelli.
64
Genetic algorithm implementations
[173] Zhangang Han and Ruqian Lu. Tree structure genetic algorithm with a nourishment mechanism. In ?, editor, Proceedings of the Third Annual International Conference, volume ?, pages 482–491, Shanghai, China, 20.-22. August 1997. Springer-Verlag, Berlin (Germany). †CCA89510/97 ga97aZhangHan. [174] F. Ashrafzadeh and Behrouz Nowrouzian. Crossover and mutation in genetic algorithms employing canonical signed-digit number system. In Proceedings of Midwest Symposium on Circuits and Systems Delicated to the Memory of Professor Mac Van Valkenburg, volume 2, pages 702–705, Sacramento, CA, 3.-6. August 1997. IEEE, New York, NY. †CCA53297/98 ga97bAshrafzadeh. [175] C. E. Kaiser, L. D. Merkle, G. B. Lamont, George H. Gates, Jr., and R. Pachter. Case studies in protein structure prediction with real-valued genetic algorithms. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, page 8pp, Minneapolis, MN, 14.-17. March 1997. Soc. Ind. Appl. Math., Philadelphia, PA (USA). †CCA101008/99 ga97bCEKaiser. [176] Takeshi Furuhashi. Fuzzy evolutionary computation. chapter 2.2 Development of if-then rules with the use of DNA coding, pages 108–105. Kluwer Academic Publishers, New York, 1997. ga97bFuruhashi. [177] D. S. Linden. Using a real chromosome in a genetic algorithm for wire antenna optimization. In Proceedings of the 1997 IEEE Atennas and Propagation Society International Symposium Digest, volume 3, pages 1704– 1707, Montreal, Que (Canada), 13.-18. July 1997. †Johnson/bib ga97bLinden. [178] N. B. Chang and R. W. Chen. The useof fuzzy interval genetic algorithm for solving multiobjective nonlinear mixed-integer programming-model. In Proceedings of the First International Conference on Operations and Quantitative Management, volume 1-2, pages 76–82, Jaipur, India, 5.-8. January 1997. Indiana University Northwest, Division Business & Economics. †P82171 ga97bNBChang. [179] Pavel Oˇsmera, Vladim´ır Kvasniˇcka, and Jiˇr´ı Posp´ıchal. Genetic algorithms with diploid chromosomes. In Oˇsmera [1441], pages 111–116. ga97bOsmera. [180] A. Piccolboni and G. Mauri. Application of evolutionary algorithms to protein folding prediction. In ? [1437], pages 123–135. * CCA 40990/98 ga97bPiccolboni. [181] Conor Ryan. Shades - a polygenic inheritance scheme. In Oˇsmera [1441], pages 140–147. ga97bRyan. [182] S. Ronald and S. Kirkby. Finding multiple solutions in order based problems using a multi-chromosome genetic algorithm. In Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, volume 2, pages 1009–1012, Dunedin (New Zealand), 24.-28. November 1997. Springer-Verlag, Singapore. † CCA67137/98 ga97bSRonald. [183] Randy L. Haupt and S. E. Haupt. Continuous parameter vs. binary genetic algorithms. In ?, editor, Applied Computational Electromagnetics Symposium Digest, volume II, pages 1387–1392, Monterey, CA, 17.-21. March 1997. ? †Johnson/bib ga97cRLHaupt. [184] Conor Ryan. Diploidy without dominance. In Alander [1449], pages 63–70. (available via anonymous ftp site ftp.uwasa.fi directory cs/3NWGA file Ryan.ps.Z) ga97dRyan. [185] J. J. Collins and Malachy Eaton. Genocodes for genetic algorithms. In Oˇsmera [1441], pages 23–30. ga97nJJCollins. [186] Sanghamitra Bandyopadhyay and Sankar K. Pal. Incorporating chromosome differentiation in genetic algorithms. Inf. Sci. (USA), 104(3-4):293–319, 1998. †CCA9745/98 ga98aBandyopadhyay. [187] N. P. Belfiore and A. Esposito. Theoretical and experimental study of crossover operators of genetic algorithms. Journal of Optimization Theory and Applications, 99(2):271–302, November 1998. ga98aBelfiore. [188] D. Sadot, Uri Mahlab, and V. Barnatan. A new method for developing optical CDMA address code sequences using the genetic algorithm. In Proceedings of the 1998 IEEE International Conference on Communications, volume 1-3, pages 1279–1283, Atlanta, GA, 7.-11. June 1998. IEEE, New York, NY. †P80966 ga98aDSadot. [189] Francisco Herrera, Manuel Lozano, and Jose-Luis Verdegay. Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review, 12(4):265–319, August 1998. ga98aFHerrera. [190] Friedrich Mombers, Martin Gumm, Dogimont Stephanie, Pierangelo Garino, and Daniel Mlynek. IMAGE: a low cost, low power video processor for high quality motion estimation in MPEG-2 encoding. IEEE Transactions on Consumer Electronics, 44(3):774–783, August 1998. ga98aFMombers. [191] Hajime Kita, Isao Ono, and Shigenobu Kobayashi. Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms. In Proceedings of the 1998 IEEE World Congress on Computational Intelligence, pages 529–534, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74626/98 ga98aHKita.
Bibliography
65
[192] Isao Ono, Shigenobu Kobayashi, and Koji Yoshida. Global and multiobjective optimization for lens design by real-coded genetic algorithm. In L. R. Gardner and K. P. Thompson, editors, International Optical Design Conference 1998, volume SPIE-3482, pages 110–121, Kona, HI, 8. -12. June 1998. The International Society for Optical Engineering, Bellingham, WA. †PA 90335/99 P82890/99 ga98aIsaoOno. [193] John Arthur Niesse. The structural optimization of atomic and molecular microclusters using a genetic algorithm in real-valued space-fixed coordinates. PhD thesis, University of New Hamshire, 1998. (UMI No. DA9831963) * ChA 193956e/98 ga98aJANiesse. [194] S. Jantarang and P. Hongprayoon. Circuit optimization using genetic algorithms with real value bits. In Proceedings of the 1998 Summer Computer Simulation Conference, pages 117–124, Reno, NV, 19.-22. July 1998. Soc. Computer Simulation. †P84747 ga98aJantaran. [195] Keng C. Yap and David C. Zimmerman. The effect of coding on genetic algorithm based structural damage detection. In Proceedings of the 16th International Modal Analysis Conference, volume 1, pages 165–171, Santa Barbara, CA, 2.-5. February 1998. Society for Experimental Mechanics, Inc., Bethel, CT. †A98-19415 ga98aKengCYap. [196] Kit-Sang Tang, Kim-Fung Man, Zhi-Feng Liu, and Sam Kwong. Minimal fuzzy memberships and rules using hierarchical genetic algorithms. IEEE Transactions on Industrial Electronics, 45(1):162–169, 1998. †CCA19561/98 ga98aKit-SangTang. [197] William B. Langdon. The evolution of size in variable length representations. In Proceedings of the IEEE World Congress on Computational Intelligence, pages 633–638, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. †CCA78310/98 ga98aLangdon. [198] Pavel Oˇsmera. An application of genetic algorithms with diploid algorithms. In Proceedings of the 4th International Mendel Conference on Genetic Algorithms, Optimization problems, Fuzzy Logic, Neural networks, Rough Sets (MENDEL’98) [1442], pages 86–89. ga98aOsmera. [199] Pai-Yi Huang, C. S. Lin, and Y. Y. Chen. Real-coded genetic algorithm-based fuzzy sliding-mode control design for precision positioning. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems at the IEEE World Congress on Computational Intelligence, volume 1-2, pages 1247–1252, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. †P80940 ga98aPaiHuang. [200] Ronald P. White, John Arthur Niesse, and Howard R. Mayne. A study of genetic algorithm approaches to global geometry optimization of aromatic hydrocarbon microclusters. Journal of Chemical Physics, 108(5):2208–2218, 1. February 1998. ga98aRonaldWhite. [201] Shane Lee and Hefin Rowlands. A diploid genetic algorithm for finding robust solutions in a problem space. In Oˇsmera [1442], pages 63–68. ga98aShaneLee. [202] Shen-Chuan Tai, Wen-Jan Chen, and Po-Jen Cheng. Genetic algorithm for single bitmap absolute moment block truncation coding of color images. Optical Engineering, 37(9):2483–2490, September 1998. ga98aShen-ChuanTai. [203] T. Tsuji, T. Hachino, R. Oguro, N. Umeda, and H. Takata. A control design of robotics using the genetic algorithm. Artif. Life Robot. (Japan), 2(1):24–27, 1998. †CCA80124/99 ga98aTTsuji. [204] W. J. Pullan. Genetic operators for a two-dimensional bonded molecular model. Computers & Chemistry, 22(4):331–338, ? 1998. * ChA 193852t/98 ga98aWJPullan. [205] Xu Mingyang, Wang Wenran, and Wang Jiaying. Applying genetic algorithms for finding best coding of self-coding rod position detection. J. Tsinghua Univ., Sci. Technol. (China), 38(12):4.–8., 1998. In Chinese †PA64807/99 ga98aXuMingyang. [206] Francisco Herrera, Manuel Lozano, and Claudio Moraga. Hybrid distributed real-coded genetic algorithms. In Agoston E. Eiben, Thomas B¨ ack, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, 5th International Conference, volume LNCS of 1498, pages 603–612, Amsterdam (The Netherlands), September 1998. Springer-Verlag Berlin Heidelberg. * www /Springer ga98bFHerrera. [207] H. Sawai, S. Kizu, and T. Endo. Parameter-free genetic algorithm (pfga). Transactions of the Institute of Electronics, Information, and Communication Engineers D-II (Japan), J81D-II(2):450–452, 1998. In Japanese †CCA34058/98 ga98bHSawai. [208] Mika Hirvensalo. Quantum error correction. Technical Report 178, TUCS, 1998. ga98cMikaHirvensalo. [209] Shigeyoshi Tsutsui and L. C. Jain. On the effect of multi-parents recombination in binary coded genetic algorithms. In Proceedings of the 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, volume 3, pages 155–160, Adelaide, SA (Australia), 21.-23. April 1998. IEEE, New York, NY. †P82255 ga98cSTsutsui.
66
Genetic algorithm implementations
[210] C. A. Garrett, Junqi Huang, M. N. Goltz, and G. B. Lamont. Parallel real-valued genetic algorithms for bioremediation optimization of TCE-contaminated groundwater. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2183–2189, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA84953/99 ga99aCAGarrett. [211] Stuart J. Clement, Jonathan Halliday, and Robert E. Smith. Practical handbook of genetic algorithms. In Chambers [1428], chapter 11. Memory efficient code for GAs, pages 407–431. ga99aClement. [212] A. Daktariunas, P. Jurkus, and L. Yuodis. Encoding of images using a genetic algorithm. J. Opt. Technol. (USA), 66(9):92–97, 1999. †CCA86708/99 ga99aDaktariu. [213] K. Freitag, L. Hildebrand, and C. Moraga. Quaternary coded genetic algorithms. In Proceedings of the 29th IEEE International Symposium on Multiple-Valued Logic, pages 194–199, Freiburg (Germany), 20.-22. May 1999. IEEE Computer Society Press, Los Alamitos , CA. †CCA71259/99 ga99aFreitag. [214] H. F. Chau. Quantum convolutional error correction codes. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 314–324, Palm Springs, CA, February 1998 1999. SpringerVerlag, Berlin. ga99aHFChau. [215] Xu Hai-Ping, Zhang Tong, Wang Zi-Cai, and Jin Jing-Hao. The study of float-coded genetic algorithm and its application in power plant units combination optimization. Mini-Micro Syst. (China), 20(8):578–582, 1999. In Chinese †CCA96215/99 ga99aHai-Ping. [216] Natalie Hammerman and Robert Goldberg. Practical handbook of genetic algorithms. In Chambers [1428], chapter 6. Algorithms to improve the convergence of a genetic algorithm with a finite state machine genome, pages 120–238. ga99aHammerman. [217] Isao Ono, Yoshihiro Tatsuzawa, Shigenobu Kobayashi, and Koji Yoshida. Designing lens systems taking account of glass selection by real-coded genetic algorithms. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 3, pages 592–597, ?, 19.-15. October 1999. IEEE. ga99aIsaoOno. [218] J. R. Kim, Mitsuo Gen, and K. Ida. Bicriteria network design using a spanning tree-based genetic algorithm. Artif. Life Robot. (Japan), 3(2):65–72, 1999. †CCA98835/99 ga99aJRKim. [219] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code space using genetic algorithms. SIGPLAN Notices, 34(7):1–9, 1999. †CCA91507/99 ga99aKDCooper. [220] Kalyanmoy Deb and Hans-Georg Beyer. Self-adaptive genetic algorithms with simulated binary crossover. Technical report, 1999. † ga99aKalyanmoyDeb. [221] Hillol Kargupta. A striking property of genetic code-like transformations. Technical Report EECS-99-004, Washington State University, School of EECS, 1999. †www /Kargupta ga99aKargupta. [222] Natalio Krasnogor, William E. Hart, Jim Smith, and David A. Pelta. Protein structure prediction with evolutionary algorithms. In ?, editor, Proceedings of the GECCO-99 Conference, volume ?, page ?, Orlando, FL, 13.-17. July 1999. ? ga99aKrasnogor. [223] P. Larra˜ naga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artificial Intelligence Review, 13(2):129–170, April 1999. ga99aLarranaga. [224] Lu-Ming Duan and Guang-Can Guo. Quantum error correction is applicable for reducing spatially correlated decoherence. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 337–340, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aLu-MingDuan. [225] Michael Levin. Practical handbook of genetic algorithms. In Chambers [1428], chapter 5. Matrix-based GA representations in a model of evolving animal communication, pages 103–117. ga99aMLevin. [226] C. Munteanu and V. Lazarescu. Improving mutation capabilities in a real-coded genetic algorithm. In Proceedings of the First European Workshops, pages 138–149, Goteburg, Sweden, 26.-27. May 1999. SpringerVerlag, Berlin (Germany). †CCA81092/99 ga99aMunteanu. [227] S. Thompson. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems (UK), 12(5-6):277–284, 1999. †CCA86538/99 ga99aSThompson. [228] Shigeyoshi Tsutsui, Masayuki Yamamura, and Takahide Higuchi. Multi-parent recombination with simplex crossover in real coded genetic algorithm. In ?, editor, Proceedings of the Genetic and Evolutionary Computation Conference, volume ?, pages 657–664, ?, ? 1999. ? †[?] ga99aShigeyoshiTsutsui.
Bibliography
67
[229] Vwani P. Roychowdhury and Farrokh Vatan. On the existence of nonadditive quantum codes. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 325–336, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aVPRoychowdhury. [230] S. Vukovic and L. Sopta. Binary-coded and real-coded genetic algorithm in pipeline flow optimization. Math. Commun. (Croatia), 4(1):35–42, 1999. †CCA60558/99 ga99aVukovic. [231] Wen-Jan Cieni and Shen-Chuan Tai. A genetic algorithm approach to multilevel block truncation coding. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, E82A(8):1456–1462, 1999. †CCA89918/99 ga99aWenCieni. [232] Z. P. Chen, J. H. Jiang, Y. Li, and R. Q. Yu. Nonlinear mapping using real-valued genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 45(1,2):409–, 1999. (Proceedings of the 1st International Conference on Chemometrics in China (1STCCC), Zhangjiajie (China), Oct 17.-23., 1997) †P83850/99 ga99aZPChen. [233] Dan Ashlock, M. Smucker, and J. Walker. Graph based genetic algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1362–1368, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77179/99 ga99bAshlock. [234] Kalyanmoy Deb and Hans-Georg Beyer. Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In Proceedings of the Genetic and Evolutionary Computation Conference, volume 1, pages 172–179, Orlando, FL, 13.-17. July 1999. Morgan Kaufmann Publishers. ga99bKalyanmoyDeb. [235] F. Saitoh. Integrated local image binarization using genetic algorithm. Trans. Inst. Electr. Eng. Jpn. C (Japan), 119-C(8-9):942–947, 1999. In Japanese †CCA86701/99 ga99cFSaitoh. [236] Andrew J. Mason. Non-binary codings and partition coefficients for genetic algorithms. Management Studies Research Paper 3/91, University of Cambridge, Engineering Department, 1991. †Mason91a ga:AJMason91b. [237] R. J. M. Vaessens, E. H. L. Aarts, and J. H. van Lint. Genetic algorithms in coding theory - a table for A3 (n, d). Discrete Applied Mathematics, 45(1):71–87, August 1993. ga:Aarts93a. [238] Hendrik James Antonisse. A new interpretation of schema notation that overturns the binary encoding constraint. In Schaffer [1419], pages 86–91. ga:Antonisse89. [239] Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding for genetic algorithms. Technical Report CS90-175, University of San Diego, La Jolla, Computer Science and Engineering Department, 1990. † ga:Belew90c. [240] Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding for genetic algorithms. Machine Learning, 9(1):9–21, June 1992. ga:Belew92b. [241] Hugh M. Cartwright and Stephen P. Harris. Analysis of the distribution of airborne pollution using genetic algorithms. Atmospheric Environment Part A General Topics, 27A(12):1783–1791, August 1993. ga:Cartwright93b. [242] F. Comellas and R. Roca. Using genetic algorithms to design constant weight codes. In J. Alspector, R. Goodman, and T. X. Brown, editors, Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications, pages 119–124, Princeton, NJ, 18.-20. October 1993. Lawrence Erlbaum Associate Publishers, Hillsdale. †P62660/94 ga:Comellas93a. [243] David C. Walters, Gerald B. Shebl´e, and M. E. El-Hawary. Genetic algorithm solution of economic-dispatch with valve point loading. IEEE Transactions on Power Systems, 8(3):1325–1332, 1993. (Proceedings of the 1992 Summer Meeting of the Power-Engineering-Society of IEEE, Seattle, WA, 12.-16. Jul. 1992) ga:DCWalters93a. [244] Kejitan Dontas and Kenneth A. De Jong. Discovery of maximal distance codes using genetic algorithms. In Apostolos Dollas and Nikolaos G. Bourbakis, editors, Proceedings of the 1990 IEEE International Conference on Tools with Artificial Intelligence TAI’90, pages 905–911, Herndon, VA, 6.-9. November 1990. IEEE Computer Society Press, Los Alamitos, CA. * EI A029381/92 ga:DeJong90f. [245] Emanuel Falkenauer and A. Delchambre. A genetic algorithm for bin packing and line balancing. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, volume 2, pages 1186–1192, Nice, France, 12. - 14. May 1992. IEEE Robotics and Automation Society, IEEE Computer Society Press, Los Alamitos, California. ga:Falkenauer92a. [246] David E. Goldberg. Real-coded genetic algorithms, virtual alphabets, and blocking. IlliGAL Report 90001, University of Illinois at Urbana-Champaign, 1990. also as [248] ga:Goldberg90e.
68
[247] David E. Goldberg. ga:Goldberg90g.
Genetic algorithm implementations
A theory of virtual alphabets.
In Schwefel and M¨ anner [1422], pages 13–22.
[248] David E. Goldberg. Real-coded genetic algorithms, virtual alphabets and blocking. Complex Systems, 5(2):139–167, 1992. also as [246] ga:Goldberg91f. [249] John J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms. In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing, pages 42–60. Pitman Publishing, London, 1987. ga:Grefenstette87a. [250] Peter J. B. Hancock. Coding strategies for genetic algorithms and neural nets. PhD thesis, University of Stirling, Department of Computing Science and Mathematics, 1992. †Fogel/bib ga:HancockThesis. [251] Matthew F. Hobbs. Genetic algorithms, annealing, and dimension alleles. Master’s thesis, Victoria University of Wellington, New Zealand, 1991. †Michalewicz92book ga:HobbsMSThesis. [252] Cezary Z. Janikow and Zbigniew Michalewicz. An experimental comparison of binary and floating point representation in genetic algorithms. In Belew and Booker [1423], pages 31–36. ga:Janikow91a. [253] Kit Po Wong and Yin Wa Wong. Floating-point number coding method for genetic algorithms. In ?, editor, ANZIIS-93 Proceedings of the Inaugural Australian and New Zealand Conference on Intelligent Information Systems, page ?, Perth (Australia), 1.-3. December 1993. ? (to appear) †prog ga:KPWong93a. [254] George Kampis. Coevolution in the computer: The necessity and use of distributed code systems. In ?, editor, Self-organization and life, from simple rules to global complexity, Proceedings of the Second European Conference on Artificial Life, pages 537–546, Brussels (Belgium), 24.-26. May 1993. MIT Press, Cambridge, MA. ga:Kampis93a. [255] Keith E. Mathias. Delta coding strategies for genetic algorithms. PhD thesis, Colorado State University, Fort Collins, 1991. †Mathias/FOGA2 ga:MathiasThesis. [256] Eric Michielssen, S. Ranjithan, and Raj Mittra. Optimal multilayer filter design using real coded genetic algorithms. IEE Proceedings J: Optoelectronics, 139(6):413–420, December 1992. ga:RMittra92. [257] Richard A. Caruana and J. David Schaffer. Representation and hidden bias: Gray vs. binary coding for genetic algorithms. In Proceedings of the Fifth International Conference on Machine Learning, pages 153–162, ?, ? 1988. Morgan Kaufmann, Los Altos, CA. † ga:Schaffer88a. [258] Richard A. Caruana, J. David Schaffer, and Larry J. Eshelman. Using multiple representations to improve inductive bias - Gray and binary coding for genetic algorithms. In A. M. Segre, editor, Proceedings of the Sixth International Workshop on Machine Learning, pages 375–378, Cornell University, Ithaca, NY, June 1989. Morgan Kauffman, San Mateo, CA. †P42485 ga:Schaffer89c. [259] Larry J. Eshelman and J. David Schaffer. Real-coded genetic algorithms and interval-schemata. In Whitley [1424], pages 187–202. ga:Schaffer92b. [260] Donald S. Szarkowicz. A multi-stage adaptive-coding genetic algorithm for design applications. In D. Page, editor, Proceedings of the 1991 Summer Computer Simulation Conference, pages 138–144, Baltimore, MD, 22.-24. July 1991. SCS, San Diego, CA. ga:Szarkowicz91a. [261] Donald S. Szarkowicz. A genetic algorithm for mixed-parameter design applications. In Proceedings of the 1992 Sixth Annual Midwest Computer Conference, pages 45–53, Hammond, IN, 27. March 1992. Purdue University Calumet, Hammond, IN. ga:Szarkowicz92a. [262] Donald S. Szarkowicz. A genetic algorithm for minimum-time trajectories. In Proceedings of the 1992 Summer Computer Simulation Conference, pages 184–188, Reno, NV, 27.-29. July 1992. Simulation Councils, Inc., San Diego, CA. ga:Szarkowicz92b. [263] Darrell L. Whitley, Keith E. Mathias, and P. Fitzhorn. Delta coding: An iterative search strategy for genetic algorithms. In Belew and Booker [1423], pages 77–84. ga:Whitley91b. [264] Jarmo T. Alander. Indexed bibliography of genetic algorithms and coding. Report 94-1-CODE, University of Vaasa, Department of Information Technology and Production Economics, 1995. (available via anonymous ftp site ftp.uwasa.fi directory cs/report94-1 file gaCODEbib.ps.Z) gaCODEbib. [265] Jarmo T. Alander. On the basic genetic algorithm parameters - an empirical study. In Jarmo T. Alander, Pekka Ala-Siuru, and Heikki Hy¨ otyniemi, editors, STeP-2004, Proceedings of the 11th Finnish Artificial Intelligence Conference, volume 3, pages 19–32, Vantaa (Finland), 1.3. September 2004. Finnish Artificial Intelligence Society (FAIS). (also available via www URL: ftp://ftp.uwasa.fi/cs/report04-2/STeP04GA.ps) STeP04GA.
Bibliography
69
[266] A. G´ omez and D. de la Fuente. Resolution of strip-packing problems with genetic algorithms. Journal of the Operational Research Society, 51(11):1289–1295, November 2000. ga00aAGomez. [267] Anabela Sim˜ oes and Ernesto Costa. Using genetic algorithms with asexual transposition. pages 323–330, 2000. ga00aASimeos. [268] Christopher A. Voigt, D. Benjamin Gordon, and Stephen L. Mayo. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. Journal of Molecular Biology, 299(?):789– 803, ? 2000. ga00aCAVoigt. [269] Hugues Bersini. Chemical crossover. pages 825–832, 2000. ga00aHBersini. [270] Hiroshi Furutani. Study of evolution in genetic algorithms by Eigen’s theory including crossover operator. page 389, 2000. ga00aHiroshiFurutani. [271] Hiroshi Someya and Masayuki Yamamura. Where should children be generated by crossover operator on function optimization? page 382, 2000. ga00aHiroshiSomeya. [272] I. Ono, M. Takahashi, and N. Ono. Evolving neural networks in environments with delayed rewards by a real-coded GA using the unimodal normal distribution crossover. In Proceedings of the 2000 Congress on Evolutionary Computation, volume 1, pages 659–666, La Jolla, CA, USA, 16.-19.July 2000. IEEE, Piscataway, NJ. * www/IEEE ga00aIOno. [273] Jun Sakuma and Shigenobu Kobayashi. Extrapolation-directed crossover for job-shop scheduling problems: complementary combination with JOX. pages 973–980, 2000. ga00aJSakuma. [274] Siddhartha Bhattacharyya and Marvin D. Troutt. Crossover in probability spaces. pages 120–127, 2000. ga00aSBhattacharrya. [275] Soonchul Jung and Byung-Ro Moon. The natural crossover for the 2D Euclidean TSP. pages 1003–1010, 2000. ga00aSJung. [276] A. Prugel-Bennet. Modeling crossover-induced linkage in genetic algorithms. IEEE Transactions on Evolutionary Computation, 5(4):376–387, August 2001. * www/IEEE ga01aAPrugel-Bennet. [277] Joelle N. Pelletier. A RACHITT for our toolbox. Nature Biotechnology, 19(4):314–315, April 2001. ga01aJNPelletier. [278] Lothar M. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, 259(1-2):1–61, 28, May 2001. ga01aLMSchmitt. [279] Riccardo Poli. Exact schema theory for genetic programming and variable-length. Genetic Programming and Evolvable Machines, 2(2):123–163, June 2001. †www /Banzhaf ga01aRPoli. [280] Stefano R. Bonissone. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs. In Bruno Bosacchi, David B. Fogel, and James C. Bezdek, editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV, volume SPIE-4479, pages 157–164, ?, November 2001. The International Society for Optical Engineering. * www/SPIE Web ga01aSRBonissone. [281] Wayne M. Coco, William E. Levinson, Michael J. Crist, Harm J. Hektor, Aldis Darzins, Philip T. Pienkos, Charles H. Squires, and Daniel J. Monticello. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nature Biotechnology, 19(4):354–359, April 2001. ga01aWMCoco. [282] Hyun-Sook Yoon and Byung-Ro Moon. An empirical study on the synergy of multiple crossover operators. IEEE Transactions on Evolutionary Computation, 6(2):212–223, April 2002. ga02aH-SYoon. [283] Michael Dimopoulos and Panagiotis Linardis. Using non-uniform crossover in genetic algorithm methods to speed up the generation of test patterns for sequential circuits. In I. P. Vlahavas and C. D. Spyropoulos, editors, Methods and Applications of Artificial Intelligence, Second Hellenic Conference on AI, SETN 2002, volume LNAI of 2308, pages 485–493, Thessaloniki (Greece), 11.-12. April 2002. Springer-Verlag Berlin Heidelberg. * www /Springer ga02aMDimopoulos. [284] T. D. Gwiazda. Full exploitation of the crossover operator potential - on the example of the problems of nonlinear optimisation with constraints. pages 71–76, 2002. ga02aTDGwiazda. [285] Xiaoming Dai, Runmin Zou, Rong Sun, Rui Feng, and Shao Huihe. Convergence properties of noncrossover genetic algorithm. In Intelligent Control and Automation, 2002, Proceedings of the International Conference, volume 3, pages 1822–1826, ?, 10.-14. June 2002. IEEE, Piscataway, NJ. * www /IEEE ga02aXiaomingDai.
70
Genetic algorithm implementations
[286] Yan Cui, Wing Hung Wong, Erich Bornberg-Bauer, and Hue Sun Chan. Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes. Proceedings of the National Academy of Sciences of the United States of America, 99(2):809–814, 22. January 2002. ga02aYanCui. [287] Kit Yan Chan, M. Emin Aydin, and Terence C. Fogarty. New factorial design theoretic crossover operator for parametric problem. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 22–33, Essex (UK), 14.-16. April 2003. SpringerVerlag, Berlin. ga03aKitYanChan. [288] Michael Defoin Platel, Manuel Clergue, and Philippe Collard. Maximum homologous crossover for linear genetic programming. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 194–203, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aMDPlatel. [289] Kit Yan Chan and Terence C. Fogarty. Experimental design based multi-parent crossover operator. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 297–306, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03bKitYanChan. [290] Shubhalaxmi Kher, T. S. Ganesh, Prem Ramesh, and Arun K. Somani. Greedy dynamic crossover management in hardware accelerated genetic algorithm implementations using FPGA. In Proceedings of the 11th International Conference on Computer Modelling and Simulation 2009 (UKSIM’09), pages 47–52, ?, 25.-27. March 2009. IEEE, Piscataway, NJ. ga09aSKher. [291] Anup Kumar and Sanjay P. Ahuja. Performance & reliability oriented combined file, capacity allocation on distributed systems. In Proceedings of the 1994 IEEE 13th Annual International Phoenix Conference on Computers and Communications, pages 282–288, Phoenix, AZ, 12.-15. April 1994. IEEE, New York. * EI M120559/95 ga94aAKumar. [292] R. Harris. An alternative description of the action of crossover. In ?, editor, Proceedings of Adaptive Computing in Engineering Design and Control, page ?, University of Plymouth (UK), 21.-22. September 1994. ? †Plymouth ga94aHarris. [293] K. C. Chan and H. Tansri. Study of genetic crossover operations on the facilities layout problem. Computers & Industrial Engineering, 26(3):537–550, July 1994. * CCA 64979/94 EI M179458/94 ga94aKCChan. [294] Harpal Singh Maini, Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Knowledge-based nonuniform crossover. In ICEC’94 [1429], pages 22–27. ga94aMaini. [295] Runwei Cheng and Mitsuo Gen. Crossover on intensive search and traveling salesman problem. Computers & Industrial Engineering, 27(1-4):485–488, September 1994. (Proceedings of the 16th Annual Conference on Computers and Industrial Engineering, Ashigaga (Japan), 7.-9. Mar.) * CCA 11849/95 EI M083564/95 ga94aRCheng. [296] Hideo Saito and Naoki Kobayashi. Evolutionary computation approaches to halftoning algorithm. In ICEC’94 [1429], pages 787–791. ga94aSaito. [297] Khushro Shahookar, W. Khamisani, Pinaki Mazumder, and S. M. Reddy. Genetic beam search for gate matrix layout. IEE Proceedings, Computers and Digital Techniques, 141(2):123–128, March 1994. ga94aShahookar. [298] Tony White and Franz Oppacher. Adaptive crossover using automata. In Davidor et al. [1430], pages 229–238. * CCA 36490/95 ga94aTWhite. [299] Pierre A. I. Wijkman. The purpose of sex. In Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pages 273–277, Brisbane, QLD, 29. November- 2. December 1994. IEEE, New York. * CCA 45480/95 ga94aWijkman. [300] Xingzhao Liu, Akio Sakamoto, and Takashi Shimamoto. Genetic channel router. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E77-A(3):492–501, March 1994. ga94aXLiu. [301] Masayuki Yamamura, Hiroshi Satoh, and Shigenobu Kobayashi. An analysis of crossover’s effect in genetic algorithms. In ICEC’94 [1429], pages 613–618. ga94aYamamura.
Bibliography
71
[302] Sencer Yeralan and Chen-Sin Lin. Genetic search with dynamic operating disciplines. Computers & Operations Research, 21(8):941–954, October 1994. ga94aYeralan. [303] Patrik D’haeseleer. Context preserving crossover in genetic programming. In ICEC’94 [1429], pages 256– 261. ga94bDhaeseleer. [304] G. Levinson. Crossovers generate non-random recombinants under Darwinian selection. In ?, editor, Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 90–101, Cambridge, MA, USA, 6.-8. July 1994. MIT Press, Cambridge, MA. * CCA43691/94 ga94bLevinson. [305] Samir W. Mahfoud. Crossover interactions among niches. In ICEC’94 [1429], pages 188–193. ga94bMahfoud. [306] Harpal Singh Maini, Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Knowledge-based nonuniform crossover. Complex Systems, 8(4):257–293, August 1994. * EEA 37286/95 CCA 36470/95 ga94bMaini. [307] Xiaofeng Qi and Francesco Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space, part II: Analysis of the diversification role of the crossover. IEEE Transactions on Neural Networks, 5(1):120–129, January 1994. †toc ga94bQi. [308] Steve G. Romaniuk. Applying crossover operators to automatic neural network construction. In ICEC’94 [1429], pages 750–752a. ga94bRomaniuk. [309] Marc Schoenauer and Mich´ele Sebag. Controlling crossover through inductive learning. In Davidor et al. [1430], page ? †conf. prog. ga94bSchoenauer. [310] M. Srinivas and Lalit M. Patnaik. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656–667, April 1994. ga94bSrinivas. [311] Mutsunori Yagiura and Toshihide Ibaraki. On genetic crossover operators for sequencing problems. Transactions of the Institute of Electrical Engineers of Japan C, 114-C(6):713–720, June 1994. (in Japanese) * CCA 999/95 ga94bYagiura. [312] Nicholas J. Radcliffe and Patrick D. Surry. Formal memetic algorithms. In Terence C. Fogarty, editor, Evolutionary Computing. Selected Papers of the AISB Workshop, pages 1–16, Leeds (UK), 11.-14. April 1994. Springer-Verlag, Berlin. * CCA 11844/95 ga94cRadcliffe. [313] Harpal Singh Maini. Incorporation of knowledge in genetic recombination. PhD thesis, Syracuse University, 1994. * DAI Vol 56 No 3 ga94dMaini. [314] David B. Fogel and L. Stayton. On the effectiveness of crossover in simulated evolutionary optimization. BioSystems, 32(3):171–182, ? 1994. †[348][1188] ga94hFogel. [315] Jaroslaw Arabas, Jan J. Mulawka, and Jacek Pokrasniewicz. A new class of crossover operators for numerical optimization. In Eshelman [1436], page ? †prog ga95aArabas. [316] Thang Nguyen Bui and Byung-Ro Moon. On multi-dimensional encoding/crossover. In Eshelman [1436], page ? †prog ga95aBui. [317] H. Delmaire, A. Langevin, and D. Riopel. Evolution systems and the quadratic assignment problem. ´ Report G-95-24, Universit´e McGill, Ecole Polytechnique, GERAD, 1995. * GERAD report cataloque ga95aDelmaire. [318] Eun-Joung Ko and O. N. Garcia. Adaptive control of crossover rate in genetic programming. In Proceedings of the Artificial Neural Networks in Engineering (ANNIE’95), volume 5, pages 331–337, St. Louis, MO, 12.-15. November 1995. ASME Press, New York, NY. †CCA11001/97 ga95aE-JKo. [319] H. Altay G¨ uvenir. A genetic algorithm for multicriteria inventory classification. In Pearson et al. [1434], pages 6–9. ga95aGuvenir. [320] Inki Hong, Andrew B. Kahng, and Byung Ro Moon. Exploiting synergies of multiple crossovers: initial studies. In ICEC’95 [1446], pages 245–250. †prog. ga95aHong. [321] Lae-Jeong Park and Cheol Hoon Park. A genetic algorithm for job shop scheduling. In Korea-Australia EC’95 [1444], pages 217–227. ga95aLJPark. [322] Jim Levenick. Metabits: Generic endogenous crossover control. In Eshelman [1436], page ? ga95aLevenick.
†prog
[323] Zhang Liang-Jie, Mao Zhi-Hong, and Li Yan-Da. Mathematical analysis of crossover operator in genetic algorithms and its improved strategy. In ICEC’95 [1446], pages 412–417. †prog. ga95aLiang-Jie.
72
Genetic algorithm implementations
[324] Andrew Mason. A non-linearity measure of a problem’s crossover suitability. In ICEC’95 [1446], pages 68–73. †prog. ga95aMason. [325] Una-May O’Reilly and Franz Oppacher. Hybridized crossover-based search techniques in program discovery. In ICEC’95 [1446], pages 573–578. †prog. ga95aO’Reilly. [326] Marc Andrew Pawlowsky. Practical handbook of genetic algorithms. In Chambers [1427], chapter 4. Crossover operators, pages 101–114. ga95aPawlowsky. [327] Pui Wah Poon and Jonathan Neil Carter. Genetic algorithm crossover operators for ordering applications. Computers & Operations Research, 22(1):135–148, 1995. ga95aPoon. [328] Jiro Sakamoto and Juhachi Oda. Topological optimum design of truss structures using genetic algorithm with biased crossover. In ?, editor, Technical Papers of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, volume Pt. 5, pages 3536–3542, New Orleans, LA, 10.-13. April 1995. American Institute of Aeronautics and Astronautics, Washington, DC. * A95-26904 ga95aSakamoto. [329] William M. Spears. Adapting crossover in evolutionary algorithms. In McDonnell et al. [1435], page ? †conf.prog ga95aSpears. [330] A. R. Venkatachalam. An analysis of an embedded crossover scheme on GA-hard problem. Computers & Operations Research, 22(1):149–157, 1995. ga95aVenkatachalam. [331] Joseph C. Culberson. Mutation-crossover isomorphisms and the construction of discriminating functions. Evolutionary Computation, 2(3):?, ? 1995. †[350] ga95bCulberson. [332] Hitoshi Iima and Nobuo Sannomiya. Robustness of crossover operation of genetic algorithm in a production ordering problem. Trans. Inst. Electr. Eng. Jpn. C (Japan), 115-C(10):1208–1214, 1995. †CCA10456/95 ga95bIima. [333] Bryant A. Julstrom. Very greedy crossover in a genetic algorithm for the traveling salesman problem. In K. M. George, Janice H. Carroll, Ed Deaton, Dave Oppenheim, and Jim Hightower, editors, Proceedings of the 10th ACM Symposium on Applied Computing, pages 324–328, ?, ? 1995. ACM Press, New York. ga95bJulstrom. [334] Kihong Park and Bob Carter. On the effectiveness of genetic search in combinatorial optimization. In K. M. George, Janice H. Carroll, Ed Deaton, Dave Oppenheim, and Jim Hightower, editors, Proceedings of the 10th ACM Symposium on Applied Computing, pages 329–336, Nashville, TN, ? 1995. ACM Press. ga95bKPark. [335] M. Kolonko. A generalized crossover operation for genetic algorithms. Complex Systems, 9(3):177–191, 1995. †CCA51807/96 ga95bKolonko. [336] William M. Spears and Kenneth A. De Jong. On the virtues of parametrized uniform crossover. NASA Contract Report AD-A293985, Naval Research Laboratory, 1995. * N95-34456 ga95bSpears. [337] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic algorithm. Report CMU-CS-95-151, Carnegie-Mellon University, Department of Computer Science, 1995. (also as [343], available via www URL: http://rose.mercury.acs.cmu.edu:80/) ga95cBaluja. ´ [338] Agoston E. Eiben and Cees H. M. van Kemenade. Performance of multi-parent crossover operators on numerical function optimization problems. Technical Report 95-33, Leiden University, Department of Computer Science, 1995. (available via anonymous ftp site ftp.wi.leidenuni.nl directory /pub/CS/TechnicalReports/1995/ file tr95-33.ps.gz) †[348] Jarkko Vuori ga95cEiben. [339] Lae-Jeong Park and Cheol Hoon Park. Application of genetic algorithm to job shop scheduling problems with active schedule constructive crossover. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 530–535, Vancouver, BC (Canada), 22.-25. October 1995. IEEE, New York, NY. †CCA1840/95 ga95cL-JPark. [340] Peter Nordin, Frank D. Francone, and Wolfgang Banzhaf. Explicitly defined introns and destructive crossover in genetic programming. Internal Report SYS-3/95, University of Dortmund, Fachbereich Informatik, 1995. (also as [?]) ga95cNordin. [341] Terry Jones. Crossover, macromutation, and population-based search. In Eshelman [1436], pages 73–80. †prog ga95cTJones. [342] Peter Nordin, Frank D. Francone, and Wolfgang Banzhaf. Explicitly defined introns and destructive crossover in genetic programming. In ?, editor, Proceedings of the 12th International Conference on Machine Learning, GP Workshop, number 95.2, pages 6–22, Tahoe City, ? 1995. University of Rochester. (also as [?]) ga95ccNordin.
Bibliography
73
[343] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic algorithm. In ?, editor, Proceedings of the Twefth International Conference on Machine Learning, volume ?, page ?, Lake Tahoe, CA, July 1995. ? (also as [337], available via www URL: http://rose.mercury.acs.cmu.edu:80/) ga95dBaluja. [344] Ajit Narayanan and Mark Moore. Quantum-inspired genetic algorithms. In Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pages 61–66, ?, ? 1996. IEEE, Piscataway, NJ. ga96aANarayanan. [345] Peter J. Angeline. An investigation into the sensitivity of genetic programming to the frequency of leaf selection during subtree crossover. In Koza et al. [1452], page ? †conf.prog ga96aAngeline. [346] Tolga A¸sveren and Paul Molitor. New crossover methods for sequencing problems. In Voigt et al. [1431], pages 290–299. ga96aAsveren. [347] Sangit Chatterjee, Cecilia Carrera, and Lucy A. Lynch. Genetic algorithms and traveling salesman problems. European Journal of Operational Research, 93(3):490–510, 20. September 1996. ga96aChatterjee. ´ E. Eiben and C. A. Schippers. Multi-parent’s niche: n-ary crossovers on NK-landscapes. In Voigt [348] Agoston et al. [1431], pages 319–328. ga96aEiben. [349] Chris Gathercole and Peter Ross. An adverse interaction between crossover and restricted tree depth in genetic programming. In Koza et al. [1452], page ? †conf.prog ga96aGathercole. [350] Christian H¨ ohn and Colin R. Reeves. The crossover landscape for the onemax problem. In Alander [1448], pages 27–44. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Reeves.ps.Z) ga96aHohn. [351] Antoine H. C. van Kampen and Lutgarde M. C. Buydens. The effectiveness of recombination in the genetic algorithm methodology. A comparison to simulated annealing. In Alander [1448], pages 115–130. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Kampen.ps.Z) ga96aKampen. [352] Loi Lei Lai, J. T. Ma, F. Ndeh-Che, Kit Po Wong, and Suzannah Yin Wa Wong. Discussion [of [?]]. IEEE Transactions on Power Systems, 11(1):136, February 1996. ga96aLLLai. [353] Pedro Larra˜ naga, Cindy M. H. Kuijpers, Roberto H. Murga, and Yosu Yurramendi. Learning Bayesian network structures by searching for best ordering with genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 26(4):487–493, July 1996. ga96aLarranaga. [354] Lei Zhang and Weimin Zheng. “blind” crossover operators useless? In ?, editor, Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 389–390, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA35040/98 ga96aLeiZhang. [355] Myung-Sook Ko, Tae-Won Kang, and Chong-Sun Hwang. Adaptive crossover operator based on locality and convergence. In Proceedings of the 1996 IEEE International Conference on Intelligence and Systems, pages 18–22, Rockville, MD, 4.-5. November 1996. IEEE Computer Society Press, Los Alamitos, CA. * EI M041204/97 ga96aM-SKo. [356] Alfred A. Rabow and Harold A. Scheraga. Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator. Protein Science, 5(9):1800–1815, September 1996. ga96aRabow. [357] Yeo Keun Kim, Chul Ju Hyun, and Yeongho Kim. Sequencing in mixed model assembly lines: a genetic algorithm approach. Computers & Operations Research, 23(12):1131–1145, 1996. ga96aYKKim. [358] Takeshi Yamada and Ryohei Nakano. Scheduling by genetic local search with multi-step crossover. In Voigt et al. [1431], pages 960–969. ga96aYamada. [359] Peter J. Bentley and Jonathan P. Wakefield. Hierarchical crossover in genetic algorithms. In Proceedings of the First Online Workshop on Soft Computing (WSC1), pages 37–42, WWW (World Wide Web), 19.30. August 1996. Nagoya University. ga96bBentley. [360] Yong-Hua Song, G. S. Wang, A. T. Johns, and P. Y. Wang. Improved genetic algorithms with fuzzy logic controlled crossover and mutation. In Proceedings of the 1996 UKACC International Conference on Control, pages 140–144, Exeter (UK), 2.-5. September 1996. IEE, Stevenage (UK). †EI M005737/97 ga96bYHSong. [361] Peter Nordin, Frank D. Francone, and Wolfgang Banzhaf. Explicitly defined introns and destructive crossover in genetic programming. In Peter J. Angeline and K. Kinnear, editors, Advances in Genetic Programming II, pages 111–134. MIT Press, Cambridge, CA, 1996. ga96dNordin. [362] Charu C. Aggarwal, James B. Orlin, and Ray P. Tai. Optimized crossover for the independent set problem. Operations Research, 45(2):226–234, March-April 1997. ga97aAggarwal.
74
Genetic algorithm implementations
[363] Peter J. Angeline. Subtree crossover: Building block engine or macromutation? In Koza et al. [1453], page ? †conf.prog ga97aAngeline. [364] C. H. Dagli and K. Schierholt. Evaluating the performance of the genetic neuro scheduler using constant as well as changing crossover and mutation rates. Computers & Industrial Engineering, 33(1-2):253–256, 1997. †CCA26698/98 ga97aCHDagli. [365] Kumar Chellapilla. Evolutionary programming with tree mutations: Evolving computer programs without crossover. In Koza et al. [1453], page ? †conf.prog ga97aChellapilla. [366] T. M. English. Some geometric and algebraic result on crossover. In Proceedings of the 6th International Conference, pages 285–295, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70334/97 ga97aEnglish. [367] S. C. Esquivel, A. Leiva, and R. H. Gallard. Multiple crossover per couple in genetic algorithms. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 103–106, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44447/97 ga97aEsquivel. [368] Guangming Lin and Xin Yao. Analysing crossover operators by search step size. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 107–110, Indianapolis, IN, 13.16. April 1997. IEEE, New York, NY. †CCA44448/97 ga97aGLin. [369] I. Ono, H. Satoh, and Y. Kobayashi. A genetic algorithms based on sub-sequence exchange crossover and GT method for job-shop scheduling. Trans. Inst. Electr. Eng. Jpn. C (Japan), 117-C(7):888–895, 1997. In Japanese †CCA80128/97 ga97aIOno. [370] L. Kallel and Marc Schoenauer. A priori comparison of binary crossover operators: No universal statistical measure, but a set of hints. In ? [1437], pages 287–302. †prog ga97aKallel. [371] Khaled Rasheed and Haym Hirsh. Guided crossover: A new operator for genetic algorithm based optimizaition. Technical Report HPCD-TR-50, Rutgers University, Department of Computer Science, 1997. †www /Rasheed ga97aKhaledRasheed. [372] Sean Luke and Lee Spector. A comparison of crossover and mutation in genetic programming. In Koza et al. [1453], page ? †conf.prog ga97aLuke. [373] M.-E. Balazs. A schema theorem-type result for multidimensional crossover. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 161–165, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97aM-Balazs. [374] Myung-Sook Ko, Tae-Won Kang, and Chong-Sun Hwang. Function optimization using an adaptive crossover operator based on locality. Engineering Applications of Artificial Intelligence, 10(6):519–524, 1997. †CCA57958/98 ga97aMyung-Ko. [375] Khanh V. Nguyen. Improving the crossover operator in genetic algorithms and applications in optimal conference room booking. In Koza [1445], page ? †Koza ga97aNguyen. [376] Peter J. Angeline. Comparing subtree crossover with marcomutation. In Proceedings of the 6th International Conference, pages 101–111, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70323/97 ga97aPJAngeline. [377] Steven Hobday and Roger Smith. Optimization of carbon cluster geometry using a genetic algorithm. Journal of the Chemical Society - Faraday Transactions, 93(22):3919–3926, 21. November 1997. ga97aSHobday. [378] Montek Singh, Amitabha Chatterjee, and Santanu Chaudhury. Matching structural shape descriptions using genetic algorithms. Pattern Recognition, 30(9):1451–1462, September 1997. ga97aSingh. [379] T. Haynes and S. Sen. Crossover operators for evolving a team. In Proceedings of the Second Annual Conference, pages 162–167, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann Publishers, San Francisco, CA (USA). †CCA66078/98 ga97aTHaynes. [380] Andrew H. Watson and Ian C. Parmee. Steady state genetic programming with constrained complexity crossover. In Koza et al. [1453], page ? †conf.prog ga97aWatson. [381] Subbiah Baskaran and David Noever. M¨ obius crossover and excursion set mediated genetic algorithms. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 166–170, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. ga97bBaskaran. [382] Thomas Haynes and Sandip Sen. Crossover operators for evolving a team. In Koza et al. [1453], page ? †conf.prog ga97bHaynes.
Bibliography
75
[383] Romuald Jagielski. Genetic programming with controlled crossover. In Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, volume 1, pages 401–403, Dunedin (New Zealand), 24.-28. November 1997. Springer-Verlag, Berlin (Germany). †CCA65892/98 ga97bJagielsk. [384] Riccardo Poli and William B. Langdon. A new schema theory for genetic programming with one-point crossover and point mutation. In Koza et al. [1453], page ? †conf.prog ga97bPoli. [385] Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Transactions on Evolutionary Computation, 1(3):209–216, 1997. †CCA28751/98 ga97cChellapilla. [386] Peter J. Angeline. Subtree crossover: building block engine or macromutation? In Proceedings of the Second Annual Conference, pages 9–17, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann Publishers, San Francisco, CA (USA). †CCA65875/98 ga97cPJAngeline. [387] Riccardo Poli and William B. Langdon. A new schema theory for genetic programming with one-point crossover and point mutation. In Proceedings of the Second Annual Conference, pages 278–285, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann Publishers, San Francisco, CA (USA). †CCA65881/98 ga97cRPoli. ´ [388] Agoston E. Eiben, Ida G. Sprinkhuizen-Kuyper, and B. A. Thijssen. Competing crossovers in an adaptive GA framework. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 787–792, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74646/98 ga98aAEEiben. [389] Angel Kuri. An alternative model of genetic algorithms as learning machines. In Proceedings of the 4th World Congress of Expert Systems - Application of Advanced Information Technologies, pages 898– 905, Mexico City, Mexico, 16.-20. March 1998. Cognizant Communications Corp., Elmsford. †P80892 ga98aAKuri. [390] Angel Kuri. An alternative model of genetic algorithms as learning machines. Expert Systems with Applications, 15(?):351–356, ? 1998. ga98aAngelKuri. [391] Chang-Yong Lee and Seung Kee Han. Evolutionary optimization algorithm by entropic sampling. Physical Review E, 57(3):3611–3617, March 1998. ga98aChang-YongLee. [392] D. B. Fogel and P. J. Angeline. Evaluating alternative forms of crossover in evolutionary computation on linear-systems of equations. In Proceedings of the Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation, pages 56–62, San Diego, CA, 20.-22. July 1998. SPIE – International Society for Optical Engineering, Belligham. †P83323 ga98aDBFogel. [393] O. Hasancebi and F. Erbatur. Evaluation of crossover techniques in genetic algorithm-based optimum structural design. Advances in Engineering Computational Technology, pages 111–124, 1998. †P82882 ga98aHasanceb. [394] J. C. Figueira Pujol and Riccardo Poli. Evolving neural networks using a dual representation with a combined crossover operator. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 416–421, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. †CCA75027/98 ga98aJCFPujol. [395] K. Hatta, K. Matsuda, S. Wakabayashi, and T. Koide. An adaptive method of selecting crossover operators in a genetic algorithm. Trans. Inst. Electron. Inf. Commun. Eng. D-I (Japan), J81D-I(7):900–909, 1998. In Japanese †CCA74614/98 ga98aKHatta. [396] K. Tagawa, Y. Kanzaki, D. Okada, K. Inoue, and H. Haneda. A new metric function and harmonic crossover for symmetric and asymmetric traveling salesman problems. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 822–827, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74652/98 ga98aKTagawa. [397] Kengo Katayama and Hiroyuki Narihisa. A fast algorithm to enumerate all common subtours in complete subtour exchange crossover and the behavior property. Transactions of the Institute of Electronics, Information, and Communication Engineers D-I, J81D-I(2):213–218, 1998. (In Japanese) †CCA35029/98 ga98aKengoKatayama. [398] Leonid Alex Mirny, Victor I. Abkevich, and Eugene I. Shakhnovich. How evolution makes protein fold quickly. Proceedings of the National Academy of Sciences of the United States of America, 95(9):4976–4981, 28. April 1998. ga98aLAMirny. [399] Lawrence J. Schmitt and Mohammad M. Amini. Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: An empirical study. European Journal of Operational Research, 108(3):551–570, 1. August 1998. ga98aLJSchmitt.
76
Genetic algorithm implementations
[400] Ming-Suen Shyu and Jin-Jang Leou. A genetic algorithm approach to color image enchancement. Pattern Recognition, 31(7):871–880, July 1998. ga98aMing-SuenShyu. [401] Mu-Song Chen and Fong Hang Liao. Crossover operators with adaptive probability. In Proceedings of the IEEE International Joint Symposia on Intelligence and Systems, pages 10–16, Rockville, MD (USA), 21.-23. May 1998. IEEE Computer Society Press, Los Alamitos , CA. †CCA57936/98 ga98aMu-SChen. [402] Myung-Sook Ko and Chong-Sun Hwang. An adaptive crossover operator in genetic algorithms for function optimization. J. KISS(B) Softw. Appl. (South Korea), 25(10):1549–1558, 1998. In Korean †CCA60535/99 ga98aMyung-Ko. [403] N. P. Belfiore and A. Esposito. Theoretical and experimental study of crossover operators of genetic algorithms. J. Optim. Theory Appl., 99(2):271–302, ? 1998. †www /MathRev99g:65013 ga98aNPBelfiore. [404] Nikhil R. Pal, Suchismita Nandi, and Malay K. Kundu. Self-crossover - a new genetic operator and its application to feature selection. Int.J. Syst. Sci. (UK), 29(2):207–212, 1998. †CCA25808/98 ga98aNikhilRPal. [405] Peter F. Stadler and G. P. Wagner. The algebraic theory of recombination spaces. Evolutionary Computation, 5(?):241–275, ? 1998. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga98aPeterFStadler. [406] Riccardo Poli and William B. Langdon. Schema theory for genetic programming with one-point crossover and point mutation. Evolutionary Computation, 6(3):231–252, 1998. †CCA68204/99 ga98aRPoli. [407] S. T. Kazadi. Conjugate schema and basis representation of crossover and mutation operators. Evolutionary Computation, 6(2):129–160, 1998. †CCA68201/99 ga98aSTKazadi. [408] Shao-Yan Wu and Zhuo-Qun Xu. A heuristic policy for constructing crossover in genetic algorithms. Chin. J. Electron. (China), 21(11):1003–1008, 1998. In Chinese †CCA68372/99 ga98aShao-YWu. [409] T. Ito, Hitoshi Iba, and S. Sato. Depth-dependent crossover for genetic programming. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 775–780, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74644/98 ga98aTIto. [410] Dana Vrajitoru. Crossover improvement for the genetic algorithm in information retrieval. Information Processing & Management, 34(4):405–416, July 1998. ga98aVrajitoru. [411] S. Wakabayashi, T. Koide, K. Hatta, Y. Nakayama, M. Goto, and N. Toshine. Gaa:a VLSI genetic algorithm accelerator with on-the-fly adaptation of crossover operators. In Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, volume 2, pages 268–271, Monterey, CA, 31. may- 3. jun ? 1998. IEEE, New York, NY. †CCA78591/98 ga98aWakabayashi. [412] Kengo Katayama, H. Hirabayashi, and Hiroyuki Narihisa. Performance analysis for crossover operators of genetic algorithm. Trans. Inst. Electron. Inf. Commun. Eng. D-I (Japan), J81D-I(6):639–650, 1998. In Japanese †CCA65827/98 ga98bKengoKatayama. [413] Nikhil R. Pal, Malay K. Kundu, and Suchismita Nandi. Application of a new generatic operator in feature selection problems. In Proceedings of the 1998 IEEE International Conference TENCON’98, pages 37–40, New Delhi (India), 17.-19. December 1998. IEEE, Piscataway, NJ. ga98bNikhilRPal. [414] Tzung-Pei Hong and Hong-Shung Wang. Automatically adjusting crossover ratios of multiple crossover operatoes. J. Inf. Sci. Eng. (Taiwan), 14(2):369–390, 1998. †CCA57946/98 ga98bTzunHong. [415] S. Chen and S. F. Smith. Putting the genetics back into genetic algorithms (reconsidering the role of crossover in hybrid operators). In Foundations of Genetic Algorithms, pages 103–116, 1998. †P85289 ga98cSChen. [416] David B. Fogel and Peter J. Angeline. Evaluating alternative forms of crossover in evolutionary computation on linear systems of equations. In Bruno Bosacchi, David B. Fogel, and James C. Bezdek, editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation, volume SPIE-3455, pages 56–62, ?, October 1998. The International Society for Optical Engineering. * www/SPIE Web ga98eFogel. [417] K. S. Anderson and YuHong Hsu. Genetic crossover strategy using an approximation concept. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 527–533, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77174/99 ga99aAnderson. [418] F. J. Burkowski. Shuffle crossover and mutual information. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1574–1580, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77201/99 ga99aBurkowsk.
Bibliography
77
[419] C. K. Mohan. Crossover operators that improve offspring fitness. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1542–1549, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77197/99 ga99aCKMohan. [420] C. W. Ho, K. H. Lee, and K. S. Leung. A genetic algorithm based on mutation and crossover with adaptive probabilities. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 768–775, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77239/99 ga99aCWHo. ´ [421] Agoston E. Eiben. Practical handbook of genetic algorithms. In Chambers [1428], chapter 14. Experimental results on the effects of multi-parent recombination: an overview, pages 487–502. ga99aEiben. [422] E. Falkenauer. The worth of the uniform [uniform crossover]. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 776–782, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77240/99 ga99aFalkenauer. [423] H. Kita, I. Ono, and S. Kobayashi. Multi-parental extension of the unimodal normal distribution cross-over for -coded genetic algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1581–1588, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77202/99 ga99aHKita. [424] I. D. Bruce and R. J. Simpson. Evolution determined by trajectory of expected populations: sufficient conditions, with application to crossover. Evolutionary Computation, 7(2):151–171, 1999. †CCA69519/99 ga99aIDBruce. [425] Kengo Katayama and Hiroyuki Narihisa. A new iterated local search algorithm using genetic crossover for the traveling salesman problem. In Proceedings of the 1999 ACM Symposium on Applied Computing, pages 302–306, San Antonio, TX, ? 1999. ACM, New York. ga99aKengoKatayama. [426] Matthew Kessler and Thomas Haynes. Depth-fair crossover in genetic programming. In Proceedings of the 1999 ACM Symposium on Applied Computing, pages 319–323, San Antonio, TX, ? 1999. ACM, New York. †ACM /www ga99aKessler. [427] Malay K. Kundu and Nikhil R. Pal. Self-crossover and its application to the traveling salesman problem. In Ibrahim Imam, Yves Kodratoff, Ayman El-Dessouki, and Moonis Ali, editors, Multiple Approaches to Intelligent Systems, 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE-99), volume 1611, pages 326–332, Cairo (Egypt), May/June 1999. Springer-Verlag, Berlin. ga99aMKKundu. [428] Nikhil R. Pal. Soft computing for feature analysis. Fuzzy Sets and Systems, 103(2):201–221, 16. April 1999. * ga99aNRPal. [429] Rainer Konig and Thomas Dandekar. Improving genetic algorithms for protein folding simulations by systematic crossover. BioSystems, 50(1):17–25, ? 1999. †ChA 113349n/99 ga99aRKonig. [430] Khaled Rasheed. Guided crossover: a new operator for genetic algorithm based optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1535–1541, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †www /Rasheed CCA77196/99 ga99aRasheed. ´ [431] I. G. Sprinkhuizen-Kuyper, C. A. Schippers, and Agoston E. Eiben. On the real arity of multiparent recombination. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 680–686, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77228/99 ga99aSprinkhu. [432] S. Wakabayashi, T. Koide, N. Toshine, M. Goto, Y. Nakayama, and K. Hayya. An LSI implementation of an adaptive genetic algorithm with on-the-fly crossover operator selection. In Proceedings of the Asia and South Pacific Design Automation Conference, volume 1, pages 37–40, Wanchai, Hong Kong, 18.21. January 1999. IEEE, Piscataway, NJ. †CCA80789/99 ga99aWakabayashi. [433] S. C. Esquivel, H. A. Leiva, and R. H. Gallard. Multiple crossovers between multiple parents to improve search in evolutionary algorithms. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1589–1594, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77203/99 ga99bEsquivel. [434] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon. Clique-based crossover for solving the timetabling problem with GAs. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1200–1206, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA78287/99 ga99bTerashima-Marin. [435] Julian Sheung, Alex Fan, and Anthony Tang. Time tabling using genetic algorithm and simulated annealing. In Proceedings of the 1993 IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering (TENCON’93), volume 1, pages 448–451, Beijing (China), 19.-21. October 1993. IEEE. ga:ATang93a.
78
Genetic algorithm implementations
[436] Fam Quang Bac and V. L. Perov. New evolutionary genetic algorithms for NP-complete combinatorial optimization problems. Biological Cybernetics, 69(3):229–234, 1993. ga:Bac93a. [437] Hugues Bersini and Gr´egory Seront. In search of a good crossover between evolution and optimization. In M¨ anner and Manderick [1420], pages 479–488. † ga:Bersini92b. [438] Bill P. Buckles, Frederick E. Petry, and Rebecca L. Kuester. Schema survival rates and heuristic search in genetic algorithms. In Apostolos Dollas and Nikolaos G. Bourbakis, editors, Proceedings of the 1990 IEEE International Conference on Tools for Artificial Intelligence TAI’90, pages 322–327, Herndon, VA, 6.-9. November 1990. IEEE Computer Society Press, Los Alamitos, CA. ga:Buckles90. [439] Aaron H. Konstam, Stephen J. Hartley, and William L. Carr. Optimization in a distributed-processing environment using genetic algorithms with multivariate crossover. In 20th Annual Computer Science Symposium, 1992 ACM Computer Science Conference, Proceedings: Communications, pages 109–116, Kansas City, MO, 3.-5. March 1992. Assoc. Comp. Machinery. ga:Carr92. [440] Joseph C. Culberson. Crossover versus mutation: Fueling the debate: Tga versus giga. In Forrest [1421], page 632. ga:Culberson93a. [441] Yuval Davidor. Analogous crossover. In Schaffer [1419], pages 98–103. ga:Davidor89a. [442] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Simulation of genetic algorithms on MIMD multicomputers. Parallel Processing Letters, 2(4):381–389, December 1992. ga:DeFalco92a. [443] Kenneth A. De Jong and William M. Spears. An analysis of the interacting roles of population size and crossover in genetic algorithms. In Schwefel and M¨ anner [1422], pages 38–47. ga:DeJong90b. [444] William M. Spears and Kenneth A. De Jong. An analysis of multi-point crossover. In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 301–315, Indiana University, 15.-18. July 1990 1991. Morgan Kaufmann: San Mateo, CA. (also AIC Report No. AIC-90-014) ga:DeJong91d. [445] Kenneth A. De Jong and William M. Spears. A formal analysis of the role of multi-point crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1):1–26, April 1992. † ga:DeJong92e. [446] L. Vincent Edmondson. Genetic algorithms with 3-parent crossover. PhD thesis, University of Missouri Rolla, 1993. * DAI Vo. 54 No. 9 ga:EdmondsonThesis. [447] R. Harris and C. Ellis. An alternative description of the action of crossover. Internal Report PEDC-02-93, Plymouth Engineering Design Centre, 1993. †Plymouth ga:Ellis93c. [448] Andrew Fairley. Comparison of methods of choosing the crossover points in the genetic crossover operation, 1991. † ga:Fairley91a. [449] Rhonda Janes Ficek. Genroute: A hybrid approach for single and multiple depot routing. PhD thesis, North Dakota State University of Agriculture and Applied Sciences, 1993. * DAI Vol. 55 No. 1 ga:FicekThesis. [450] David E. Goldberg. A note on the disruption due to crossover in a binary-coded genetic algorithm. TCGA Report 87001, University of Alabama, 1987. ga:Goldberg87h. [451] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover operators on the traveling salesman problem. In Grefenstette [1426], pages 224–230. ga:JRCHolland87. [452] T. Clark and J. S. Mason. Adaptive uniform crossover in genetic algorithms. In Proceedings of the IEE/IEEE Workshop on Natural Algorithms in Signal Processing, page ?, Essex (UK), 14.-16. November 1993. IEEE. †GAdigest.v7n29 ga:JSMason93a. [453] Jong man Park, Jeon gue Park, Chong hyun Lee, and Mun sung Han. Robust and efficient genetic crossover operator: homologous recombination. In IJCNN’93-NAGOYA Proceedings of 1993 International Joint Conference on Neural Networks, volume 3, pages 2975–2978, Nagoya (Japan), 25.-29. October 1993. IEEE. ga:JmPark93a. [454] K. F. Pal. Genetic algorithms for the traveling salesman problem based on a heuristic crossover. Biological Cybernetics, 69(5-6):539–549, ? 1993. * CCA 25514/94 ga:KFPal93a. [455] Sami Khuri. Informatic crossover in genetic algorithms. In 1990 IEEE International Symposium on Information Theory, page 62, San Diego, CA, 14.-19. January 1990. IEEE. * ga:Khuri90a. [456] Casimir C. Klimasauskas. Genetic algorithm optimizes 100-city route in 21 minutes on a PC! Advanced Technology for Developers, 2(?):9–17, February 1993. ga:Klimasauskas93b. [457] R. E. Mercer and J. R. Sampson. Adaptive search using a reproductive meta-plan. Kybernetes, 7(?):215– 228, ? 1978. †[1058] ga:Mercer78.
Bibliography
79
[458] Kenneth C. Messa. Classification of crossover operators in genetic algorithms. Technical Report CS/CIAKS-89-003/TU, Tulane University, Department of Computer Science, 1989. ga:Messa89. [459] Ron Unger and John Moult. A genetic algorithm for 3D protein folding simulations. In Forrest [1421], pages 581–588. ga:Moult93b. [460] Heinz M¨ uhlenbein and Dirk Schlierkamp-Voosen. Optimal interaction of mutation and crossover in the breeder genetic algorithm. In Forrest [1421], page 648. ga:Muhlenbein93c. [461] David John Nettleton and Roberto Garigliano. Large ratios of mutation to crossover: The example of the traveling salesman problem. In F. A. Sadjadi, editor, Adaptive and Learning Systems II, volume SPIE1962, pages 110–119, Orlando, FL, 12.-13. April 1993. The International Society for Optical Engineering. ga:Nettleton93b. [462] Marc Andrew Pawlowsky. Modified uniform crossover and desegredation in genetic algorithms. Master’s thesis, Concordia University, Montreal, Quebec, Canada, 1992. †[326] ga:Pawlowsky92a. [463] Xiaofeng Qi and Francesco Palmieri. The diversification role of crossover in the genetic algorithms. In Forrest [1421], pages 132–137. ga:Qi93a. [464] R. S. Rosenberg. Simulation of genetic populations with biochemical properties: II. selection of crossover probabilities. Mathematical Biosciences, 8(?):1–37, 1970. † ga:Rosenberg70b. [465] Lin-Ming Jin and Shu-Park Chan. Analogue placement by formulation of macrocomponents and genetic partitioning. International Journal of Electronics, 73(1):157–173, July 1992. ga:SPChan92d. [466] J. David Schaffer and Amy Morishima. An adaptive crossover distribution mechanism for genetic algorithms. In Grefenstette [1426], pages 36–40. ga:Schaffer87. [467] Larry J. Eshelman, Richard A. Caruana, and J. David Schaffer. Biases in the crossover landscape. In Schaffer [1419], pages 10–19. ga:Schaffer89b. [468] J. David Schaffer and Larry J. Eshelman. On crossover as an evolutionarily viable strategy. In Belew and Booker [1423], pages 61–68. ga:Schaffer91a. [469] Larry J. Eshelman and J. David Schaffer. Crossover’s niche. In Forrest [1421], pages 9–14. ga:Schaffer93a. [470] Thomas Eisenhammer, M. Lazarov, M. Leutbecher, U. Sch¨ offel, and R. Sizmann. Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors. Applied Optics, 32(31):6310–6315, 1. November 1993. ga:Sizmann93a. [471] William M. Spears and Kenneth A. De Jong. On the virtues of parametrized uniform crossover. In Belew and Booker [1423], pages 230–236. ga:Spears91a. [472] William M. Spears and Vic Anand. A study of crossover operators in genetic programming. In Z. W. Ras and M. Zemankova, editors, Methodologies for Intelligent Systems, 6th International Symposium, ISMIS ’91, pages 409–418, Charlotte, N.C., USA, 16. - 19. October 1991. Springer-Verlag. ga:Spears91b. [473] William M. Spears. Crossover or mutation? In Whitley [1424], pages 221–238. ga:Spears92a. [474] William M. Spears. Adapting crossover in a genetic algorithm. Report AIC-92-025, Naval Research Laboratory AI Center, Washington, DC, 1992. †Spears/GA5 ga:Spears92b. [475] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Schaffer [1419], pages 2–9. ga:Syswerda89. [476] Gilbert Syswerda. ga:Syswerda92a.
Simulated crossover in genetic algorithms.
In Whitley [1424], pages 239–256.
[477] Timothy Johnson and Philip Husbands. System identification using genetic algorithms. In Schwefel and M¨ anner [1422], pages 85–89. ga:TJohnson90. [478] Gunar E. Liepins and Michael D. Vose. Characterizing crossover in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 5(1):27–34, 1992. †Fogel/bib ga:Vose92a. [479] Yi Shang and Guo-Jie Li. New crossover operators in genetic algorithms. In Proceedings of the 1991 IEEE International Conference on Tools with Artificial Intelligence TAI’91, pages 150–153, San Jose, CA, 10.13. November 1991. IEEE Computer Society Press, Los Alamitos, CA. * CCA 62653/92 EI A029486/92 ga:YiShang91. [480] Bj¨ orn Olsson. NK-landscapes as test functions for evaluation of host-parasite algorithms. In Marc Schoenauer, Kalyanmoy Deb, G¨ unter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature – PPSN VI, 6th International Conference, volume 1917 of Lecture Notes in Computer Science, pages 487–496, Paris (France), 18.-20. September 2000. Springer-Verlag. ga00aBOlsson.
80
Genetic algorithm implementations
[481] Dongkyung Nam and Cheol Hoon Park. Multiobjective simulated annealing - a comparative study to evolutionary algorithms. International Journal of Fuzzy Systems, 2(2):87–97, June 2000. * A01-10072 ga00aDongkyungNam. [482] Martin Nilsson and Nigel Snoad. Error thresholds for quasispecies on dynamic fitness landscapes. Physical Review Letters, 84(1):191–194, 3. January 2000. ga00aMNilsson. [483] Peter Merz and Bernd Freisleben. Fitness landscape analysis and memetic algorithms for the quadric assignment problem. IEEE Transactions on Evolutionary Computation, 4(4):337–352, November 2000. ga00aPMerz. [484] R. I. (Bob) McKay. Fitness sharing in genetic programming. pages 435–442, 2000. ga00aRIMcKay. [485] Stephen A. Stanhope and Jason M. Daida. Fitness dynamics of a (2+1) GA operating on ONEMAX. pages 372–379, 2000. ga00aSStanhope. [486] Tim Kovacs. Strength or accuracy? Fitness calculation in learning classifier systems. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Learning Classifier Systems, From Foundations to Applications, volume LNAI of 1813, pages 143–160, ?, ? 2000. Springer-Verlag Berlin Heidelberg. * www /Springer ga00aTKovacs. [487] Vesselin K. Vassilev and Julian F. Miller. Scalability problems of digital circuit evolution, evolvability and efficient designs. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 55–64, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aVKVassilev. [488] William Seffens and David Digby. Fitness function analysis of biological genetic codes using an evolutionary algorithm. page 867, 2000. ga00aWSeffens. [489] Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. On evolutionary optimization with approximate fitness functions. pages 786–794, 2000. ga00aYaochuJin. [490] Bj¨ orn Olsson. Co-evolutionary search in asymmetric spaces. In P. P. Wang, editor, Proceedings of the Fifth Joint Conference on Information Sciences, pages 1040–1043, ?, ? 2000. ? †lop ga00bBOlsson. [491] Hee-Su Kim and Sung-Bae Cho. Application of interactive genetic algorithm to fashion design. Engineering Applications of Artificial Intelligence, 13(6):635–644, December 2000. * EBSCO 0519389 ga00bHee-SuKim. [492] Vesselin K. Vassilev and Julian F. Miller. Embedding landscape neutrality to build a bridge from the conventional to a more efficient three-bit multiplier. page 539, 2000. ga00cVKVassilev. [493] Alain Ratle. Kriging as a surrogate fitness landscape in evolutionary optimization. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 15(1):37–49, January 2001. ga01aAlainRatle. [494] Bj¨ orn Olsson. Co-evolutionary search in asymmetric spaces. Information Sciences, 133(?):103–125, ? 2001. * TKKpaa ga01aBOlsson. [495] Hans-Gerhard Groß. A prediction system for evolutionary testability applied to dynamic execution time analysis. Information and Software Technology, 43(14):855–862, 15. December 2001. ga01aH-GGross. [496] J. Barry Shackleford, Etsuko Okushi, Takashi Iwamoto, and Mitsuhiro Yasuda. Fitness function circuit, 2001. (U. S. patent no. 6,185,547. Issued February 6 2001) * fi.espacenet.com ga01aJBShackleford. [497] J¨ urgen Branke. Evolutionary Optimization in Dynamic Environments, volume 4 of Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Boston, MA, 2001. †GAdigest v16 n 12 /Branke ga01aJurgenBranke. [498] Philip D. Stroud. Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations. IEEE Transactions on Evolutionary Computation, 5(1):66–77, February 2001. ga01aPDStroud. [499] Thomas Jansen and Ingo Wegener. Evolutionary algorithms - How to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation, 5(6):589–899, December 2001. ga01aTJansen. [500] Yoshiyuki Matsumura, Kazuhiro Ohkura, and Kanji Ueda. (µ/µ, λ)-evolution strategies for noisy objective functions. pages 13–22, 2002. ga02YoshiyukiMatsumura. [501] Brad Dolin, Forrst H. Bennett, III, and Eleanor G. Rieffel. Co-evolving an effective fitness sample: experiments in symbolic regression and distributed robot control. In Proceedings of the 1999 ACM Symposium on Applied Computing, pages 553–559, Madrid (Spain), ? 2002. ACM, New York. †ACM /www ga02aBDolin. [502] Christian M. Reidys and Peter F. Stadler. Combinatorial landscapes. SIAM Review, 44(1):3–54, January 2002. ga02aCMReidys.
Bibliography
81
[503] Dirk V. Arnold. Noisy Optimization with Evolution Strategies, volume 8 of Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, Boston, MA, 2002. †Arnold ga02aDirkArnold. [504] E. M. Rauch, H. Sayama, and Y. Bar-Yam. Relationship between measures of fitness and time scale in evolution. Physical Review Letters, 88(22):228101–1–4, 3. June 2002. ga02aEMRauch. [505] L. Bull. On accuracy-based fitness. Soft Computing, 6(3-4):154–161, ? 2002. * www /Springer ga02aLBull. [506] L. Peliti. Quasispecies evolution in general mean-field landscapes. Europhysics Letters, 57(5):745–751, 1. March 2002. ga02aLPeliti. [507] Regis Duvigneau and Michel Visonneau. Hybrid genetic algorithms and neural networks for fast CFD-based design. In 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization, Atlanta, GA, 4.-6. September 2002. AIAA. AIAA Paper 2002-5465 * A02-40929 ga02aRDuvigneau. [508] R. Eriksson and Bj¨ orn Olsson. On the behavior of evolutionary global-local hybrids with dynamic fitness functions. In ?, editor, Parallel problem Solving from Nature PPSN VII, pages 13–22. [509] Sung-Bae Cho and Joo-Young Lee. A human-oriented image retrieval system using interactive genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 32(3):452– 458, May 2002. ga02aSung-BaeCho. [510] Teppo Tossavainen. System Usability of Complex Technical Systems. PhD thesis, Helsinki University of Technology, Department of Industrial Engineering and Management, 2002. * TKKpaa ga02aTTossavainen. [511] Toni M¨ aki. Tekniikan tutkimusinstituutti esitteli hankkeensa [A project introduction]. Vaasan Yliopistolehti, ?(2):12–13, 6. May 2002. ga02aToniMaki. [512] Vladimir B. Gantovnik, Christine M. Anderson-Cook, Zafer Gurdal, and Layne T. Watson. A genetic algorithm with memory for mixed discrete-continuous design optimization. In 9th AIAA/ISSMO Symposium and Exhibit on Multidisciplinary Analysis and Optimization, Atlanta, GA, 4.-6. September 2002. AIAA. AIAA Paper 2002-5431 * A02-40897 ga02aVBGantovnik. [513] Danica Wyatt and Hod Lipson. Finding building blocks through eigenstructure adaptation. In E. Cant´ uPaz et al, editor, Genetic and Evolutionary Computation - GECCO 2003, Proceedings, volume 2724 of Lecture Notes in Computer Science, pages 1518–1529, ?, ? 2003. Springer-Verlag, Heidelberg. ga03aDWyatt. [514] Jens Ziegler and Wolfgang Banzhaf. Decreasing the number of evaluations in evolutionary algorithms by using a meta-model of the fitness function. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 264–275, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aJensZiegler. [515] Leonardo Vanneschi, Marco Tomassini, Philippe Collard, and Manuel Clergue. Fitness distance correlation in structural mutation genetic programming. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 455–464, Essex (UK), 14.16. April 2003. Springer-Verlag, Berlin. ga03aLVanneschi. [516] Susana Duarte Flores and Jim Smith. Study of fitness landscapes for the HP model of protein structure prediction. In ?, editor, Proceedings of the Congress of Evolutionary Computation 2003, volume ?, page ?, Australia, December 2003. ? ga03aSDuarteFlores. [517] Terrence S. T. Mak and K. P. Lam. High speed GAML-based phylogenetic tree reconstruction using HW/SW codesign. In Proceedings of the 2003 IEEE Bioinformatics Conference, CSB’03, pages 470–473, ?, 11.-14. August 2003. IEEE, Piscataway, NJ. ga03aTerrenceSTMak. [518] Jason W. Horihan and Yung-Hsiang Lu. Improving FSM evolution with progressive fitness functions. In Proceedings of the 14th ACM Great Lakes Symposium on VLSI, pages 123–126, Boston, MA, ? 2004. ACM Press, New York. ga04aJWHorihan. [519] Gregory H. Wakefield, Chris van den Honert, Wendy Parkinson, and Sean Lineaweaver. Genetic algorithms for adaptive psychophysical procedures: recipient-directed design of speech-processor MAPs. Ear & Hearing, 26(4):Supplement: 57S–72S, August 2005. * AHA ga05aGHWakefield. [520] Trevor E. Pitcher and Bryan D. Neff. MHC class IIB alleles contribute to both additive and nonadditive genetic effects on survival in Chinook salmon. Molecular Ecology, 15(9):2357–2365, August 2006. †ISI ga06aTEPitcher.
82
Genetic algorithm implementations
[521] Janne Koljonen. On fitness distance distributions and correlations, GA hardness, and population size with a family of square-root fitness functions. In Timo Honkela, Tapani raiko, Jukka Kortela, and Harri Valpola, editors, Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006), pages 68–74, Espoo (Finland), 25.-27. October 2006. Finnish Artificial Intelligence Society. ga06cKoljonen. [522] Deniz Baskent, Cheryl L. Eiler, and Brent Edwards. Using genetic algorithms with subjective input from human subjects: Implications for fitting hearing aids and conclear implants. Ear & Hearing, 28(3):370–380, June 2007. * AHA ga07aDBaskent. [523] Karel Slan´ y and Luk´ aˇs Sekanina. Fitness landscape analysis and image filter evolution using functionallevel CGP. In M. Ebner et al, editor, Proceedings of the EuroGP 2007, volume 4445 of Lecture Notes in Computer Science, pages 311–320, ?, ? 2007. Springer-Verlag, Heidelberg. ga07aKarelSlany. [524] Brian J. F. Wong, Koohyar Karimi, Zlatko Devcic, CVhristine E. McLaren, and Wen-Pin Chen. Evolving attractive faces using morphing technology and a genetic algorithm: A new approach to determining ideal facial aesthetics. Laryngoscope, 118(6):962–974, June 2008. * ga08aBrianJFWong. [525] Filip Norrg˚ ard, Toni Harju, Janne Koljonen, and Jarmo T. Alander. LEDall2 – An improved adaptive LED lighting system for digital photography. In Tapani Raiko, Pentti Haikonen, and Jaakko V¨ ayrynen, editors, AI and Machine Consciousness, Proceedings of the 13th Finnish Artificial Intelligence Conference STeP 2008, pages 46–51, Espoo (Finland), 20.-22.August 2008. FAIS, Helsinki. ga08aFNorrgard. [526] Jenni Pulkkinen, Serkan Kiranyaz, and Moncef Gabbouj. Dynamic multi-swarm particle swarm optimization with fractional global best formulation. In Tapani Raiko, Pentti Haikonen, and Jaakko V¨ ayrynen, editors, AI and Machine Consciousness, Proceedings of the 13th Finnish Artificial Intelligence Conference STeP 2008, pages 52–59, Espoo (Finland), 20.-22.August 2008. FAIS, Helsinki. ga08aJPulkkinen. [527] Thomas B¨ ack and Ulrich Hammel. Evolution strategies applied to perturbed objective functions. In ICEC’94 [1429], pages 40–45. ga94aBack. [528] Keith E. Mathias and L. Darrel Whitley. Noisy function evaluation and the delta-coding algorithm. In Su-Shing Chen, editor, Neural and Stochastic Methods in Image and Signal Processing III, volume SPIE2304, pages 53–64, ?, June 1994. The International Society for Optical Engineering. * www/SPIE Web ga94aKEMathias. [529] Kenneth E. Kinnear, Jr. Fitness landscapes and difficulty in genetic programming. In ICEC’94 [1429], pages 142–147. ga94aKinnear. [530] Peter Schuster and Peter F. Stadler. Landscapes: Complex optimization problems and biopolymers. Computers Chem., 18(?):295–314, ? 1994. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga94aPeterSchuster. [531] H. Sakanashi, Keiji Suzuki, and Yukinori Kakazu. Controlling dynamics of GA through filtered evaluation function. In Davidor et al. [1430], page ? †conf. prog. ga94aSakanashi. [532] Dietrich Stauffer and Naeem Jan. Size effects in Kauffman type evolution for rugged fitness landscape. Journal of Theoretical Biology, 168(2):211–218, 21. May 1994. ga94aStauffer. [533] H. Sakanashi and Yukinori Kakazu. Co-evolving genetic algorithm with filtered evaluation function. In 1994 IEEE Symposium on Emerging Technologies and Factory Automation., pages 454–457, Tokyo (Japan), 6.-10. November 1994. IEEE New York. †CCA 44131/95 ga94bSakanashi. [534] Michael D. Vose and G. Wright. Simple genetic algorithms with linear fitness. Evolutionary Computation, 2(4):347–368, ? 1994. †[?] ga94cVose. [535] Bernard Manderick and Piet Spiessens. Computational intelligence imitating life. chapter How to select genetic operators for combinatorial optimization problems by analyzing their fitness landscape, pages 170– 181. IEEE Press, New York, 1994. ga94dManderick. [536] Joseph L. Breeden. Uncertainty and multiple fitness function optimization. In McDonnell et al. [1435], page ? †conf.prog ga95aBreeden. [537] Dipankar Dasgupta. Practical handbook of genetic algorithms. volume 2, Applications, chapter 13. Incorporating redundancy and gene activation mechanisms in genetic search for adapting to non-stationary environments, pages 303–316. CRC Press, Boca Raton, FL, 1995. ga95aDasgupta. [538] Alex S. Fukunaga and Andrew B. Kahng. Improving the performance of evolutionary optimization by dynamically scaling the evaluation function. In ICEC’95 [1446], pages 182–187. †prog. ga95aFukunaga. [539] M. Gotesman and T. M. English. Stacked generalization and fitness ranking in evolutionary algorithms. In McDonnell et al. [1435], page ? †conf.prog ga95aGotesman.
Bibliography
83
[540] Francois Leclerc and Jean-Yves Potvin. A fitness scaling method based on a span measure. In ICEC’95 [1446], pages 561–565. †prog. ga95aLeclerc. [541] Henrik Hautop Lund. Genetic algorithms with dynamic fitness measures. In Alander [1447], pages 69–84. (available via anonymous ftp site ftp.uwasa.fi directory cs/1NWGA file Lund1.ps.Z) ga95aLund. [542] Mary Lou Maher and Josiah Poon. Co-evolution of the fitness function and design solution for design exploration. In ICEC’95 [1446], pages 240–244. †prog. ga95aMaher. [543] Sadayoshi Mikami, Mitsuo Wada, and Terence C. Fogarty. Learning to achieve co-operation by temporalspatial fitness sharing. In ICEC’95 [1446], pages 803–807. †prog. ga95aMikami. [544] Peter F. Stadler. Towards a theory of landscapes. In R. Lop´ez-Pe˜ na, R. Capovilla, R. Garc´ıa-Pelayo, H. Waelbroeck, and F. Zertuche, editors, Complex Systems and Binary Networks (Proceedings of the Guanajuato Lectures), volume ?, pages 77–163, ?, ? 1995. Springer-Verlag, Berlin. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga95aPeterFStadler. [545] Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic algorithms. In Proceedings of the 1995 ACM Symposium on Applied Computing, pages 345–350, Nashville, TN, ? 1995. ACM, New York. ga95aRESmith. [546] Joseph L. Breeden. Practical handbook of genetic algorithms. In Chambers [1427], chapter 5. Optimal state space representations via evolutionary algorithms: Supporting expensive fitness functions, pages 115–141. ga95bBreeden. [547] Paul J. Darwen and Xin Yao. How good is fitness sharing with a scaling function. Technical Report CS8/95, Australian Defence Force Academy, Department of Computer Science, 1995. (represented at ICEC’95) †News /Yao ga95bDarwen. [548] W. M. Jenkins. The estimation of partial string fitnesses in the genetic algorithm. In B. H. V. Topping, editor, Proceedings of the Developments in Neural Networks and Evolutionary computing for civil and structural engineering, pages 137–141, Cambridge, England, 28.-30. August 1995. Civil Comp. Press, Edingburgh. †P67192 ga95bJenkins. [549] Paul J. Darwen and Xin Yao. A dilemma for fitness sharing with a scaling function. In ICEC’95 [1446], pages 166–171. †prog. ga95cDarwen. [550] Terry Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis, University of New Mexico, 1995. †[624][?][350] % Keyga95dTJones. [551] Akiko Aizawa. Fitness landscape characterization by variance of decompositions. In Richard K. Belew and Michael D. Vose, editors, Proceedings of the fourth Foundations of Genetic Algorithms Workshop, pages 225–246, Alcala Park, San Diego, 2.-5. August 1996. Morgan Kauffman, San Mateo, CA. † ga96aAkAizawa. [552] Stefan Bornholdt. Probing genetic algorithm performance of fitness landscapes. In Richard K. Belew and Michael D. Vose, editors, Proceedings of the fourth Foundations of Genetic Algorithms Workshop, pages 141–154, Alcala Park, San Diego, 2.-5. August 1996. Morgan Kauffman, San Mateo, CA. † ga96aBornholdt. [553] Paul J. Darwen and Xin Yao. Every niching method has its niche: Fitness sharing and and implicit sharing compared. In Voigt et al. [1431], pages 398–407. ga96aDarwen. [554] Gregory S. Hornby. The recombination operator, its correlation to the fitness landscape and search performance. Master’s thesis, University of Alberta, Department of Computing Science, 1996. ga96aGSHornby. [555] Garrison W. Greenwood, Xiaobo (Sharon) Hu, and Joseph G. D’Ambrosio. Fitness functions for multiple objective optimization problems: combining preferences with pareto rankings. In Richard K. Belew and Michael D. Vose, editors, Proceedings of the fourth Foundations of Genetic Algorithms Workshop, pages 437–455, Alcala Park, San Diego, 2.-5. August 1996. Morgan Kauffman, San Mateo, CA. † ga96aGreenwood. [556] H. R. Gzickman and Katia P. Sycara. Self-adaptation of mutation rates and dynamic fitness. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, volume 2, page 1389, Portland, OR, 4.-8. August 1996. MIT Press, Cambridge, MA. †CCA53409/97 ga96aGzickman. [557] Jonathan P. K. Doye and David J. Wales. On potential energy surfaces and relaxation to the global minimum. The Journal of Chemical Physics, 105(18):8428–8445, November 1996. ga96aJPKDoye. [558] Esa Koskim¨ aki and Janne G¨ o¨ os. Fuzzy fitness function for electric machine design by genetic algorithm. In Alander [1448], pages 237–244. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Koskimaki.ps.Z) ga96aKoskimaki.
84
Genetic algorithm implementations
[559] Luca Peliti. Fitness landscapes and evolution. In T. Riste and D. Sherrington, editors, Physics of Biomaterials: Fluctuations, Self-Assemblu and Evolution, pages 287–308, Geilo (Norway), March27.-April 6. 1996. Kluwer, Dordrecht (The Netherlands). ga96aLucaPeliti. [560] M. Ohsaki, H. Takagi, and K. Ohya. An input method using discrete fitness values for interactive GA. Journal of Intelligent & Fuzzy Systems, 6(1):131–146, 1996. †P81724 ga96aMOhsaki. [561] Peter F. Stadler. Landscapes and their correlation functions. Journal of Mathematical Chemistry, 20(?):1– 45, ? 1996. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga96aPeterFStadler. [562] R. Huber, R. Schwaiger, and H. A. Mayer. On the role of regularization parameters in fitness functions for evolutionary designed artificial neural networks. In Proceedings of the International Neural Network Society 1996 Annual Meeting, pages 1063–1066, San Diego, CA, 15.-18. September 1996. Lawrence Erlbaum Assoc, Mahwah, NJ (USA). †CCA51132/98 ga96aRHuber. [563] S. Rochet, E. Sanchez, and C. Tassier. Fitness landscape and performance of genetic algorithms in fuzzy information retrieval. In Proceedings Fourth European Congress on Intelligent Techniques and Soft Computing, volume 2, pages 831–835, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA48732/98 ga96aSRochet. [564] Susmita De, Ashish Ghosh, and Sankar K. Pal. Genetic algorithms for pattern recognition. chapter 1. Fitness evaluation in genetic algorithms with ancestor’s influence, page ? CRC Press, Boca Raton, FL, 1996. †toc ga96aSusmitaDe. [565] Tei Laine. Using a genetic algorithm for optimization in a changing environment. Master’s thesis, University of Helsinki, Department of Computer Science, 1996. †report on activities ga96aTeiLaine. [566] W. Zhai, P. Kelly, and W.-B. Gong. Genetic algorithms with noisy fitness. Math. Comput. Model. (UK), 23(11-12):131–142, 1996. †CCA61019/96 ga96aWZhai. [567] J. A. Biles, Peter G. Anderson, and Laura W. Loggi. Neural network fitness functions for a musical IGA. In Kevin Warwick, editor, Proceedings of the International ICSC Symposia on Intelligent Industrial Automation and Soft Computing, pages B39–44, Reading, UK, 26.-28. March 1996. Int. Comput. Sci. Conventions, Millet, Alta. †CCA85988/96 ga96bBiles. [568] M. Fukumi, S. Omatsu, and Y. Nishikawa. A method to design a neural network by the genetic algorithm with partial fitness. Transactions of the Institute of System, Control, and Information Engineers (Japan), 9(3):74–81, 1996. †CCA43797/96 ga96bFukumi. [569] H. Takagi, K. Ohya, and M. Ohsaki. Improvement of input interface for interactive genetic algorithms and its evaluation. In Proceedings of the 4th International Conference on Soft Computing, volume 2, pages 490–493, Fukuoka, Japan, sep 30.- oct 5. ? 1996. World Scientific , Singapore. †CCA58367/97 ga96bHTakagi. [570] S. Kawaji and K. Ogasawara. Nonlinear control of dynamic system using genetic algorithms-structurization of search space by switching the fitness function. Transactions of the Institute of Electrical Engineers of Japan D, 116-D(4):435–440, 1996. (In Japanese) †CCA62668/96 ga96bKawaji. [571] Narayan Behera and Vidyanand Nanjundiah. The consequences of phenotypic plasticity in cyclically varying environments: A genetic algorithm study. Journal of Theoretical Biology, 178(2):135–144, 21. January 1996. ga96bNBehera. [572] Magnus Rattray and Jonathan Shapiro. Noisy fitness evaluation in genetic algorithms and the dynamics of learning. In Richard K. Belew and Michael D. Vose, editors, Proceedings of the fourth Foundations of Genetic Algorithms Workshop, pages 117–140, Alcala Park, San Diego, 2.-5. August 1996. Morgan Kauffman, San Mateo, CA. † ga96bRattray. [573] M. Srinivas and L. M. Patnaik. Genetic search: analysis using fitness moments. IEEE Transactions on Knowledge and Data Engineering, 8(1):120–133, February 1996. ga96bSrinivas. [574] Minoru Fukumi and N. Akamatsu. A method to design a neural pattern recognition system by using a genetic algorithm with partial fitness and a deterministic mutation. In Proceedings of the 1996 IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 1989–1993, Beijing, China, 14.-17. October 1996. IEEE, New York, NY. †CCA22215/97 ga96cFukumi. [575] M. Fukumi, T. Yoshino, and N. Akamatsu. Designing a neural-network using a genetic algorithm with deterministic mutation and partial fitness. Journal of Intelligent & Fuzzy Systems, 6(1):17–26, 1996. †P81724 ga96cMFukumi.
Bibliography
85
[576] A. R. Burton and T. Vladimirova. Utilisation of an adaptive resonance theory neural network as a genetic algorithm fitness evaluator. In Proceedings of the 1997 IEEE International Symposium on Information Theory, page 209, Ulm, Germany, 29. jun- 4. jul ? 1997. IEEE, New York, NY. †CCA29266/98 ga97aARBurton. [577] Alexander Renner and Erich Bornberg-Bauer. Exploring the fitness landscapes of lattice proteins. In R. Altman, K. Dunker, L. Hunter, and T. Klein, editors, Proceedings of the 1997 Pacific Symposium on Biocomputing, pages 361–373, Maui, HI, 6.-9. January 1997. World Scientific, London. available via www URL: http://www-smi.stanford.edu/people/altman/psb97/index.html) ga97aARenner. [578] J. Bradshaw and J. C. Miles. Using standard fitnesses with genetic algorithms. Adv. Eng. Softw. (UK), 28(7):425–435, 1997. †CCA89465/97 ga97aBradshaw. [579] Walter Cede˜ no and V. Rao Vemuri. On the use of niching for dynamic landscapes. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 361–366, Indianapolis, IN, 13.16. April 1997. IEEE, New York, NY. †CCA44466/97 ga97aCedeno. [580] Jaysen Gillespie. A genetic algorithm solution to the project selection problem using static and dynamic fitness functions. In Koza [1445], page ? †Koza ga97aGillespie. [581] Hideaki Suzuki and Yoh Iwasa. GA performance in a babel-like fitness landscape. In Proceedings of the Ninth IEEE International Conference on Tools with Artificial Intelligence, volume ?, pages 357–366, Newport Beach, CA, 3.-8. November 1997. IEEE Computer Society Press, Los Alamitos, CA. ga97aHSuzuki. [582] Jiafu Tang and Dingwei Wang. An interactive approach based on a genetic algorithm for a type of quadratic programming problems with fuzzy objective and resources. Computers & Operations Research, 24(5):413–422, May 1997. ga97aJTang. [583] K. Kolarov. Landscape ruggedness in evolutionary algorithms. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 19–24, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44433/97 ga97aKolarov. [584] Lae-Jeong Park, Dong-Kyung Nam, Cheol Hoon Park, and Sang-Hoon Oh. An empirical comparison of simulated annealing and genetic algorithms on NK fitness landscapes. In Proceedings of 1997 IEEE international Conference on Evolutionary Computation, pages 147–151, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44453/97 ga97aL-JPark. [585] A. R. Burton and T. Vladimirova. Genetic algorithm utilising neural network fitness evaluation for musical composition. page 219. [586] Chris Gathercole and Peter Ross. Tackling the Boolean even n parity problem with genetic programming and limited-error fitness. In Koza et al. [1453], page ? †conf.prog ga97bGathercole. [587] P. J. Angeline. Tracking extrema in dynamic environments. In Proceedings of the 6th International Conference, pages 335–345, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70336/97 ga97bPJAngeline. [588] V. Slavov and N. I. Nikolaev. Fitness landscapes and inductive genetic programming. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 414–418, Norwich, UK, 2.-4. April 1997. Springer-Verlag, Berlin. † ga97bVSlavov. [589] Frank Vavak, Ken Jukes, and Terence C. Fogarty. Learning the local search range for genetic optimisation in nonstationary environments. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 355–360, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44465/97 ga97bVavak. [590] Ashish Ghosh, Shigeyoshi Tsutsui, and H. Tanaka. Function optimization in nonstationary environment using steady state genetic algorithms with aging of individuals. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 666–671, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74637/98 ga98aAGhosh. [591] Stefan Bornholdt. Genetic algorithm dynamics on a rugged fitness landscape. 57(?):3853–385, ? 1998. ga98aBornholdt.
Physical Review E,
[592] Bruno Sareni and L. Krahenbuhl. Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation, 2(3):97–106, 1998. ga98aBrSareni. [593] Hans-Georg Beyer. Mutate large, but inherit small! on the analysis of rescaled mutations in -ES with noisy fitness data. In Proceedings of the 5th International Conference on Parallel problem solving from nature, pages 109–118, Amsterdam (The Netherlands), 27.-30. September 1998. Springer-Verlag, Berlin (Germany). ga98aHanBeyer.
86
Genetic algorithm implementations
[594] Wim Hordijk and Peter F. Stadler. Amplitude spectra of fitness landscapes. Journal of Complex Systems, 1(?):39–66, ? 1998. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga98aHordijk. [595] T. Hoshino, D. Mitsumoto, and T. Nagano. Fractal fitness landscape and loss of robustness in evolutionary robot navigation. Auton. Robots (Netherlands), 5(2):199–213, 1998. †CCA68518/98 ga98aHoshino. [596] Takumi Ichimura and Y. Kuriyama. Learning of neural networks with parallel hybrid GA using a royal road function. In Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, volume 2, pages 1131–1136, Anchorage, AK (USA), 4.-9. May 1998. IEEE, New York, NY. †cca84442/98 ga98aIchimura. [597] K. Kuriyama, T. Terano, and M. Numao. Authoring support by interactive genetic algorithm and casebased retrieval. In Procedings of the 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, volume 1, pages 390–396, Adelaide, SA (Australia), 21.-23. April 1998. IEEE, New York, NY. †P82251 ga98aKuriyama. [598] Leila Kallel and B. Naudts. Candidate longpaths for the simple genetic algorithm. Fortschrittsberichte der VDI-Zeitschriften, pages 27–44, 1998. †P85289 ga98aLKallel. [599] Radek Matouˇsek, Pavel Popela, and Zdenˇek Karp´ıˇsek. Some possibilities of fitness - value - stream analysis. In Oˇsmera [1442], pages 69–73. ga98aMatousek. [600] Philippe Collard, Alessio Gaspar, M. Clergue, and Cathy Escazut. Fitness distance correlation, as statistical measure of genetic algorithm difficulty, revisited. In Proceedings of the 13th European Conference on Artificial Intelligence, pages 650–654, Brighton, UK, 23.-28. August 1998. Wiley, Chichester (UK). ga98aPCollard. [601] Peter Merz and Bernd Freisleben. Memetic algorithms and the fitness landscape of the graph vi-partitioning problem. In Agoston E. Eiben, Thomas B¨ ack, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, 5th International Conference, volume LNCS of 1498, pages 765– 774, Amsterdam (The Netherlands), September 1998. Springer-Verlag Berlin Heidelberg. * www /Springer ga98aPMerz. [602] Pablo Funes, Elizabeth Sklar, Hugues Juill´e, and Jordan B. Pollack. Animal-animat coevolution: using the animal population as fitness function. In R. Pfeifer et al, editor, From Animals to Animats 5: Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior, pages 525–533, ?, ? 1998. MIT Press, Cambridge, MA. ga98aPabloFunes. [603] Takuyo Aita and Yuzuru Husimi. Adaptive walks by the fittest among finite random mutants on a Mt. Fujitype fitness landscape. Journal of Theoretical Biology, 193(3):383–405, 7. August 1998. ga98aTakuyoAita. [604] V. Slavov and N. I. Nikolaev. Genetic algorithms, fitness sublandscapes and subpopulations, undulations of genetic algorithms. Fortschrittsberichte der VDI-Zeitschriften, ?(?):199–218, 1998. †P85289 ga98aVSlavov. [605] V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems. IEEE Transactions on Systems, Man, and Cybernetics B, Cybernetics, 28(5):629–640, 1998. †CCA91432/98 ga98bPetridis. [606] Rebecca J. Parsons. Alternative fitness functions and their effect on the evolution of hierarchically-related individuals. In ?, editor, Proceedings of the Third Euromicro International Conference on Massively Parallel Computing Systems, page ?, Colorado Springs, CO, April 1998. ? †Parsons ga98bRJParsons. [607] Thomas B¨ ack. On the behavior of evolutionary algorithms in dynamic environments. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 446–451, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74620/98 ga98bTBack. [608] Minoru Fukumi, Toshiki Yoshino, and Norio Akamatsu. Designing a neural network using a genetic algorithm with deterministic mutation and partial fitness. Journal of Intelligent and Fuzzy Systems, 6(1):17–25, ? 1998. * http://iospress.metapress.com ga98cMFukumi. [609] A. Ratle. Optimal sampling strategies for learning a fitness model. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2078–2085, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA83617/99 ga99aARatle. [610] Jarmo T. Alander. Practical handbook of genetic algorithms. In Chambers [1428], chapter 13. Population size, building blocks, fitness landscape and genetic algorithm search efficiency in combinatorial optimization: An empirical study, pages 459–485. ga99aAlander.
Bibliography
87
[611] John J. Grefenstette. Evolvability in dynamic fitness landscapes: a genetic algorithm approach. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2031–2038, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77257/99 ga99aGrefenstette. [612] Kay Hamacher and W. Wenzel. Scaling behaviour of stochastic minimization algorithms in a perfect funnel landscape. Physical Review E, 59(1):938–941, January 1999. ga99aHamacher. [613] J. E. Smith and F. Vavak. State genetic algorithms: dynamic environments. J. Comput. Inf. Technol. CIT (Croatia)Acoust. (Singapore), 7(1):49–59, 1999. †CCA68196/99 ga99aJESmith. [614] Jes´ us Mar´ın and Ricard V. Sol´e. Macroevolutionary algorithms: a new optimization method on fitness landscapes. IEEE Transactions on Evolutionary Computation, 3(4):272–286, November 1999. ga99aJMarin. [615] M. Jelasity, B. Toth, and T. Vinko. Characterizations of trajectory structure of fitness landscapes based on pairwise transition probabilities of solutions. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 623–630, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77220/99 ga99aJelasity. [616] Kanji Ueda. Chapter 19. methodology of emergent synthesis. In Yoichi Ando, editor, Trends, Graduate School of Science and Technology, pages 171–179. Kobe University, Kobe (Japan), 1999. ga99aKanjiUeda. [617] Kazuhiro Ohkura and Kanji Ueda. Adaptation in dynamic environment by using GA with neutral mutations. Smart Engineering System Design, 2(?):17–31, ? 1999. ga99aKazuhiroOhkura. [618] Ko-Hsin Liang, Xin Yao, and C. Newton. Combining landscape approximation and local search in global optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1514–1520, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77194/99 ga99aKo-Liang. [619] Leila Kallel, B. Naudts, and Marc Schoenauer. On functions with a given fitness-distance relation. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1910–1916, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77251/99 ga99aLKallel. [620] M. Waters and J. Sheppard. Genetic programming and co-evolution with exogenous fitness in an artificial life environment. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1641–1648, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA83602/99 ga99aMWaters. [621] Nipadan Chaikla and Yulu Qi. Genetic algorithms in feature selection. In Proceedings of the 1999 IEEE International Conference on Systems, Man, and Cybernetics (SMC’99), volume 5, pages 538–540, Tokyo (Japan), 12.-15. October 1999. IEEE, Piscataway, NJ. ga99aNChaikla. [622] N. Mori, H. Kita, and Y Nishikawa. Adaptation to a changing environment by means of the thermodynamical genetic algorithm. Transactions of the Institute of System, Control, and Information Engineers (Japan), 12(4):240–249, 1999. In Japanese †CCA60565/99 ga99aNMori. [623] Rebecca J. Parsons. Evolution of cooperating and competing individuals in a dynamic fitness environment. In Proc. SPIE - Int. Soc. Opt. Eng. (USA), volume SPIE-3722, pages 294–302, 1999. †CCA86457/99 ga99aParsons. [624] Peter F. Stadler and Robert Happel. Random field model for fitness landscape. Journal of Mathematical Biology, 38(?):435–467, ? 1999. (available via www URL: http://www.tbi.univie.ac.at/~ studla/publications.html) ga99aPeterFStadler. [625] Rebecca J. Parsons. Evolution of cooperating and competing individuals in a dynamic fitness environment. In ?, editor, Proceedings of the 13th Annual SPIE International Symposium on Aerospace, Defense Sensing, Simulation and Controls, volume SPIE-3, pages 294–302, Orlando, FL, ?April 1999. The International Society for Optical Engineering, Bellingham, WA. †Parsons ga99aRJParsons. [626] S. Chen, S. F. Smith, and C. Guerra-Salcedo. The GENIE in out! (Who needs fitness to evolve?). In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2102–2106, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77207/99 ga99aSChen. [627] Stephen A. Stanhope and Jason M. Daida. (1+1) genetic algorithm fitness dynamics in a changing environment. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1851–1858, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77245/99 ga99aStanhope. [628] K. Trojanowski and Zbigniew Michalewicz. Searching for optima in non-stationary environments. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1843–1850, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77206/99 ga99aTrojanowski. [629] Vesselin K. Vassilev, Julian F. Miller, and Terence C. Fogarty. Digital circuit evolution: the ruggedness and neutrality of two-bit multiplier landscapes. In Proceedings of IEE Half-Day Colloquium on Evolutionary Hardware Systems, volume IEE-033/1999, pages 6/1–6/4, London (UK), 2. June 1999. IEE, London. * CCA 71618/99 ga99aVKVassilev.
88
Genetic algorithm implementations
[630] W. N. Martin, A. L. Barker, and J. P. Cohoon. Problem perturbation: implications on the fitness landscape. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 744–751, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77236/99 ga99aWNMartin. [631] K. Chellapilla and David B. Fogel. Fitness distributions in evolutionary computation: analysis of noisy functions. In Proceedings of the Applications and Science of Computational Intelligence, volume SPIE3722, pages 313–323, Orlando, FL, 5.-8. April 1999. SPIE – International Society for Optical Engineering. †CCA86458/99 ga99bChellapilla. [632] Robert B. Heckendorn, Soraya Rana, and Darrell L. Whitley. Polynomial time summary statistics for a generalization of MAXSAT. In ?, editor, Proceedings of the GECCO-99 Conference, volume ?, pages 281–288, ?, ? 1999. Morgan Kaufmann, Los Altos, CA. ga99bRBHeckendorn. [633] Vesselin K. Vassilev, Julian F. Miller, and Terence C. Fogarty. On the nature of two-bit multiplier landscapes. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 36–45, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. †CCA80868/99 ga99bVassilev. [634] K. Weicker and N. Weicker. On evolution strategy optimization in dynamic environments. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 2039–2046, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77258/99 ga99bWeicker. [635] K. Chellapilla and D. B. Fogel. Fitness distributions in evolutionary computation: analysis of local extrema in the continuous domain. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1885–1892, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77248/99 ga99cChellapilla. [636] Robert B. Heckendorn, Soraya Rana, and Darrell L. Whitley. Test function generators as embedded landscapes. In ?, editor, Foundations of Genetic Algorithms, FOGA-5, page ?, ?, ? 1999. Morgan Kaufmann, Los Altos, CA. ga99cRBHeckendorn. [637] Vesselin K. Vassilev, Julian F. Miller, and Terence C. Fogarty. Digital circuit evolution and fitness landscapes. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1299– 1306, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA80745/99 ga99cVassilev. [638] Thomas A. Bitterman. Genetic algorithms and the satisfiability of large-scale Boolean expressions. PhD thesis, Louisiana State University of Agricultural and Mechanical College, 1993. * DAI Vo. 54 No. 9 ga:BittermanThesis. [639] Hans-Michael Voigt, Joachim Born, and Ivan Santib´ an ˜ez-Koref. A multivalued evolutionary algorithm. Technical Report TR-93-022, International Computer Science Institute (ICSI), Berkeley, CA, 1993. ga:Born93d. [640] Ping-Chung Chi. Genetic search with proportion estimations. In Schaffer [1419], pages 92–97. ga:Chi89. [641] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the building-block hypothesis. In Whitley [1424], pages 109–126. (available via anonymous ftp site ftp.santafe.edu directory /pub/Users/mm file Forrest-Mitchell-FOGA.ps.Z) ga:Forrest92c. [642] Takanori Shibata and Toshio Fukuda. Intelligent motion planning by genetic algorithm with fuzzy critic. In Proceedings IEEE International Symposium on Intelligent Control, pages 565–570, Chicago, IL, 25.27. August 1993. IEEE, New York. ga:Fukuda93m. [643] David E. Goldberg and William Michael Rudnick. Genetic algorithms and the variance of fitness. IlliGAL Report 91001, University of Illinois at Urbana-Champaign, 1991. ga:Goldberg91a. [644] David E. Goldberg and William Michael Rudnick. Genetic algorithms and the variance of fitness. Complex Systems, 5(3):265–278, June 1991. also as [643] ga:Goldberg91b. [645] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The royal road for genetic algorithms: Fitness landscapes and GA performance. In Francisco J. Varela and Paul Bourgine, editors, Toward a Practice of Autonomous System: Proceedings of the First European Conference on Artificial Life, pages 245–254, Paris, 11.-13. December 1991. MIT Press, Cambridge, MA. (available via anonymous ftp site ftp.santafe.edu directory /pub/Users/mm file sfi-91-10-046.ps.Z) ga:Holland91a. [646] S. Hurley. Taskgraph mapping using a genetic algorithm: a comparison of fitness functions. Parallel Computing, 19(11):1313–1217, November 1993. * CA 1613 Vol. 38 No. 3/4 ga:Hurley93a. [647] Richard S. Judson, M. E. Colvin, J. C. Meza, A. Huffer, and D. Gutierrez. Do intelligent configuration search techniques outperform random search for large molecules? International Journal of Quantum Chemistry, 44(2):277–290, 1992. ga:Judson92a.
Bibliography
89
[648] Vladik Kreinovich, Chris Quintana, and Olac Fuentes. Genetic algorithms: what fitness scaling is optimal? Cybernetics and Systems, 24(1):9–26, January-February 1993. ga:Kreinovich93a. [649] Mrinal K. Sen and Paul L. Stoffa. Rapid sampling of model space using genetic algorithms: Examples from seismic waveform inversion. Geophysical Journal International, 108(1):281+, January 1992. ga:MKSen92a. [650] Bernard Manderick, Mark de Weger, and Piet Spiessens. The genetic algorithm and the structure of the fitness landscape. In Belew and Booker [1423], pages 143–150. ga:Manderick91a. [651] Byoung-Tak Zhang and Heinz M¨ uhlenbein. Evolving optimal neural networks using genetic algorithms with Occam’s razor. Complex Systems, 7(3):199–220, June 1993. * CCA 66251/94 ga:Muhlenbein93e. [652] R. Rankin, R. Wilkerson, G. Harris, and J. Spring. A hybrid genetic algorithm for an NP-complete problem with an expensive evaluation function. In K. M. George Deaton and George Hedrick Hal. Berghel, editors, Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing, pages 251–256, Rolla, MO, 14.-16 February 1993. ACM, New York. * EEA 48825/94 CCA 45425/94 ACM/93 ga:Rankin93a. [653] Sebastian Bonhoeffer and Peter F. Stadler. Error thresholds on correlated fitness landscapes. Journal of Theoretical Biology, 164(3):359–372, 7. October 1993. ga:Stadler93a. [654] Peter F. Stadler and Walter Gr¨ uner. Anisotrophy in fitness landscapes. Journal of Theoretical Biology, 165(3):373–388, 7. December 1993. ga:Stadler93b. [655] M. Takeuchi and A. Sakurai. A genetic algorithm with self-formation mechanism of genotype-to-phenotype mapping. Transaction of the Institute of Electronics, Information and Communication Engineers D-I (Japan), J76D-I(6):229–236, June 1993. (in Japanese) * CCA 63729/93 ga:Takeuchi93a. [656] Victor S. Johnston and M. Franklin. Is beauty in the eye of the beholder. Ethology and Sociobiology, 14(3):183–199, May 1993. * ISI ga:VSJohnston93a. [657] E. D. Weinberger. A more rigorous derivation of some properties of uncorrelated fitness landscapes. Journal of Theoretical Biology, 134(?):125–129, 1988. † ga:Weinberger88. [658] E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics, 63(?):325–336, 1990. ga:Weinberger90. [659] Ed Weinberger. Fouries and Taylor series on fitness landscapes. Biological Cybernetics, 65(5):321–330, 1991. ga:Weinberger91a. [660] Keith E. Mathias and Darrell L. Whitley. Genetic operators, the fitness landscape and the traveling salesman problem. In M¨ anner and Manderick [1420], pages 219–228. † ga:Whitley92c. [661] Jarmo T. Alander, Lyudmila A. Zinchenko, and Sergey N. Sorokin. Comparison of fitness landscapes for evolutionary design of dipole antennas. IEEE Transactions on Antennas and Propagation, 52(11):2932– 2940, November 2004. gaA:IEEEtrans04. [662] Jarmo T. Alander. Indexed bibliography of genetic programming. Report 94-1-GP, University of Vaasa, Department of Information Technology and Production Economics, 1995. (available via anonymous ftp site ftp.uwasa.fi directory cs/report94-1 file gaGPbib.ps.Z) gaGPbib. [663] Jarmo T. Alander. Indexed bibliography of genetic algorithm implementations. Report 94-1-IMPLE, University of Vaasa, Department of Information Technology and Production Economics, 1995. (available via anonymous ftp site ftp.uwasa.fi directory cs/report94-1 file gaIMPLEbib.ps.Z) gaIMPLEbib. [664] Jarmo T. Alander. Indexed bibliography of distributed genetic algorithms. Report 94-1-PARA, University of Vaasa, Department of Information Technology and Production Economics, 1995. (available via anonymous ftp site ftp.uwasa.fi directory cs/report94-1 file gaPARAbib.ps.Z) gaPARAbib. [665] Jarmo T. Alander. Indexed bibliography of genetic algorithms theory and comparisons. Report 941-THEORY, University of Vaasa, Department of Information Technology and Production Economics, 1995. (available via anonymous ftp site ftp.uwasa.fi directory cs/report94-1 file gaTHEORYbib.ps.Z) gaTHEORYbib. [666] Feng Qian, Guaqiang Li, and Liren Liu. Optoelectronic implementation of a genetic algorithm. Journal of Optics A: Pure and Applied Optics, 2(2):65–69, March 2000. * www /IOP ga00aFengQian. [667] Hiroaki Sengoku and Junichi Taguchi. Problem solving device, 2000. (JP patent no. 2000010953. Issued January 14 2000) * fi.espacenet.com ga00aHSengoku. [668] Hiroaki Kitano. Information processor, its method and its distribution medium, 2000. (JP patent no. 2000157265. Issued June 13 2000) * fi.espacenet.com ga00aHiroakiKitano. [669] Koji Marume. Combination optimizing device, 2000. (JP patent no. 200163393. Issued June 16 2000) * fi.espacenet.com ga00aKMarume.
90
Genetic algorithm implementations
[670] Martin Kuehrer. Method for prognosing the course of a data sequence and device for carrying out said method, 2000. (WO patent no. 0063789. Issued October 26 2000) * fi.espacenet.com ga00aMKuehrer. [671] Satoshi Hikita. Optimum solution search method/device, 2000. (JP patent no. 2000112916. Issued April 21 2000) * fi.espacenet.com ga00aSHikita. [672] Shigeyuki Ohara and Hiroyuki Kawato. Information processing device and method applying genetic algorithm, 2000. (JP patent no. 2000259599. Issued September 22 2000) * fi.espacenet.com ga00aSOhara. [673] Seiji Saito. Device and method for searching optimum solution and program recording medium, 2000. (JP patent no. 2000348010. Issued December 15 2000) * fi.espacenet.com ga00aSSaito. [674] Toshihiro Nishimura, Hiroyasu Itoh, Nobue Adachi, Hajime Ohi, Hiroyuki Okada, and Akio Shingawa. Problem solving operation apparatus using a state transition, 2000. (U. S. patent no. 6,052,678. Issued April 18 2000) * fi.espacenet.com ga00aTNishimura. [675] Tobias Schubert, Elke Mackensen, Nicole Drechsler, Rolf Drechsler, and Bernd Becker. Specialized hardware for implementation of evolutionary algorithms. page 369, 2000. ga00aTSchubert. [676] Fumiyoshi Sasagawa and Akio Shinagawa. Arrangement optimization problem processing method and computer readable recording medium recording arrangement optimization problem processing program, 2000. (JP patent no. 2000090065. Issued March 31 2000) * fi.espacenet.com ga00bFSasagawa. [677] Alexander Gounares and Prakash Sikchi. Adaptive problem solving method and apparatus utilizing evolutionary computation techniques, 2001. (U. S. patent no. 6,282,527. Issued August 28 2001) * fi.espacenet.com ga01aAGounares. [678] Akio Shinagawa. Optimum solution search method and optimum solution search apparatus as well as storage medium in which optimum solution search program is stored, 2001. (U. S. patent no. 2001011258. Issued August 2 2001) ga01aAShinagawa. [679] Akira Yoshikawa. Genetic algorithm processor, 2001. (JP patent no. 2001229148. Issued August 24 2001) * fi.espacenet.com ga01aAYoshikawa. [680] Hideyuki Takagi, Masahiro Waranabe, and Shinichi Sakamoto. System optimization method and device, 2001. (JP patent no. 2001175637. Issued June 29 2001) * fi.espacenet.com ga01aHTakagi. [681] Masaya Iwata, Isamu Kajitani, Yong Liu, Nobuki Kajihara, and Tetsuya Higuchi. Implementation of a gate-level evolvable hardware chip. In Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, and M. Yasunaga, editors, Evolvable Systems: From Biology to Hardware, 4th International Conference, ICES 2001, volume LNCS of 2210, pages 38–49, Tokyo (Japan), 3.-5. October 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aMIwata. [682] Masaru Tezuka and Masahiro Hichi. Plan improving method, genetic information improving method, plan improving device and recording medium for improving plan, 2001. (JP patent no. 2001022724. Issued January 26 2001) * fi.espacenet.com ga01aMTezuka. [683] Toshiaki Kumon. Genetic algorithm processing method, 2001. (JP patent no. 2001307060. Issued November 2 2001) * fi.espacenet.com ga01aTKumon. [684] Yasuharu Irizuki and Takeshi Furuhashi. Analytical value estimating method and computer readable recording medium recording program doe executing the same, 2001. (JP patent no. 2001273474. Issued October 5 2001) * fi.espacenet.com ga01aYIrizuki. [685] Yasuhiro Kikuchi and Hirofumi Doi. Device, method, and program storage medium for executing genetic algorithm, 2001. (U. S. patent no. 6,182,057. Issued January 30 2001; available via www URL: http://appft1.uspto.gov/netahtml/PTO/search-adv.html) ga01aYasuhiroKikuchi. [686] Hideyuki Takagi, Masahiro Watanabe, and Shinichi Sakamoto. System optimal adjustment method and device thereof, 2001. (JP patent no. 2001186598. Issued July 6 2001) * fi.espacenet.com ga01bHTakagi. [687] Hirotoshi Takahashi, Yasuyoshi Kobayashi, Yuji Fukuoka, and Sannomiya Nobuo. Stacking scheduling device and method using genetic algorithm, 2001. (JP patent no. 2001249970. Issued September 2001) * fi.espacenet.com ga01bHTakahashi. [688] Delon Levi and Steven A. Guccione. Method and apparatus for testing evolvable configuration bitstreams, 2002. (U. S. patent no. 6,363,519. Issued March 26 2002) ga02aDLevi. [689] J. R. Evans and T. Arslan. The implementation of an evolvable hardware system for real time image registration on a system-on-chip platform. In Proceedings of the NASA/DoD Conference on Evolvable Hardware (EH’02), pages 142–146, ?, 15.-18. July 2002. IEEE, Piscataway, NJ. ga02aJREvans.
Bibliography
91
[690] J. R. Evans and T. Arslan. Implementation of a robust image registration algorithm on an ARM system-onchip platform. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’02), pages 269–272, ?, 26.-29. May 2002. IEEE, Piscataway, NJ. ga02bJREvans. [691] Matti Tommiska. Applications of Reprogrammability in Algorithm Acceleration. PhD thesis, Helsinki University of Technology, Signal Processing Laboratory, 2005. ga05aMTommiska. [692] Tetsuya Higuchi, Yong Liu, and Xin Yao, editors. Evolvable Hardware. Springer, New York, 2006. ga06aTetsuyaHiguchi. [693] Takeshi Yamada. Optimizing problem resolution processor, 1992. (JP patent no. 4281550. Issued October 7 1992) * fi.espacenet.com ga92aTYamada. [694] Kumi Sugawara. OD table integer estimating device, 1993. (JP patent no. 5233594. Issued September 10 1993) * fi.espacenet.com ga93aKSugawara. [695] G. F. Joyce. A massively parallel analog system for evolutionary optimization: The wetware approach. In Sebald and Fogel [1432], page ? †conf.prog ga94aJoyce. [696] Stephen D. Scott. HGA: A hardware-based genetic algorithm. Master’s thesis, University of NebraskaLincoln, 1994. (available via anonymous ftp site ftp.cs.unl.edu directory /pub/TechReps file UNL-CSE-94-020.ps.gz) ga94aSDScott. [697] M. Yasunaga. Genetic algorithms implemented by wafer scale integration – wafer scale integration by LDA (leaving defects alone) approach. Transaction of the Institute of Electronics, Information and Communication Engineers D-I (Japan), J77D-I(2):141–148, February 1994. (in Japanese) * CCA 41288/94 CCA 41982/94 ga94aYasunaga. [698] B. C. H. Turton, T. Arslan, and David H. Horrocks. A hardware architecture for a parallel genetic algorithm for image registration. In Proceedings of the IEE Collquium on Genetic Algorithms in Image Processing and VisionInternational Conference on, pages 11/1–11–6, ?, ? 1994. IEEE, Piscataway, NJ. ga94bTurton. [699] Paul S. Graham and Brent Nelson. A hardware genetic algorithm for the traveling salesman problem on Splash 2. In ?, editor, Proceedings of the 5th International Workshop on Field-Programmable Logic and Applications, pages 352–361, Oxford, UK, 29. August-1. September 1995. Springer-Verlag, Berlin. (available via www URL: http://splish.ee.byu.edu/docs/papers1.html) ga95aPGraham. [700] V. G. Red’ko, M. I. Dyabin, V. M. Elagin, N. G. Karpinskii, A. I. Polovyanyuk, V. A. Serechenko, and O. V. Urgant. On microelectronic implementation of an evolutionary optimizer. Mikroelektronika (Russia), 24(3):207–210, 1995. (in Russian;English translation as [702]) †[972] EEA65081/95 ga95aRedko. [701] Stephen D. Scott, Ashok Samal, and Sharad Seth. HGA: a hardware-based genetic algorithm. In ?, editor, Proceedings of the 1995 ACM Third International Symposium on Field-Programmable Gate Arrays (FPGA’95), pages 53–59, Monterey, CA, 12.-14. February 1995. ACM, New York. (available via www URL: http://www.cs.wustl.edu/~ sds/)* ga95aScott. [702] V. G. Red’ko, M. I. Dyabin, V. M. Elagin, N. G. Karpinskii, A. I. Polovyanyuk, V. A. Serechenko, and O. V. Urgant. On microelectronic implementation of an evolutionary optimizer. Russian Microelectronics (USA), 24(3):182–185, 1995. (Translation of [700]) †EEA65081/95 ga95bRedko. [703] N. Sitkoff, M. Wazlowski, A. Smith, and H. Silverman. Implementing a genetic algorithm on a parallel custom computing machine. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pages 180–187, Napa Valley, CA, 19.-21. April 1995. IEEE Computer Society Press, Los Alamitos, CA. (available via www URL: http://www.lems.brown.edu/arm/) ga95bSitkoff. [704] Jarmo T. Alander, Mikael Nordman, and Henri Set¨ al¨ a. Register-level hardware design and simulation of a genetic algorithm using VHDL. In Oˇsmera [1439], pages 10–14. ga95gAlander. [705] Alessandro Gabrielli, Enzo Gandolfi, Massimo Masetti, and Marco Russo. High-speed VLSI fuzzy processor designed for HEPE. In Steven K. Rogers and Dennis W. Ruck, editors, Applications and Science of Artificial Neural Networks II, volume SPIE-2760, pages 760–771, ?, March 1996. The International Society for Optical Engineering. * www/SPIE Web ga96aAGabrielli. [706] J. Hesser, J. Ludvig, and R. M¨ anner. Real-time optimization by hardware supported genetic algorithms. In Oˇsmera [1440], pages 52–59. ga96aHesser. [707] Koji Tajima, Munemori Adachi, Kazuhiro Matsuo, and Yukiko Yoshida. Device and method for executing genetic algorithm, 1996. (JP patent no. 8194677. Issued July 30 1996) * fi.espacenet.com ga96aKTajima. [708] Masahiro Murakawa, Shuji Yoshizawa, Isamu Kajitani, Tatsumi Furuya, Masaya Iwata, and Tetsuya Higuchi. Hardware evolution at function level. In Voigt et al. [1431], pages 62–71. ga96aMurakawa.
92
Genetic algorithm implementations
[709] Paul S. Graham and Brent Nelson. Genetic algorithms in software and in hardware - a performance analysis of workstation and custom computing machine implementations. In Jeffrey Arnold and Kenneth L. Pocek, editors, Proceedings of the 1996 IEEE Symposium on FPGAs for Custom Computing Machines, pages 216– 225, Napa Valley, CA, 17.-19. April 1996. IEEE Computer Society Press, Los Alamitos, CA. (available via www URL: http://splish.ee.byu.edu/docs/papers1.html) ga96aPGraham. [710] Stephen D. Scott, Ashok Samal, and Sharad Seth. HGA:A hardware-based genetic algorithm. In ? [1450], page ? ga96aScott. [711] Timo H¨ am¨ al¨ ainen, Harri Klapuri, Jukka Saarinen, Pekka Ojala, and Kimmo Kaski. Accelerating genetic algorithm computation in tree shaped parallel computer. Journal of Systems Architecture, 42(1):19–36, August 1996. ga96aTHamalainen. [712] B. C. H. Turton, T. Arslan, and David H. Horrocks. A hardware architecture for a parallel genetic algorithm for image registration. In ? [1450], page ? ga96aTurton. [713] Paul S. Graham. A description, analysis, and comparison of a hardware and software implementation of the SPLASH genetic algorithm for optimizing symmetric traveling salesman problems. Master’s thesis, Brigham Young University, Electrical and Computer Engineering Department, 1996. (available via www URL: http://splish.ee.byu.edu/docs/papers1.html) ga96bPGraham. [714] Timo H¨ am¨ al¨ ainen. Implementation and Algorithms of a Tree Shape Parallel Computer. PhD thesis, Tampere University of Technology, 1996. ga96bTHamalainen. [715] B. C. H. Turton and T. Arslan. An architecture for enhancing image processing via parallel genetic algorithms & data compression. In ? [1450], page ? ga96bTurton. [716] X. Yao and T. Higuchi. Promises and challenges of evolvable hardware. In ?, editor, Proceedings of the First International Conference, ICES 96, pages 55–78, Tsukuba, Japan, 7.-8. October 1996. Springer-Verlag, Berlin (Germany). †EEA82577/97 ga96bXYao. [717] I. M. Bland and G. M. Megson. Implementing a generic systolic array for genetic algorithms. In Proceedings of the First Online Workshop on Soft Computing (WSC1), pages 268–267, WWW (World Wide Web), 19.-30. August 1996. Nagoya University. ga96cBland. [718] M. Salami. Genetic algorithm processor on reprogrammable architectures. In ?, editor, Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages 355–361, San Diego, CA (USA), 29. February- 3. March 1996. MIT Press, Cambridge, MA. †CCA102457/97 ga96cMSalami. [719] B. C. H. Turton and T. Arslan. A parallel genetic VLSI architecture for combinatorial real-time applications - disc scheduling. In ? [1450], page ? ga96cTurton. [720] I. M. Bland and G. M. Megson. Efficient operator pipelining in a bit serial genetic algorithm engine. Electronics Letters, 33(12):1026–1028, 5. June 1997. ga97aBland. [721] Rolf Drechsler, Nicole G¨ ockel, Elke Mackensen, and Bernd Becker. BEA: specialized hardware for implementation of evolutionary algorithms. In Koza et al. [1453], page ? †conf.prog ga97aDrechsler. [722] Fumiyoshi Sasagawa, Akio Shinagawa, Toshihiro Nishimura, Hiroyuki Kanazawa, and Makihiko Satou. Genetic algorithm execution device, 1997. (JP patent no. 9091265. Issued April 4 1997) * fi.espacenet.com ga97aFSasagawa. [723] Jan Kazimierczak. An approach to evolvable hardware representing the knowledge base in an automatic programming system. In Koza et al. [1453], page ? †conf.prog ga97aKazimierczak. [724] Mircea Gh. Negoita, A. H. Dediu, and D. Mihaila. Aspects of genetic algorithms in evolvable hardware implementation. In Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, volume 1, pages 682–685, Dunedin (New Zealand), 24.-28. November 1997. Springer-Verlag, Singapore. †CCA82551/98 ga97aMGNegoita. [725] Marco Russo. FuGeNeSys: Sw and Hw implementation. In Proceedings of the 1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, volume 1, pages 209–218, Adelaide, SA (Australia), 21.-23. May 1997. IEEE, New York, NY. †CCA89933/97 ga97aMRusso. [726] Makihiko Satou. Optimizing device, 1997. fi.espacenet.com ga97aMSatou.
(JP patent no. 9073439. Issued March 18 1997)
*
[727] Masaya Teraoka and Takeshi Terasaki. Optimizing device and method thereof by genetic algorithm based on unbalanced evolution theory, 1997. (JP patent no. 9251446. Issued September 22 1997) * fi.espacenet.com ga97aMTeraoka.
Bibliography
93
[728] B. Shackleford, E. Okushi, M. Yasuda, H. Koizumi, K. Seo, T. Iwamoto, and H. Yasuura. A highperformance hardware implementation of a survival-based genetic algorithm. In Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, volume 1, pages 686–691, Dunedin (New Zealand), 24.-28. November 1997. Springer-Verlag, Singapore (Singapore). †CCA78560/98 ga97aShackleford. [729] Tankitsutowanitsuchi Somugiyatsuto, Takeshi Terasaki, and Masaya Teraoka. Relational function searching device and method therefor, 1997. (JP patent no. 9044466. Issued February 14 1997) * fi.espacenet.com ga97aTSomugiyatsuto. [730] U. Tangen, L. Schulte, and J. S. McCaskill. A parelle hardware evolvable computer POLYP. In Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pages 238–239, Napa Valley, CA, 16.-18. April 1997. IEEE Computer Society Press, Los Alamitos , CA. †CCA102684/97 ga97aUTangen. [731] Yoshiaki Usami, Shiro Nonaka, and Toshiaki Yoshinaga. Temporary scaffold arranging device, 1997. (JP patent no. 9282348. Issued October 31 1997) * fi.espacenet.com ga97aYUsami. [732] G. M. Megson and I. M. Bland. Mapping a generic systolic array for genetic algorithms onto FPGAs-theory and practice. In Proceedings of the Parallel Computing: Fundamentals, Applications and New Directions, volume 12, pages 723–726, Bonn, Germany, 19.-22. September 1997. Elsevier, Amsterdam (Netherlands). †CCA87692/98 ga97bGMMegson. [733] R. B. Maunder, Z. A. Salcic, and G. G. Coghill. FPLD HDL synthesis employing high-level evolutionary algorithm optimisation. In Proceedings of the 7th International Workshop, pages 265–273, London (UK), 1.-3. September 1997. Springer-Verlag, Berlin (Germany). †CCA12750/98 ga97bMaunder. [734] B. Shackleford, E. Okushi, M. Yasuda, H. Koizumi, K. Seo, and T. Iwamoto. Hardware framework for accelerating the execution speed of a genetic algorithm. IEICE Trans. Electron. (Japan), E80-C(7):962– 969, 1997. †CCA78578/97 ga97bShackleford. [735] Akio Shinagawa, Hiroyuki Okada, Ayumi Nakabayashi, and Takada Kazusane. Mathematical plan calculation device, distribution plan system, medium stored with mathematical plan program, and medium stored with distribution plan program, 1998. (JP patent no. 10055349. Issued February 24 1998) * fi.espacenet.com ga98aAkioShinagawa. [736] Barry J. Shackleford. Adaptation evaluation device, 1998. (JP patent no. 10232858. Issued September 2 1998) * fi.espacenet.com ga98aBJShackleford. [737] Brian L. Smith. Adaptive computing systems, computer readable memories and processes employing hyperlinear chromosomes, 1998. (U. S. patent no. 5,819,244. Issued October 6 1998) * fi.espacenet.com ga98aBLSmith. [738] Stuart J. Flockton and K. Sheehan. Evolvable hardware systems using programmable analogue devices. In Proceedings of the IEE Colloquium Evolvable Hardware Systems, pages 5/!–5/6, London (UK), 3. March 1998. IEE, London, UK. †CCA45996/98 ga98aFlockton. [739] Alex Fukunaga, Ken Hayworth, and Adrian Stoica. Evolvable hardware for spacecraft autonomy. In Proceedings of the 1998 IEEE Aerospace Conference, pages 135–143, Aspen, CO, 21.-28. March 1998. IEEE, New York, NY. †A98-34490 ga98aFukunaga. [740] G. M. Megson and I. M. Bland. Synthesis of a systolic array genetic algorithm. In Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, pages 316–320, Orlando, FL, 30. mar - 3. apr ? 1998. IEEE Computer Society Press, Los Alamitos , CA. †CCA42845/98 ga98aGMMegson. [741] Hidetoshi Tanaka. Prediction device for optimum parameter combination, 1998. (JP patent no. 10149345. Issued June 2 1998) * fi.espacenet.com ga98aHidetoshiTanaka. [742] I. M. Bland and G. M. Megson. The systolic array genetic algorithm, an example of systolic arrays as a reconfigurable design methodology. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pages 260–261, Napa Valley, CA, 15.-17. April 1998. IEEE Computer Society Press, Los Alamitos, California. †CCA87677/98 ga98aIMBland. [743] Mircea Gh. Negoita. Evolutionary computation in evolvable hardware implementation, implication on engineering design and automation. In Proceedings of the 6th European congress on Intelligent Techniques and Soft Computing, volume 1, pages 498–502, Aachen (Germany), 7.-10. September 1998. Verlag Mainz, Aachen (Germany). †CCA72709/99 ga98aMGNegoita.
94
Genetic algorithm implementations
[744] Makihiko Satou. Optimizing device having immunity combined with genetic algorithm and storage medium stored with optimizing program having immunity combined with genetic algorithm, 1998. (JP patent no. 10134020. Issued May 22 1998) * fi.espacenet.com ga98aMakihikoSatou. [745] N. Yoskida, T. Yasuoka, and T. Moriki. VLSI architecture for steady-state genetic algorithms. Res. Rep. Inf. Sci. Electr. Eng. Kyushu Univ. (Japan), 3(1):69–74, 1998. In Japanese †CCA69426/98 ga98aNYoskida. [746] Toshiyuki Ogawa. Optimizing method using genetic algorithm and is device, 1998. (JP patent no. 10177562. Issued June 30 1998) * fi.espacenet.com ga98aToshiyukiOgawa. [747] Makihiko Satou. Optimization system using genetic algorithm, 1998. (JP patent no. 10105532. Issued April 24 1998) * fi.espacenet.com ga98cMakihikoSatou. [748] G. Klimeck, C. H. Salazar-Lazaro, A. Stoica, and T. Cwik. “genetically engineered” nanoelectronics. In ?, editor, Proceedings of the First NASA/DoD Workshop on Evolwable Hardware, pages 247–248, ?, ? 1999. ? ga99aGKlimeck. [749] J. Barry Shackleford, Etsuko Okushi, Mitsuhiro Yasuda, and Takashi Iwamoto. Genetic algorithm machine and its production method, and method for executing a genetic algorithm, 1999. (U. S. patent no. 5,970,487. Issued October 19 1999;available via www URL: http://appft1.uspto.gov/netahtml/PTO/search-adv.html) ga99aJBShackleford. [750] Kazuyuki Yoshimura and Ryohei Nakano. Method and device for supporting personnel placement, and storage medium recorded with personnel placement support program, 1999. (JP patent no. 11143850. Issued May 28 1999) * fi.espacenet.com ga99aKYoshimura. [751] Jim Torresen. Evolvable hardware — the coming hardware design method. In N. K. Kasabov and R. Kozma, editors, Neuro-Fuzzy Techniques for Intelligent Information Systems, pages 435–449. PhysicaVerlag (Springer-Verlag), Berlin, 1999. †Torresen ga99aTorresen. [752] Yukiko Yoshida and Munemori Adachi. Method and device for operating genetic algorithm, 1999. (JP patent no. 11120159. Issued April 30 1999) * fi.espacenet.com ga99aYYoshida. [753] Jim Torresen. Increased complexity evolution applied to evolvable hardware. In Dagli et al, editor, Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems, Proceedings of ANNIE’99, page ?, ?, November 1999. ASME Press. †Torresen ga99bTorresen. [754] D. Anderson. Systolic array IC for genetic computation. In ?, editor, Proceedings of the 1991 3rd NASA Symposium on VLSI Design, page ?, Idaho Univ., ? 1991. NASA. * N94-18361 ga:DAnderson91. [755] J. Liu. A general purpose hardware implementation of genetic algorithms. Master’s thesis, University of North Carolina at Charlotte, 1993. †[972] ga:JLiu93. [756] L. Wirbel. Compression chip is first to use genetic algorithms. Electronic Engineering Times, ?(?):17, December 1992. †[972] ga:Wirbel92. [757] Jarmo T. Alander. On finding the optimal genetic algorithms for robot control problems. In Proceedings IROS ’91 IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, volume 3, pages 1313–1318, Osaka, 3.-5. November 1991. IEEE Cat. No. 91TH0375-6. GA:IROS’91. [758] Angela S. Chuang and Felix Wu. An extensible genetic algorithm framework for problem solving in a common environment. IEEE Transactions on Power Systems, 15(1):269–275, February 2000. ga00aAngelaSChuang. [759] Y. Awatsuji, T. Ishimaru, and T. Kubota. Application-specific optoelectronic parallel computing architecture for solving optimization problems by using the genetic algorithm. In R. A. Lessard and T. Galstian, editors, Optics in Computing 2000, volume SPIE-4089, pages 242–248, Quebec City (Canada), 18. -23. June 2000. The International Society for Optical Engineering, Bellingham, WA. †P89829/00 ga00aAwatsuji. [760] Delon Levi. HereBoy: A fast evolutionary algorithm. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 17–23, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aDelonLevi. [761] E. Bonsma et al. EOS - an evolutionary and ecosystem research platform. BT Technology Journal, 18(4):24–31, October 2000. * ga00aEBonsma. [762] M. D. Kramer and Du Zhang. GAPS: a genetic programming system. In The 24th Annual International Computer Software and Applications Conference. COMPSAC 2000, volume ?, pages 614–619, Taipei, Taiwan, 25.-27.October 2000. IEEE, Piscataway, NJ. * www/IEEE ga00aMDKramer.
Bibliography
95
[763] Moritoshi Yasunaga, Taro Nakamura, Jung H. Kim, and Ikuo Yoshihara. Kernel-based pattern recognition hardware: its design methology using evolved truth tables. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 253–262, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aMoritoshiYasunaga. [764] Ron Levy, Stefano Lepri, Eduardo Sanchez, Gilles Ritter, and Moshe Sipper. State of the art: An evolving FPGA-based board for handwritten-digit recognition. In Jason Lohn, Adrian Stoica, Didier Keymeulen, and Silvano Colombano, editors, Proceedings of the Second NASA/DoD Workshop on Evolvanle Hardware, pages 237–243, Palo Alto, CA, 13.-15. July 2000. IEEE Computer Society. ga00aRonLevy. [765] Takehashi Furuhashi and Masahiro Miwa. Processor for genetic algorithm, 2000. 2000181895. Issued June 30 2000) * fi.espacenet.com ga00aTFuruhashi.
(JP patent no.
[766] Matti Tommiska. Area-efficient implementation of a fast square root algorithm. In Proceedings of the 2000 IEEE International Caracas Conference on Devices, Circuits and Systems, volume ?, pages S–18–1–S–18–4, Cancun (Mexico), 15.-17. March 2000. IEEE, Piscataway, NJ. ga00aTommiska. [767] Topi Mikkola. Algorithm library for large scale vehicle routing. Master’s thesis, Helsinki University of Technology, 2000. †www /TKK ga00aTopiMikkola. [768] Willi-Hans Steeb and Yorick Hardy. Quantum computing and symbolic C++ implementation. International Journal of Modern Physics C, 11(2):323–334, February 2000. * www /Elsevier ga00aW-HSteeb. [769] Wolfgang Banzhaf. Genetic programming with linear genomes. pages 256–351, 2000. ga00aWBanzhaf. [770] Neal C. Evans and David L. Shealy. 5. Optimization-based techniques for laser shaping optics, pages 215–248. Marcel Dekker, Inc., New York, 2000. ga00bNCEvans. [771] Willi-Hans Steeb and Yorick Hardy. Entangled quantum states and a C++ implementation. International Journal of Modern Physics C, 11(1):69–77, February 2000. * www /Elsevier ga00bW-HSteeb. [772] A. Alvarez, A. Orfila, and J. Tintore. DARWIN: An evolutionary program for nonlinear modeling of chaotic time series. Computer Physics Communications, 136(3):334–349, 15. May 2001. ga01aAAlvarez. [773] Alexander V. Pavlov. Optical technologies for computational intelligence. In Bruno Bosacchi, David B. Fogel, and James C. Bezdek, editors, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation IV, volume SPIE-4479, pages 135–143, ?, November 2001. The International Society for Optical Engineering. * www/SPIE Web ga01aAVPavlov. [774] Bruce A. Shapiro, Jin Chu Wu, David Bengali, and Mark J. Potts. The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics, 17(2):137–148, February 2001. ga01aBAShapiro. [775] B. Shackleford, G. Snider, R. J. Carter, E. Okushi, M. Yasuda, K. Seo, and H. Yasuura. A highperformance, pipelined, FPGA-based genetic algorithm machine. Genetic Programming and Evolvable Machines, 2(1):33–60, March 2001. * www /Google ga01aBShackleford. [776] Christian Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Publishers, San Francisco, CA, 2001. (translation of [955]) †TKKpaa ga01aCJacob. [777] E. Spinoza et al. Chameleon: A generic tool for genetic programming. In ?, editor, Proceedings of the Brazilian Computer Society Conference, page ?, Fortaleza (Brazil), August 2001. ? †Emer ga01aESpinoza. [778] G. E. Plassman and J. Sobieszczanski-Sobieski. Experience with a genetic algorithm implemented on a multiprocessor computer. Structural and Multidisciplinary Optimization, 22(2):102–115, ? 2001. * www /Springer ga01aGEPlassman. [779] James A. Foster. Review: Discipulus: A commercial genetic programming system. Genetic Programming and Evolvable Machines, 2(2):201–203, June 2001. †www /Banzhaf ga01aJAFoster. [780] Judith A. Johnson. Extensible markup language genetic algorithm, 2001. 2001/0037346. Issued November 1 2001) ga01aJAJohnson.
(U. S. patent no. US
[781] Johannes Schemmel, Karlheinz Meier, and Felix Sch¨ urmann. A VLSI implementation of an analog neural network suited for genetic algorithms. In Y. Liu, K. Tanaka, M. Iwata, T. Higuchi, and M. Yasunaga, editors, Evolvable Systems: From Biology to Hardware, 4th International Conference, ICES 2001, volume LNCS of 2210, pages 50–61, Tokyo (Japan), 3.-5. October 2001. Springer-Verlag Berlin Heidelberg. * www /Springer ga01aJSchemmel. [782] T. S. Mahesh, Kavita Dorai, Arvind, and Anil Kumar. Implementing logic gates and the Deutch-Josza quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses. Journal of Magnetic Resonance, 148(1):95–103, January 2001. †Academic Press/www ga01aTSMahesh.
96
Genetic algorithm implementations
[783] Michael Affenzeller. Segregative genetic algorithm (SEGA): A hybrid superstructure upwards compatible to genetic algorithms for retarding premature convergence. International Journal of Computers, Systems and Signals, 2(1):18–32, ? 2001. †Affenzeller ga01cMAffenzeller. [784] Alvin J. Surkan and Amiran Khuskivadze. Evolutionary discovery of algorithms as circuits for quantum computer. In Proceedings of the 2002 Conference on APL: array processing languages: lore, problems, and applications, pages 219–227, Madrid (Spain), ? 2002. ACM Press, New York. (also as [794]) †ACM /www ga02aAJSurkan. [785] Andreas Rummler and Gerd Scarbata. Introducing EALib - a java evolutionary computation framework. pages 155–160, 2002. ga02aARummler. [786] D.-J. Xu, B. Sun, X. Xu, Y.-G. Wang, and B. Chen. Integrated design and optimization for scramjet. Journal of Propulsion Technology, 23(5):360–362, October 2002. (In Chinese) * A02-12451 ga02aD-JXu. [787] E. Besada-Portas, J. A. L´ opez-Orozco, and B. Andres-Toro. A versatile toolbox for solving industrial problems with several evolutionary techniques. pages 325–330, 2002. ga02aEBesada-Portas. [788] J. Kim, Y. Choi, C. Lee, and D. Chung. Implementation of a high-performance genetic algorithm processor for hardware optimization. IEICE Transactions on Electronics, E85C(1):195–203, January 2002. * ISI ga02aJKim. [789] Lee Spector and Alan Robinson. Genetic programming and autoconstructive evolution with Push programming language. Genetic Programming and Evolvable Machines, 3(1):7–40, 2002. †toc ga02aLeeSpector. [790] M. Damsbo and P. T. Ruhoff. Solution evolution - a generic evolutionary computation framework. pages 83–88, 2002. ga02aMDamsbo. [791] M. G. Arenas, L. Foucart, Marc Shoenauer, and J. J. Merelo. Computaci´ on evolutiva en Java: JEO. In ?, editor, Congreso Espo˜ nol de Algoritmos Evolutivos y Bioinspirados (AEB’02), pages 46–53, M´erida (Spain), February 2002. ? †DREAM ga02aMGArenas. [792] Tu Lei, Zhu Ming-chen, and Wang Jing-xia. The hardware implementation of a genetic algorithm model with FPGA. In Proceedings of the 2002 IEEE International Conference on Field-Programmable Technology (FPT’02), pages 374–377, ?, 16.-18. December 2002. IEEE, Piscataway, NJ. ga02aTuLei. [793] Zijian Diao, M. Suhail Zubairy, and Goong Chen. A quantum circuit design for Grover’s algorithm. Zeitschrift f¨ ur Naturforschung, 57a(8):701–708, August 2002. ga02aZijianDiao. [794] Alvin J. Surkan and Amiran Khuskivadze. Evolutionary discovery of algorithms as circuits for quantum computer. volume 32, page ?, 2002. (also as [784]) †ACM /www ga02bAJSurkan. [795] G. Capi and K. Doya. Evolving recurrent neural controllers for sequential tasks: A parallel implementation. In Proceedings of the Congress on Evolutionary Computation (CEC-2003), volume 1, pages 514–519, ? 2003. †[?] ga03aGCapi. [796] H. Emam, M. A. Ahour, H. Fekry, and A. M. Wahdan. Introducing an FPGA based - genetic algorithms in the applications of blind signal separation. In Proceedings of the 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, pages 123–127, ?, 30. June- 2. July 2003. IEEE, Piscataway, NJ. ga03aHEmam. [797] In Ja Jeon, Boung Mo Choi, and Phill Kyu Rhee. Evolutionary reconfigurable architecture for robust face recognition. In Proceedings of the International Parallel and Distributed Processing Symposium, pages –, ?, 22.-26. April 2003. IEEE, Piscataway, NJ. ga03aInJaJeon. [798] Jaromi´ır Fiur´ aˇsek, Miloslav Duˇsek, and Radim Filip. Programmable quantum measurement device that approximates all projective measurements on a qubit. Fortschritte der Physik, Progress of Physics, 51(23):107–111, ? 2003. †toc ga03aJaromirFiurasek. [799] Lajos Di´ osi. Single qubit estimation from repeated unsharp measurements. Fortschritte der Physik, Progress of Physics, 51(2-3):96–101, ? 2003. †toc ga03aLajosDiosi. [800] Robert M. MacCallum. Introducing a Perl genetic programming system – and can meta-evolution solve the bloat problem? In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 364–373, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aRMMacCallum. [801] Sung Hoon Jung. Queen-bee evolution for genetic algorithms. Electronics Letters, 39(6):575–576, 20. March 2003. ga03aSungHoonJung.
Bibliography
97
[802] W.-H. Steeb. The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, SymbolicC++ and Reduce Programs. World Scientific, Singapore, 2003. †ORS ga03aW-HSteeb. [803] Yuk Yin Wong. DJM: Distributed Java Machine for Internet computing. PhD thesis, Chinese University of Hong Kong, 2003. * www /UMI ga03aYukYinWong. [804] Jaromi´ır Fiur´ aˇsek, S. Iblisdir, S. Massar, and N. J. Cerf. Quantum cloning of orthogonal qubits. Fortschritte der Physik, Progress of Physics, 51(2-3):117–121, ? 2003. †toc ga03bJaromirFiurasek. [805] Antti O. Niskanen. Control of Quantum Evolution and Josephson Junction circuits. PhD thesis, Helsinki University of Technology, Department of Engineering Physics and Mathematics, 2004. VTT Publications ga04aAONiskanen. [806] B. Scheuermann, K. So, M. Guntsch, M. Middendorf, O. Diessel, H. ElGindy, and H. Schmeck. FPGA implementation of population-based ant colony optimization. Applied Soft Computing, 4(?):303–322, ? 2004. ga04aBScheuermann. [807] A. Shenfield and P. J. Fleming. A service oriented architecture for decision making in engineering design. In ?, editor, Advances in Grid computing (EGC2005), volume 3470 of Lecture Notes in Computer Science, pages 334–343, ?, ? 2005. Springer-Verlag, Heidelberg. †www /ISI ga05aAShenfield. [808] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D. J. Wineland. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science, 308(?):997–1000, 13. May 2005. ga05aJChiaverini. [809] Jun Zhang and K. Birgitta Whaley. Generation of quantum logic operations from physical Hamiltonians. Physical Review A, 71(?):052317–1–13, ? 2005. ga05aJunZhang. [810] M. J. Storcz, J. Vala, K. R. Brown, J. Kempe, F. K. Wilhelm, and K. Birgitta Whaley. Full protection of superconducting qubit systems from coupling errors. Physical Review B, 72(?):064511–1–5, ? 2005. ga05aMJStorcz. [811] Timothy P. Spiller, William J. Munro, Sean D. Barrett, and Pieter Kok. An introduction to quantum information processing: applications and realizations. Contemporary Physics, 46(6):407–436, NovemberDecember 2005. ga05aTPSpiller. [812] Yukinori Nagase, Takahiko Yamamoto, Takao Kawamura, and Kazunori Sugahara. Hardware realization of panoramic camera with speaker-oriented face extraction for teleconferencing. In Proceedings of IEEE International Symposium on Circuits and Systems, ISCAS 2005, volume 6, pages 6256–6259, ?, 23.-26. May 2005. IEEE, Piscataway, NJ. ga05aYukinoriNagase. [813] A. C. B. Delbem, E. V. Sim˜ oes, B. F. Souza, M. Oleskovicz, S. A. Souza, and D. V. Coury. A fast and efficient method for frequency deviation measurement based on genetic algorithms using a FPGA approach. In Proceedings of the Latin America Transmission & Distribution Conference and Exposition TDC’06, pages 1–6, ?, ? 2006. IEEE, Piscataway, NJ. ga06aACBDelbem. [814] Isamu Kajitani, Masaya Iwata, and Tetsuya Higuchi. Ch. 3. a GA hardware engine and its applications. In Higuchi et al. [692], pages 41–63. ga06aIsamuKajitani. [815] J. R. Minkel. Quantum leap for quantum computing. ga06aJRMinkel.
IEEE Spectrum, 43(3):11–12, March 2006.
[816] Mario K¨ oppen, Katrin Franke, and Raul Vincente-Garcia. Tiny GAs for image processing applications. IEEE Computational Intelligence Magazine, (2):17–26, May 2006. ga06aMKoppen. [817] Alberto Guill´en Perales. Dise˜ no de Sistemas Inteligentes en Plataformas de Computo Paralelas. PhD thesis, Universidad de Granada, 2007. (in Spanish) * www /Google ga07aAGPerales. [818] Kyrre Glette, Jim Torresen, and Moritoshi Yasunaga. online evolution for a high-speed image recognition system implemented on a Virtex-II Pro FPGA. In Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Systems AHS 2007, pages 463–470, ?, 5.-8. August 2007. IEEE, Piscataway, NJ. ga07aKyrreGlette. [819] R. Colin Johnson. Quantum computer ’Orion’ debuts. ga07aRColinJohnson.
EE Times, ?(?):?, 8. February 2007.
[820] S. A. Souza, M. Oleskovicz, D. V. Coury, T. V. Silva, A. C. B. Delbem, and E. V. Sim˜ oes. An efficient frequency estimation methodology using genetic algorithms in FPGA. In Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON 2007, pages 2020–2025, ?, ? 2007. IEEE, Piscataway, NJ. ga07aSASouza.
98
Genetic algorithm implementations
[821] Tatsuhiro Tachibana, Yoshihiro Murata, Naoki Shibata, Keiichi Yasumoto, and Minoru Ito. Proposal of flexible implementation of genetic algorithms on FPGAs. Systems and Computers in Japan, 38(13):28–38, ? 2007. * www /Google ga07aTatsuhiroTachibana. [822] Didier Keymeulen, Adrian Stoica, Ricardo Salem Zebulum, Srinivas Katkoori, Pradeep Fernando, Hariharan Sankaran, Mohammad Mojarradi, and Taher Daud. Self-reconfigurable analog array integrated circuit architecture for space applications. In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems AHS’08, pages 83–90, ?, 22.-25. June 2008. IEEE, Piscataway, NJ. ga08aDKeymeulen. [823] Dah-Jye Lee, Jonathan D. Anderson, and James K. Archibald. Hardware implementation of a spline-based genetic algorithm for embedded stereo vision sensor providing real-time visual guidance to the visually impaired. EURASIP Journal on Advances in Signal Processing, ?(?):ID 385827, ? 2008. ga08aDah-JyeLee. [824] Hualiang Zhuang, Kay-Soon Low, and Wei-Yun Yau. A multiplier-less GA optimized pulsed neural network for satellite image analysis using a FPGA. In Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications ICIEA 2008, pages 302–307, ?, 3.-5. June 2008. IEEE, Piscataway, NJ. ga08aHualiangZhuang. [825] M. Beckerleg and J. Collins. Evolving electronic circuits for robotic control. In Proceedings of the 15th International Conference on Mechatronics and Machine Vision in Practise (M2VIP08), pages 651–656, Auckland (New Zealand), 2.-4. December 2008. IEEE, Piscataway, NJ. ga08aMBeckerleg. [826] Manuel Rubio-Solar, Miguel A. Vega-Rodr´ıguez, Juan Manuel S´ anchez P´erez, Antonio G´ omez-Iglesias, and Miguel C´ adenas-Montes. A FPGA optimization tool based on multi-island genetic algorithm distributed over Grid environments. In Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid CCGRID’08, pages 65–72, ?, ? 2008. IEEE, Piscataway, NJ. ga08aMRubio-Solar. [827] Pradeep Fernando, Hariharan Sankaran, Srinivas Katkoori, Didier Keymeulen, Adrian Stoica, Ricardo Salem Zebulum, and Ramesham Rajeshuni. A customizable FPGA IP core implementation of a general purpose genetic algorithm engine. In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, IPDPS’08, pages 1–8, ?, ? 2008. IEEE, Piscataway, NJ. ga08aPFernando. [828] S. A. Souza, M. Oleskovicz, D. V. Coury, T. V. Silva, A. C. B. Delbem, and E. V. Sim˜ oes. FPGA implementation of genetic algorithms for frequency estimation in power systems. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century PUBLISHER =, pages 1–6. [829] Tiago Carvalho Oliveira and Valfredo Pilla J´ unior. An implementation of compact genetic algorithm on FPGA for extrinsic evolvable hardware. In Proceedings of the 2008 4th Southern Conference on Programmable Logic, pages 187–190, ?, 26.-28. March 2008. IEEE, Piscataway, NJ. ga08aTCOliveira. [830] Yutana Jewajinda. An adaptive hardware classifier in FPGA based-on a cellular compact genetic algorithm and block-based neural network. In Proceedings of the International Symposium on Communications and Information Technologies, ISCIT’08, pages 658–663, ?, 21.-23. October 2008. IEEE, Piscataway, NJ. ga08aYJewajinda. [831] Yutana Jewajinda and Prabhas Chongstitvatana. FPGA implementation of a cellular compact genetic algorithm. In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems, AHS’08, pages 385–390, ?, 22.-25. June 2008. IEEE, Piscataway, NJ. ga08bYJewajinda. [832] Yutana Jewajinda and Prabhas Chongstitvatana. FPGA implementation of a cellular univariate estimation of distribution algorithm and block-based neural network as an evolvable hardware. In Proceedings of the IEEE World Congress on Computational Intelligence CEC 2008, pages 3366–3373, ?, 1.-6. June 2008. IEEE, Piscataway, NJ. ga08cYJewajinda. [833] Nicholas J. Radcliffe and Patrick D. Surry. RPL2: A language and parallel framework for evolutionary computing. In Davidor et al. [1430], pages 628–635. * CCA 40991/95 ga94Surry. [834] J¨ urgen Branke, Udo Kohlmorgen, and Hartmut Schmeck. A distributed genetic algorithm improving the generalization behaviour of neural networks. Forschungsberichte 311, Universit¨ at Karlsruhe, Institut AIFB, 1994. ga94aBranke. [835] Renato Campanini, G. Di Caro, Marco Villani, I. D. D’Antone, and Giuliano Giusti. Parallel architectures and intrinsically parallel algorithms: genetic algorithms. Int. J. Mod. Phys. C, Phys. Comput. (Singapore), 5(1):95–112, February 1994. * CCA 38731/94 ga94aCampanini. [836] Andrew J. Chipperfield, Peter J. Fleming, and H. P. Pohlheim. A genetic algorithm toolbox for matlab. In ?, editor, Proceedings of the International Conference on Systems Engineering, pages 200–207, Coventry (UK), 6.-8. September 1994. ? †[?] ga94aChipperfield.
Bibliography
99
[837] Dai H. Kim. A highly functional decision paradigm based on nonlinear adaptive genetic algorithm. Final report ARO-31432.1-EL-SBI, Physical Optics Corporation, Torrance, CA, 1994. * N95-16077 ga94aDHKim. [838] Tanja Dabs. Eine Entwicklungsumgebung zum Monitoring Genetischer Algorithmen [A development tool for monitoring genetic algorithms]. Diploma thesis, Universit¨ at W¨ urzburg, Lehtstuhl f¨ ur Informatik II, 1994. †[879] ga94aDabs. [839] H. Ding, A. A. El-Keib, and R. E. Smith. Optimal clustering of power networks using genetic algorithms. Electric Power Systems Research, 30(3):209–214, 1994. (Proceedings of the 3rd Biennial Symposium on Industrial Electric Power Applications, New Orleans, LA, Nov. 12.-13., 1992)* ga94aDing. [840] Erik D. Goodman. An introduction to GALOPPS – the ‘Genetic ALgorithm Optimized for Portability and Parallelism’ system. Technical Report 94-11-01, Michigan State University, Intelligent Systems Laboratory and Case Center for Computer-Aided Engineering and Manufacturing, 1994. †[94] ga94aEDGoodman. [841] Sara Elo. A parallel genetic algorithm on the CM-2 for multi-modal optimization. In ICEC’94 [1429], pages 818–822. ga94aElo. [842] William Eugene Hart. Adaptive global optimization with local search. PhD thesis, University of California, San Diego, 1994. * DAI Vol. 55 No. 7 ga94aHart. [843] R. Hauser and R. M¨ anner. Implementation of standard genetic algorithm on MIMD machines. In Davidor et al. [1430], pages 504–513. * CCA 39189/95 ga94aHauser. [844] Shih-Lin Hung and H. Adeli. A parallel genetic/neural network learning algorithm for MIMD shared memory machines. IEEE Transactions on Neural Networks, 5(6):900–909, November 1994. ga94aHung. [845] Y. Ichikawa and Y. Ishii. Retaining diversity of genetic algorithms based on allele distribution. Transactions of the Society of Instrument and Control Engineers (Japan), 30(10):1242–1250, 1994. (In Japanese) †CCA294/95 ga94aIchikawa. [846] Mike J. Keith and Martin C. Martin. Advances in genetic programming. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 13. Genetic programming in C++: Implementation issues, pages 285–310. MIT Press, Cambridge, MA, 1994. †cessu ga94aKeith. [847] S. V. Kowalski and D. Moldovan. Parallel induction on hypercube. In Proceedings of the Sixth IASTED/ISMM International Conference. Parallel and Distributed Computing and Systems, pages 218–221, Washington, DC, 3.-5. October 1994. IASTED/ISMM-ACTA Press, Anaheim, CA (USA). †CCA40370/96 ga94aKowalski. [848] Alex Lane. Genetic cryptography. AI Expert, 9(9):13–19, September 1994. ga94aLane. [849] David Mark Levine. A parallel genetic algorithm for the set partitioning problem. PhD thesis, Illinois Institute of Technology, 1994. (also as [?], available via anonymous ftp site info.mcs.anl.gov directory /pub/tech reports file ANL9423.ps.Z) * DAI Vol 55 No 5 ga94aLevine. [850] Carlos B. Lucasius and Gerrit Kateman. GATES towards evolutionary large-scale optimization: A software-oriented approach to genetic algorithms. I. general perspectives. Computers & Chemistry, 18(2):127–136, June 1994. ga94aLucasius. [851] Salvatore R. Mangano. Algorithms for directed graphs – a unique approach using genetic algorithms. Dr. Dobb’s Journal, 19(4):92,94–97,106–107,147, April 1994. ga94aMangano. [852] Janne M¨ antykoski. Parallel implementation of genetic algorithms. Master’s thesis, Helsinki University of Technology, Department of Electrical Engineering, Laboratory of Signal Processing and Computer Technology, 1994. ga94aMantykoski. [853] Alex C. W. May and Mark S. Johnson. Protein structure comparisons using a combination of a genetic algorithm, dynamic programming and least-squares minimization. Protein Engineering, 7(4):475–485, April 1994. ga94aMay. [854] R. Mendes and J. Neves. Genetic algorithms, classifiers and parallelism – an object-oriented approach. In J. Liebowitz, editor, Moving Toward Expert Systems Globally in the 21st Century, Proceedings of the 2nd World Congress on Expert Systems, pages 1199–1206, Lisbon (Portugal), 10.-14. January 1994. Cognizant Communications Corp., Elmsford. †P63788/95 ga94aMendes. [855] K. M. Nelson. Function optimization and parallel evolutionary programming on the MasPar MP-1. In Sebald and Fogel [1432], page ? †conf.prog ga94aNelson. [856] Ari S. Nissinen. Structural optimization of feedforward neural networks using genetic algorithm. Master’s thesis, Tampere University of Technology, Department of Electrical Engineering, Control Engineering Laboratory, 1994. (Report 5; in English) ga94aNissinen.
100
Genetic algorithm implementations
[857] Jose L. Ribeiro Filho. Game system. In ?, editor, IEE Computing and Control Division Colloquium on ’Applications of Genetic Algorithms’, volume Digest No. 1994/067, pages 2/1–2/4, London, 15. March 1994. IEE, London. * EI M154011/94 ga94aRibeiroFilho. [858] Satoshi Ro. Information processing system with combination limitation, 1994. (JP patent no. 6290161. Issued October 18 1994) * fi.espacenet.com ga94aSRo. [859] N. Sepehri, Frank Lup Ki Wan, P. D. Lawrence, and Guy A. M. Dumont. Hydraulic compliance identification using a parallel genetic algorithm. Mechatronics, 4(6):617–633, September 1994. ga94aSepehri. [860] Andrew Singleton. ga94aSingleton.
Genetic programming with C++.
BYTE, 19(2):171–176, February 1994.
[861] Patrick D. Surry and Nicholas J. Radcliffe. Rpl2: A language and parallel framework for evolutionary computing. Technical Report EPCC-TR94-10, University of Edinburgh, Parallel Computing Centre, 1994. †comp.ai.genetic ga94aSurry. [862] Tomokazu Ebata. Fast processing method for genetic algorithm, 1994. (JP patent no. 6161980. Issued June 14 1994) * fi.espacenet.com ga94aTEbata. [863] K. Tout, J. Ribeiro-Filho, Bernard Mignot, and Niba Idlebi. A cross-platform parallel genetic algorithm programming environment. In ?, editor, Proceedings of the 1994 World Transputer Congress, Transputer Applications and Systems ’94, pages 79–90, Como (Italy), 5.-7. September 1994. IOS Press, Amsterdam. * CCA 40639/95 ga94aTout. [864] Roger L. Wainwright. A family of genetic algorithm packages on a workstation for solving combinatorial optimization problems. SIGICE Bulletin, 19(3):30–36, February 1994. * CCA 51407/94 ga94aWainwright. [865] Peter Wilke. Visualization of neural networks using neuro graph. In ?, editor, Proceedings of the IFIP WG3.2 Working Conference on Visualization in Scientific Computing: Uses in University Education, pages 105–117, Irvine, CA, 28.-30. July 1994. Chapman & Hall Ltd, London. * EI M027484/95 ga94aWilke. [866] Jeff Zeanah. Naturally selective Axelis Evolver 2.1. AI Expert, 9(9):22–23, September 1994. ga94aZeanah. [867] R. Cemes and D. Ait-Boudaoud. A MATLAB based development tool for multiplier-less filter design using genetic algorithm. In Proceedings of the 5th International Conference on Signal Processing Applications and Technology, volume 1, pages 408–413, Dallas, TX (USA), 18.-21. October 1994. DSP Associates, Waltham, MA. †EEA83243/96 ga94bCemes. [868] Andrew J. Chipperfield, Peter J. Fleming, and T. P. Crummey. PARSIM: a parallel optimization tool. In Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design, pages 579– 584, Tucson, AZ, 7.-9. March 1994. IEEE Computer Society Press, Los Alamitos, CA. * CCA 50657/95 ga94bChipperfield. [869] Carlos B. Lucasius and Gerrit Kateman. GATES towards evolutionary large-scale optimization: A software-oriented approach to genetic algorithms. II. toolbox description. Computers & Chemistry, 18(2):137–156, June 1994. ga94bLucasius. [870] Jos´e L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm programming environments. Computer, 27(6):28–45, June 1994. ga94cRibeiroFilho. [871] Markus Schwehm. Massively parallel genetic algorithms. In L. Dekker, W. Smit, and J. C. Zuidervaart, editors, Massively Parallel Processing Applications and Development, pages 505–512, ?, ? 1994. Elsevier Science Publ., Amsterdam. †Schwehm ga94cSchwehm. [872] Yong Liang (Leon) Xiao and Donald E. Williams. Game: Genetic algorithm for minimization of energy, an interactive FORTRAN program for three-dimensional intermolecular interactions. Computers & Chemistry, 18(2):199–201, June 1994. †Xiao ga94cXiao. [873] A. N. Boston and David R. B. Stockwell. Interactive species distribution reporting, mapping and modelling using the World Wide Web. Computer Networks and ISDN Systems, 28(?):231–238, ? 1995. ga95aANBoston. [874] Mohammad-R. Akbarzadeh, Kishan K. Kumbla, and Mohammad Jamshidi. Genetic algorithms in learning fuzzy hierarchical control of distributed parameter systems. In Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics, volume 5, pages 4027–4032, Vancouver, BC (Canada), 22.-25. October 1995. IEEE, Piscataway, NJ. * EI M033873/96 ga95aAkbarzadeh-T. [875] Geoff Bartlett. Practical handbook of genetic algorithms. In Chambers [1427], chapter 1. Genie: A first GA, pages 31–56. ga95aBartlett.
Bibliography
101
[876] F. H. D. van Batenburg, A. P. Gultyaev, and C. W. A. Pleij. An APL-programmed genetic algorithm for the prediction of RNA secondary structure. Journal of Theoretical Biology, 174(3):269–280, 7. June 1995. ga95aBatenburg. [877] Christopher R. Houck, Jeffery A. Joines, and Michael G. Kay. A genetic algorithm for function optimization: A Matlab implementation. Technical Report 95-09, North Carolina State University, Department of Industrial Engineering, 1995. †[?] ga95aCRHouck. [878] A. Chincarini, P. Fabbricatore, G. Gemme, R. Musenich, R. Parodi, and B. Zhang. Headway in cavity design through genetic algorithms. IEEE Transactions on Magnetics, 31(3):1566–1569, May 1995. (Proceedings og the Sixth Biennial IEEE Conference on Electromagnetics Field Computation (CEFC’94), Grenoble (France), 5.-7. July 1994) ga95aChincarini. [879] Tanja Dabs and Jochen Schoof. A graphical user interface for genetic algorithms. Report 98, Universit¨ at W¨ urzburg, Institut f¨ ur Informatik, 1995. ga95aDabs. [880] R. Davies. Parallel implementation of a genetic algorithm. Control Engineering Practice, 3(1):11–19, January 1995. †EI M079066/95 ga95aDavies. [881] Vaclav Dvoˇr´ ak. Performance prediction of GA on transputer arrays. In Oˇsmera [1439], pages 35–40. ga95aDvorak. [882] J. W. Finch and M. R. Besmi. Genetic algorithms applied to a power system stabiliser. In IEE/IEEE Sheffield ’95 [1438], pages 100–105. ga95aFinch. [883] G. Lin, Xin Yao, I. Macleod, L. Kang, and Y. Chen. Parallel genetic algorithms on PVM. In ?, editor, Proceedings of the International Conference on Parallel Algorithms (ICPA’95), page ?, Wuhan (China), ? 1995. Gordon and Breach. †News /Yao ga95aGLin. [884] Andreas Geyer-Schulz. Holland classifier systems. APL Quote Quad, 25(4):43–55, June 1995. (Proceedings of the International Conference on APL, June 4.-8., 1995, San Antonio, TX) ga95aGeyer-Schulz. [885] H. Chan and Pinaki Mazumder. A systolic architecture for high speed hypergraph partitioning using genetic algorithms. In Yao [1433], pages 109–126. †[972] Yao /conf. prog. ga95aHChan. [886] Jason H. Moore. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization. Computer Methods and Programs in Biomedicine, 47(1):73–79, June 1995. * ga95aJHMoore. [887] Hidefumi Sawai. Information processor, 1995. (JP patent no. 7044520. Issued February 14 1995) * fi.espacenet.com ga95aKSawai. [888] Alex Lane. Walkin’ our way through GA. AI Expert, ?(?):11–16, February 1995. ga95aLane. [889] Masahiko Tateishi. Determination system for combination optimizing problem, 1995. (JP patent no. 7230438. Issued August 29 1995) * fi.espacenet.com ga95aMTateishi. [890] Mark Watson. C++ Power Paradigms. McGraw-Hill, Inc., New York, 1995. †Mallat ga95aMWatson. [891] M. Milik. An object oriented environment for artificial evolution of protein sequences: The example of rational design of transmembrane sequences. In McDonnell et al. [1435], page ? †conf.prog ga95aMilik. [892] A. Osei, M. P. Schamschula, H. John Caulfield, and Joseph Shamir. Use of quantum indeterminacy in optical parallel genetic algorithms. In ?, editor, Optical Implementation of Information Processing, volume SPIE-2565, pages 192–197, San Diego, CA, 10. -11. July 1995. The International Society for Optical Engineering, Bellingham, WA. * CCA 65119/96 ga95aOsei. [893] Moloud Oussaid`ene, Bastien Chopard, and Marco Tomassini. Programmation ´evolutionniste parall`ele. In Dekeyser, Lebert, and Manneback, editors, Proceedings of the RenPar’7, Actes des 7es Recontres Francopones du Parall´elisme, page ?, ?, 30. May- 2. June 1995. PIP-FPMs Mons, Belgium. ga95aOussaidene. [894] Shunichi Kubo. Optimizing method and optimizing device, 1995. (JP patent no. 7200516. Issued August 4 1995) * fi.espacenet.com ga95aSKubo. [895] Antony Satyadas and K. KrishnaKumar. Genetic algorithm modules in MATLAB: Design and implementation using software engineering practices. In Winter et al. [1443], pages 321–344. ga95aSatyadas. [896] Timo H¨ am¨ al¨ ainen, Jukka Saarinen, Pekka Ojala, and Kimmo Kaski. Implementing genetic algorithms in a tree shape computer architecture. In Alander [1447], pages 259–284. (available via anonymous ftp site ftp.uwasa.fi directory cs/1NWGA file Hamalainen.ps.Z) ga95aTHamalainen. [897] B. C. H. Turton and T. Arslan. A parallel genetic VLSI architecture for combinatorial real-time applications - disc scheduling. In IEE/IEEE Sheffield ’95 [1438], pages 493–498. †conf.prog ga95aTurton.
102
Genetic algorithm implementations
[898] Yukiko Yoshida. Optimizing processing method for genetic algorithm, 1995. (JP patent no. 7093279. Issued April 7 1995) * fi.espacenet.com ga95aYYoshida. [899] Hojjat Adeli and Sanjay Kumar. Concurrent structural optimization on massively parallel supercomputer. Journal of Structural Engineering, 121(11):1588–1597, November 1995. ga95bAdeli. [900] F. Almeida, F. Garcia, J. Roda, D. Morales, and C. Rodriguez. A comparative study of two distributed systems: PVM and transputers. In ?, editor, Proceedings of the 1995 World Transputer Congress, pages 244–258, Harrogate, UK, 4.-6. September 1995. IOS Press, Amsterdam. †CCA29089/96 ga95bAlmeida. [901] F. H. D. Vanbatenburg, Alexander P. Gultyaev, and Cornelis W. A. Pleij. An APL-programmed genetic algorithm for the prediction of RNA secondary structure. Journal of Theoretical Biology, 174(?):269–280, ? 1994. †David E. Clark/bib ga95bGultyaev. [902] Lance Chambers. Practical handbook of genetic algorithms. In Chambers [1427], chapter 7. Strategic modelling using a genetic algorithm approach, pages 173–218. ga95bLChambers. [903] F. M. Rabinowitz. Algorithm 744: a stochastic algorithm for global optimization with constraints. ACM Trans. Math. Softw., 21(2):194–213, 1995. †CCA77638/95 ga95bRabinowi. [904] A. Reinefeld and V. Schnecke. Portability versus efficiency? Parallel applications on PVM and Parix. In ?, editor, Proceedings of the Workshop on Parallel Programming and Computation (ZEUS’95) and the 4th Nordic Transputer Conference (NTUG’95), pages 35–49, Link¨ oping, Sweden, ? 1995. IOS Press 1995, Amsterdam, Netherlands. †CCA30605/96 ga95bReinefeld. [905] W. H. Steeb, F. Solms, and Tan Kiat Shi. Genetic algorithms and object-oriented programming. Int. J. Mod. Phys. C, Phys. Comput. (Singapore), 6(6):853–869, 1995. †CCA51740/96 ga95bSteeb. [906] P. A. Stefanski, H. H. Nash, and Kenneth A. De Jong. An object-oriented toolkit for evolutionary algorithms. In Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, pages 156–163, Herndon, VA, 5.-8. November 1995. IEEE Computer Society Press, Los Alamitos, CA. †CCA13695/95 ga95bStefansk. [907] Christian Jacob. Genetic L-system programming: breeding and evolving artificial flowers with Mathematica. In Proceedings of the First International Mathematica Symposium, pages 215–222, Southampton (England), 16.-20. July 1995. Comput. Mech. Publications, Southampton (UK). †CCA33976/97 ga95cJacob. [908] John R. Koza and David Andre. Parallel genetic programming on a network of transputer. Report STAN-CS-TR-95-1542, Stanford University, Computer Science Department, 1995. †News ga95cKoza. [909] Mehrdad Salami and Greg Cain. Implementation of genetic algorithms on reprogrammable architectures. In Xin Yao, editor, Proceedings of the Eight Australian Joint Conference on Artificial Intelligence, pages 581–?, ?, ? 1995. World Scientific Publishers, Co., Singapore. †News /Yao ga95fSalami. [910] Thomas B¨ ack and Hans-Paul Schwefel. Evolution strategies I: Variants and their computational implementation. In Winter et al. [1443], pages 111–126. ga95gBack. [911] A. H. Dediu and D. Mihaila. Soft computing genetic tool. In ?, editor, Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 1, pages 415–418, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA40648/98 ga96aAHDediu. [912] M. Bubak, W. Ciesla, and K. Sowa. Parallel object-oriented library of genetic algorithms. In Proceedings of the Third International Workshop, pages 135–146, Lyngby, Denmark, 18.-21. August 1996. Springer-Verlag, Berlin (Germany). †CCA30596/97 ga96aBubak. [913] Bill P. Buckles and Frederick E. Petry. Cloud identification using genetic algorithms and massively parallel computation. NASA Contract Report NASA-CR-201071, Tulane University, Department of Mechanical Engineering, 1996. †N96-28891/5GAR ga96aBuckles. [914] Fulvio Corno, Paolo Prinetto, Maurizio Rebaudengo, and Matteo Sonza Reorda. Exploiting competing subpopulations for automatic generation of test sequences for digital circuits. In Voigt et al. [1431], pages 792–800. ga96aCorno. [915] Vaclav Dvoˇr´ ak. Construction of optimum OBDDs using a parallel genetic approach. In Oˇsmera [1440], pages 29–31. ga96aDvorak. [916] Erik D. Goodman. An introduction to GALOPPS – the “Genetic ALgorithm Optimized for Portability and Parallelism” system. Technical Report GARAGe 96-07-01, Michigan State University, 1996. ga96aEDGoodman. [917] Timo Eloranta. Geneettisten algoritmien soveltaminen suuntaamattomien verkkojen piirtoon [Applying genetic algorithms to drawing undirected graphs]. Report Series B B-1996-1, University of Tampere, Department of Computer Science, 1996. (in Finnish, also as [943]) ga96aEloranta.
Bibliography
103
[918] Guangming Lin, Xin Yao, and I. Macleod. Parallel genetic algorithm on PVM. Wuhan Univ. J. Nat. Sci. (China), 1(3-4):605–610, 1996. †CCA25783/98 ga96aGuangLin. [919] Helmut H¨ orner. Ein Kern f¨ ur genetisches Programmieren in C++ [Genetic programming kernel in C++]. Master’s thesis, Vienna University of Economics and Business Admimistration, Department: Informationsverarbeitung und Informationswirtschaft, 1996. (in German; partly in English as [14]) †H¨ orner ga96aHHorner. [920] Hiroyuki Okada. Optimization problem solving method and optimization device, 1996. (JP patent no. 8314883. Issued November 29 1996) * fi.espacenet.com ga96aHOkada. [921] I. M. Ikram. An Occam library for genetic programming on transputer networks. In ?, editor, Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), page ?, Sunnyvale, CA, 9.-11. August 1996. ? †prog ga96aIkram. [922] Hugues Juill´e and Jordan B. Pollack. Massively parallel genetic programming. In Kinnear and Angeline, editors, Advances in Genetic Programming II, page ?, ?, ? 1996. The MIT Press, Cambridge, MA. ga96aJuille. [923] Junhwa Kim and Jongho Nang. Implementation of parallel genetic algorithm on AP1000 and its performance evaluation. J. KISS(A), Comput. Syst. Theory (South Korea), 23(2):127–141, 1996. (In Korean) †CCA57018/96 ga96aJunhwaKim. [924] A. R. Kornilov, A. I. Piskunov, and S. E. Smirnov. LibGA++: a software tool for genetic algorithms design and analysis. In Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, volume 3, pages 2278–2282, Aachen (Germany), 2.-5. September 1996. Verlag Mainz, Aachen (Germany). †CCA47407/98 ga96aKornilov. [925] Makihiko Satou and Masuhiro Mikami. Parameter optimizing device, 1996. (JP patent no. 8110902. Issued April 30 1996) * fi.espacenet.com ga96aMSatou. [926] Brian Mayoh. Artificial life and pollution control: Explorations of a genetic algorithm system on the highly parallel Connection Machine. In ?, editor, ?, volume 1181 of Lecture Notes in Computer Science, pages 68–79, ?, ? 1996. Springer Verlag, Berlin. ga96aMayoh. [927] Johann Mitl¨ ohner. Classifier systems and economic modeling. APL Quote Quad, 26(4):77–86, June 1996. (Proceedings of the APL96 Conference) ga96aMitlohner. [928] Viktor Nˇemec and Josef Schwarz. Parallel genetic algorithms implemented on transputers. In Oˇsmera [1440], pages 85–90. ga96aNemec. [929] Peter G. Anderson. Using the J language for NN and GA experiments. In Kevin Warwick, editor, Proceedings of the International ICSC Symposia on Intelligent Industrial Automation and Soft Computing, page ?, Reading, UK, 26.-28. March 1996. Int. Comput. Sci. Conventions, Millet, Alta. †www /Anderson ga96aPGAnderson. [930] N. Pucello, M. Rosati, M. Celino, G. D’Agostino, F. Pisacane, and V. Rosato. Search of molecular ground state via genetic algorithm; implementation on a hybrid SIMD-MIMD platform. In Proceedings of the Third European PVM Conference, pages 339–342, Munich (Germany), 7.-9. October 1996. Springer-Verlag, Berlin (Germany). †P77277 CCA24539/97 ga96aPucello. [931] R. A. Henry, N. S. Flann, and D. W. Watson. A massively parallel SIMD algorithm for combinatorial optimization. In Proceedings of the 1996 International Conference on Parallel Processing, volume 2, pages 46–49, Ithaca, NY (USA), 12.-16. August 1996. IEEE Computer Society Press, Los Alamitos , CA. †EEA92568/96 ga96aRAHenry. [932] Rapha¨el Cerf. A new genetic algorithm. The Annals of Applied Probability, 6(3):778–817, August 1996. †www /MathRev98b:60051 ga96aRCerf. [933] Runhe Huang and Jianhua Ma. A distributed genetic algorithm over a transputer based parallel machine for survivable communication network design. In ?, editor, Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), page ?, Sunnyvale, CA, 9.-11. August 1996. ? †prog ga96aRunheHuang. [934] A. O. Skomorokhov. Genetic algorithms: APL2 implementation and a real life application. APL Quote Quad, 26(4):97–106, June 1996. (Proceedings of the APL96 Conference, Lancaster (UK)29. July-1. August) * CCA 67749/97 ga96aSkomorokhov. [935] V. Sundararajan and A. S. Kolaskar. Parallel genetic algorithms on PARAM for conformation of biopolymers. In Proceedings of the 1996 3rd International Conference on High Performance Computing (HiPC), pages 22–26, Trivandrum (India), 19.-22. December 1996. IEEE Computer Society Press, Los Alamitos, CA. * CCA 24628/97 EI M042376/97 ga96aSundararajan.
104
Genetic algorithm implementations
[936] Thomas Ragg. Parallelization of an evolutionary neural network optimizer based on PVM. In Parallel Virtual Machine – EuroPVM’96, Proceedings of the Third European PVM Conference, volume 1156 of Lecture Notes in Computer Science, pages 351–354, Munich (Germany), 7.-9. October 1996. SpringerVerlag, Berlin (Germany). †CCA22220/97 ga96aTRagg. [937] T. Wagner, C. Kueblbeck, and C. Schittko. Genetic selection and generation of textural features with PVM. In Proceedings of the Third European PVM Conference, pages 305–310, Munich (Germany), 7.-9. October 1996. Springer-Verlag, Berlin (Germany). †EEA25668/97 ga96aTWagner. [938] Matti Tommiska and Jarkko Vuori. Implementation of genetic algorithms with programmable logic devices. In Alander [1448], pages 71–78. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Vuori.ps.Z) ga96aTommiska. ¨ [939] G¨ ok¸ce Fuat Uler and Osama A. Mohammed. Ancillary techniques for the practical implementation of GAs to the optimal design of electromagnetic devices. IEEE Transactions on Magnetics, 32(3/1):1194– 1197, 1996. (Proceedings of the 10th Conference on the Computation of Electromagnetic Fields (COMPUMAG’95), Berlin (Germany), July 10.-13. 1995) ga96aUler. [940] Y. T. Hu, Z. Chen, and E. Spooner. Evolutionary design of permanent-magnet machines. In ?, editor, Proceedings of the 1996 31st Universities Power Engineering Conference, volume 2, pages 594–597, Iraklio (Greece), 18.-20. September 1996. Technological Educational Institute, Iraklio (Greece). * EI M003896/97 ga96aYTHu. [941] Carlos Adriel Del Carpio. A parallel genetic algorithm for polypeptide three dimensional structure prediction. A transputer implementation. Journal of Chemical Information and Computer Sciences, 36(2):258– 269, March/April 1996. ga96bDelCarpio. [942] G. Diplock. Building new spatial interaction models using genetic programming and a supercomputer. In ?, editor, Proceedings of the 1st International Conference on GeoComputation, volume 1, pages 213–226, Leeds (UK), 17.-19. September 1996. Univ. Leeds (Leeds, UK). †CCA18051/97 ga96bDiplock. [943] Timo Eloranta. Geneettisten algoritmien soveltaminen suuntaamattomien verkkojen piirtoon [Applying genetic algorithms to drawing undirected graphs]. Master’s thesis, University of Tampere, Department of Computer Science, 1996. (in Finnish, also as [917]) ga96bEloranta. [944] Christopher Harris and Bernard Buxton. GP-COM: A distributed component-based genetic programming system in C++. In Koza et al. [1452], page ? †conf.prog ga96bHarris. [945] Kazuhiro Ohkura and Kanji Ueda. Structured string representation and adaptive genetic search. In Proceedings of the Japan-USA Symposium on Flexible Automation, volume 2, pages 1477–1480, Boston, MA, 7.-10. July 1996. ASME, New York, NY. †CCA89513/97 ga96bKOhkura. [946] Bruce A. Shapiro and Jin Chu Wu. An annealing mutation operator in the genetic algorithms for RNA folding. Computer Applications in the Biosciences (CABIOS), 12(3):171–180, ? 1996. ga96bShapiro. [947] S. G. Thompson, M. A. Bramer, and A. Kalus. MPGAIA - A Massively Parallel Genetic Algorithm for Image Analysis. In Fogarty? [1451], pages 277–290. ga96bThompson. [948] Wei-Min Yun and Yu-Geng Xi. Optimum motion planning in joint space for robots using genetic algorithms. Robotics and Autonomous Systems, 18(4):373–393, October 1996. ga96bW-MYun. [949] David Andre and John R. Koza. A parallel implementation of genetic programming using the transputer architecture that achieves super-linear performance. In ?, editor, Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’96), page ?, Sunnyvale, CA, 9.-11. August 1996. ? †prog ga96cAndre. [950] Timo Eloranta and Erkki M¨ akinen. TimGA - a genetic algorithm for drawing undirected graphs. Report Series A-1996-10, University of Tampere, Department of Computer Science, 1996. ga96cEloranta. [951] John Smith and Kazuo Sugihara. GA toolkit on the Web. In Proceedings of the First Online Workshop on Soft Computing (WSC1), pages 93–98, WWW (World Wide Web), 19.-30. August 1996. Nagoya University. ga96cJSmith. [952] Q. Wang and A. M. S. Zalzala. Transputer based GA motion control for PUMA robot. Mechatronics, 6(3):349–365, 1996. ga96dQWang. [953] R. Baraglia, M. Bucci, D. Circelli, and R. Perego. On designing genetic algorithms for hypercube machines. In Proceedings of the International Conference and Exhibion, pages 980–981, Vienna, Austria, 28.-30. April 1997. Springer-Verlag, Berlin (Germany). ga97aBaraglia.
Bibliography
105
[954] M. Bubak, W. Ciesla, and K. Sowa. Object-oriented library of parallel genetic algorithms and its implementation on workstations and HP/Convex Exemplar. In Proceedings of the International Conference and Exhibition, pages 514–523, Vienna (Austria), 28.-30. April 1997. Springer-Verlag, Berlin (Germany). †CCA67057/97 ga97aBubak. [955] Christian Jacob. Principia Evolvica, Simulierte Evolution mit Mathematica. dpunkt-Verlag, Heidelberg (Germany), 2001. (In English as [776]) †[776] ga97aCJacob. [956] D. Joseph and W. Kinsner. Design of a parallel genetic algorithm for the Internet. In Proceedings of the 1997 Conference on Communications, Power and Computing WESCANEX’97, pages 333–343, Winnipeg, MB, 22.-23. May 1997. IEEE, Piscataway, NJ. ga97aDJoseph. [957] F. Takeda, T. Nishikage, and S. Omatu. Neural-network recognition system tuned by GA and design of its hardware by DSP. In Proceedings of the Artificial Intelligence in Real-Time Control, pages 319–324, Kuala Lumpur, Malaysia, 22.-25. September 1997. Pergamon Press Ltd., Oxford. †P82895 ga97aFTakeda. [958] G. A. Cronje and W.-H. Steeb. Genetic algorithms in a distributed computing environment using PVM. Int. J. Mod. Phys. C (Singapore), 8(2):327–344, 1997. †CCA49693/97 ga97aGACronje. [959] Mark A. Garlick. Evolution stars in astrophysical research. Scientific Computing World, (26):39, March 1997. (available via www URL: http://lautaro.fb10.tu-berlin.de/evoC.html) ga97aGarlick. [960] Andreas Geyer-Schulz. The next 700 programming languages for genetic programming. In Koza et al. [1453], page ? †conf.prog ga97aGeyer-Schulz. [961] Hong-Tzer Yang, Pai-Chuan Yang, and Ching-Lien Huang. A parallel genetic algorithm approach to solving the unit commitment problem: Implementation on the transputer networks. IEEE Transactions on Power Systems, 12(2):661–668, May 1997. (Proceedings of the IEEE/PES Summer Meeting, July 28 August 1, 1996 Denver, CO) ga97aH-TYang. [962] Hideaki Munakata and Takeshi Yoshioka. Method and device for searching optimum solution, 1997. (JP patent no. 9114797. Issued May 2 1997) * fi.espacenet.com ga97aHMunakata. [963] Han Yang Foo, Jianjian Song, Wenjun Zhuang, H. Esbensen, and E. S. Kuh. Implementation of a parallel genetic algorithm for floorplan optimization on IBM SP2. In Proceedings of the High Performance Computing on the Information Superhighway HPC Asia ’97, pages 456–459, Seoul (South Korea), 28. Apr - 2. May 1997. IEEE Computer Society Press, Los Alamitos , CA. †CCA52069/97 ga97aHYFoo. [964] Juha Haataja. Evoluutiostrategiat Fortran 90:ll¨ a [Evolution strategies in Fortran 90]. @CSC, (3):28–30, June 1997. (In Finnish) ga97aHaataja. [965] Joachim K. Axmann. Parallel adaptive evolutionary algorithms for pressurized water reactor reload pattern optimizations. Nuclear Technology, 119(3):276–291, September 1997. ga97aJKAxmann. [966] Kenneth Price and Rainer Storn. Differential evolution. Dr. Dobb’s Journal, 22(4):18–20,22,24,78, April 1997. ga97aKPrice. [967] F. Maturana, A. Naumann, and D. H. Norrie. Object-oriented job-shop scheduling using genetic algorithms. Comput. Ind. (Netherlands), 32(3):281–294, 1997. †CCA67726/97 ga97aMaturana. [968] R. B. Maunder, G. G. Coghill, and Z. A. Salcic. Genetic algorithm optimisation of FPLD circuits synthesis from highlever modular descriptions. In Proceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, volume 1, pages 678–681, Dunedin (New Zealand), 24.-28. November 1997. Springer-Verlag, Singapore. †CCA78705/98 ga97aMaunder. [969] G. M. Megson and I. M. Bland. Generic systolic array for genetic algorithms. IEE Proc., Comput. Digit. Tech. (UK), 144(2):107–119, 1997. †CCA48249/97 ga97aMegson. [970] M. A. Pollatschek. GP-a C language implementation of genetic programming. European Journal of Operations Research (Netherlands), 101(1):224–225, 1997. †CCA105919/97 ga97aPollatsc. [971] Subburajan Ponnuswamy, Minesh B. Amin, Rakesh Jha, and David A. Casta˜ non. A C 3 I parallel benchmark based on genetic algorithms – implementation and performance analysis. Journal of Parallel and Distributed Computing, 47(1):23–38, 25. November 1997. ga97aPonnuswamy. [972] Stephen D. Scott, Sharad Seth, and Ashok Samal. A synthesizable VHDL coding of a genetic algorithm. Technical Report UNL-CSE-97-009, University of Nebraska-Lincoln, 1997. ga97aSDScott. [973] Hisashi Shimodaira. DCGA: a diversity control oriented genetic algorithm. In Proceedings of the Ninth IEEE International Conference on Tools with Artificial Intelligence, volume ?, pages 367–374, Newport Beach, CA, 3.-8. November 1997. IEEE Computer Society Press, Los Alamitos, CA. ga97aShimodai.
106
Genetic algorithm implementations
[974] Tadeusz Szuba and Robert Straˇs. Parallel evolutionary computing with the random PROLOG processor. Journal of Parallel and Distributed Computing, 47(1):78–85, 25. November 1997. ga97aTSzuba. [975] Toshiyuki Ogawa. Method and device for optimization processing using genetic algorithm, 1997. (JP patent no. 9282299. Issued October 31 1997) * fi.espacenet.com ga97aToshiyukiOgawa. [976] Vaclav Dvoˇr´ ak. Evaluating embedded parallel applications in TRANSIM. In Oˇsmera [1441], pages 44–49. ga97aVDvorak. [977] J. Wakunda and A. Zell. EVA – a tool for optimization with evolutionary algorithms. In Proceedings of the 23rd Euromicro Conference – New Frontiers of Information Technology, pages 644–652, Budapest (Hungary), 1.-4. September 1997. IEEE Computer Society Press, Los Alamitos, CA. †P77002/97 ga97aWakunda. [978] Piotr Wasiewicz, Jan J. Mulawka, and Brijesh Verma. Global optimisation and genetic methods. In Michael Blumenstein, editor, Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, pages 30–36, Gold Coast, QUE, Australia, February 1997. Watson Ferguson & Company (Griffith University). ga97aWasiewicz. [979] Peter J. Angeline. An alternative to indexed memory for evolving programs with explicit state representations. In Koza et al. [1453], page ? †conf.prog ga97bAngeline. [980] C. Jacob. Simulating evolution with Mathematica. In ?, editor, Proceedings of the 1997 2nd International Mathematica Symposium, pages 263–272, Rovaniemi, Finland, June 29.-July 4. 1997. Computational Mechanics Publ, Ashurst, England. †EI M172615/97 ga97bCJacob. [981] Stephen D. Scott, Sharad Seth, and Ashok Samal. A hardware engine for genetic algorithms. Technical Report UNL-CSE-97-001, University of Nebraska-Lincoln, 1997. url = citeseer.nj.nec.com/scott97hardware.html ga97bSDScott. [982] Toshiyuki Ogawa. Method and device for optimizing process using genetic algorithm, 1997. (JP patent no. 9179846. Issued July 11 1997) * fi.espacenet.com ga97bToshiyukiOgawa. [983] Toshiyuki Ogawa. Method and device for optimizing process using genetic algorithm, 1997. (JP patent no. 9179845. Issued July 11 1997) * fi.espacenet.com ga97cToshiyukiOgawa. [984] Conor Ryan and Paul Walsh. Paragen II: evolving parallel transformation rules. In Proceedings of the 5th Fuzzy Days, page 573, Dortmund (Germany), 28.-30. April 1997. Springer-Verlag, Berlin (Germany). †CCA75043/97 ga97eConorRyan. [985] L. L. Lai, J. T. Ma, and J. B. Lee. Application of genetic algorithms to multitime interval scheduling for daily operation of a cogeneration systems by using object-oriented techniques and improved genetic algorithms. In Proceedings of the Fourth International Conference on Advances in Power System Control, Operation & Management, volume 1-2, pages 327–331, Wanchai, Hong Kong, 11.-14. November 1997. Inst. Electr. Eng., Stevenage Herts. †P82885 ga97eLLLai. [986] Toshiyuki Ogawa. Optimizing processing method using genetic algorithm and device therefor, 1997. (JP patent no. 9044465. Issued February 14 1997) * fi.espacenet.com ga97eToshiyukiOgawa. [987] Shigeyoshi Tsutsui, Yoshiji Fujimoto, and Ashish Ghosh. Forking genetic algorithms: GAs with search space division schemes. Evolutionary Computation, 5(1):61–80, 1997. †BA99760 ga97eTsutsui. [988] John R. Koza, Forrest H. Bennett III, J. L. Hutchings, S. L. Bade, Martin A. Keane, and David Andre. Evolving sorting networks using genetic programming and the rapidly reconfigurable Xilinx 6216 fieldprogrammable gate array. In Proceedings of the Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, volume 1, pages 404–410, Pacific Grove, CA (USA), 2.-5. November 1997. IEEE Computer Society Press, Los Alamitos , CA. †CCA78852/98 ga97fJohnKoza. [989] J. Castellanos, S. Leiva, J. Rodrigo, and A. Rodriguez-Paton. Molecular computation for genetic algorithms. In ?, editor, Proceedings of the First International Conference on Rough Sets and Current Trends in Computing, volume ?, pages 91–98, Warsaw, Poland, 22.-26. June 1998. Springer-Verlag, Berlin (Germany). †CCA87203/98 ga98aCastella. [990] Frank Herrmann and Paul Levi. Massively parallel genetic algorithm applied to molecular structure optimization by energy minimization. In ?, editor, Proceedings of the ACM International Conference on Supercomputing, Mol. Bioinf. Workshop, pages 9–19, Stuttgart (Germany), ? 1998. Shaker Verlag, Aachen (Germany). * ChA 242152a/98 ga98aFHerrmann. [991] I. J. Griffiths, Q. H. Mehdi, and N. E. Gough. Microcontroller based genetic algorithms. Microprocess. Microsyst. (UK), 21(6):403–413, 1998. †CCA60164/98 ga98aGriffiths.
Bibliography
107
[992] John R. Koza, Forrest H. Bennett III, J. L. Hutchings, S. L. Bade, Martin A. Keane, and David Andre. Evolving computer programs using rapidly reconfigurable field programmable gate arrays and genetic programming. In Proceedings of the ACM/Sigda International Symposium on Field Programmable Gate Arrays, pages 209–219, Monterey, CA, 22.-25. February 1998. ACM, New York, NY. †CCA87686/98 ga98aJRKoza. [993] K. Otoba, K. Tanaka, and M. Hitafuji. Image processing and interactive selection with Java based on genetic algorithms. In Proceedings of the 3rd IFAC/CIGR Workshop on Artificial Intelligence in Agriculture, pages 83–88, Ibaraki, Japan, 24.-26. April 1998. Elsevier Science Ltd, Kidlington (UK). †CCA60181/99 ga98aKOtoba. [994] Marshall Graves and William Hooper. A few new features for genetic algorithms. In Proceedings of the 36th Annual Southeast Regional Conference, pages 228–235, ?, ? 1998. ACM, New York. †ACM /www ga98aMGraves. [995] Jean-Luc Paris, Henri Pierreval, and L. Tautou. Computational intelligence in simulation optimisation: a distributed tool using PVM and its application in manufacturing. In Kaj Juslin, editor, Proceedings of the Eurosim’98 Simulation Congress, volume 2, pages 340–346, Espoo (Finland), 14.-15. April 1998. ? †TKK ga98aParis. [996] R. Isobe. Genetic algorithm system using optical parallel processing. Rec. Electr. Commun. Eng. Conversazione, 67(1):316–317, 1998. In Japanese †PA28034/99 ga98aRIsobe. [997] U. J. Cao and Q. H. Wu. A cellular-automata based genetic algorithm and its application in mechanical design optimization. In Proceedings of the UKACC International Conference on Control ’98, pages 1593– 1598, Swansea, Wales, 1.-4. September 1998. IEE, Stevenage (UK). †P82608 ga98aUJCao. [998] Ulrich Korn and To Thanh Binh. The parallel evolution strategy toolbox for MATLAB. Automatisierungstechnik, 46(4):207–208, 1998. (In German) †CCA63925/98 ga98aUlriKorn. [999] Vladimir Brusic, George Rudy, Marco Honeyman, J¨ urgen Hammer, and Leonard C. Harrison. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics, 14(2):121–130, 1998. ga98aVBrusic. [1000] Y. Z. Ge, L. T. Watson, and E. G. Collins. Genetic algorithms for optimization on a quantum computer. In Unconventional Models of Computation, pages 218–227, 1998. †P84781 ga98aYZGe. [1001] Anon. A scientist seeks gold in a controversial drug patent. Wall Street Journal, ?(?):Marketplace/1, 3. August 1998. †M. Gottlieb/genetic-programming list ga98bAnon. [1002] Alexander A. Balandin and Kang L. Wang. Implementation of quantum controlled-NOT gates using asymmetric semiconductor quantum dots. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 460–467, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aAABalandin. [1003] Brian J. Ross. Practical handbook of genetic algorithms. In Chambers [1428], chapter 1. A Lamarckian evolution strategy for genetic algorithms, pages 1–16. ga99aBJRoss. [1004] Charles M. Bowden, Jonathan P. Dowling, and Stephen P. Hotaling. Quantum computing using electronnuclear double resonances. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 364–372, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aCMBowden. [1005] D. F. V. James, M. S. Gulley, M. H. Holzscheiter, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, M. M. Schauer, C. M. Simmons, D. Tupa, P. Z. Wang, and A. G. White. Trapped ion quantum computer research at Los Alamos. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 426–437, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aDFVJames. [1006] D. V. Averin. Adiabatic controlled-NOT gate for quantum computation. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 413–425, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aDVAverin. [1007] Guo Xuan. ParaGA: a C++ class library for parallel genetic algorith. Chin. J. Comput. (China), 22(6):591– 595, 1999. In Chinese †CCA82733/99 ga99aGuoXuan.
108
Genetic algorithm implementations
[1008] H.-J. Briegel, J. I. Cirac, W. D¨ ur, S. J. van Enk, H. J. Kimble, H. Mabuchi, and P. Zoller. Physical implementations for quantum communication in quantum networks. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 373–382, Palm Springs, CA, February 1998 1999. SpringerVerlag, Berlin. ga99aH-JBriegel. [1009] Juha Haataja. Geneettiset algoritmit ja Matlab. @CSC, ?(3):22–24, June 1999. ga99aHaataja. [1010] Hideaki Matsueda. Spatiotemporal dynamics of quantum computing solid dipole-dipole block systems. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 468–477, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aHideakiMatsueda. [1011] J. F. Miller. On the filtering properties of evolved gate arrays. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 2–11, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. †CCA80866/99 ga99aJFMiller. [1012] Jeremy Peter James Hughes and Bahadar Singh Ruprai. Distributed genetic programming, 1999. (U. S. patent no. 5,930,780. Issued July 27 1999; available via www URL: http://appft1.uspto.gov/netahtml/PTO/search-adv.html) ga99aJPJHughes. [1013] K. F. Man, K. S. Tang, and S. Kwong. Genetic algorithms. Concepts and designs. Advanced Textbooks in Control and Signal Processing. Springer-Verlag London Ltd., London, 1999. †www /MathRev99m:90001 ga99aKFMan. [1014] Kevin M. Obenland and Alvin M. Despain. Simulating the effect of decoherence and inaccuracies on a quantum computer. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 447–459, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aKMObenland. [1015] Michael O’Neill and Conor Ryan. Evolving multi-line compilable C programs. In Riccardo Poli, Peter Nordin, William B. Langdon, and Terence C. Fogarty, editors, Genetic Programming, Second European Workshop, EuroGP’99, volume LNCS of 1598, pages 83–92, G¨ oteborg (Sweden), May 1999. Springer-Verlag Berlin Heidelberg. * www /Springer ga99aMO’Neill. [1016] Makihiko Satou. Optimization method and device using object-oriented genetic algorithm, 1999. (JP patent no. 11053337. Issued February 26 1999) * fi.espacenet.com ga99aMSatou. [1017] J. J. Merelo and G. Romero. Practical handbook of genetic algorithms. In Chambers [1428], chapter 10. Doing GAs with GAGS, pages 385–406. ga99aMerelo. [1018] Ralph G. DeVoe. Arrays of elliptical ion traps for parallel quantum computing. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 438–446, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aRGDeVoe. [1019] R. Kumar, N. V. Kumar, and I. J. Nagrath. Object oriented toolkit for multiobjective genetic optimisation. In Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, pages 96–100, New Delhi, India, 23.-26. September 1999. IEEE Computer Society Press, Los Alamitos , CA. †CCA91114/99 ga99aRKumar. [1020] R. Laflamme, E. Knill, W. H. Zurek, P. Catasti, and S. V. S. Mariappan. NMR GHZ. In Colin P. Williams, editor, Quantum Computing and Quantum Communications, QCQC’98, First NASA International Conference, volume 1509 of Lecture Notes in Computer Science, pages 357–363, Palm Springs, CA, February 1998 1999. Springer-Verlag, Berlin. ga99aRLaflamme. [1021] Stephen D. Scott, Sharad Seth, and Ashok Samal. Practical handbook of genetic algorithms. In Chambers [1428], chapter 7. A synthesizable VHDL coding of a genetic algorithm, pages 239–268. ga99aStephenDScott. [1022] A. Sternieri, P. Anelli, S. Stramaglia, and U. Emiliani. AGAPE: parallel genetic algorithm programming environment developed for APE100/Quadrics. Computer Artif. Intell. (Slovakia), 18(3):217–237, 1999. †CCA73324/99 ga99aSternieri. [1023] A. M. S. Zalzala and D. Green. MTGP: a multithreaded Java tool for genetic programming applications. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC’99, volume 2, pages 904–912, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA82718/99 ga99aZalzala. [1024] Jarmo T. Alander. Practical handbook of genetic algorithms. In Chambers [1428], chapter Appendix 1. An indexed bibliography of genetic algorithms, pages 503–572. ga99bAlander.
Bibliography
109
[1025] Delon Levi and Steven A. Guccione. GeneticFPGA: evolving stable circuits on mainstream FPGA devices. In Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, pages 12–17, Pasadena, CA, 19.-21. July 1999. IEEE Computer Society Press, Los Alamitos , CA. †CCA80867/99 ga99bDelonLevi. [1026] Reid Porter and Neil Bergmann. Evolving FPGA based cellular automata. In B. McKay, X. Yao, C. S. Newton, J.-H. Kim, and T. Furuhashi, editors, Simulated Evolution and Learning, Second Asia-Pacific Conference on Simulated Evolution and Learning, SEAL’98, volume LNAI of 1585, pages 114–121, Canberra (Australia), November 1999. Springer-Verlag Berlin Heidelberg. * www /Springer ga99bRPorter. [1027] Y. J. Cao and Q. H. Wu. Teaching genetic algorithm using MATLAB. Int. J. Electr. Eng. Educ. (UK), 36(2):139–153, 1999. †CCA94293/99 ga99dYJCao. [1028] David Abramson, Graham Mills, and Sonya Perkins. Parallelisation of a genetic algorithm for the computation of efficient train schedules. In D. Arnold, R. Christie, J. Day, and P. Roe, editors, Parallel Computing and Transputers, volume 37 of Transputer and Occam Engineering Series, pages 139–149, Brisbane (Australia), 3.-4. November 1993. IOS Press. (available via anonymous ftp site ftp.cit.gu.edu.au directory pub/D.Abramson file Trains.ps.Z) ga:Abramson93a. [1029] Manuel Alfonseca. Genetic algorithms. APL Quote Quad, 21(4):1–6, August 1991. ga:Alfonseca91. [1030] Jos´e L. Ribeiro Filho, Cesare Alippi, and Philip C. Treleaven. Genetic algorithm programming environments. pages 65–84. 1993. †Back/bib/unp ga:Alippi93a. [1031] B. B. Prahlada Rao and R. C. Hansdah. Extended distributed genetic algorithm for channel routing. In Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing, pages 726–733, Dallas, TX, 1.-4. December 1993. IEEE Computer Society Press, Los Alamitos, CA. * EEA 37601/95 CCA 42753/95 ga:BBPRao93b. [1032] Thomas B¨ ack. A user’s guide to genesys 1.0. Technical report, University of Dortmund, Department of Computer Science, 1992. ga:Back92a. [1033] Steven E. Bayer and Lui Wang. A genetic algorithm programming environment: Splicer. In Proceedings of the 1991 IEEE International Conference on Tools with Artificial Intelligence TAI’91, pages 138–144, San Jose, CA, 10.-13. November 1991. IEEE Computer Society Press, Los Alamitos, CA. * CCA 65846/92 EI 029646/92 ga:Bayer91. [1034] Joachim Born. Astop – Ein interaktives Softwarepaket zur Optimierung mit adaptiven, stochastischen Verfahren. In Vortragsausz¨ uge Jahrestagung “Matematische Optimierung”, pages 15–17, ?, ? 1984. HumboldtUniversit¨ at zu Berlin. †Santibanez-Koref ga:Born84a. [1035] Hans-Michael Voigt, Joachim Born, and J. Treptow. The evolution machine – manual, v. 2.1. Informatik Informationen Reporte iir 7(1991), Akademie der Wissenschaft der DDR, Institute for Informatics and Computing Techniques, 1991. (available via anonymous ftp site ftp-bionik.fb10.tu-berlin.de directory /pub/software/Evolution-Machine file em-man.ps.Z) ga:Born91b. [1036] Ivan Santib´ an ˜ez-Koref, Hans-Michael Voigt, and Joachim Born. Parallele Evolutionsalgorithmen – Implementierung und Andwendungen auf Transputernetzen. In Abstraktband des 3. bundesweiten Transputer – Anwender – Treffens, pages 216–218, Klinikum der RWTH Aachen, ? 1991. †Santibanez-Koref ga:Born91c. [1037] Ivan Santib´ an ˜ez-Koref, Hans-Michael Voigt, and Joachim Born. Parallele diploide Evolutionsalgorithmen. In TAT ’92, Abstract Volume of the 4th German Transputer Users Group Meeting, pages 98–100, Aachen, 22.-23. September 1992. Medical School of the Technical University (RWTH), Institute for Physiology. †Santibanez-Koref ga:Born92c. [1038] Ricardo Bianchini and Christopher M. Brown. Parallel genetic algorithms on distributed-memory architectures. Technical Report Technical Report 436, The University of Rochester, Computer Science Department, 1993. ga:CBrown93a. [1039] Ricardo Bianchini and Christopher M. Brown. Parallel genetic algorithms on distributed-memory architectures. In Transputer Research and Applications, NATUG-6, Proceedings of the Sixth Conference on the North American Transputer Users Group, pages 67–82, Vancouver, BC (Canada), 10.-11. May 1993. IOS Press, Amsterdam. ga:CBrown93b. [1040] James P. Cohoon, Shailesh U. Hegde, Worthy N. Martin, and Dana S. Richards. Distributed genetic algorithms for the floorplan design problem. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(4):483–492, April 1991. ga:Cohoon91c. [1041] Andrew Colin. Solving ratio optimization problems with a genetic algorithm. Advanced Technology for Developers, 2(?):1–8, May 1993. ga:Colin93a.
110
Genetic algorithm implementations
[1042] Lawrence Davis and John J. Grefenstette. Concerning genesis and ooga. In Davis [1410], pages 374–376. ga:Davis91c. [1043] Lawrence Davis. Genetic algorithm profiles: Matt Jensen and user-friendly evaluation functions. Advanced Technology for Developers, 1(?):7–10, December 1992. ga:Davis92c. [1044] Marco Dorigo and Enrico Sirtori. Alecsys: A parallel laboratory for learning classifier systems. Technical Report 91-004, Politecnico di Milano, Dipartimento di Elettronica, 1991. ga:Dorigo91b. [1045] Marco Dorigo and Enrico Sirtori. Alecsys: A parallel laboratory for learning classifier systems. In Belew and Booker [1423], pages 296–302. ga:Dorigo91bb. [1046] Marco Dorigo. Using transputers to increase speed and flexibility of genetics-based machine learning systems. Microprocessing and Microprogramming EURO-Micro Journal, 34(1-5):147–152, 1992. ga:Dorigo92a. [1047] G. D. McClurkin, R. A. Geary, and T. S. Durrani. An investigation into the parallelism of genetic algorithms. In D. J. Pritchard and C. J. Scott, editors, Proceedings of the Second International Conference on Applications of Transputers, pages 581–587, Southhampton (UK), 11.-13. July 1990. IOS Press, Amsterdam. †Fogel/bib ga:Durrani90a. [1048] A. Dymek. An examination of hypercube implementations of genetic algorithms. Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1992. (report No. AFIT/GCS/ENG/92M02) †Goldberg/GA5 ga:DymekMSThesis. [1049] Antonette M. Logar, Edward M. Corwin, and Thomas M. English. Implementation of massively parallel genetic algorithm on the MasPar MP-1. In H. Berghel, G. Hedrick, E. Deaton, D. Roach, and R. Wainwright, editors, SAC’92 Proceedings of the 1992 ACM/SIGAPP Symposium, volume II, pages 1015–1020, Kansas City, KS, 1.-3. March 1992. ACM Press, New York. * CCA 89585/94 ACM/92 EI 078457/93 ga:English92a. [1050] Anon. EvolverT M 2.0 A genetic algorithm for spreadsheets. Computers & Mathematics with Applications, 26(12):94, 1993. ga:Evolver20. [1051] J. Kingdon, Jos´e L. Ribeiro Filho, and Philip C. Treleaven. The game programming environment architecture. pages 85–94. 1993. †Back/bib/unp ga:Filho93a. [1052] J. R. Filho. Game’s library structure. pages 111–116. 1993. †Back/bib/unp ga:Filho93b. [1053] Terence C. Fogarty. Rule-based optimization of combustion in multiple-burner furnaces and boiler plants. Engineering Applications of Artificial Intelligence, 1:203–209, 1988. ga:Fogarty88. [1054] Terence C. Fogarty and Runhe Huang. Implementing the genetic algorithm on transputer based parallel processing systems. In Schwefel and M¨ anner [1422], pages 145–149. ga:Fogarty90a. [1055] Jun Cui, Terence C. Fogarty, and John G. Gammack. Searching databases using parallel genetic algorithms on a transputer computing surface. In Proceedings of the Third Annual Conference of the Meiko User Society, page ?, Manchester Business School, University of Manchester, 9.-10. April 1992. ? † ga:Fogarty92a. [1056] Jun Cui and Terence C. Fogarty. Optimization by using a parallel genetic algorithm on a transputer computing surface. In M. Valero, E. Onate, M. Jane, J. L. Larriba, and B. Suarez, editors, Transputer and Occam Engineering Series, volume 28, pages 246–254, Barcelona (Spain), 21.-25. September 1992. IOS Press, Amsterdam. * P57782/93 CCA 63706/93 ga:Fogarty92d. [1057] Jun Cui, Terence C. Fogarty, and John G. Gammack. Searching databases using parallel genetic algorithms on a transputer computing surface. Future Generation Computer Systems, 9(1):33–40, May 1993. ga:Fogarty93b. [1058] Bernd Freisleben and Michael H¨ artfelder. Optimization of genetic algorithms by genetic algorithms. In Albrecht et al. [1425], pages 392–399. ga:Freisleben93a. [1059] R. M. Friedberg. A learning machine: Part I. IBM Journal, 2(?):2–13, ? 1958. †[?] ga:Friedberg58. [1060] R. M. Friedberg, B. Dunham, and T. North. A learning machine: Part II. IBM Journal of Research and Development, 3(3):282–287, ? 1959. †[?] ga:Friedberg59. [1061] David E. Goldberg and Travis Kerzic. mGA1.0: A Common lisp implementation of a messy genetic algorithm. TCGA Report 90004, University of Alabama, 1990. ga:Goldberg90k. [1062] Kalyanmoy Deb and David E. Goldberg. mGA in C: A messy genetic algorithm in C. IlliGAL Report 91008, University of Illinois at Urbana-Champaign, 1991. (available via anonymous ftp site gal4.ge.uiuc.edu directory /pub/papers/IlliGALs file 91008.ps.Z) ga:Goldberg91j.
Bibliography
111
[1063] Robert Elliot Smith, David E. Goldberg, and J. A. Erickson. SGA-C a C language implementation of simple genetic algorithm. TCGA Report 91002, University of Alabama, 1991. ga:Goldberg91o. [1064] Martina Gorges-Schleuter. Asparagos an asynchronous parallel genetic optimization strategy. In Schaffer [1419], pages 422–427. ga:Gorges-Schleuter89a. [1065] Willfried Jakob, Martina Gorges-Schleuter, and Christian Blume. Application of genetic algorithms to task planning and learning. In M¨ anner and Manderick [1420], pages 291–300. ga:Gorges-Schleuter92a. [1066] John J. Grefenstette. A user’s guide to genesis. Technical Report CS-83-11, Vanderbilt University, Nashville, Department of Computer Science, 1983. †Cobb/FOGA2 ga:Grefenstette83a. [1067] Nicol N. Schraudolph and John J. Grefenstette. A user’s guide to GAucsd 1.4. Technical Report CS92-249, University of California, San Diego, 1992. †Campbell/GA5 ga:Grefenstette92d. [1068] Juha Haataja. Geneettisten algoritmien simulointi Matlab 4.0:lla [On simulation of genetic algorithms by Matlab 4.0]. SuperMenu, ?(2):21–25, 1993. (in Finnish) ga:Haataja93a. [1069] J. Hesser and R. M¨ anner. An alternative genetic algorithm. In Schwefel and M¨ anner [1422], pages 33–37. ga:Hesser90b. [1070] Frank Hoffmeister. Korr 2.1 – implementation of a (γ + , λ) – evolution strategy. Technical Report ?, University of Dortmund, Department of Computer Science, 1990. †Back/bib/unp ga:Hoffmeister90c. [1071] Shih-Lin Hung. Neural network and genetic learning algorithms for computer-aided design and pattern recognition. PhD thesis, The Ohio State University, 1992. * DAI 53/11 ga:HungThesis. [1072] H. S. Ismail and K. K. B. Hon. New approaches for the nesting of two-dimensional shapes for press tool design. International Journal of Production Research, 30(4):825–837, April 1992. ga:Ismail92a. [1073] James Freeman. Simulating a basic genetic algorithm. The Mathematica Journal, 3(2):52–56, 1993. ga:JFreeman93. [1074] Angel DeCegama and Jeff Smith. Neural networks and genetic algorithms for combinatorial optimization of sensor data fusion. In Vibeke Libby and Ivan Kadar, editors, Signal Processing, Sensor Fusion, and Target Recognition, volume SPIE-1699, pages 108–115, Orlando, FL, 20. -22. April 1992. The International Society for Optical Engineering. ga:JSmith92. [1075] W. M. Jenkins. Plane frame optimum design environment based on genetic algorithm. Journal of Structural Engineering - ASCE, 118(11):3103–3112, November 1992. ga:Jenkins92b. [1076] Nagesh Kadaba. Xroute: A knowledge-based routing system using neural networks and genetic algorithms. PhD thesis, North Dakota State University of Agriculture and Applied Sciences, Fargo, 1990. ga:KadabaThesis. [1077] Casimir C. Klimasauskas. An Excel macro for genetic optimization of a portfolio. Advanced Technology for Developers, 1(8):11–17, December 1992. ga:Klimasauskas92c. [1078] Andreas Geyer-Schulz and Thomas Kolarik. Distributed computing with APL. APL Quote Quad, 23(1):60– 69, July 1992. (Proceedings of the International Conference on APL 6.-10. July 1992 St. Petersburg (Russia)) ga:Kolarik92a. [1079] Berthold Kr¨ oger, Peter Schwenderling, and Oliver Vornberger. Parallel genetic packing of rectangles. In Schwefel and M¨ anner [1422], pages 160–164. ga:Kroger90. [1080] Berthold Kr¨ oger, Peter Schwenderling, and Oliver Vornberger. Genetic packing of rectangles on transputers. In P. Welch, D. Stiles, T. L. Kunii, and A. Bakkers, editors, Transputing ’91. Proceedings of the World Transputer User Group (WOTUG), pages 593–608, Sunnyvale, CA, 22.-26. April 1991. IOS Press, Amsterdam. †ACM/91 ga:Kroger91a. [1081] Berthold Kr¨ oger, Peter Schwenderling, and Oliver Vornberger. Parallel genetic packing on transputers. Technical Report Reihe I Informatik Heft 29, Universit¨ at Osnabr¨ uck, Fachbereich Matematik/Informatik, 1992. ga:Kroger92a. [1082] J¨ org Krone. Ein Evolutionsalgorithmus zur parallelen Bildsegmentierung. In R. Grebe and M. Baumann, editors, TAT ’92, Abstract Volume of the 4th German Transputer Users Group Meeting, pages 144–145, Aachen, 22.-23. September 1992. Medical School of the Technical University (RWTH), Institute for Physiology. †[6] ga:Krone92a. [1083] D. P. Kwok, P. Wang, and H. S. Choi. Optimal-tuning of classical PID controllers using genetic algorithms. In Proceedings of HKIE CAI Symposium’92 on Advanced Control and Automation and Applications, pages 28–39, Hong Kong, March 1992. ga:Kwok92c.
112
Genetic algorithm implementations
[1084] D. P. Kwok and P. Wang. Fine-tuning of classical PID controllers based on genetic algorithms. In R. Zurawski and T. S. Dillon, editors, Proceedings of the IEEE International Workshop on Emerging Technologies and Factory Automation, pages 37–43, Melbourne (Australia), 11.-14. August 1992. CRL Publishing Ltd., London. ga:Kwok92d. [1085] Leslie R. Knight. Hypergen – a distributed genetic algorithm on a hypercube. Master’s thesis, University of Tulsa, Tulsa, OK, 1993. †Wainwright ga:LRKnightMSThesis. [1086] Alex Lane. Programming with genes. AI Expert, 8(12):16–19, December 1993. ga:Lane93a. [1087] Carlos B. Lucasius and Gerrit Kateman. GATES: genetic algorithm toolbox for evolutionary search, Software library in ANSI C. Technical Report ?, Catholic University Nijmegen, Laboratory for Analytical Chemistry, 1991. † ga:Lucasius91d. [1088] R. M. Lopes Marques, P. J. Schoenmakers, Carlos B. Lucasius, and Gerrit Kateman. Modelling chromatographic behaviour as a function of pH and solvent composition in RPLC. Chromatographia, 36:83–95, 1993. (in the Proceedings of the 19th International Symposium on Chromatography, Aix-en-Provence (France), 13.-18. Sept. 1992) ga:Lucasius93g. [1089] Donald Macfarlane and Ian East. An investigation of several parallel genetic algorithms. In S. J. Turner, editor, Proceedings of the 12th Occam User Group, Technical Meeting, pages 60–67, Exeter (UK), 2.-4. April 1990. IOS Press, Amsterdam. † ga:Macfarlane90. [1090] Nigel Dodd, Donald Macfarlane, and C. Marland. Optimization of artificial neural network structure using genetic techniques on multiple transputers. In P. Welch, D. Stiles, T. L. Kunii, and A. Bakkers, editors, Transputing ’91. Proceedings of the World Transputer User Group (WOTUG), pages 687–700, Sunnyvale, CA, 22.-26. April 1991. IOS Press, Amsterdam. †ACM/91 ga:Macfarlane91a. [1091] Ian East and Donald Macfarlane. Implementation in Occam of parallel genetic algorithms on transputer networks. chapter 3. Implementation, pages 43–64. 1993. † ga:Macfarlane93a. [1092] Michael Friedman, Uri Mahlab, and Joseph Shamir. Collective genetic algorithm for optimization and its electro-optic implementation. Applied Optics, 32(23):4423–4429, 1993. ga:Mahlab93a. [1093] Timothy Masters. Practical neural network recipes in C++, chapter 8, Genetic Optimization. Academic Press, Inc., San Diego, CA, 1993. †Computing Reviews Apr. 94 ga:Masters93book. [1094] C. Medsker and I. Y. Song. ProloGA: a Prolog implementation of a genetic algorithm. In IEEE International Conference on Developing and Managing Intelligent System Projects, pages 77–84, Washington, DC, 29.-31. March 1993. IEEE Computer Society Press, Los Alamitos, CA. * CCA 67755/93 ga:Medsker93a. [1095] Philip Husbands and Frank Mill. Simulated co-evolution as the mechanism for emergent planning and scheduling. In Belew and Booker [1423], pages 264–270. ga:Mill91. [1096] Heinz M¨ uhlenbein. Parallel genetic algorithms, population genetics and combinatorial optimization. In Schaffer [1419], pages 416–421. ga:Muhlenbein89a. [1097] Heinz M¨ uhlenbein and J. Kindermann. The dynamics of evolution and learning — towards genetic neural networks. In R. Pfeifer, Z. Schreter, F. Fogelmann-Soulie, and L. Stees, editors, Connectionism in 9 Perspective, pages 173–198. North-Holland, 1989. ga:Muhlenbein89b. [1098] Koichi Nara, Atsushi Shiose, Minoru Kitagawa, and Toshihisa Ishihara. Implementation of genetic algorithm for distribution systems loss minimum re-configuration. IEEE Transactions on Power Systems, 7(3):1044–1051, August 1992. ga:Nara92a. [1099] Chrisila Cheri Baxter Pettey, Michael R. Leuze, and John J. Grefenstette. Genetic algorithms on a hypercube multiprocessor. In Hypercube Multiprocessors 1987, pages 333–341, 1987. † ga:Pettey87b. [1100] Chrisila Cheri Baxter Pettey and Michael R. Leuze. Parallel placement of parallel processes. In Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, pages 232–238, Pasadena, CA, 19.-20. January 1988. ACM, New York. * EEA 7722/91 ga:Pettey88a. [1101] R. J. Pryor and D. D. Cline. Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer. Report SAND-92-2847C, Sandia National Laboratories, Albuquerque, NM, 1992. (also as [1102]) * N93-30184 ga:Pryor92a. [1102] R. J. Pryor and D. D. Cline. Use of a genetic algorithm to solve two-fluid flow problems on an NCUBE multiprocessor computer. In ?, editor, Proceedings of the International Topical Meeting on Mathematical Methods and Supercomputing in Nuclear Applications, page ?, Karlsruhe (Germany), 19.-23. April 1992. ? (also as [1101]) * N93-30184 ga:Pryor93a.
Bibliography
113
[1103] G. M. Reese. Parameter estimation by genetic algorithms. Report SAND-93-1298C, Sandia National Laboratories, Albuquerque, NM, 1993. (also as [1104]) * N94-26146 ga:Reese93a. [1104] G. M. Reese. Parameter estimation by genetic algorithms. In ?, editor, Proceedings of the 1993 MATLAB Conference, page ?, Boston, MA, 18.-20. October 1993. ? (also as [1103]) * N94-26146 ga:Reese93b. [1105] Rick L. Riolo. CFS-C: A package of domain-independent subroutines for implementing classifier systems in arbitrary, user-defined environments. Technical Report ?, University of Michigan, Department of Computer Science and Engineering, Logic of Computers Group, 1988. †[1415] ga:Riolo88a. [1106] Rick L. Riolo. Survival of the fittest bits. Scientific American, 267(1):89–91, July 1992. ga:Riolo92a. [1107] Brian J. Rosmaita. Exodus user’s manual (version 1.8). Technical Report No. CS-85-06, Vanderbilt University, Nashville, Department of Computer Science, 1985. † ga:Rosmaita85. [1108] Brian J. Rosmaita. Exodus: An extension of the genetic algorithm to problems dealing with permutations. Master’s thesis, Vanderbilt University, Nasville, 1985. † ga:RosmaitaMSThesis. [1109] Anoop K. Bhattacharjya, Douglas E. Becker, and Badrinath Roysam. A genetic algorithm for intelligent imaging from quantum-limited data. Technical Report ?, Rensselaer Polytechnic Institute, Troy, NY, Department of Electrical, Computer and Systems Engineering, 1992. †BackBib ga:Roysam92a. [1110] Anoop K. Bhattacharjya, Douglas E. Becker, and Badrinath Roysam. A genetic algorithm for intelligent imaging from quantum-limited data. Signal Processing, 28(3):335–348, October 1992. ga:Roysam92b. [1111] Steve Wilson. How to grow a starship pilot [genetic algorithms for space probes]. AI Expert, 8(12):20–26, December 1993. ga:SWilson93a. [1112] J¨ urgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-...hook. Master’s thesis, Universit¨ at M¨ unchen, Institut f¨ ur Informatik, 1987. †www /Schmidhuber ga:Schmidhuber87a. [1113] Hans-Paul Schwefel. Subroutines evol, grup, korr, listings and user’s guide. Interner Bericht KFA-STE-IB2/80, Kernforschungsanlage J¨ ulich, Programmgruppe Systemforschung und Technologische Entwicklung, 1980. †Back/bib/unp ga:Schwefel80a. [1114] Hans-Paul Schwefel. Unterprogramme evol, grup, korr, Programme und Benutzeranleitungen. Interner Bericht KFA-STE-IB-3/80, Kernforschungsanlage J¨ ulich, Programmgruppe Systemforschung und Technologische Entwicklung, 1980. †Back/bib/unp ga:Schwefel80b. [1115] Joachim Sprave and Hans-Paul Schwefel. Evolution¨ are Algorithmen auf Transputerfarmen zur L¨ osung schwieriger Optimierungsprobleme. In R. Grebe and M. Baumann, editors, TAT ’92, Abstract Volume of the 4th German Transputer Users Group Meeting, pages 106–109, Aachen, 22.-23. September 1992. Medical School of the Technical University (RWTH), Institute for Physiology. ga:Schwefel92f. [1116] Markus Schwehm. Implementation of genetic algorithms on various interconnection networks. In E. O˜ nate M. Valero, M. Jane, J. L. Larriba, and B. Su´ arez, editors, Parallel Computing and Transputer Applications, volume I, pages 195–203. CIMNE, Barcelona & IOS Press, Amsterdam, Barcelona (Spain), 21.-25. September 1992. ga:Schwehm92. [1117] Markus Schwehm. A massively parallel genetic algorithm on the MasPar MP-1. In Albrecht et al. [1425], pages 502–507. ga:Schwehm93a. [1118] Markus Schwehm, Karl Dieter Reinartz, Thomas Walter, S¨ onke-Sonnich Gold, Christoph Sch¨ aftner, Thilo Opaterny, Alexander Ost, and Norbert Engst. Massiv parallele genetische Algorithmen, Beitr¨ age zum Tag der Informatik Erlangen 1993. Interner Bericht IMMD VII - 8/93, Friedrich-Alexander-Universit¨ at Erlangen-N¨ urnberg, Institut f¨ ur Matematische Maschinen und Datenverarbeitung, 1993. (in German) ga:Schwehm93b. [1119] Markus Schwehm. Massiv parallele genetische Algorithmen. In Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware (PARS-Mitteilungen Nr. 12), pages 181–191, ?, June 1993. Gesellschaft f¨ ur Informatik E. V. & Informationstechnische Gesellschaft im VDE. ga:Schwehm93c. [1120] Karl Sims. Artificial evolution for computer graphics. Computer Graphics, 25(4):319–328, July 1991. ga:Sims91. [1121] William M. Spears. Using neural networks and genetic algorithms as heuristics for NP-complete problems. Master’s thesis, George Mason University, 1990. ga:Spears90b. [1122] F. M. Stefanini and A. Camussi. APLOGEN: an object-oriented genetic algorithm performing Monte Carlo optimization. Comput. Appl. Biosci., 11(2):74–91,121–123, June 1993. †MEDLINE ga:Stefanini93a.
114
Genetic algorithm implementations
[1123] David G. Stork. Preadaptation and principles of organization in organisms. In Jay E. Mittenthal and Arthur B. Baskin, editors, The Principles of Organization in Organisms, Proceedings of the Workshop on Principles of Organization in Organisms, volume SFI Studies in the Sciences of Complexity Vol. XIII, pages 205–224, Santa Fe, NM, June 1990 1992. Addison-Wesley Publishing Company, Reading, MA. ga:Stork92b. [1124] Patrick D. Surry. RPL2 programmer’s guide. Technical Report EPCC-BG-PAP-RPL2-PG, Edinburgh Parallel Computing Centre, 1993. †refereed article ga:Surry93a. [1125] Patrick D. Surry. RPL2 user guide. Technical Report EPCC-BG-PAP-RPL2-UG, Edinburgh Parallel Computing Centre, 1993. †refereed article ga:Surry93b. [1126] El-Ghazali Talbi and Pierre Bessi`ere. A parallel genetic algorithm applied to the mapping problem. SIAM News, 24(4):12–27, July 1991. * ga:Talbi91a. [1127] El-Ghazali Talbi. Etude exp´erimentale d’algorithmes de placement de processus. Lettre du Transputer et des Calculateurs Distribu´es, 15(?):7–26, September 1992. (in French; available via anonymous ftp site imag.fr directory /pub/SYMPA file talbi.LT92.e.ps.Z) ga:Talbi92b. [1128] Reiko Tanese. ga:Tanese87.
Parallel genetic algorithms for a hypercube.
In Grefenstette [1426], pages 177–183.
[1129] Sam Rabindranath Thangiah, Kendall E. Nygard, and Paul L. Juell. Gideon: A genetic algorithm system for vehicle routing with time windows. In Proceedings of the Seventh IEEE Conference on Artificial Intelligence Applications, volume 1, pages 322–328, Miami Beach, FL, 24.-28. February 1991. IEEE Computer Society Press, Los Alamitos. ga:Thangiah91. [1130] Sam Rabindranath Thangiah. Gideon: A genetic algorithm system for vehicle routing with time windows. PhD thesis, North Dakota State University of Agriculture and Applied Sciences, Fargo, 1991. ga:ThangiahThesis. [1131] Marco Tomassini. Massively parallel evolutionary algorithms. In ?, editor, Proceedings of the 2nd Connection Machine User Meeting, page ?, Paris (France), ? 1993. ? †Tomassini ga:Tomassini93b. [1132] Gilles Venturini. Agil: Solving the exploration versus exploitation dilemma in a simple classifier system applied to simulated robotics. In Derek Sleeman and Peter Edwards, editors, Machine Learning, Proceedings of the Ninth International Workshop (ML92), pages 458–463. Morgan Kaufmann Publishers?, July 1992. ga:Venturini92a. [1133] Leslie R. Knight and Roger L. Wainwright. Hypergen - a distributed genetic algorithm on hypercube. In Proceedings, Scalable High Performance Computing Conference SHPCC-92, pages 232–235, Williamsburg, VA, 26.-29. April 1992. IEEE Computer Society Press, Los Alamitos, CA. * CCA 37081/93 EI M064733/93 ga:Wainwright92a. [1134] Arthur Leo Corcoran, III and Roger L. Wainwright. LibGA: A user-friendly workbench for order-based genetic algorithm research. In K. M. George Deaton and George Hedrick Hal. Berghel, editors, Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing, pages 111–117, Indianapolis, IN, 14.-16. February 1993. ACM, New York. * Wainwright CCA 49825/94 ACM/93 ga:Wainwright93a. [1135] Yong Li. Heuristic and exact algorithms for the quadratic assignment problem. PhD thesis, The Pennsylvania State University, 1992. * DAI 53/12 ga:YLiThesis. [1136] Yejin Zhou. Genetic algorithm with qualitative knowledge enchancement for layout design under continuous space formulation. PhD thesis, University of Illinois at Chicago, 1993. * DAI 54/12 ga:YZhouThesis. [1137] L. Lemarchand, A. Plantec, B. Pottier, and S. Zanati. An object-oriented environment for specification and concurrent execution of genetic algorithms. SIGPLAN OOPS Messenger, 4(2):163–165, April 1993. (Addentum to the proceedings of OOPSLA’92) †ACM/93 ga:Zanati93a. [1138] Veljko Milutinovich, Dragana Cvetkovic, and Jelena Mirkovic. Genetic search based on multiple mutations. Computer, 33(11):118–119, November 2000. ga00aVMilutinovich. [1139] William M. Spears. Evolutionary Algorithms, The Role of Mutation and Recombination. Natural Computing. Springer-Verlag, Berlin, 2000. †Springer ga00aWMSpears. [1140] Ivanoe De Falco, A. Iazzetta, E. Tarantino, and Antonio Della Cioppa. On biologically inspired mutations: the translocation. pages 70–77, 2000. ga00bIDeFalco. [1141] J.-M. Yang and C.-Y. Kao. Integrating adaptive mutations and family competition into genetic algorithms as function optimizer. Soft Computing, 4(2):89–102, ? 2000. * www /Springer ga00bJ-MYang.
Bibliography
115
[1142] A. Agapie. Theoretical analysis of mutation-adaptive evolutionary algorithms. Evolutionary Computation, 9(2):127–146, Summer 2001. * www /ScienceDirect ga01aAAgapie. [1143] Claus O. Wilke, Jia Lan Wang, Charles Ofria, Richard E. Lenski, and Christoph Adami. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844):331–333, 19. July 2001. ga01aCOWilke. [1144] E. Belmont-Moreno. The role of mutation and population size in genetic algorithms applied to physics problems. International Journal of Modern Physics C, 12(9):1345–1355, January 2001. †NASA ADS ga01aEBelmont-Moreno. [1145] M. Laumanns, G¨ unther Rudolph, and Hans-Paul Schwefel. Mutation control and convergence in evolutionary multi-objective optimization. In Matouˇsek Radek and Oˇsmera Pavel, editors, 7th International Conference on Soft Computing, Mendel 2001, pages 24–29, Brno, Czech Republic, 6.- 8.June 2001. Brno University of Technology. ga01aMLaumanns. [1146] Neil H. Eklund and Mark J. Embrechts. Employing fuzzy logic and problem specific mutation methods to boost the performance of spectrum optimization via genetic algorithms. In Proceedings of the IEEE Mountain Workshop on Soft Computing in Industrial Applications, pages 127–131, Blacksburg, VA, 25.27. June 2001. IEEE, Piscataway, NJ. ga01aNHEklund. [1147] W. Gutkowski, Z. Iwanow, and J. Bauer. Controlled mutation in evolutionary structural optimization. Structural and Multidisciplinary Optimization, 21(5):355–360, ? 2001. * www /Springer ga01aWGutkowski. [1148] Christel Kamp and Stefan Bornholdt. Coevolution of quasispecies: B-cell mutation rates maximize viral error catastrophes. Physical Review Letters, 88(6):068104–1–4, 11. February 2002. ga02aChristelKamp. [1149] D. W. Boeringer and D. H. Werner. Adaptive mutation parameter toggling genetic algorithm for phase-only array synthesis. Electronics Letters, 38(25):1618–1619, 5. December 2002. ga02aDWBoeringer. [1150] Hui-Yuan Fan and Jouni Lampinen. A trigonometric mutation approach to differential evolution. In K. C. Giannakoglou, D. T. Tsahalis, Jacque P´eriaux, K. D. Papailiou, and Terence Fogarty, editors, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Proceedings of the EUROGEN2001 Conference, pages 65–70, Athens (Greece), 19.-21. September2001 2002. International Center for Numerical Methods in Engineering (CIMNE). ga02aHui-YuanFan. [1151] Ivanoe De Falco, Antonio Della Cioppa, and E. Tarantino. Mutation-based genetic algorithm: performance evaluation. Applied Soft Computing, 1(?):285–299, ? 2002. ga02aIDeFalco. [1152] Jinn-Moon Yang, Chi-Hung Tsai, Ming-Jing Hwang, Huai-Kuang Tsai, Jenn-Kang Hwang, and ChengYan Kao. GEM: A Gaussian evolutionary method for predicting protein side-chain conformations. Protein Science, 11(8):1897–1907, August 2002. ga02aJinn-MoonYang. [1153] Hui-Yuan Fan and Jouni Lampinen. A trigonometric mutation operation to differential evolution. Journal of Global Optimization, 27(?):105–129, ? 2003. ga03aHui-YuanFan. [1154] Jani R¨ onkk¨ onen and Jouni Lampinen. On using normally distributed mutation step length for the differential evolution algorithm. In Radomil Matouˇsek and Pavel Oˇsmera, editors, Mendel 2003, 9th International Conference on Soft Computing, pages 11–18, Brno (Czech Republic), 4.-6. June 2003. Brno University of Technology. ga03aJaniRonkkonen. [1155] Shun Heng Chan. Novel mutation operators and their application to regularization of artificial neural networks. PhD thesis, Hong Kong Polytechnic University, 2003. * www /UMI ga03aShunHengChan. [1156] Christopher A. Edmonds, Anita S. Lillie, and L. Luca Cavalli-Sforza. Mutations arising in the wave front of an expanding population. Proceedings of the National Academy of Sciences of the United States of America, 101(4):975–979, 27. January 2004. ga04aCAEdmonds. [1157] Haiyan Chen and Fuji Zhang. The rapid mixing of random walks defined by an n-cube. Advances in Applied Mathematics, ?(?):?, ? 2004. to appear * www /ScienceDirect ga04aHaiyanChen. [1158] Samim Konjicija and Zikrija Avdagic. Adaptive mutation in genetic algorithm with binary coding. [1159] Jingxuan Wei and Yuping Wang. An attraction based evolutionary algorithm for global optimization problems. In Yuping Wang, Yiu ming Cheung, and Hailin Liu, editors, Advances in Computational Intelligence and Security, Proceedings of the Workshop of 2005 International Conference on Computational Intelligence and Security, pages 63–66, Xian (China), 15. December 2005. Xidian University Press. ga05aJingxuanWei. [1160] Taane G. Clark, Maria De Iorio, Robert C. Griffiths, and Martin Farrall. Finding associations in dense genetic maps: A genetic algorithm approach. Human Feredity, 60(2):97–108, ? 2005. ga05aTaaneGClark.
116
Genetic algorithm implementations
[1161] Patrisia T. Leite and Andr´e C. P. L. F. Carvalho. Hybrid genetic algorithm applied to the determination of the optimal operation of hydrothermal systems. In Proceedings of the ninth Brazilian Symposium on Neural Networks (SBRN’06), page ?, ?, ? 2006. IEEE, Piscataway, NJ. ga06aPTLeite. [1162] Michael D. Vose. Closer look at mutation in genetic algorithms. In Su-Shing Chen, editor, Neural and Stochastic Methods in Image and Signal Processing II, volume SPIE-2032, pages 48–54, ?, October 1993. The International Society for Optical Engineering. * www/SPIE Web ga93aMDVose. [1163] Dinabandhu Bhandari and Nikhil R. Pal. Directed mutation in genetic algorithms. Information Sciences, 79(3-4):251–270, July 1994. ga94aBhandari. [1164] M. Davis. An empirical evaluation of the Gaussian mutation function in evolutionary programming. In Sebald and Fogel [1432], page ? †conf.prog ga94aMDavis. [1165] Kazuhiro Ohkura and Kanji Ueda. A genetic algorithm with neutral mutations for solving nonstationary function optimization problems. In Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pages 248–252, Brisbane, QLD (Australia), 2. December 1994. IEEE, New York. †CCA 44126/95 ga94aOhkura. [1166] B. B. Prahlada Rao, L. M. Patnaik, and R. C. Hansdah. A genetic algorithm for channel routing using inter-cluster mutation. In ICEC’94 [1429], pages 97–103. ga94aRao. [1167] Peter Ross, David W. Corne, and Hsiao-Lan Fang. Improving evolutionary timetabling with delta evaluation and directed mutation. In Davidor et al. [1430], pages 556–565. * CCA 41663/95 ga94aRoss. [1168] U. Utrecht and K. Trint. Mutation operators for structure evolution of neural networks. In Davidor et al. [1430], pages 492–501. †Branke ga94aUtrecht. [1169] Qi Yulu and Nyi Nyi Win. An adaptive mutation rate approach in genetic algorithm. In ?, editor, Proceedings of the 3rd Pacific Rim International Conference on Artificial Intelligence (PRICAI-94), volume 1, pages 409–414, Beijing (China), 15.-18. August 1994. International Academic Publishers, Beijing. * CCA 46980/95 ga94aYulu. [1170] Hans-Michael Voigt and Thomas Anheyer. Modal mutations in evolutionary algorithms. In ICEC’94 [1429], pages 88–92. ga94bVoigt. [1171] Michael D. Vose. A closer look at mutation in genetic algorithms. Annals of Mathematics and Artificial Intelligence, 10(4):423–434, ? 1994. †CCA 75462/94 ga94bVose. [1172] R. N. Greenwell, J. E. Angus, and I. Finck. Optimal mutation probability for genetic algorithms. Math. Comput. Model. (UK), 21(8):1–11, April 1995. * CCA 36466/95 ga95aGreenwell. [1173] Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. In Eshelman [1436], page ? †prog ga95aHansen. [1174] Robert Hinterding, Harry Gielewski, and T. C. Peachey. The nature of mutation in genetic algorithms. In Eshelman [1436], page ? †prog ga95aHinterding. [1175] Ju Ye, Masahiro Tanaka, and Tetsuzo Tanino. Genetic algorithm with evolutionary chain-based mutation and its applications. Memoirs of the Faculty of Engineering, Okayama University, 30(1):111–120, December 1995. ga95aJuYe. [1176] Shinzo Kitamura and Makoto Hiroyasu. Genetic algorithm with stochastic automata-controlled, relevant gene-specific mutation probabilities. In ICEC’95 [1446], pages 352–355. †prog. ga95aKitamura. [1177] Phil Robbins. The use of a variable length chromosome for permutation manipulation in genetic algorithms. In Pearson et al. [1434], pages 144–147. ga95aRobbins. [1178] Nicoletta Sangalli, Quirico Semeraro, and Tullio Tolio. Performance of genetic algorithms in the solution of permutation flowshop problems. In Pearson et al. [1434], pages 495–498. ga95aSangalli. [1179] Bernhard Sendhoff and Martin Kreutz. Analysis of possible genome-dependence of mutation rates in genetic algorithms. Internal Report 95-07, Ruhr-Universit¨ at Bochum, Institut f¨ ur Neuroinformatik, 1995. (available via www URL: http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VS/PUBLIST/1995/html/irini95.html) †[1199] ga95aSendhoff. [1180] Liang-Jie Zhang, Zhi-Hong Mao, and Yan-Da Li. Mathematical analysis of mutation operator in genetic algorithms and its improved strategy. In ?, editor, Proceedings of International Conference on Neural Information Processing (ICONIP95), volume 1, pages 267–270, Beijing (China), 30. October-2. November 1995. Publishing House of Electron. Ind. (Beijing, China). †CCA26460/96 ga95bL-JZhang.
Bibliography
117
[1181] Wei Shi and J. H. Chen. Intelligent permuting and its optimization. In ?, editor, Proceedings of the Conference on Intelligent Manufacturig, volume SPIE-2620, pages 514–519, Bellingham, WA?, 10. June 1995. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA. †EI M063208/96 ga95bShi. [1182] Keiichi Tomita and Nobuyoshi Tosaka. Optimum design of truss structure by genetic algorithm with variable mutation ratio. Nippon Kikai Gakkai Ronbunshu A Hen, 61(585):1096–1101, 1995. †EI M171060/95 ga95bTomita. [1183] Robert Hinterding. Gaussian mutation and self-adaption for numeric genetic algorithms. In ICEC’95 [1446], pages 384–389. †prog. ga95cHinterding. [1184] J. Lis. The synthesis of the ranked neural networks applying genetic algorithm with the dynamic probability of mutation. In J. Mira and F. Sandoval, editors, Proceedings of the International Workshop on Artificial Neural Networks, pages 498–504, Malaga-Torremolinos, 7.-9. June 1995. Springer-Verlag, Berlin (Germany). †P66841 CCA34623/96 ga95cJLis. [1185] Kazuhiro Ohkura and Kanji Ueda. Solving deceptive problems using a genetic algorithm with neutral mutations. In Proceedings of the Artificial Neural Networks in Engineering (ANNIE95), volume 5, pages 345–350, St. Louis, MO, 12.-15. November 1995. ASME Press, New York, NY (USA). †CCA10578/97 ga95cOhkura. [1186] Jon Rowe and Ian R. East. Direct replacement: a genetic algorithm without mutation which avoids deception. In Yao [1433], pages 41–48. * CCA 77654/95 ga95cRowe. [1187] Thomas B¨ ack and M. Schutz. Intelligent mutation rate control in canonical genetic algorithms. In ?, editor, Proceedings of the 9th International Symposium, ISMIS 96, volume ?, pages 158–167, Zakopane (Poland), 9.-13. June 1996. Springer-Verlag, Berlin (Germany). †CCA94491/96 ga96aBack. [1188] Wolfgang Banzhaf, Frank D. Francone, and Peter Nordin. The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data sets. In Voigt et al. [1431], pages 300–309. ga96aBanzhaf. [1189] David John. Permutations sums via a genetic algorithm. In ?, editor, Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and computing, volume Gongr. Numer. 118, pages 215–221, Baton Rouge, LA, ? 1996. ? †www /MathRev97i:05133 ga96aDJohn. [1190] Tomokazu Gohtoh, Kazuhiro Ohkura, and Kanji Ueda. An application of genetic algorithm with neutral mutations to job shop scheduling problems. In Proceedings of the International Conference on Advances in Production Management Systems - APMS’96, pages 563–568, Kyoto (Japan), 4.-6. November 1996. IFIP. †CCA35361/97 ga96aGohtoh. [1191] Guo Li and Zongben Xu. A theoretical analysis on mutation operator of standard genetic algorithm. Wuhan Univ. J. Nat. Sci. (China), 1(3-4):599–604, 1996. †CCA25782/98 ga96aGuoLi. [1192] Hermean Wong and M. C. Leu. Effect of link length, population size, and mutation rate on the convergence of an order-based genetic algorithm. In ?, editor, Proceedings of the Japan-USA Symposium on Flexible Automation, volume 2, pages 1533–1537, Boston, MA, 7.-10. July 1996. ASME, New York, NY. †CCA89514/97 ga96aHermeanWong. [1193] Robert Hinterding, Zbigniew Michalewicz, and T. C. Peachey. Self-adaptive genetic algorithm for numeric functions. In Voigt et al. [1431], pages 420–429. ga96aHinterding. [1194] Jim E. Smith and Terence C. Fogarty. Adaptive parameterised evolutionary systems: Self adaptive recombination and mutation in a genetic algorithm. In Voigt et al. [1431], pages 441–450. ga96aJESmith. [1195] Cornelia Kappler, Thomas B¨ ack, J¨ urgen Heistermann, A. Van der Velde, and M. Zamparelli. Refueling of a nuclear power plant: Comparison of a naive and a specialized mutation operator. In Voigt et al. [1431], pages 829–838. ga96aKappler. [1196] S. Koziel. Non-uniform and non-stationary mutation in numerical optimization using genetic algorithms. Kwart. Elektron. Telekomun. (Poland), 42(3):273–285, 1996. †CCA3983/97 ga96aKoziel. [1197] Lutz Molgedey. Mean field analysis of tournament selection on a random manifold. In Voigt et al. [1431], pages 174–177. ga96aMolgedey. [1198] Mich`ele Sebag and Marc Schoenauer. Mutation by imitation in Boolean evolution strategies. In Voigt et al. [1431], pages 356–365. ga96aSebag. [1199] Bernhard Sendhoff and Martin Kreutz. Analysis of possible genome-dependence of mutation rates in genetic algorithms. In Fogarty? [1451], pages 216–226. ga96aSendhoff.
118
Genetic algorithm implementations
[1200] H. Shimodaira. A new genetic algorithm using large mutation rates and population-elitist selection (GALME). In Proceedings of the Eighth IEEE International Conference on Tools with Artificial Intelligence, pages 25–32, Toulouse, France, 16.-19. November 1996. IEEE Computer Society Press, Los Alamitos, CA. †CCA331/97 ga96aShimodai. [1201] Tzung-Pei Hong and Hong-Shung Wang. A dynamic mutation genetic algorithm. In Proceedings of the 1996 IEEE International Conference on Systems and Cybernetics, volume 3, pages 2000–2005, Beijing, China, 14.-17. October 1996. IEEE, New York, NY. †EEA21093/97 ga96aT-PHong. [1202] T. L. Lau and Edward P. K. Tsang. Applying a mutation-based genetic algorithm to processor configuration problems. In Proceedings of the Eighth IEEE International Conference on Tools with Artificial Intelligence, volume ?, pages 17–24, Toulouse, France, 16.-19. November 1996. IEEE Computer Society Press, Los Alamitos, CA. †CCA3666/97 ga96aTLLau. [1203] Mutsunori Yagiura and Toshihide Ibaraki. Use of dynamic programming in genetic algorithms for permutation problems. Eur. J. Oper. Res., 92(2):387–401, 1996. ga96aYagiura. [1204] Adam Ghozeil and David B. Fogel. A preliminary investigation into directed mutations in evolutionary algorithms. In Voigt et al. [1431], pages 329–335. ga96bGhozeil. [1205] Cornelia Kappler. Are evolutionary algorithms improved by large mutations? In Voigt et al. [1431], pages 346–355. ga96bKappler. [1206] Kazuhiro Ohkura, Tomokazu Gohtoh, and Kanji Ueda. Designing genetic algorithm with neutral mutations to jobshop scheduling problems. In ?, editor, Proceedings of the Adaptive Distributed Parallel Computing Symposium, pages 13–23, ?, ? 1996. ? †Ueda lop ga96cKazuhiroOhkura. [1207] G¨ unter Rudolph. How mutation and selection solve long-path problems in polynomial expected time. Evolutionary Computation, 4(2):195–205, 1996. †BAb94792 ga96dRudolph. [1208] Carlo Maley. Mutation rates as adaptations. Journal of Theoretical Biology, 186(3):339–348, 7. June 1997. ga97aCarloMaley. [1209] H. Copland and T. Hendtlass. Migration through mutation space: a means of accelerating convergence in evolutionary algorithms. In George D. Smith and Nigel C. Steele, editors, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pages 183–187, Norwich, UK, 2.-4. April 1997. ga97aCopland. [1210] D. T. Pham and D. Karaboga. Genetic algorithms with variable mutation rates: application to fuzzy logic controller design. Proc. Inst. Mech. Eng. I, J. Syst. Control Eng. (UK), 211(I2):157–167, 1997. †CCA63069/97 ga97aDTPham. [1211] G¨ unther Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Kovac, Hamburg (Germany), 1997. †[?] ga97aGRudolph. [1212] Jihoon Yang and Vasant Honavar. Feature subset selection using a genetic algorithm. In Koza et al. [1453], pages 380–399. ga97aJihoonYang. [1213] Kumar Chellapilla and David B. Fogel. Two new mutation operators for enhanced search and optimization in evolutionary programming. In Bruno Bosacchi, James C. Bezdek, and David B. Fogel, editors, Applications and Science of Soft Computing, volume SPIE-3165, pages 260–269, ?, October 1997. The International Society for Optical Engineering. * www/SPIE Web ga97aKChellapilla. [1214] M. Fukumi and N. Akamatsu. Designing a neural-network using evolutionary algorithms with deterministic mutation. In Proceedings of the Artificial Intelligence in Real-Time Control, pages 97–102, Kuala Lumpur, Malaysia, 22.-25. September 1997. Pergamon Press Ltd., Oxford. †P82895 ga97aMFukumi. [1215] M. M. A. Hashem, M. Watanabe, and K. Izumi. Evolution strategy: a new time-variant mutation for fine local tuning. In Proceedings of the 36th SICE Annual Conference, pages 1099–1104, Tokushima, Japan, 29.-31. July 1997. Soc. Instrum & Control Eng. 1997, Tokyo, Japan. †CCA84092/98 ga97aMMHashem. [1216] M. S. Jones, G. P. McKeown, and Vic J. Rayward-Smith. Solving permutation and scheduling problems using modern heuristic techniques. In Proceedings of the Modern Heuristics for Decision Support, pages 123–158, London (UK), 18.-19. March 1997. UNICOM Seminars, Uxbridge (UK). †CCA86331/99 ga97aMSJones. [1217] Mircea Gh. Negoita, A. Horia Dediu, and D. Mihaila. Design elements of EHW using GA with local improvement of chromosomes. In Proceedings of the 5th International Conference Fuzzy Days, page 604, Dortmund (Germany), 28.-30. April 1997. Springer-Verlag, Berlin (Germany). †CCA73725/97 ga97aNegoita.
Bibliography
119
[1218] A. Neubauer. Adaptive non-uniform mutation for genetic algorithms. In ?, editor, Proceedings of the International Conference on Computational Intelligence, Lecture Notes in Computer Science, page ?, Dortmund (Germany), 28.-30. April 1997. Springer-Verlag, Berlin. (to appear) †conf. prog. ga97aNeubauer. [1219] G¨ unter Rudolph. Asymptotical convergence rates of simple evolutionary algorithms under factorizing mutation distributions. In ? [1437], pages 223–236. †prog ga97aRudolph. [1220] Stephen A. Stanhope and Jason M. Daida. An individually variable mutation-rate strategy for genetic algorithms. In Proceedings of the 6th International Conference, pages 235–245, Indianapolis, IN, 13.16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70330/97 ga97aStanhope. [1221] Yee Leung, Yong Gao, and Zong-Ben Xu. Degree of population diversity – a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Transactions on Neural Networks, 8(5):1165–1176, September 1997. ga97aYeeLeung. [1222] Hans-Georg Beyer and David B. Fogel. A note on the escape probabilities for two alternative methods of selection under Gaussian mutation. In Proceedings of the 6th International Conference, pages 265–274, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70332/97 ga97bH-GBeyer. [1223] Kazuhiro Ohkura and Kanji Ueda. An extended genetic algorithm based on neutral theory. In ?, editor, Bio-Computing and Evolutionary Computation, pages 56–65. World Scientific, Singapore, 1997. †Ueda lop ga97bKazuhiroOhkura. [1224] Mich´ele Sebag, Marc Schoenauer, and Caroline Ravis´e. Inductive learning of mutation step-size in evolutionary parameter optimization. In Proceedings of the 6th International Conference, pages 247–261, Indianapolis, IN, 13.-16. April 1997. Springer-Verlag, Berlin (Germany). †CCA70331/97 ga97bMSebag. [1225] A. Neubauer. A theoretical analysis of the non-uniform mutation operators for the modifield genetic algorithm. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 93–96, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44445/97 ga97bNeubauer. [1226] Christine Valenzuela, Steve Hurley, and Derek Smith. A permutation based genetic algorithm for minimum span frequency assignment. In Agoston E. Eiben, Thomas B¨ ack, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, 5th International Conference, volume LNCS of 1498, pages 907–916, Amsterdam (The Netherlands), September 1998. Springer-Verlag Berlin Heidelberg. * www /Springer ga98aCValenzuela. [1227] David J. Ferkinhoff and John G. Baylog. Method and apparatus for preforming mutations in a genetic algorithm-based underwater tracking system, 1998. (U. S. patent no. 5,777,948. Issued July 7 1998; available via www URL: http://appft1.uspto.gov/netahtml/PTO/search-adv.html) ga98aDJFerkinhoff. [1228] Ivanoe De Falco, A. Iazzetta, E. Tarantino, and Antonio Della Cioppa. The effectiveness of co-mutation in evolutionary algorithms: the Mijn operator. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 816–821, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74651/98 ga98aDeFalco. [1229] Hyun-Joon Cho, Bo-Hyeun Wang, and S. Roychowdhury. Automatic rule generation for fuzzy controllers using genetic algorithms: a study on representation scheme and mutation rate. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems, volume 2, pages 1290–1295, Anchorage, AK, 4.-9. May 1998. IEEE, New York (USA). †CCA85950/98 ga98aHyun-JoonCho. [1230] J. Arabas and S. Kozdrowski. Population initialization in the context of a biased, problem-specific mutation. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pages 769–774, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA74643/98 ga98aJArabas. [1231] Ma Junshui and Liu Guizhong. The big mutation: an operation to improve the performance of genetic algorithms. Control Theory Appl. (China), 15(3):404–408, 1998. In Chinese †CCA74590/98 ga98aJunshui. [1232] Luca Peliti. A solvable model of the evolutionary loop. Europhysics Letters, 44(5):546–551, 1. December 1998. ga98aLPeliti. [1233] C. Lattaud. A macro-mutation operator in genetic algorithms. In Proceedings of the 13th European Conference on Artificial Intelligence, pages 323–324, Brighton, UK, 23.-28. August 1998. Wiley, Chichester (UK). †CCA68346/99 ga98aLattaud. [1234] Marcelo A. Moret, Paulo M. Bisch, and Fernando de M. C. Vieira. Algorithm for multiple minima search. Physical Review E, 57(3):R2535–R2538, March 1998. ga98aMAMoret. [1235] Minoru Fukumi and N. Akamatsu. A genetic algorithm with deterministic mutation based on neural network learning. Syst. Comput. Jpn. (USA), 29(3):10–17, 1998. †CCA58338/98 ga98aMFukumi.
120
Genetic algorithm implementations
[1236] Norberto Eiji Nawa and Takeshi Furuhashi. Bacterial evolutionary algorithm for fuzzy system design. In Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (CMS’98), volume ?, page ? IEEE, Piscataway, NJ, ? 1998. (available via www URL: http://www.bioele.nuee.nagoya-u.ac.jp/member/furuhashi/publications.html#Bf1990) ga98aNENawa. [1237] William M. Spears. The Role of Mutation and Recombination Evolutionary Algorithms. PhD thesis, George Mason University, Department of Computer Science, 1998. †on /www GA /George Mason U ga98aWMSpears. [1238] Yong Gao, Xiaofeng Qi, and F. Palmieri. Comments on “theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. I. basic properties of selection and mutation” [and reply]. IEEE Trans. Neural Netw. (USA), 9(2):341–343, 1998. †CCA34044/98 ga98aYongGao. [1239] Zhe Wang, Feng Yang, and Ying Lin Yu. Gaussian mutation in evolution strategies. In Steven K. Rogers, David B. Fogel, James C. Bezdek, and Bruno Bosacchi, editors, Applications and Science of Computational Intelligence, volume SPIE-3390, pages 308–311, ?, March 1998. The International Society for Optical Engineering. * www/SPIE Web ga98aZWang. [1240] Stefan Bornholdt and K. Sneppen. Neutral mutations and punctuated equilibrium in evolving genetic networks. Physical Review Letters, 81(?):236–23, ? 1998. †Bornholdt /lop ga98bBornholdt. [1241] Carlos Cotta and Jos´e M. Troya. Genetic forma recombination in permutation flowshop problems. Evolutionary Computation, 6(1):25–44, 1998. †CCA78406/99 ga98bCarlosCotta. [1242] Kumar Chellapilla. Combining mutation operators in evolutionary programming. IEEE Transactions on Evolutionary Computation, 2(3):91–96, September 1998. ga98bKChellapilla. [1243] Minoru Fukumi and N. Akamatsu. Rule extraction from neural networks trained using evolutionary algorithms with deterministic mutation. In Proceedings of the 1998 IEEE International Joint Conference on Neural Networks, volume 1, pages 686–689, Anchorage, AK, 4.-9. May 1998. IEEE, New York, NY. †CCA84335/98 ga98bMFukumi. [1244] Stefan Bornholdt. Annealing schedule from population dynamics. Physical Review E, 59(4):3942–3946, April 1999. ga99aBornholdt. [1245] O. Francois. Controlling mutation/selection algorithms with stochastic approximation. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1487–1493, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77190/99 ga99aFrancois. [1246] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous hitting times for binary mutations. Evolutionary Computation, 7(2):173–203, 1999. †CCA68174/99 ga99aGarnier. [1247] L. Hildebrand, B. Reusch, and M. Fathi. Directed mutation-a new self-adaptation for evolution strategies. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 2, pages 1550–1557, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77198/99 ga99aHildebrand. [1248] Ivanoe De Falco, Antonio Della Cioppa, A. Iazzetta, and E. Tarantino. A new mutation operator for evolutionary airfoil design. Soft Computing, 3(1):44–51, ? 1999. * www /Springer ga99aIDeFalco. [1249] Jinn-Moon Yang, Jorng-Tzong Horng, and Cheng-Yen Kao. Incorporation family competition into Gaussian and Cauchy mutations to training neural networks using an evolutionary algorithm. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 3, pages 1994–2001, Washington D.C., 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77481/99 ga99aJinnYang. [1250] Jong Hwa Lim, Doo Hyun Choi, and Chan Sik Hwang. A new evolutionary programming algorithm using the learning rule of a neural network for mutation of individuals. J. Inst. Electron. Eng. Korea C (South Korea), 36-C(3):58–64, 1999. In Korean †CCA60903/99 ga99aJongHLim. [1251] Li Haimin and Wu Chengke. Genetic algorithm with adaptive mutation probability and analysis of its property. Acta Electron. Sin. (China), 27(5):90–92, 1999. In Chinese †CCA77267/99 ga99aLiHaimin. [1252] M. Oates, D. Corne, and R. Loader. Investigation of a characteristic bimodal convergence-time/mutationrate feature in evolutionary search. In Proceedings of the 1999 Congress on Evolutionary ComputationCEC99, volume 3, pages 2175–2182, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA83334/99 ga99aMOates. [1253] Aleksandra B. Djuriˇsi´c, Aleksandar D. Rakic, E. Herbert Li, Marijan L. Majewski, Nenad Bundaleski, and Bozidar V. Stanic. Continuous optimization using elite genetic algorithms with adaptive mutations. In B. McKay, X. Yao, C. S. Newton, J.-H. Kim, and T. Furuhashi, editors, Simulated Evolution and
Bibliography
121
Learning, Second Asia-Pacific Conference on Simulated Evolution and Learning, SEAL’98, volume LNAI of 1585, pages 365–372, Canberra (Australia), November 1999. Springer-Verlag Berlin Heidelberg. * www /Springer ga99bABDjurisic. [1254] M. Ohki, S. Hasegawa, N. Kishimoto, and M. Ohkita. Fuzzy modeling using genetic algorithm with adaptive mutation operator. Trans. Inst. Electr. Eng. Jpn. C (Japan), 119-C(8-9):1046–1053, 1999. In Japanese †CCA87609/99 ga99bMOhki. [1255] W. E. Hart and K. O. Hunter. A performance analysis of evolutionary pattern search with generalized mutation steps. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, volume 1, pages 672–679, Washington, DC, 6.-9. July 1999. IEEE, Piscataway, NJ. †CCA77227/99 ga99bWEHart. [1256] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2):82–102, 1999. ga99cXinYao. [1257] Thomas B¨ ack. The interaction of mutation-rate, selection, and self-adaptation within a genetic algorithm. In M¨ anner and Manderick [1420], pages 85–94. ga:Back92b. [1258] Thomas B¨ ack. Optimal mutation rates in genetic search. In Forrest [1421], pages 2–8. ga:Back93b. [1259] Helen G. Cobb. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Memorandum Report 6760, Navy Research Laboratory, Washington, D.C., 1990. †Back/bib/unp ga:Cobb90a. [1260] Andreas Schober, Marcel Thuerk, and Manfred Eigen. Optimization by hierarchical mutant production. Biological Cybernetics, 69(5-6):493–501, ? 1993. ga:Eigen93a. [1261] Manfred Eigen. Viral quasispecies. Scientific American, 269(1):32–39, July 1993. ga:Eigen93b. [1262] Terence C. Fogarty. Varying the probability of mutation in the genetic algorithm. In Schaffer [1419], pages 104–109. ga:Fogarty89a. [1263] Peter J. B. Hancock. Genetic algorithms and permutation problems: A comparison of recombination operators for neural net structure specification. In J. David Schaffer and Darrell Whitley, editors, COGANN-92, International Workshop on Combinations of Genetic Algorithms and Neural Networks, pages 108–122, Baltimore, MD, 6. June 1992. IEEE Computer Society Press, Los Alamitos, CA. * Fogel/bib ga:Hancock92c. [1264] J. Hesser and R. M¨ anner. Towards an optimal mutation probability for genetic algorithms. In Schwefel and M¨ anner [1422], pages 23–32. ga:Hesser90a. [1265] J. Hesser and R. M¨ anner. Investigation of the M-heuristic for optimal mutation. In M¨ anner and Manderick [1420], pages 115–126. † ga:Hesser92a. [1266] S. Yu. Maslov. The mutation calculi. Journal of Soviet Mathematics, 10(?):495–517, ? 1978. ga:Maslov78a.
†[?]
[1267] S. Yu. Maslov. Absorption relation on regular sets. Journal of Soviet Mathematics, 14(?):1468–1475, ? 1980. †[?] ga:Maslov80a. [1268] S. Yu. Maslov. Theory of Deductive Systems and its Applications. The MIT Press, Cambridge, MA, 1987. †[?] ga:Maslov87book. [1269] Ron Unger and John Moult. Effect of mutations on the performance of genetic algorithms suitable for protein folding simulations. Computer-Aided Innovation of New Materials, 2(?):1283–1286, 1993. †David E. Clark/bib ga:Moult93d. [1270] Heinz M¨ uhlenbein. How genetic algorithms really work I. mutation and hill-climbing. In M¨ anner and Manderick [1420], pages 15–26. ga:Muhlenbein92f. [1271] G¨ unter Rudolph. On correlated mutations in evolution strategies. In M¨ anner and Manderick [1420], pages 105–114. † ga:Rudolph92a. [1272] David M. Tate and Alice E. Smith. Expected allele coverage and the role of mutation in genetic algorithms. In Forrest [1421], pages 31–37. ga:Tate93a. [1273] Michael D. Vose. A closer look at mutation in genetic algorithms. In Su-Shing Chen, editor, Neural and Stochastic Methods in Image and Signal Processing II, volume SPIE-2032, pages 48–54, San Diego, CA, 12. -13. July 1993. The International Society for Optical Engineering. * P59379/94 EEA 26321/94 ga:Vose93c. [1274] Ken-Nosuke Wada, Hirofumi Doi, Chin-Ichi Tanaka, and Yoshiko Wada. A neo-Darwinian algorithm: Asymmetrical mutations due to semiconservative DNA-type replication promote evolution. Proceedings of the National Academy of Sciences of the United States of America, 90(24):11934–11938, December 1993. ga:Wada93a.
122
[1275] Masayuki Yanagiya. ga:Yanagiya93a.
Genetic algorithm implementations
A simple mutation-dependent genetic algorithm.
In Forrest [1421], page 659.
[1276] Jarmo T. Alander. On optimal population size of genetic algorithms. In Patrick Dewilde and Joos Vandewalle, editors, CompEuro 1992 Proceedings, Computer Systems and Software Engineering, 6th Annual European Computer Conference, pages 65–70, The Hague, 4.-8. May 1992. IEEE Computer Society, IEEE Computer Society Press. GA:CompEuro92. [1277] Jarmo T. Alander. Optimal GA. In Alander [1418], pages 164–179. also as [757] GA:parameters. [1278] Jarmo T. Alander. Population size. In Alander [1418], pages 180–189. also as [1276] GA:psize. [1279] Antonio Brunelli. A fast and precise genetic algorithm for a non-linear fitting problem. Computer Physics Communications, 124(2-3):204–211, February 2000. ga00aBrunetti. [1280] Hernan Aguirre, Kiyoshi Tanaka, and Tatsuo Sugimura. Accelerated image halftoning technique using improved genetic algorithm. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E83-A(8):1566–1574, August 2000. * EBSCO 0503840 ga00aHAguirre. [1281] Hod Lipson and Jordan B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature, 406(6799):974–978, 31. August 2000. ga00aLipson. [1282] Paul Vit´ anyi. A discipline of evolutionary programming. Theoretical Computer Science, 241(1-2):3–23, 28. June 2000. * www /ScienceDirect ga00aPaulVitanyi. [1283] Rolf Backofen, Sebastian Will, and Peter Clote. Algorithmic approach to quantifying the hydrophobic force contribution in protein folding. In R. B. Altman, K. Lauderdale, A. K. Dunker, L. Hunter, and T. E. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing, pages 92–103, ?, ? 2000. World Scientific, Singapore. †[?] ga00aRolfBackofen. [1284] S. G. Lee, L. P. Khoo, and X. F. Yin. Optimising an assembly line through simulation augmented by genetic algorithms. The International Journal of Advanced Manufacturing Technology, 16(3):220–228, 2000. ga00aSGLee. [1285] Heinz M¨ uhlenbein, V. M. Kureichik, T. Mahnig, and Ljudmila A. Zinchenko. Algorithms of evolutionary modeling with knowledge for multi-agent CAD system. In Proceedings of the 2001 IEEE International Conference on Intelligent Engineering Systems, INES 2001, volume ?, pages 185–190, Helsinki (Finland), 16.-18. September 2001. IEEE. ga01aHMuhlenbein. [1286] K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 5(6):565– 588, December 2001. ga01aKCTan. [1287] F. Fern´ andez de Vega. Estudio de poblaciones de tama˜ no variable en programacion genetica. In ?, editor, Actas del 2 Congreso Espa˜ nol obre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados, pages 424–428, ?, May 2003. ? (in Spanish) †Fernandez-de-Vega ga03aFFernandez-de-Vega. [1288] Francisco Fernandez, Leonardo Vanneschi, and Marco Tomassini. The effect of plagues in genetic programming: A study of variable-size populations. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang, Riccardo Poli, and Ernesto Costa, editors, Genetic programming, 6th European Conference, EuroGP 2003 Proceedings, volume 2610 of Lecture Notes in Computer Science, pages 317–326, Essex (UK), 14.-16. April 2003. Springer-Verlag, Berlin. ga03aFranciscoFernandez. [1289] Jesse B. Zydallis. Explicit building-block multiobjective genetic algorithms: Theory, analysis, and development. PhD thesis, Air Force Instutute of Technology, 2003. * www /UMI ga03aJBZydallis. [1290] Junhong Liu and Jouni Lampinen. Population size adaptation for differential evolution algorithm using fuzzy logic. In Ajith Abraham, Katrin Franke, and Mario K¨ oppen, editors, Intelligent Systems Design and Applications (ISDA 2003) Proceedings of the International Conference, volume ? of Advances in Soft Computing, pages 425–436, ?, ? 2003. Springer-Verlag, Berlin. ga03aJunhongLiu. [1291] Thomas Fernandez. Virtual ramping of genetic programming populations. In Kalyanmoy Deb et al, editor, Genetic and Evolutionary Computation - GECCO 2004, volume 3103 of Lecture Notes in Computer Science, pages 471–482, Seattle, WA, 26.-30. June 2004. Springer-Verlag, Berlin. ga04aThFernandez. [1292] Yi Hong, Qingsheng Ren, and Jin Zeng. Adaptive population size for univariate marginal distribution algorithm. In The 2005 IEEE Congress on Evolutionary Computation, volume 2, pages 1396–1402, ?, 2.-5. September 2005. IEEE, Piscataway, NJ. ga05aYiHong. [1293] Wen-Fung Leong and Gary G. Yen. Dynamic population size in PSO-based multiobjective optimization. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation, volume ?, pages 1718–1725, Vancouver, BC, 16.-21. July 2006. IEEE, Piscataway, NJ. ga06aWen-FungLeong.
Bibliography
123
[1294] Janne Koljonen and Jarmo T. Alander. Effects of population size and relative elitism on optimization speed and reliability of genetic algorithms. In Timo Honkela, Tapani raiko, Jukka Kortela, and Harri Valpola, editors, Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006), pages 54–60, Espoo (Finland), 25.-27. October 2006. Finnish Artificial Intelligence Society. ga06bKoljonen. [1295] Yi-Chin Fang, Chen-Mu Tsai, John MacDonald, and Yang-Chieh Pai. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm. Applied Optics, 46(13):2401–2410, 1. May 2007. ga07aYi-ChinFang. [1296] Jaroslaw Arabas, Zbigniew Michalewicz, and Jan J. Mulawka. GAVaPS - a genetic algorithm with varying population size. In ICEC’94 [1429], pages 73–78. ga94aArabas. [1297] James U. Bowie and David Eisenberg. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proceedings of the National Academy of Sciences of the United States of America, 91(10):4436–4440, 10. May 1994. ga94aBowie. [1298] Daniel G. Conway and M. A. Venkataramanan. Genetic search and the dynamic facility layout problem. Computers & Operations Research, 21(8):955–960, October 1994. ga94aConway. [1299] Michelle D. Kidwell and Diane J. Cook. Genetic algorithm for dynamic task scheduling. In Proceedings of the 1994 IEEE 13th Annual International Phoenix Conference on Computers and Communications, pages 61–67, Phoenix, AZ, 12.-15. April 1994. IEEE, New York. ga94aKidwell. [1300] Ryohei Nakano, Yuval Davidor, and T. Yamada. Optimal population size under constant computation cost. In Davidor et al. [1430], pages 130–138. * CCA 36485/95 ga94aNakano. [1301] Xiaofeng Qi and Francesco Palmieri. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space, part I: Basic properties. IEEE Transactions on Neural Networks, 5(1):102–119, January 1994. †toc ga94aQi. [1302] W. H. Hahnert, III and Patricia A. S. Ralston. Analysis of population size in the accuracy and performance of genetic training for rule-based control systems. Computers & Operations Research, 22(1):65–72, 1995. ga95aHahnert. [1303] Rebecca J. Parsons and Mark E. Johnson. DNA sequence assembly and genetic algorithms – new results and puzzling insights. In Christopher Rawlings, Dominic Clark, Russ Altman, Lawrence Hunter, Thomas Lengauer, and Shoshana Wodak, editors, Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology (ISMB-95), pages 277–284, Cambridge (UK), 16.-19. July 1995. AAAI Press, Menlo Park, CA. ga95aParsons. [1304] Nikolaus Hansen, Andreas Gawelczyk, and Andreas Ostermeier. Sizing the population with respect to the local progress in (1, λ)-evolution strategies – a theoretical analysis. In ICEC’95 [1446], pages 80–85. ga95bHansen. [1305] Luminita State. Information theory analysis of the convergence and learning properties of a certain class of genetic algorithms in continuous space and infinite population assumption. In Proceedings of the 1995 IEEE international Conference on Systems, Man and Cybernetics, pages 229–234, Vancouver, BC (Canada), 22.25. October 1995. IEEE, Piscataway, NJ. †EI M035872/95 ga95bState. [1306] Stefan Voget. Theoretical analysis of genetic algorithms with infinite population size. Hildesheimer Informatikberichte 31/95, Universit¨ at Hildesheim, Institut f¨ ur Matematik, 1995. ga95bVoget. [1307] Lae-Jeong Park and Cheol Hoon Park. Preventing premature convergence in genetic algorithms with adaptive population size. J. Korea Inst. Telemat. Electron. (South Korea), 32B(12):136–142, 1995. † ga95dPark. [1308] Ian R. East and Jon Rowe. Effects of isolation in a distributed population genetic algorithm. In Voigt et al. [1431], pages 408–419. ga96aEast. [1309] Bryant A. Julstrom. A simple estimate of population size in genetic algorithms for the traveling salesman problem. In Alander [1448], pages 3–14. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Julstrom1.ps.Z) ga96aJulstrom. [1310] J. C. Meza, Richard S. Judson, T. R. Faulkner, and Adi M. Treasurywala. A comparison of a direct search method and a genetic algorithm for conformational searching. Journal of Computational Chemistry, 17(9):1142–1151, 15. July 1996. ga96aMeza. [1311] Michael O. Odetayo. Relationship between replacement strategy and population size. In Oˇsmera [1440], pages 91–96. ga96aOdetayo.
124
Genetic algorithm implementations
[1312] Matti Ryyn¨ anen. The optimal population size of genetic algorithm in magnetic field refinement. In Alander [1448], pages 281–282. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file Ryynanen.ps.Z) ga96aRyynanen. [1313] S. Voget. Theoretical analysis of genetic algorithms with infinite population size. Complex Systems, 10(3):167–183, 1996. †CCA34043/98 ga96aSVoget. [1314] Charles. C. W. Sullivan and Anthony G. Pipe. Efficient evolution strategies for exploration in mobile robotics. In Fogarty? [1451], pages 245–259. ga96aSullivan. [1315] R. Venkateswaran, Zoran Obradovi´c, and C. S. Raghavendra. Cooperative genetic algorithm for optimization problems in distributed computer systems. In Proceedings of the Second Online Workshop on Evolutionary Computation (WEC2), pages 49–52, Nagoya (Japan), 4.-22. March 1996. ? ga96aVenkateswaran. [1316] Yohei Yokobayashi, Kazunori Ikebukuro, Scott MacNiven, and Isao Karube. Directed evolution of trypsin inhibiting peptides using genetic algorithm. Journal of the Chemical Society – Perkin Transactions 1, 1(20):2435–2439, 21. October 1996. ga96aYYokobayashi. [1317] Cha’o-Kuang Chen, Jin-Mu Lin, and Chieh-Li Chen. Error bounds estimate of weighted residuals method using genetic algorithms. Applied Mathematics and Computation, 81(2-3):207–219, February 1997. ga97aC-KChen. [1318] Chris Gathercole and Peter Ross. Small populations over many generations can beat large populations over few generations in genetic programming. In Koza et al. [1453], page ? †conf.prog ga97aGathercole. [1319] Georges Harik, E. Cantu-Paz, David E. Goldberg, and Brad L. Miller. The gambler’s ruin problem, genetic algorithms, and the sizing of populations. In Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pages 7–12, Indianapolis, IN, 13.-16. April 1997. IEEE, New York, NY. †CCA44431/97 ga97aHarik. [1320] Khaled Yahiaoui, Yskandar Hamam, and Francois Rocaries. Constrained genetic algorithm-based computer-aided conrol system design fixed versus variable size population. In Proceedings of the 1997 IEEE International Symposium on Intelligent Control, pages 425–430, Istanbul (Turkey), 16.-18. July 1997. IEEE, Piscataway, NJ. †EI M002700/98 ga97aKYahiaoui. [1321] Takanori Shibata, Tamotsu Abe, Kazuo Tanie, and Matsuo Nose. Motion planning by genetic algorithm for a redundant manipulator using a model of criteria of skilled operators. Information Sciences, 102(14):171–186, 1997. ga97aTakanoriShibata. [1322] Chris Gathercole and Peter Ross. Small populations over many few generations in genetic programming. In Proceedings of the Seconds Annual Conference, pages 111–118, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann Publishers, San Francisco, CA (USA). †CCA65876/98 ga97bCGathercole. [1323] Wilhelmus H. A. M. van den Broek. Chemometrics in spectroscopic near infrared imaging for plastic material recognition. PhD thesis, Catholic University of Nijmegen, 1997. * Geladi ga97bvandenBroek. [1324] Aaron R. Dinner, Sung-Sau So, and Martin Karplus. Use of quantitative structure-property relationships to predict the folding ability of model proteins. Proteins: Structure, Function, and Genetics, 33(2):177–203, 1. November 1998. ga98aARDinner. [1325] Sandra Handschuh, Markus Wagener, and Johann Gasteiger. Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method. Journal of Chemical Information and Computer Sciences, 38(2):220–232, March/April 1998. ga98aHandschuh. [1326] Marc Gravel, Aaron Luntala Nsakanda, and Wilson Price. Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm. European Journal of Operational Research, 109(2):286–298, 1. September 1998. ga98aMarcGravel. [1327] Neal C. Evans and David L. Shealy. Design and optimization of an irradiance profile-shaping system with a genetic algorithm method. Applied Optics, 37(22):5216–5221, 1. August 1998. ga98aNCEvans. [1328] D. W. O’Dwyer and E. J. O’Brien. Genetic algorithm encoding probabilities and population size. In Proceedings of the Thirteenth International Conference on Applications of Artificial Intelligence in Engineering, pages 87–88, Galway (Ireland), 7.-9. July 1998. Computational Mechanics Publications, Ltd., Southhampton, UK. †CCA60540/99 ga98aODwyer. [1329] Shail Patel, Ian P. Stott, Manmohan Bhakoo, and Peter Elliott. Patenting computer-designed peptides. Journal of Computer-Aided Molecular Design, 12(6):543–556, November 1998. ga98aShailPatel. [1330] G. Abu-Lebdeh and R. F. Benekohal. Convergence variability and population sizing in micro-genetic algorithms. Comput.-Aided Civ. Infrastruct. Eng. (USA), 14(5):321–334, 1999. †CCA77270/99 ga99aAbu-Lebd.
Bibliography
125
[1331] Darrel L. Whitley, Soraya Rana, and Robert B. Heckendorn. The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. CIT (Croatia), 7(1):33–47, 1999. †CCA68195/99 ga99aWhitley. [1332] Thomas Dandekar and Patrick Argos. Genetic algorithms as a new tool to study protein stability. In W. J. J. van den Tweel, A. Harder, and R. M. Buitelaar, editors, Stability and Stabilization of Enzymes (Proceedings of the International Symposium on Stability and Stabilization of Enzymes), volume 47 of Studies in Organic Chemistry, pages 283–290, Maastricht (Netherlands), 22.-25. November 1992. Elsevier Science Publ., Amsterdam. ga:Argos92b. [1333] Jakob Axelsson, Stefan Menth, and Klaus Semmler. Genetic algorithms in industrial design. In Proceedings, Fifth International Conference on Tools with Artificial Intelligence TAI’93, pages 64–67, Boston, MA, 8.11. November 1993. IEEE Computer Society Press, Los Alamitos, CA. ga:Axelsson93a. [1334] Feng-Tse Lin, Cheng-Yan Kao, and Ching-Chi Hsu. Applying the genetic approach to simulated annealing in solving some NP-hard problems. IEEE Transactions on Systems, Man, and Cybernetics, 23(6):1752– 1767, December 1993. ga:FTLin93a. [1335] Terence C. Fogarty. An incremental genetic algorithm for real-time optimization. In Proceedings of the 1989 IEEE International Conference on Systems, Man, and Cybernetics, volume III, pages 321–326, Cambridge, MA, 14. - 17. November 1989. IEEE. ga:Fogarty89c. [1336] Eric Fontain. Application of genetic algorithms in the field of constitutional similarity. Journal of Chemical Information and Computer Sciences, 32(6):748–752, 1992. (May 1992 Workshop on Similarity in Organic Chemistry) ga:Fontain92b. [1337] R. Galar. Simulation of local evolutionary dynamics of small populations. Biological Cybernetics, 65(1):37– 45, 1991. ga:Galar91. [1338] David E. Goldberg. Optimal initial population size for binary-coded genetic algorithms. TCGA Report 85001, University of Alabama, 1985. ga:Goldberg85e. [1339] David E. Goldberg. Sizing populations for serial and parallel genetic algorithms. In Schaffer [1419], pages 70–79. ga:Goldberg89d. [1340] David E. Goldberg, Kalyanmoy Deb, and James H. Clark. Genetic algorithms, noise, and the sizing of populations. Complex Systems, 6(4):333–362, 1992. (Also TCGA Report No. 91010) ga:Goldberg92c. [1341] David E. Goldberg, Kalyanmoy Deb, and James H. Clark. Accounting for noise in the sizing of populations. In Whitley [1424], pages 127–140. ga:Goldberg92n. [1342] W. F. Hahnert and Patricia A. S. Ralston. Genetic algorithms for controller training - effects of populationsize on training accuracy and efficiency. In B. J. Schneider and Donald A. Stanley, editors, Emerging computer techniques for the mining industry, pages 21–30. Soc. Min. Engineers AIME, 1993. †P57065 ga:Hahnert93a. [1343] A. Hill and C. J. Taylor. Model-based image interpretation using genetic algorithms. Image and Vision Computing, 10(5):295–300, June 1992. ga:Hill92b. [1344] Zbigniew Michalewicz, Cezary Z. Janikow, and Jacek R. Krawczyk. A modified genetic algorithm for optimal control problems. Computers & Mathematics with Applications, 23(12):83–94, 1992. ga:Janikow92c. [1345] Richard S. Judson and Herschel Rabitz. Teaching lasers to control molecules. Physical Review Letters, 68(10):1500–1503, 1992. ga:Judson92c. [1346] D. B. McGarrah and Richard S. Judson. An analysis of the genetic algorithm method of molecular conformation determination. Journal of Computational Chemistry, 14(11):1385–1395, 1993. ga:Judson93b. [1347] Ron Wehrens, Carlos B. Lucasius, Lutgarde M. C. Buydens, and Gerrit Kateman. HIPS, a hybrid selfadapting expert-system for nuclear-magnetic-resonance spectrum interpretation using genetic algorithms. Analytica Chimica Acta, 277(2):313–324, May 1993. ga:Lucasius93c. [1348] Michael A. Lee and Hideyuki Takagi. Integrating design stages of fuzzy systems using genetic algorithm. In Second IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’93), volume I, pages 612–617, San Francisco, March 28.- April 1. 1993. IEEE. ga:MALee93a. [1349] Mahesh C. Gupta, Yash P. Gupta, and Anup Kumar. Minimizing flow time variance in a single machine system using genetic algorithm. European Journal of Operations Research, 70(3):289–303, November 1993. ga:MCGupta93a. [1350] Paul L. Stoffa and Mrinal K. Sen. Nonlinear multiparameter optimization using genetic algorithms inversion of plane wave seismograms. Geophysics, 56(11):1794–1810, November 1991. ga:MKSen91a.
126
Genetic algorithm implementations
[1351] David Maclay and Robert E. Dorey. Application of genetic search techniques to drivetrain modeling. In Proceedings of the 1992 IEEE International Symposium on Intelligent Control, pages 542–547, Glasgow (Scotland), 11.-13. August 1992. IEEE. ga:Maclay92a. [1352] David Maclay and Robert E. Dorey. Applying genetic search techniques to drivetrain modeling. IEEE Control Systems Magazine, 13(3):50–55, 1993. also as [1351] ga:Maclay93a. [1353] Ron Unger and John Moult. Genetic algorithms for protein folding simulations. Journal of Molecular Biology, 231(1):75–81, May 1993. ga:Moult93c. [1354] Allen E. Nix. Comparing finite and infite population models of a genetic algorithm using the minimum deceptive problem. Goverment report AD-A238679/5, Tennessee University, 1991. * CA 1643 Vol. 36 No. 3 ga:Nix91a. [1355] A. W. O’Neill. Genetic based training of two-layer, optoelectronic neural network. Electronics Letters, 28(1):47–48, January 1992. ga:O’Neill92a. [1356] Michael O. Odetayo. Optimal population size for genetic algorithms: an investigation. In Proceedings of the IEE Colloquium on Genetic Algorithms for Control and Systems Engineering, volume Digest No. 1993/130, pages 2/1–2/4, London, 28. May 1993. IEE, London. * [1286] CCA 69312/93 ga:Odetayo93a. [1357] S. Oliker, M. Furst, and O. Maimon. Design architectures and training of neural networks with a distributed genetic algorithm. In 1993 IEEE International Conference on Neural Networks, volume I, pages 199–202, San Francisco, CA, 28. March - 1. April 1993. IEEE. ga:Oliker93a. [1358] Robert Elliot Smith. Adaptively resizing populations: An algorithm and analysis. TCGA Report 93001, University of Alabama, Tuscaloosa, 1993. †Fogel/bib ga:RESmith93a. [1359] Robert Elliot Smith. Adaptively resizing populations: An algorithm and analysis. In Forrest [1421], page 653. ga:RESmith93d. [1360] Robert Elliot Smith and Ellen Smuda. Adaptively resizing populations: Algorithm, analysis, and first results. Report NASA-CR-194277, University of Alabama, Department of Engineering Science and Mechanics, 1993. * N94-12808 ga:RESmith93f. [1361] Richard W. Smith. Energy minimization in binary alloy models via genetic algorithms. Computer Physics Communications, 71(2):134–146, August 1992. ga:RWSmith92a. [1362] S. Rajeev and C. S. Krishnamoorthy. Computer aided optimal design of structural systems using genetic algorithms. Technical Report CE01-90, Indian Institute of Technology, Madras, 1990. †Rajeev92a ga:Rajeev90a. [1363] Colin R. Reeves. ga:Reeves93e.
Using genetic algorithms with small populations.
In Forrest [1421], pages 92–99.
[1364] George G. Robertson. Population size in classifier systems. In Proceedings of the Fifth International Conference on Machine Learning, pages 142–152, ?, ? 1988. ? † ga:Robertson88a. [1365] George G. Robertson. Population size in classifier systems. Machine Learning, 5(?):142–152, 1990. ga:Robertson90a.
†
[1366] Angus R. Simpson and Stephen D. Priest. The application of genetic algorithms to optimization problems in geotechnics. Computers and Geotechnics, 15(1):1–19, 1993. ga:Simpson93b. [1367] Yong Liang (Leon) Xiao and Donald E. Williams. Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chemical Physics Letters, 215(1-3):17–24, November 1993. ga:Xiao93a. [1368] Chen Genshe and Chen Xinhai. Improved fuzzy logic controller using genetic algorithm and its application to spacecraft rendezvous. In Proceedings of the 1993 IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering (TENCON’93), volume 4, pages 300–303, Beijing (China), 19.-21. October 1993. IEEE. ga:Xinhai93a. [1369] David W. Corne, Martin J. Oates, and George D. Smith, editors. Telecommunications Optimization: Heuristic and Adaptive Techniques. John Wiley & Sons, 2000. †Brochure/Corne ga00aDavidCorne. [1370] Zbigniew Michalewicz and David B. Fogel. How To Solve It: Modern Heuristics. Spinger-Verlag, Berlin, 2000. †[?] ga00aMichalewicz. [1371] D. A. Coley. An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific, River Edge, NJ, 2001. †Patton ga01aDAColey. [1372] Mika Hirvensalo. Quantum Computing. ga01aMikaHirvensalo.
Springer-Verlag, Berlin, 2001.
†www /Hirvensalo
Bibliography
127
[1373] Richard O. Duda, Peter E. Hart, and David G. Stork. Chapter 7.5 Evolutionary Methods, pages 373–378. Wiley-Interscience Publications, New York, NY, 2001. †TKKpaa ga01aRODuda. [1374] Richard O. Duda, Peter E. Hart, and David G. Stork. Chapter 7.6 Genetic programming, pages 373–378. Wiley-Interscience Publications, New York, NY, 2001. †TKKpaa ga01bRODuda. [1375] Fakhreddine O. Karray and Clarence de Silva. Soft Computing and Intelligent Systems Design. Pearson, Harlow (UK), 2004. ga04aFOKarray. [1376] Martin Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer-Verlag, Berlin, 2005. †Pelikan ga05aMPelikan. [1377] Werner Kinnebrock. Optimierung mit genetischen und selektiven Algorithmen. Oldenburg Verlag, M¨ unchen (Germany), 1994. †[?] ga94aKinnebrock. [1378] Volker Nissen. Evolution¨ are Algorithmen, Darstellung, Beispiele, betriebswirtschaftliche Anwendungm¨ oglichkeiten. DUV Deutscher Universit¨ ats Verlag, Wiesbaden, 1994. †News/Nissen ga94aNissen. [1379] Ingo Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog-Verlag, Stuttgart (Germany), 1994. (in German; includes also [?]) ga94aRechenberg. [1380] E. Sch¨ oneburg, F. Heinzmann, and S. Feddersen. Genetischer Algoritmen und Evolutionsstrategien. Addison-Wesley Verlag, 1994. †[879] ga94aSchoneburg. [1381] Joachim Stender, E. Hillebrand, and J. Kingdon. Genetic algorithms in optimization, simulation and modelling. IOS Press, ?, 1994. †[926] ga94cStender. [1382] John R. Koza. Genetic Programming II, Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, 1994. †Koza ga94gKoza. [1383] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York, 2 edition, 1994. (the second edition of [1416]) † ga94gMichalewicz. [1384] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, 1995. †publisher ga95aFogel. [1385] Christopher G. Langton, editor. Artificial Life, An Overview. The MIT Press, Cambridge, MA, 1995. †Akateeminen 299:- ga95aLangton. [1386] Mohamad H. Hassoun. Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA, 1995. †ISMB /MIT Press exh. ga95aMHHassoun. [1387] Vic J. Rayward-Smith, editor. Applications of Modern Heuristic Methods. Alfred Waller /UNICOM, Henley-on-Thames (UK), 1995. †[?] ga95aRaywardSmith. [1388] Hans-Paul Schwefel. ga95aSchwefel.
Evolution and Optimum Seeking.
John Wiley & Sons, Inc., New York, 1995.
[1389] Masatoshi Sakawa and Masahiro Tanaka. Genetic Algorithms. Asakura Book Publishers Co. ltd, ?, 1995. (in Japanese) †Tanaka ga95bMSakawa. [1390] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automaton: Theory and Practice, chapter 4. Placement, pages 186–191. McGraw-Hill, New York, 1995. ga95bSait. [1391] Dirk C. Mattfeld. Evolutionary Search and the Job Shop. Physica-Verlag, c/o Springer-Verlag, Berlin, 1996. †publisher ga96aMattfeld. [1392] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, Berlin, 3rd edition, 1996. ga96aMichalewicz. [1393] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996. ga96aMitchell.
†News
[1394] Thomas B¨ ack. Evolutionary Algorithms in Theory and Practice. Oxford university Press, New York, 1996. †OUP ga96aTBack. [1395] Stefan Bornholdt and P. H. Feindt, editors. Komplexe adaptive Systeme. VerlagJosef R¨ oll, Dettelbach (Germany), 1996. (in German) †Bornholdt /lop ga96bBornholdt. [1396] Nirwan Ansari and Edwin S. H. Hou. Computational Intelligence for Optimization. Kluwer Academic Publishers, London (UK), 1997. †www.amazon.com [?] ga97aAnsari. [1397] Dana Harry Ballard. An Introduction to Natural Computation. The MIT Press, Cambridge, MA, 1997. * PsycINFO1997-08481-000 ga97aDHBallard.
128
Genetic algorithm implementations
[1398] Thomas B¨ ack, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary Computation. IoP, London, 1997. †IoP ga97eTBack. [1399] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Programming ˜ An Introduction. Morgan Kauffmann Publishers, Inc., San Francisco, CA, 1998. ga98aBanzhaf. [1400] Colin P. Williams and Scott H. Clearwater. Explorations in Quantum Computing. Springer-Verlag, New York, 1998. †TKKpaa ga98aColinPWilliams. [1401] Melanie Mitchell. ga98aMMitchell.
An Introduction to Genetic Algorithms.
The MIT Press, Cambridge, MA, 1998.
[1402] Randy L. Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. John Wiley & Sons, New York, 1998. †www.amazon.com ga98aRLHaupt. [1403] William B. Langdon. Genetic Programming and Data Structures, volume 1 of Genetic Programming. Kluwer Academic Publishers, Boston, MA, 1998. †lop ga98aWBLangdon. [1404] Witold Pedrycz and Fernando Gonida. An Introduction to Fuzzy Sets. The MIT Press, Cambridge. MA, 1998. †ISMB /MIT press exh. ga98bPedrycz. [1405] David Corne, Marco Dorigo, and Fred Glover. New Ideas in Optimization. McGraw-Hill, Maidenhead (UK), 1999. †Brochure/Corne ga99aDavidCorne. [1406] Frank Jensen. Introduction to Computational Chemistry, chapter 14.7.4 Genetic algorithms, page 342. John Wiley & Sons, New York, 1999. †TKKpaa ga99aJensen. [1407] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Genetic Programming III. Morgan Kaufmann Publishers, San Francisco, CA, 1999. * GA digest v. 13 n. 7 ga99aKoza. [1408] Josef Gruska. Quantum Computing. McGraw Hill, 1999. †tilattu ga99bJGruska. [1409] Yuval Davidor. Genetic Algorithms and Robotics: A heuristic strategy for optimization. World Scientific Publishing, Singapore, 1990. ga:Davidor90book. [1410] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991. ga:Davis91book. [1411] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, 1989. ga:Goldberg89book. [1412] John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, 1975. ga:Holland75book. [1413] John H. Holland. ga:Holland92book.
Adaptation in Natural and Artificial Systems.
MIT Press, Cambridge, 1992.
[1414] Hiroaki Kitano, editor. Genetic algorithm. Sangyo Tosho K.K., Tokyo (Japan), 1993. (in Japanese) †[?][?] ga:Kitano93book. [1415] John R. Koza. Genetic Programming: On Programming Computers by Means of Natural Selection and Genetics. The MIT Press, Cambridge, MA, 1992. ga:Koza92book. [1416] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Artificial Intelligence. Springer-Verlag, New York, 1992. ga:Michalewicz92book. [1417] Takeshi Agui and Tomoharu Nagao. Genetic Algorithm. Shoko-do, Tokyo (Japan), 1993. †[?] ga:Nagao93e. [1418] Jarmo T. Alander, editor. Geneettiset algoritmit – Genetic Algorithms, number TKO-C53. Helsinki University of Technology (HUT), Department of Computer Science, 1992. (Proceedings of a GA Seminar held at HUT) GA:GArapo92. [1419] J. David Schaffer, editor. Proceedings of the Third International Conference on Genetic Algorithms, Georg Mason University, 4.-7. June 1989. Morgan Kaufmann Publishers, Inc. ga:GA3. [1420] R. M¨ anner and B. Manderick, editors. Parallel Problem Solving from Nature, 2, Brussels, 28.-30. September 1992. Elsevier Science Publishers, Amsterdam. ga:PPSN2. [1421] Stephanie Forrest, editor. Proceedings of the Fifth International Conference on Genetic Algorithms, Urbana-Champaign, IL, 17.-21. July 1993. Morgan Kaufmann, San Mateo, CA. ga:GA5. [1422] Hans-Paul Schwefel and R. M¨ anner, editors. Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, Dortmund (Germany), 1.-3. October 1991. Springer-Verlag, Berlin. (Proceedings of the 1st Workshop on Parallel Problem Solving from Nature (PPSN1)) ga:PPSN1.
Bibliography
129
[1423] Richard K. Belew and Lashon B. Booker, editors. Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, 13.-16. July 1991. Morgan Kaufmann Publishers. ga:GA4. [1424] Darrell Whitley, editor. Foundations of Genetic Algorithms — 2 (FOGA-92), Vail, CO, 24.-29. July 1992 1993. Morgan Kaufmann: San Mateo, CA. ga:FOGA92. [1425] R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors. Artificial Neural Nets and Genetic Algorithms, Innsbruck, Austria, 13. -16. April 1993. Springer-Verlag, Wien. ga:ANNGA93. [1426] John J. Grefenstette, editor. Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, MIT, Cambridge, MA, 28. - 31. July 1987. Lawrence Erlbaum Associates: Hillsdale, New Jersey. ga:GA2. [1427] Lance D. Chambers, editor. Practical Handbook of Genetic Algorithms, volume 1, Applications. CRC Press, Boca Raton, FL, 1995. ga95CRC1. [1428] Lance D. Chambers, editor. Practical Handbook of Genetic Algorithms, volume 3, Complex Coding Systems. CRC Press, Boca Raton, FL, 1999. ga99CRC. [1429] Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, 27.-29. June 1994. IEEE, New York, NY. ga94ICCIEC. [1430] Yuval Davidor, Hans-Paul Schwefel, and Reinhard Manner, editors. Parallel Problem Solving from Nature – PPSN III, volume 866 of Lecture Notes in Computer Science, Jerusalem (Israel), 9.-14. October 1994. Springer-Verlag, Berlin. † ga94PPSN3. [1431] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors. Parallel Problem Solving from Nature – PPSN IV, volume 1141 of Lecture Notes in Computer Science, Berlin (Germany), 22.-26. September 1996. Springer-Verlag, Berlin. ga96PPSN4. [1432] A. V. Sebald and Lawrence J. Fogel, editors. Proceedings of the Fourth Annual Conference on Evolutionary Programming (EP94), San Diego, CA, 24.-26. February 1994. World Scientific, Singapore. †Fogel ga94EP. [1433] Xin Yao, editor. Progress in Evolutionary Computation. Proceedings of the AI’93 and AI’94 Workshops on Evolutionary Computation, volume 956 of Lecture Notes in Artificial Intelligence, Melbourne and Armidale (Australia), 16. November 1993 and 21.-22. November 1994 1995. Springer Verlag, Berlin. †News /Yao ga95Springer956. [1434] D. W. Pearson, N. C. Steele, and R. F. Albrecht, editors. Artificial Neural Nets and Genetic Algorithms, Al`es (France), 19.-21. April 1995. Springer-Verlag, Wien New York. ga95ICANNGA. [1435] J. R. McDonnell, R. G. Reynolds, and David B. Fogel, editors. Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary Programming (EP95), San Diego, CA, 1.-3. March 1995. MIT Press. †Fogel ga95EP. [1436] Larry J. Eshelman, editor. Proceedings of the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, 15.-19. July 1995. ? †prog ga95ICGA. [1437] In ?, editor, Proceedings of the Artificial Evolution 97 (EA’97) Conference, Nimes (France), 22.-24. October 1997. Springer-Verlag, Berlin. †prog ga97EA. [1438] Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Sheffield (UK), 12.-14. September 1995. IEEE. †conf. prog. ga95Sheffield. [1439] Pavel Oˇsmera, editor. Proceedings of the MENDEL’95, Brno (Czech Republic), 26.-28. September 1995. Technical University of Brno. ga95Brno. [1440] Pavel Oˇsmera, editor. Proceedings of the MENDEL’96, Brno (Czech Republic), June 1996. Technical University of Brno. ga96Brno. [1441] Pavel Oˇsmera, editor. Proceedings of the 3rd International Mendel Conference on Genetic Algorithms, Optimization problems, Fuzzy Logic, Neural networks, Rough Sets (MENDEL’97), Brno (Czech Republic), 25.-27. June 1997. Technical University of Brno. ga97Brno. [1442] Pavel Oˇsmera, editor. Proceedings of the 4th International Mendel Conference on Genetic Algorithms, Optimization problems, Fuzzy Logic, Neural networks, Rough Sets (MENDEL’98), Brno (Czech Republic), 24.-26. June 1998. Technical University of Brno. ga98Brno. [1443] G. Winter, J. P´eriaux, M. Gal´ an, and P. Cuesta, editors. Genetic Algorithms in Engineering and Computer Science (EUROGEN95), Las Palmas (Spain), December 1995. John Wiley & Sons, New York. ga95LasPalmas.
130
Genetic algorithm implementations
[1444] The Korea Science Engineering Foundation, The Australian Academy of Science, The Australian Academy of Technological Sciences and Engineering. Proceedings of the 1st Korea - Australia Joint Workshop on Evolutionary Computation, Taejon (Korea), 26.-29. September 1995. KAIST, Korea. ga95Korea-Australia. [1445] John R. Koza, editor. Genetic Algorithms and Genetic Programming at Stanford 1997, Stanford, CA, Winter 1997. Stanford University Bookstore. †News /Koza ga97Stanford. [1446] Proceedings of the Second IEEE Conference on Evolutionary Computation, Perth (Australia), November 1995. IEEE, New York, NY. ga95ICEC. [1447] Jarmo T. Alander, editor. Proceedings of the First Nordic Workshop on Genetic Algorithms and their Applications (1NWGA), Proceedings of the University of Vaasa, Nro. 2, Vaasa (Finland), 9.-12. January 1995. University of Vaasa. (available via anonymous ftp site ftp.uwasa.fi directory cs/1NWGA file *.ps.Z) ga95NWGA. [1448] Jarmo T. Alander, editor. Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications (2NWGA), Proceedings of the University of Vaasa, Nro. 11, Vaasa (Finland), 19.-23. August 1996. University of Vaasa. (available via anonymous ftp site ftp.uwasa.fi directory cs/2NWGA file *.ps.Z) ga96NWGA. [1449] Jarmo T. Alander, editor. Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications (3NWGA), Helsinki (Finland), 18.-22. August 1997. Finnish Artificial Intelligence Society (FAIS). (available via anonymous ftp site ftp.uwasa.fi directory cs/3NWGA file *.ps.Z) ga97NWGA. [1450] ?, editor. Proceedings of the Third Online Workshop on Soft Computing, Nagoya (Japan), August 1996. ? (to appear) †News ga96WEC3. [1451] Terence C. Fogarty?, editor. Evolutionary Computing, Proceedings of the AISB96 Workshop, Brighton, UK, 1.-2. April 1996. Springer-Verlag, Berlin (Germany). †ssq ga96AISB. [1452] John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors. Proceedings of the GP-96 Conference, Stanford, CA, 28.-31. July 1996. MIT Press, Cambridge, MA. †prog ga96GP. [1453] John R. Koza, Kalyanmoy Deb, Marco Dorico, David B. Fogel, Max Garson, Hitoshi Iba, and Rick L. Riolo, editors. Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford, CA, 13.-16. July 1997. Morgan Kaufmann, San Francisco, CA. †prog ga97GP.
Notations †(ref) = the bibliography item does not belong to my collection of genetic papers. (ref) = citation source code. ACM = ACM Guide to Computing Literature, EEA = Electrical & Electronics Abstracts, BA = Biological Abstracts, CCA = Computers & Control Abstracts, CTI = Current Technology Index, EI = The Engineering Index (A = Annual, M = Monthly), DAI = Dissertation Abstracts International, P = Index to Scientific & Technical Proceedings, PA = Physics Abstracts, PubMed = National Library of Medicine, BackBib = Thomas B¨ack’s unpublished bibliography, Fogel/Bib = David Fogel’s EA bibliography, etc * = only abstract seen. ? = data of this field is missing (BiBTeX-format). The last field in each reference item in Teletype font is the BiBTEXkey of the corresponding reference.
Appendix A
Bibliography entry formats This documentation was prepared with LATEX and reproduced from camera-ready copy supplied by the editor. The ones who are familiar with BibTeX may have noticed that the references are printed using abbrv bibliography style and have no difficulties in interpreting the entries. For those not so familiar with BibTeX are given the following formats of the most common entry types. The optional fields are enclosed by ”[ ]” in the format description. Unknown fields are shown by ”?”. † after the entry means that neither the article nor the abstract of the article was available for reviewing and so the reference entry and/or its indexing may be more or less incomplete. Book: Author(s), Title, Publisher, Publisher’s address, year. Example
John H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, 1975. Journal article: Author(s), Title, Journal, volume(number): first page – last page, [month,] year. Example
David E. Goldberg. Computer-aided gas pipeline operation using genetic algorithms and rule learning. Part I: Genetic algorithms in pipeline optimization. Engineering with Computers, 3(?):35–45, 1987. †. Note: the number of the journal unknown, the article has not been seen. Proceedings article: Author(s), Title, editor(s) of the proceedings, Title of Proceedings, [volume,] pages, location of the conference, date of the conference, publisher of the proceedings, publisher’s address. Example
John R. Koza. Hierarchical genetic algorithms operating on populations of computer programs. In N. S. Sridharan, editor, Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages 768–774, Detroit, MI, 20.-25. August 1989. Morgan Kaufmann, Palo Alto, CA. † . Technical report: Author(s), Title, type and number, institute, year. Example
Thomas B¨ ack, Frank Hoffmeister, and Hans-Paul Schwefel. Applications of evolutionary algorithms. Technical Report SYS-2/92, University of Dortmund, Department of Computer Science, 1992.
131
132
Vaasa GA Bibliography
Vaasa GA Bibliography
133
Vaasa Genetic Algorithm Bibliography Search & Optimise Main features:
• Over 20,000 references to published papers • by over 20,000 researchers. • Available as over 70 special bibliographies online: ftp://ftp.uwasa.fi/cs/report94-1/ga*bib.pdf files. • Covers all sciences and engineering fields, from basic theory to applications. • Several indexes and statistical summaries. • See what problems evolution can solve for you! Global optimisation and search heuristics called genetic algorithm mimics evolution in nature using recombination and selection from a set of solution trials called population. One of the most prominent attractive features of genetic algorithms from the practical point of view of software techniques is their simplicity, which makes them easy to implement and tailor to solve practical search and optimisation problems. In spite of the seemingly simple processing, the genetic algorithms are good at solving some problems that are known to be hard. The simplicity, generality, flexibility, parallelism, and the good problem solving capability have made genetic algorithm very popular among various disciplines desperately searching methods to solve difficult optimisation problems.
————— Observe that our server has also a selection of our papers on genetic algorithms and other compuational topics. See our bibliographies or file ftp.uwasa.fi/cs/README for further details.
134
file ga90bib.ps.Z . . . ga02bib.ps.Z gaACOUSTICSbib.pdf gaAIbib.pdf gaAERObib.pdf gaAGRObib.pdf gaALIFEbib.pdf gaARTbib.pdf gaAUSbib.pdf gaBASICSbib.pdf gaBIObib.pdf gaCADbib.pdf gaCHEMbib.pdf gaCHEMPHYSbib.ps.Z gaCIVILbib.pdf gaCODEbib.pdf gaCOEVObib.ps.Z gaCONTROLbib.ps.Z gaCSbib.ps.Z gaEARLYbib.ps.Z gaEAST-EURObib.ps.Z gaECObib.pdf gaECOLbib.pdf gaELMAbib.pdf gaESbib.pdf gaFAR-EASTbib.ps.Z gaFEMbib.pdf gaFPGAbib.pdf gaFRAbib.ps.Z gaFTPbib.ps.Z gaFUZZYbib.ps.Z gaGEObib.ps.Z gaGERbib.ps.Z gaGPbib.ps.Z gaIMPLEbib.ps.Z gaINDIAbib.ps.Z gaINVERSEbib.ps.Z gaIREGbib.pdf gaISbib.ps.Z gaJAPANbib.ps.Z gaLCSbib.ps.Z gaLASERbib.ps.Z gaLATINbib.ps.Z gaLOGISTICSbib.ps.Z gaMANUbib.ps.Z gaMATHbib.ps.Z gaMEDICINEbib.ps.Z gaMEDITERbib.ps.Z gaMICRObib.ps.Z gaMILbib.ps.Z gaMLbib.ps.Z gaMSEbib.ps.Z gaNANObib.ps.Z gaNIRbib.ps.Z gaNNbib.ps.Z gaNORDICbib.ps.Z gaOPTICSbib.ps.Z gaOPTIMIbib.ps.Z gaORbib.ps.Z
Vaasa GA Bibliography
# refs . ..
updated . ..
557 181 2402 854 138 181 163 659 1040 1358 1346 938 2277 1068 377 232 1766 1453 723 679 1515 124 491 464 2066 86 222 462 1353 1453 312 1586 971 1419 276 247 168 81 2404 211 58 649 689
2009/01/07 2008/03/20 2008/09/18 2008/03/12 2008/03/20 2008/03/12 2003/07/09 2009/01/07 2008/08/21 2009/01/07 2008/08/13 2003/07/09 2009/07/24 2009/04/24 2003/07/09 2003/07/09 2008/03/11 2005/06/30 2004/09/22 2008/08/13 2009/08/17 2003/05/23 2009/01/20 2009/07/24 2003/07/09 2008/05/22 2008/08/13 2009/07/31 2003/07/09 2009/07/27
846 583 1810 83 111 897 490 109 194 1800 948 1720 923 1662
2009/07/27 2009/02/18 2003/07/09 2008/03/31 2005/01/25 2007/11/02 2008/06/11 2008/04/07 2009/07/27 2008/03/12 2009/06/18 2009/02/27 2003/07/09 2008/08/14
2008/03/19 2007/11/01 2009/01/07 2009/07/27 2009/07/24 2009/07/24 2008/05/22 2008/08/13 2008/08/11 2009/07/24 2009/07/24
...table continues on the next page...
contents GA in 1990 . .. GA in 2002 GA in acoustics (new: March 2008) GA in artificial intelligence GA in aerospace GA in agriculture (new) GA in artificial life GA in art and music GA in Australia and New Zealand Basics of GA GA in biosciences including medicine GA in Computer Aided Design GA in chemical sciences ; previously in gaCHEMPHYSbib.ps.Z GA in chemistry and physics; divided into gaCHEMbib.ps.Z and gaPHYSbib.ps.Z 2002 GA in civil, structural, and mechanical engineering GA coding co- and differential evolution GA(new) GA in control and process engineering GA in comp. sci. (incl. databases, /mining, software testing and GP) GA in yearly yeas (upto 1989) new GA in the Eastern Europe GA in economics and finance GA in ecology and biodiversity (new: 1.8.2008) GA in electromagnetics Evolution strategies GA in the Far East (excl. Japan) GA & FEM (new May 2008) GA & FPGA (new May 2008) GA in France GA papers available via web (ftp and www) GA and fuzzy logic GA in geosciences GA in Germany, Austria, and Switzerland genetic programming implementations of GA GA in India GA in inverse problems (new: Aug 2007) image registration (new: July 2009) immune systems GA in Japan Learning Classifier Systems GA and lasers (new: April 2008) GA in Latin America, Portugal & Spain GA in logistics (incl. TSP) GA in manufacturing GA in mathematics GA in medicine (new: Nov 2007) GA in the Mediterranean GA in microscopy & microsystems (new: March 2008) GA in military applications GA in machine learning new GA in materials new GA in nanotechnology new GA in NIRS (spectroscopy) new GA in neural networks GA in Nordic countries GA in optics and image processing GA and optimization (only a few refs) GA in operations research
Vaasa GA Bibliography
file gaPARAbib.ps.Z gaPARETObib.ps.Z gaPATENTbib.ps.Z gaPATTERNbib.ps.Z gaPHYSbib.ps.Z gaPIEZObib.ps.Z gaPOWERbib.ps.Z gaPROTEINbib.ps.Z gaQCbib.ps.Z gaREMOTEbib.pdf gaROBOTbib.pdf gaSAbib.pdf gaSCHEDULINGbib.pdf gaSELECTIONbib.ps.Z gaSIGNALbib.ps.Z gaSIMULAbib.ps.Z gaTELEbib.ps.Z gaTHEORYbib.ps.Z gaTHESESbib.ps.Z gaUKbib.ps.Z gaVLSIbib.ps.Z
# refs 809 469 462 1528 2313 51 940 491 539 275 775 331 785 295 2403 1037 840 2483 578 1998 806
135
updated 2009/07/24 2009/03/24 2009/07/27 2007/11/06 2008/04/07 2008/03/26 2008/08/21 2008/03/12 2008/03/11 2008/08/11 2009/07/27 2009/07/24 2006/09/06 2009/07/27 2009/07/31 2009/07/24 2009/07/27 2008/08/13 2009/01/07 2008/05/22 2008/04/07
contents Parallel and distributed GA Pareto optimization GA patents GA in pattern recognition incl. LCS (new) GA in physical sciences ; previously in gaCHEMPHYSbib.ps.Z GA & piezo (new: March 2008) GA in power engineering GA in protein research quantum computing GA in remote sensing (new: 1.8.2008) GA in robotics GA and simulated annealing GA in scheduling Selection in GAs (new) GA in signal and image processing GA in simulation GA in telecom Theory and analysis of GA PhD etc theses GA in United Kingdom GA in electronics, VLSI design and testing
Table A.1: Indexed genetic algorithm special bibliographies available online in directory ftp://ftp.uwasa.fi/cs/report94-1. New updates also as .pdf files.