Is a visualization system a communication system? Example: a visual communication system image from: http://chicagodesig
An Information-theoretic Framework for Visualization Min Chen and Heike Jänicke Swansea University and Universität Heidelberg
1 Motivation: A Theoretic Framework Quantitative measurement and reasoning Explanation of facts and phenomena Laws and guidelines for optimization Falsifiable predictions Looking for theories? Lookingfortheories?
1 Motivation 2 Communication n & Visualization 3 Quantifying Visual Info plot 4 Explanation n - logarithmic & redundancy 5 Laws – interaction & user study
6 Prediction n – DP inequality & ... 7 Conclusions & Future Work
2 Communication and Visualization Is a visualization
system a communication system?
Example Example: avisualcommunicationsystem imagefrom: http://chicagodesignintern.blogspot.com/
A General Visualization Pipeline (without interaction) raw data D
Source
N
information I
N
geometry & labels G
Visual Mapping
Filtering
image V
N
Rendering
optical signal S
N
Optical Transmission
Displaying
image V'
N Viewing
N
optical signal S'
N
information I'
Perception
N
knowledge K
Cognition
Noise message M
Source
signal S
Encoder (Transmitter)
signal S'
Channel
message M'
Decoder (Receiver)
A General Communication System
Destination
Destination
Three Visualization Subsystems raw data D
Source
information I
N Filtering
N
geometry & labels G
Visual Mapping
image V
N
Rendering
vis-encoder image V
N
optical signal S
N
optical signal S'
Optical O ti l Transmission
Displaying
image V'
N
Viewing
vis-channel image V'
N
information I'
Perception
N
knowledge K
Cognition
Destination
vis-decoder message M
Source
signal S
Encoder (Transmitter)
N Channel
signal S'
message M'
Decoder (Receiver)
A General Communication System
Destination
Three Visualization Subsystems raw data D
image V
N visencoder
Source
message M
Source
Encoder (Transmitter)
N
image V'
vischannel
visdecoder
?
?
signal S
signal S'
N Channel
compactness
N
knowledge K
Destination
message M'
Decoder (Receiver)
error detection error correction
A General Communication System
Destination
3 Quantifying Visual Information Random variable
X It takes values
x1 , x2 , , xm Probability mass function
p ( xi ) Entropy
H(X )
m
¦ p ( xi ) log 2 p ( xi ) i
ClaudeE.Shannon (19162001)
minimal 64 pixels 256
Entropy: Example
minimal 2 256 pixels
192
128
Ti Time Series S i z
64 independent samples
z
each sample is an integer in [0, 255]
z
probability mass function is i.i.d. (independent and identically identically-distributed) distributed)
Entropy
H (Z ) 64
0
8 16 24 32 40 48 56 64
1 1 ¦ ¦ log 2 256 t 0 i 0 256
512
Time Series Plot z
0
64 255
Minimal 256x64 p pixels ((214 p pixels))
minimal 64 pixels
76543210
256
byte 1
X X X
X X X X X X X X X X X X X X X X X X
The Most Compact, Compact Why Not?
X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
byte 16
minimal 2 256 pixels
192
128
byte y 32
byte 48
64
byte 64
0 0
8 16 24 32 40 48 56 64
X X X X X
minimal 8 pixels
Th mostt compact: The t z
minimal 6 64 pixels
X X X X X X
One pixel per bit seems not enough for vision z
64 bytes (512 bits)
4x4 pixels per bit o 213 bits
Not a counter example: z
Sequential or parallel
z
Salient information o at o
Three Visualization Subsystems raw data D
image V
N visencoder
Source
perceptual efficiency cognitive load
vischannel
?
signal S
signal S'
Encoder (Transmitter)
N Channel
compactness
N
knowledge K
visdecoder
intuitiveness clarity
message M
Source
N
image V'
Destination
message M'
Decoder (Receiver)
error detection error correction
A General Communication System
Destination
Three Measures for Visualization
Entropy of Input Data Space: H(X)
Visualization Capacity: V(G)
Di l C Display Capacity: it D cf. (Yang-Peláez & Flowers, 2000)
Visual Mapping Ratio (VMR)
V (G ) H(X )
Information Loss Ratio (ILR)
max( H ( X ) V (G ),0) H(X )
V ((G G) Display Space Utilization (DSU) D
4 Explanation - Logarithmic Plot & Redundancy Logarithmic plot z
Why is it a useful in some situations?
z
In what situation?
z
What does it try to optimize?
Redundancy y in Visualization Design g z
Good and bad?
z
When is it useful?
z
Should this community pay more attention to “redundancy”?
minimal 64 pixels 256
Information Loss Ratio (ILR)
192
Di l S Display Space R Restriction t i ti
minimal 2 256 pixels
z
128
information loss:
25% 256
64
8 16 24 32 40 48 56 64
Evenly distributed probability mass function
Linear visual mapping
ILR is a p probabilistic measure about z
a data space X
128
z
not an instance xi
0 0
192
64
0
64x64 pixels
0
8 16 24 32 40 48 56 64
(a) evenly distributed p
Non uniform Distribution Non-uniform
Li Linear visual i l mapping i probability
D: information loss:
information loss:
25.0%
25.8% C:
256
256
192
192
B: 128
p
p
p
128
64
64
A A: 0
0 0
8 16 24 32 40 48 56 64
(a) evenly distributed p
0
8 16 24 32 40 48 56 64
(b) unevenly distributed p
p
1 8 1 8 1 4 1 2
Z
linear
Z'
256
64
224
56
192
48
160
40
128
32
96
24
64
16
32
8
0
0
Non uniform Distribution Non-uniform N li Nonlinear visual i l mapping i
information loss:
information loss:
information loss:
25.0%
25.8%
22.6%
256
256
256 192
192
192
128
128
128
64
64
64
0
0 0
8 16 24 32 40 48 56 64
(a) evenly distributed p
0
8 16 24 32 40 48 56 64
(b) unevenly distributed p
0 0
8 16 24 32 40 48 56 64
(c) 4 regional mappings
D:
C:
B:
A:
p
1 8
p
1 8
p p
1 4
k of
1 2
p
1
p
1
p
1
2k
Non uniform Distribution Non-uniform
2 k 1 ......
p
1
p
1
p
2k
23
L Logarithmic ith i visual i l mapping i
22 1 2
information loss:
information loss:
information loss:
information loss:
25.0%
25.8%
22.6%
0%
256
256
28
256 192
192
192
128
26
128
128
64
24
64
64
0
0 0
8 16 24 32 40 48 56 64
(a) evenly distributed p
22
0
8 16 24 32 40 48 56 64
(b) unevenly distributed p
20
0 0
8 16 24 32 40 48 56 64
(c) 4 regional mappings
0
8 16 24 32 40 48 56 64
(d) logarithmic plot
Three Visualization Subsystems raw data D
image V
N visencoder
Source
vischannel
?
signal S
signal S'
Encoder (Transmitter)
N Channel
compactness
N
knowledge K
visdecoder
intuitiveness clarity low info. loss
message M
Source
N
image V'
Destination
message M'
Decoder (Receiver)
error detection error correction
A General Communication System
Destination
Three Visualization Subsystems raw data D
image V
N visencoder
Source
vischannel
N
error detection error correction
signal S
signal S'
Encoder (Transmitter)
N Channel
compactness
knowledge K
visdecoder
intuitiveness clarity low info. loss
message M
Source
N
image V'
Destination
message M'
Decoder (Receiver)
error detection error correction
A General Communication System
Destination
300
£M 271
262
How?
250 199
200
141
SMrt grp p
GreenG grp p
FoodXP grp p
2008
138
SMrt grp p
50
GreenG grp p
100
FoodXP grp p
150
200
Redundancy y z
see Rheingans & Landreth, 1995
Display Space Utilization (DSU) is generally very low
25-50 fps refresh rate can be utilized
2009
5 Laws - Interaction and User Studies Law 3: The information about an overview in one of its detailed view is the same as that about that detailed view in the overview.
Example 1 Mutual Information
p(x,y)
Hint
No Hint
Vortex
25%
25% negative
No V t Vortex
5%
45%
false positive
false
I ( X ,Y )
p ( x, y ) ¦ ¦ p( x, y ) log 2 p( x) p( y ) xX yY
Example 1: I = 0.147
Example 1 Mutual Information
p(x,y)
Hint
No Hint
Vortex
25%
25% negative
No V t Vortex
5%
45%
false
false positive
Example 2 p(x,y)
Hint
No Hint
Vortex
40%
10% negative
No V t Vortex
10%
40%
false positive
false
E Example l 1 1: I(X;Y) I(X Y) = 0.147 0 147
Example 2: I(X;Y) = 0.278
The Role of User Studies
Do quantitative D tit ti measurements make user studies less important?
Example 1 p(x,y)
Hint
No Hint
Vortex
25%
25%
No Vortex
5%
45%
Example 2 p(x,y)
Hint
No Hint
Vortex
40%
10%
No Vortex
10%
40%
If we can measure p(x,y), p(x y) p(x), p(x) p(y), p(y) ...
E Example l 1 1: I(X;Y) I(X Y) = 0.147 0 147
Example 2: I(X;Y) = 0.278
6 Prediction – DP Inequality & a Prediction Data processing inequality z “No clever manipulation of data can improve the inferences that can be made from the data” data [Cover and Thomas, 2006] Markov chain conditions z Closed coupling: (X, Y), (Y,Z) z X and Z are conditionally independent d d
p(x, y, z) = p(x) p(y|x) p(z|y) p(x)
p(y|x)
X
Process 1
p(z|y) Y
I (X; Y)
Process 2
Z
I (Y; Z)
I ( X ;Y ) t I ( X ; Z ) interaction U1 X
Process 1
interaction U2 Y
Process 2
Z
What if the condition is broken? domain knowledge about X
I ( X ;Y ) t I ( X ; Z )
X
Process 1
Y
Process 2
Z
IEEE CG&A CG&A, Jan Jan. 2009
I t Interactive ti visualization i li ti
Information-assisted visualization
Knowledge-assisted visualization
7 Conclusions and Future Work The process of gaining insight can be
i improved db by using i numbers. b Information theory can explain many
phenomena in visualization visualization, z
but be careful with naive use.
The current limitations: z
assumption of memoryless, z lack of real p(xi). This talk is an overview of the paper. Details of related work, z
in particular, Matt Ward’s suggestion (see Purchase et al. 2008)
RichardW.Hamming (19151998)
“The purpose of computing is insight, not numbers.”
The Role of a Theoretic Framework Facts W W W W W W W W W W W W W W W W W W W W
T
T
T
T
T
T
T
T
T
T
W T
W T
Wisdom
W T
T
8T T T
Theory Theoretic Framework
Th nkk You Thank u !
An Information-theoretic Framework for Visualization Min Chen and Heike Jänicke Swansea University and Universität Heidelberg