An open-source multi-modal size characterization tool for nanoparticle tracking analysis
Thorsten Wagner Hans-Gerd Lipinski
Biomedical Imaging Group University of Applied Sciences and Arts, Dortmund, Germany
Martin Ward School of Chemistry University of Edinburgh, Great Britain
Martin Wiemann IBE Institute of Lung Health, Münster, Germany
5th ImageJ User and Developer Conference, Madison (USA), 03./ 04. September 2015
1 / 14
Outline
What does Nanoparticle Tracking Analysis (NTA) mean? The NanoTrackJ software developed for NTA Comparision of NanoTrackJ used with different devices Surface plasmonic resonance and NanoTrackJ TrackMate integration
2 / 14
Nanoparticle Tracking Analysis: the method Particle trajectory Relative Frequency
0,08
0,06
0,04
0,02
ra me ca
100
200
300
400
Diameter [nm]
Particle tracking
e tiv jec ob
1
2
Conversion from D to hydrodynamic diameter by Stokes-Einstein law
3
d k ∝ D −1 k
… 4
Data presentation
K*
K* = Particle Number
Laser light
Diffusion coefficient D estimation
3 / 14
Nanoparticle Tracking Analysis: the method Particle trajectory Relative Frequency
0,08
0,06
0,04
0,02
ra me ca
100
200
300
400
Diameter [nm]
Data presentation
Particle tracking Software specific
e tiv jec ob
1
2
3
d k ∝ D −1 k
… 4
Conversion from D to hydrodynamic diameter by Stokes-Einstein law
K*
K* = Particle Number
Laser light
Diffusion coefficient D estimation
4 / 14
Material & Methods Particles Polystyrene ● 100 nm diameter Gold (Au) ● Bimodal mixture of Au particles with 60 and 80nm diameter
Devices 1st) Olympus BX52 microscope ● CytoViva darkfield oil condensor ● DSLR, 1920x1020px,25 FPS ● 63 nm pixel size nd 2 ) NanoSight LM10 ● Commercial Laser (532 nm) microscope for NTA ● Scientific camera, 640x480px, 30 FPS ● 164 nm pixel size rd 3 ) Experimental Setup ● Laser (532 nm) microscope ● Scientific camera, 800x600px, 20 FPS ● 221 nm pixel size
Setup at the University of Edinburgh, Martin Ward,
[email protected]
Software ● ●
NanoTrackJ 1.0.1 ( http://sourceforge.net/projects/nanotrackj/ ) Nanosight NTA 2.3 (Proprietary) 5 / 14
NanoTrackJ
6 / 14
NanoTrackJ Particle tracking Identify Particles
“Find Maximum” by ImageJ
t
Tracking Particles
r
t-1 Non-ambiguous neighbor tracking:
r
t 2 detected particles
r r
7 / 14
NanoTrackJ Diffusion coefficient estimation “Covariance method”
^ D=
Δ Pn Δ Pn + 2 Δ t ⏟ ^ D loc .noise
Δ P n Δ P n+1 Δt ⏟ Corr. Term Localization noise
Berglund, A.J., 2010. Statistics of camera-based single-particle tracking. Physical Review E, 82(1), p.011917
Mean squared displacement
Δ P n =Position[n]−Position[n−1]
“Regression method”
Time lag
8 / 14
NanoTrackJ Data presenation Weighted Histogram ●
T1:
Simple tracklength weighted histogram ^ #Steps d=72 nm S1 = 6 w 1=α S 1 #Steps S2 = 10
T2:
^ d=103 nm w 2=α S 2
Maximum Likelihood ● ●
“Walker's Method”* Iterative algorithm to estimate the particle size histogram
*Walker, J.G., 2012. Improved nano-particle tracking analysis. Measurement Science and Technology, 23(6), p.065605.
9 / 14
Polystyrene with three different devices evaluated by NanoTrackJ Nanosight LM10
Experimental Setup
Cytoviva DFM
A
C
B 0,06
0,06
0,04
Relative Frequency
0,08 Relative Frequency
Relative Frequency
0,08
0,06
0,04
0,02
0,02
100
200 300 Diameter [nm]
400
800 x 600 px @ 20 FPS short exposure time, 221 nm pixel size
0,05 0,04 0,03 0,02 0,01
100
200
300
Diameter [nm]
400
640 x 480 px @ 30 FPS short exposure time, 166 nm pixel size
100
200 300 Diameter [nm]
400
1920 x 1020 px @ 25 FPS full exposure time, 63 nm pixel size
10 / 14
Bimodal Au mixture using white light dark field microscopy evaluated by NanoTrackJ Evaluation of color information due to surface plasmonic resonance Histogram of particle colors
0,025 0,02 0,015 0,01 0,005
Rel. Freq.
Rel. Freq.
Histogram of particle colors
500
550
0,025 0,02 0,015 0,01 0,005 500
600
550
600
Monochromatic Wavelength (nm)
Monochromatic Wavelength (nm) 0,08
Relative Frequency
Relative Frequency
450nm - 582nm (N=396)
0,06 0,04 0,02
100
200
300
Diameter (nm)
400
583nm - 620nm (N=165)
0,1
0,05
100
200
300
400
Diameter (nm)
Wagner, T., Lipinski, H.-G. & Wiemann, M., 2014. Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles. Journal of Nanoparticle Research, 16(5), p.2419.
11 / 14
TrackMate integration NanoTrackJ provides only a simple tracking algorithm, so we decide to move the NanotrackJ Features to TrackMate
Current state ●
The FindMaxima detector is integrated into TrackMate
●
Color information of the detected particles is integrated into TrackMate
●
Size distribution estimation is integrated into TrackMate
How to get it ●
At the moment, it is only available as TrackMate fork: https://github.com/thorstenwagner/TrackMate However, Jean-Yves Tinavez and me working on it to provide it as an module
How to use it ●
Please start the action 'Brownian Motion Sizer' after tracking and filtering are finished 12 / 14
Summary
NanoTrackJ is an open software tool for ImageJ which works sucessfully with different devices
It is especially applicable for nanoparticle tracking from color videos of diffusing plasmonic NPs
Exploitation of the color information can improve the identification of particle sub-populations
To use NanoTrackJ: http://sourceforge.net/projects/nanotrackj/
To use the TrackMate-Version: https://github.com/thorstenwagner/TrackMate
13 / 14
School of Chemistry, University of Edinburgh
Thank you for your attention!
IBE, Institute of Lung Health
University of Applied Sciences and Arts Dortmund