An open-source multi-modal size characterization tool ...

58 downloads 0 Views 1MB Size Report
Thorsten Wagner. Hans-Gerd Lipinski. Biomedical Imaging Group. University of Applied Sciences and Arts, Dortmund, Germany. Martin Wiemann. IBE Institute ...
An open-source multi-modal size characterization tool for nanoparticle tracking analysis

Thorsten Wagner Hans-Gerd Lipinski

Biomedical Imaging Group University of Applied Sciences and Arts, Dortmund, Germany

Martin Ward School of Chemistry University of Edinburgh, Great Britain

Martin Wiemann IBE Institute of Lung Health, Münster, Germany

5th ImageJ User and Developer Conference, Madison (USA), 03./ 04. September 2015

1 / 14

Outline

What does Nanoparticle Tracking Analysis (NTA) mean? The NanoTrackJ software developed for NTA Comparision of NanoTrackJ used with different devices Surface plasmonic resonance and NanoTrackJ TrackMate integration

2 / 14

Nanoparticle Tracking Analysis: the method Particle trajectory Relative Frequency

0,08

0,06

0,04

0,02

ra me ca

100

200

300

400

Diameter [nm]

Particle tracking

e tiv jec ob

1

2

Conversion from D to hydrodynamic diameter by Stokes-Einstein law

3

d k ∝ D −1 k

… 4

Data presentation

K*

K* = Particle Number

Laser light

Diffusion coefficient D estimation

3 / 14

Nanoparticle Tracking Analysis: the method Particle trajectory Relative Frequency

0,08

0,06

0,04

0,02

ra me ca

100

200

300

400

Diameter [nm]

Data presentation

Particle tracking Software specific

e tiv jec ob

1

2

3

d k ∝ D −1 k

… 4

Conversion from D to hydrodynamic diameter by Stokes-Einstein law

K*

K* = Particle Number

Laser light

Diffusion coefficient D estimation

4 / 14

Material & Methods Particles Polystyrene ● 100 nm diameter Gold (Au) ● Bimodal mixture of Au particles with 60 and 80nm diameter

Devices 1st) Olympus BX52 microscope ● CytoViva darkfield oil condensor ● DSLR, 1920x1020px,25 FPS ● 63 nm pixel size nd 2 ) NanoSight LM10 ● Commercial Laser (532 nm) microscope for NTA ● Scientific camera, 640x480px, 30 FPS ● 164 nm pixel size rd 3 ) Experimental Setup ● Laser (532 nm) microscope ● Scientific camera, 800x600px, 20 FPS ● 221 nm pixel size

Setup at the University of Edinburgh, Martin Ward, [email protected]

Software ● ●

NanoTrackJ 1.0.1 ( http://sourceforge.net/projects/nanotrackj/ ) Nanosight NTA 2.3 (Proprietary) 5 / 14

NanoTrackJ

6 / 14

NanoTrackJ Particle tracking Identify Particles

“Find Maximum” by ImageJ

t

Tracking Particles

r

t-1 Non-ambiguous neighbor tracking:

r

t 2 detected particles

r r

7 / 14

NanoTrackJ Diffusion coefficient estimation “Covariance method”

^ D=

Δ Pn Δ Pn + 2 Δ t ⏟ ^ D loc .noise

Δ P n Δ P n+1 Δt ⏟ Corr. Term Localization noise

Berglund, A.J., 2010. Statistics of camera-based single-particle tracking. Physical Review E, 82(1), p.011917

Mean squared displacement

Δ P n =Position[n]−Position[n−1]

“Regression method”

Time lag

8 / 14

NanoTrackJ Data presenation Weighted Histogram ●

T1:

Simple tracklength weighted histogram ^ #Steps d=72 nm S1 = 6 w 1=α S 1 #Steps S2 = 10

T2:

^ d=103 nm w 2=α S 2

Maximum Likelihood ● ●

“Walker's Method”* Iterative algorithm to estimate the particle size histogram

*Walker, J.G., 2012. Improved nano-particle tracking analysis. Measurement Science and Technology, 23(6), p.065605.

9 / 14

Polystyrene with three different devices evaluated by NanoTrackJ Nanosight LM10

Experimental Setup

Cytoviva DFM

A

C

B 0,06

0,06

0,04

Relative Frequency

0,08 Relative Frequency

Relative Frequency

0,08

0,06

0,04

0,02

0,02

100

200 300 Diameter [nm]

400

800 x 600 px @ 20 FPS short exposure time, 221 nm pixel size

0,05 0,04 0,03 0,02 0,01

100

200

300

Diameter [nm]

400

640 x 480 px @ 30 FPS short exposure time, 166 nm pixel size

100

200 300 Diameter [nm]

400

1920 x 1020 px @ 25 FPS full exposure time, 63 nm pixel size

10 / 14

Bimodal Au mixture using white light dark field microscopy evaluated by NanoTrackJ Evaluation of color information due to surface plasmonic resonance Histogram of particle colors

0,025 0,02 0,015 0,01 0,005

Rel. Freq.

Rel. Freq.

Histogram of particle colors

500

550

0,025 0,02 0,015 0,01 0,005 500

600

550

600

Monochromatic Wavelength (nm)

Monochromatic Wavelength (nm) 0,08

Relative Frequency

Relative Frequency

450nm - 582nm (N=396)

0,06 0,04 0,02

100

200

300

Diameter (nm)

400

583nm - 620nm (N=165)

0,1

0,05

100

200

300

400

Diameter (nm)

Wagner, T., Lipinski, H.-G. & Wiemann, M., 2014. Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles. Journal of Nanoparticle Research, 16(5), p.2419.

11 / 14

TrackMate integration NanoTrackJ provides only a simple tracking algorithm, so we decide to move the NanotrackJ Features to TrackMate

Current state ●

The FindMaxima detector is integrated into TrackMate



Color information of the detected particles is integrated into TrackMate



Size distribution estimation is integrated into TrackMate

How to get it ●

At the moment, it is only available as TrackMate fork: https://github.com/thorstenwagner/TrackMate However, Jean-Yves Tinavez and me working on it to provide it as an module

How to use it ●

Please start the action 'Brownian Motion Sizer' after tracking and filtering are finished 12 / 14

Summary

NanoTrackJ is an open software tool for ImageJ which works sucessfully with different devices

It is especially applicable for nanoparticle tracking from color videos of diffusing plasmonic NPs

Exploitation of the color information can improve the identification of particle sub-populations

To use NanoTrackJ: http://sourceforge.net/projects/nanotrackj/

To use the TrackMate-Version: https://github.com/thorstenwagner/TrackMate

13 / 14

School of Chemistry, University of Edinburgh

Thank you for your attention!

IBE, Institute of Lung Health

University of Applied Sciences and Arts Dortmund

Suggest Documents