AN4604, Interfacing the MC34709 with the i.MX53 Microprocessor ...

20 downloads 6576 Views 2MB Size Report
AN4604 Application Note Rev. 2.0 5/2013. 2. Freescale Semiconductor i.MX53 Microprocessor Overview. 3 i.MX53 Microprocessor Overview. The i.MX53 ...
Freescale Semiconductor Application Note

AN4604 Rev. 2.0, 5/2013

Interfacing the MC34709 with the i.MX53 Microprocessor

1

Purpose

The present document shows the reader how to supply and interface the i.MX53 with the Freescale MC34709 PMIC, as well as showing an example of the system implementation at schematic level.

2

Introduction

The MC34709 is a multi-channel power management IC prepared to supply power to various members of the i.MX family, including the i.MX53 processor. It provides all require voltage domains as well as configurable power-up sequence to fulfill the processor requirements. Freescale analog ICs are manufactured using the SMARTMOS process, a combinational BiCMOS manufacturing flow that integrates precision analog, power functions and dense CMOS logic together on a single cost-effective die.

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Contents 1

Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 i.MX53 Microprocessor Overview . . . . . . . . 2 4 MC34709 Overview . . . . . . . . . . . . . . . . . . . . 9 5 Interfacing the i.MX53 with the MC34709. . 13 6 Application Example . . . . . . . . . . . . . . . . . . 18 7 Migrating from MC34708 to MC34709 . . . . 22 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9 Revision History . . . . . . . . . . . . . . . . . . . . . 30

i.MX53 Microprocessor Overview

3

i.MX53 Microprocessor Overview

The i.MX53 multimedia applications processors constitute Freescale Semiconductor's latest addition to a growing family of multimedia-focused products offering high performance processing optimized for lowest power consumption. The i.MX53 processors features Freescale's advanced implementation of the ARM Cortex-A8™ core, which operates at speeds as high as 1.0 GHz, and interfaces with DDR2-800, LVDDR2-800 or DDR3-800 DRAM memories. This device is suitable for applications such as the following: • • • • • • •

Automotive navigation and entertainment (see automotive datasheet, IMX53AEC) High-end Mobile Internet Devices (MID), High-end PDAs Netbooks (web tablets) Nettops (internet desktop devices) High-end portable media players (PMP) with HD video capability Portable navigation devices (PND) Gaming consoles

The flexibility of the i.MX53 architecture allows it to be used in a wide variety of applications. As the heart of the application chipset, the i.MX53 processor provides all the interfaces for connecting peripherals, such as WLAN, BluetoothTM, GPS, camera sensors and dual displays. i.MX53 power requirements are summarized in the following table. Table 1. i.MX53 Power Requirements Voltage Domain Name

i.MX535/i.MX538

i.MX537

V

mA

V

mA

V

mA

fARM ≤ 167 MHz

0.90

-

-

-

-

-

fARM ≤ 400 MHz

0.95

-

-

-

0.95

-

fARM ≤ 800 MHz

1.10

-

1.10

1450

1.10

1450

fARM ≤ 1000 MHz

1.25

1700

-

-

-

-

fARM ≤ 1200 MHz

1.35

2200

-

-

-

-

Stop Mode

0.85

-

0.85

-

0.85

-

Peripherals Supply

1.30

800

1.30

800

1.30

800

Stop Mode

0.95

-

0.95

-

0.95

-

VDDA VDDAL1

Memory Arrays

1.30

100

1.30

100

1.30

100

Stop Mode

0.95

-

0.95

-

0.95

-

VDD_DIG_PLL

PLL Digital Supply

1.30

10

1.30

10

1.30

10

VDD_ANA_PLL

PLL Analog Supply

1.80

10

1.80

10

1.80

10

NVCC_CKIH

FUSE Supply and UHVIO Bias.

1.80

Note (1)

1.80

Note (1)

1.80

Note (1)

NVCC_LCD

GPIO digital power supplies

1.80 or 2.775

Note (1)

VDDGP

VCC

NVCC_JTAG

Description

i.MX534/i.MX536

1.875 or 2.775 Note (1) 1.80 or 2.775 Note (1) Note (1)

Note (1)

Note (1)

AN4604 Application Note Rev. 2.0 5/2013 2

Freescale Semiconductor

i.MX53 Microprocessor Overview

Table 1. i.MX53 Power Requirements Voltage Domain Name

i.MX535/i.MX538

Description

i.MX534/i.MX536

i.MX537

V

mA

V

mA

V

mA

NVCC_LVDS

LVDS Supply

2.50

Note (1)

2.50

Note (1)

2.50

Note (1)

NVCC_LVDS_BG

LVDS Band Gap Supply

2.50

Note (1)

2.50

Note (1)

2.50

Note (1)

NVCC_EMI_DRAM

DDR2

1.80

800

1.80

800

1.80

800

LPDDR2

1.20

250

1.20

250

1.20

250

LV-DDR2

1.55

-

1.55

-

1.55

-

DDR3

1.50

650

1.50

650

1.50

650

120

3.0 - 3.3

120

3.0 - 3.3

120

VDD_FUSE

Fusebox Supply

3.0-3.3

NVCC_NANDF

UHVIO Supplies • UHVIO_L • UHVIO_H • UHVIO_UH

1.875 2.775 3.30

NVCC_SD1 NVCC_SD2

Note (1)

Note (1) 1.80 2.775 3.30

Note (1) 1.80 2.775 3.30

NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_CSI TVDAC_DHVDD TVE Digital and TVDAC_AHVDDRGB Analog Supply

2.75

200

GPIO (TVE not in use) 1.875 or 2.775 SRTC Core

NVCC_RESET

LVIO

USB_H1_VDDA25

USB_PHY Analog Supply.

2.50

50

2.50

NVCC_XTAL

Oscillator Amplifier Supply

2.50

25

USB_H1_VDDA33

USB PHY I/O Analog Supply

3.30

20

USB_OTG_VDDA33

200

1.80 or 2.775

NVCC_SRTC_POW

USB_OTG_VDDA25

1.30

2.75

0

I/O Supplies below or equal to 2.8 V nom./3.1 V max. (in any order, after NVCC_CKIH ramp up start, if needed)

90%

't > 0 I/O Supplies above 2.8 V nom./3.1 V max (in any order, if needed)

90%

't > 0 VDD_REG

't > 0 90%

't > 0 NVCC_EMI_DRAM

90%

't > 0 VP, VPH (in any order)

90%

VDDA,VDDAL1,VDDGP (in any order)

90%

't > 0

't > 0

POR_B

Figure 2. i.MX53 Power-up Timing diagram Power-down sequence should follow one of the following two options: Option 1: Switch all supplies down simultaneously with further free discharge. A deviation of few microseconds of actual power-down of the different power rails is acceptable. Option 2: Switch down supplies, in any order, keeping the following rules: •

• •

NVCC_CKIH must be powered down at the same time or after the UHVIO IO cell supplies (for full supply list, refer to Table 9, Ultra High voltage I/O (UHVIO) supplies). A deviation of few microseconds of actual power-down of the different power rails is acceptable. VDD_REG must be powered down at the same time or after NVCC_EMI_DRAM supply. A deviation of few microseconds of actual power-down of the different power rails is acceptable. If all of the following conditions are met: — VDD_REG is powered down to 0V (Not Hi-Z) — VDD_DIG_PLL and VDD_ANA_PLL are provided externally, — VDD_REG is powered down before VDD_DIG_PLL and VDD_ANA_PLL

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

7

i.MX53 Microprocessor Overview

Then the following rule should be kept: VDD_REG output impedance must be higher than 1.0 k, when inactive (or tie 1.0 K current limiting resistor between the supply source and VDD_REG).

3.2

i.MX53 Internal LDOs

The i.MX53 integrates two internal LDOs to supply each of the PLL voltage domains. These LDOs are supplied from the VDD_REG pin and deliver 1.3V for the VDD_DIG_PLL and 1.8 V for the VDD_ANA_PLL. The 1.3 V regulator outputs its voltage on the VDD_DIG_PLL pin. VDDA, VDDAL1, and VP can be supplied externally from this pin, care must be taken to place a ferrite in order to avoid noise coupling between voltage domains. The analog supply LDO can be software configured through the PLL1P8_VREG[4:0] bits for an output voltage from 1.5 to 2.275 V in 25 mV steps, being the default 1.8 V, and has an output current capability up to 125 mA. The digital supply LDO can be configured by means of the PLL1P2_VREG[4:0] bits from 0.8 to 1.575 V in 25m V steps. Its default voltage is 1.2 V and it is able to supply up to 125 mA. This LDO must be programmed to 1.3 V after boot up. The LDO default state is controlled through eFuses on i.MX53. By default, the internal LDOs is used. • •

LDO_DIS[0]: Controls Analog PLL supply. LDO_DIS[1]: Controls Digital PLL supply.

If any of these bits is 0, the respective PLL supply is provided by internal LDO source, if it is set to 1, the fuse is blown and the PLL supply is provided by the external pad, which is not recommended due to possible noise injections or other issues.

i.MX53 VDD_REG 1.8V

2.5V

VDD_ANA_PLL

NVCC_RESET

1.3V

VDD_DIG_PLL

VDDA VDDAL1 VP Figure 3. Internal PLL supply.

AN4604 Application Note Rev. 2.0 5/2013 8

Freescale Semiconductor

MC34709 Overview

4

MC34709 Overview

The MC34709 is a power management IC that includes the necessary sources to supply the i.MX53. Its main features are: • • • • • • • • • • •

10 bit ADC for monitoring. Four-wire resistive touchscreen interface Five Buck regulators for direct supply of the processor core and memory One Boost regulator for USB OTG support Eight LDO regulators with internal and external pass devices for thermal budget optimization Power control logic with processor interface and event detection Real time clock and crystal oscillator circuitry with coin cell backup Support for external secure real time clock on a companion system processor IC Single SPI/I2C bus for control & register access Four general purpose low voltage I/Os with interrupt capability Two PWM outputs

4.1

MC34709 Voltage supplies Table 2. MC34709 Voltage Supplies Summary

Supply

Purpose (typical application)

Output Voltage (in V)

Load Capability (in mA)

SW1

Buck regulator for processor VDDGP domain 0.650 - 1.4375

2000

SW2

Buck regulator for processor VCC domain

1000

SW3

Buck regulator for processor VDD domain and 0.650 - 1.425 peripherals

500

SW4A

Buck regulator for DDR memory and peripherals

1.200 – 1.975: 2.5/3.15/3.3

500

SW4B

Buck regulator for DDR memory and peripherals

1.200 – 1.975: 2.5/3.15/3.3

500

SW5

Buck regulator for I/O domain

1.200 – 1.975

1000

SWBST

Boost regulator for USB OTG

5.00/5.05/5.10/5.15

380

VSRTC

Secure Real Time Clock supply

1.2

0.05

VPLL

Quiet Analog supply

1.2/1.25/1.5/1.8

50

VREFDDR DDR Ref supply

0.6-0.9V

10

VDAC

TV DAC supply, external PNP

2.5/2.6/2.7/2.775

250

VUSB2

VUSB/peripherals supply, internal PMOS

2.5/2.6/2.75/3.0

65

VUSB/peripherals external PNP

2.5/2.6/2.75/3.0

350

VGEN1

General peripherals supply #1

1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55

250

VGEN2

General peripherals supply #2, internal PMOS 2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3

50

General peripherals supply #2, external PNP

2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3

250

USB Transceiver supply

3.3

100

VUSB

0.650 - 1.4375

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

9

MC34709 Overview

4.2

MC34709 Power-up Sequence

The MC34709 has five PUMS signals that enable to program the power-up sequence as well as the default output voltage for specific rails, making the part suitable to supply DDR2, DDR3, LPDDR2, LVDDR3 memories with the correct power-up sequence for many processors of the i.MX family. The following table shows the power-up sequence and all possible voltage combinations to supply the i.MX53 in all possible modes. Table 3. Configurable Power-up Sequence for MC34709 i.MX53

Sequence

LPM

DDR2

DDR3

LVDDR3

LPDDR2

0101

0110

0111

1000

1001

PUMS5=0 VUSB2 VGEN2

Ext PNP

Ext PNP

Ext PNP

Ext PNP

Ext PNP

PUMS5=1 VUSB2 VGEN2

Internal PMOS

Internal PMOS

Internal PMOS

Internal PMOS

Internal PMOS

PUMS[4:1]

VSRTC

Always on

1.2

1.3

1.3

1.3

1.3

SW2 (2) (VCC)

1

1.225

1.3

1.3

1.3

1.3

VPLL

2

1.8

1.8

1.8

1.8

1.8

VGEN2

3

2.5

2.5

2.5

2.5

2.5

SW1A (VDDGP)

4

1.1

1.1

1.1

1.1

1.1

SW1B (VDDGP)

4

1.1

1.1

1.1

1.1

1.1

SW4A (2) (DDR/SYS)

5

1.5

1.8

1.5

1.35

1.2

SW4B (2) (DDR/SYS)

5

1.5

1.8

1.5

1.35

1.2

VREFDDR

5

On

On

On

On

On

SW5 (2) (I/O)

6

1.8

1.8

1.8

1.8

1.8

VUSB

Note (3)

3.3

3.3

3.3

3.3

3.3

VUSB2

7

2.5

2.5

2.5

2.5

2.5

VDAC

8

2.775

2.775

2.775

2.775

2.775

AN4604 Application Note Rev. 2.0 5/2013 10

Freescale Semiconductor

MC34709 Overview

Table 3. Configurable Power-up Sequence for MC34709 (continued) i.MX53 PUMS[4:1]

Sequence

LPM

DDR2

DDR3

LVDDR3

LPDDR2

0101

0110

0111

1000

1001

Not used on system SW3(2) (VDDA)

1.2

1.3

1.2

1.2

1.2

VGEN1

1.2

1.3

1.3

1.3

1.3

SWBST

Off

Off

Off

Off

Off

Notes 2.The SWx node are activated in APS mode when enabled by the start-up sequencer. 3.VUSB is turned on by enabling the SWBST block (auto or PFM) and the VUSBEN bit though I2C/SPI. If SWBST is not used, leave the SWBSTIN connected to BP, SWBSTFB connected to ground and SWBSTLX unconnected. Make sure VUSBIN has a valid 5.0 V before enabling VUSB.

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

11

MC34709 Overview

  VSRTC* Power on event

SW2 VPLL VGEN2

SW1A/B SW4A/B VREFDDR

SW5

VUSB2 VDAC VUSB**

2ms 2ms

4ms

2ms

4ms

2ms 2ms

* VSRTC is turned on right after Main supply is powered up. ** VUSB is turned of via I2C/SPI as required.

Figure 4. MC3709 Power-up Sequence for i.MX53 processors.

AN4604 Application Note Rev. 2.0 5/2013 12

Freescale Semiconductor

Interfacing the i.MX53 with the MC34709

5

Interfacing the i.MX53 with the MC34709

Table 4 shows all the i.MX voltage rails, their power requirements and their associated MC34709 regulator. Most of the supply domains have flexible voltage and could be adjusted or supplied with a different regulator depending on each application needs Table 4. i,MX53 Voltage Domain Supplies with the MC34709 I.MX53

MC34709 Nominal Voltage

Units

Associated Regulator

fARM ≤ 167 MHz

0.90

V

SW1A/B

1.1

2000

mA

5

fARM ≤ 400 MHz

0.95

V

fARM ≤ 800 MHz

1.10

V

fARM ≤ 1000 MHz

1.25

V

fARM ≤ 1200 MHz

1.35

V

Stop Mode

0.85

V

Peripheral supply Voltage

1.30

V

SW2

1.3

1000

mA

1

Stop Mode

0.95

V

Memory array voltage

1.30

V

i.MX Internal

-

-

-

-

Stop Mode

0.95

V

VDD_DIG_PLL

1.30

V

i.MX Internal

-

-

-

-

VDD_ANA_PLL

1.80

V

i.MX Internal

-

-

-

-

NVCC_CKIH

1.80

V

VPLL

1.8

50

mA

2

NVCC_LCD

1.875 or 2.775

V

VDAC

2.775

250

mA

10

NVCC_JTAG

1.875 or 2.775

V

SW5

1.8

1000

mA

8

NVCC_LVDS

2.5

V

VGEN2

2.5

250

mA

3

DDR2

1.8

V

SW4A/B

1.8

1000

mA

6

PVDDR2

1.2

V

1.2

LV-DDR2

1.55

V

1.55

LV-DDR2

1.5

V

1.5

DDR3

1.5

V

1.5

3.15

V

1000

mA

VDDGP

VCC

VDDA VDDAL1

0111 Current Units DDR3

PUS

NVCC_LVDS_BG NVCC_EMI_DRAM

VDD_FUSE

EXT DC-DC

3.2

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

13

Interfacing the i.MX53 with the MC34709

Table 4. i,MX53 Voltage Domain Supplies with the MC34709 (continued) I.MX53

MC34709 Nominal Voltage

NVCC_NANDF NVCC_SD1 NVCC_SD2

(UHVIO) supplies UHVIO_L UHVIO_H UHVIO_UH

1.875 2.775 3.3

Units

V

Associated Regulator

0111 Current Units DDR3

PUS

SW5

1.8

1000

mA

8

VUSB

3.3

100

mA

Note (4)

SW5

1.8

1000

mA

8

VDAC

2.775

250

mA

10

NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_CSI TVDAC_DHVDD TVDAC_AHVDDRGB

2.775

V

1.875 or 2.775

V

1.3

V

VSRTC

1.3

0.05

mA

ON

1.875 or 2.775

V

SW5

1.8

1000

mA

8

USB_H1_VDDA25

2.5

V

VUSB2

2.5

250

mA

9

USB_OTG_VDDA25

2.5

V

NVCC_XTAL

2.5

V

USB_H1_VDDA33

3.3

V

VUSB

3.3

100

mA

Note (4)

USB_OTG_VDDA33

3.3

V

VDD_REG

2.5

V

VGEN2

2.5

250

mA

3

VP

1.3

V

i.MX Internal

-

-

-

-

VPH

2.5

V

VGEN2

2.5

250

mA

3

NVCC_SRTC_POW NVCC_RESET

Notes

4.Turn on via I2C/SPI

AN4604 Application Note Rev. 2.0 5/2013 14

Freescale Semiconductor

Interfacing the i.MX53 with the MC34709

5.1

Interfacing Block Diagram

The following block diagrams show all the power connections needed for the interface, as well as how the communication signals must be connected between the i.MX53 and MC34709.  

MC34709

i.MX53

SW1A/B

VDDGP

SW2

VCC

SW4A/B

NVCC_EIM_DRAM USB_H1_VDDA33

VUSB

USB_OTG_VDDA33 NVCC_RESET NVCC_JTAG

SW5

NVCC_NANDF

5.0V

NVCC_CKIH NVCC_CSI

VPLL Buck Regulator or Battery

BP

VDD_ANA_PLL NVCC_RESET VDD_DIG_PLL

FB

VDDA VDDAL1 VP VDD_REG

VGEN2

NVCC_LVDS NVCC_LVDS_BG VPH NVCC_XTAL USB_H1_VDDA25 USB_OTG_VDDA25

VUSB2

TVDAC_DHVDD TVDAC_AHVDDRGB

VDAC

NVCC_LCD NVCC_SRTC_POW

VSRTC

NVCC_SD1 NVCC_SD2 NVCC_KEYPAD NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_PATA NVCC_GPIO NVCC_FEC

Peripherals External DC/DC regulator

3.2V

CODEC HDMI ETHERNET 3G PCIe RS-232

Figure 5. i.MX53 Power Interface with MC34709 Block Diagram AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

15

Interfacing the i.MX53 with the MC34709

 

SWx

MC34709

i.MX53 POR_B

RESETBMCU

RESET_IN_B

RESETB

PMIC_STBY_REQ

STANDBY POWERON1

PMIC_ON_REQ SWx

WDI

GPIOX_X

INT

GPIOX_X SWx

UID

USB_OTG_ID

CLK

KEY_COL3 KEY_ROW3

MISO/SDA

CLK32MCU

CLK

PUMS1 PUMS2

VDC

PUMS3 PUMS4 PUMS5

Figure 6. i.MX53 Control Interface with MC34709 Block Diagram

AN4604 Application Note Rev. 2.0 5/2013 16

Freescale Semiconductor

Interfacing the i.MX53 with the MC34709

5.2

Interface Power-up Sequence

The resulting power-up sequence of the interface is shown in the following figure  

NVCC_SRTC_POW

VSRTC

VCC

SW2

NVCC_CKIH

VPLL VGEN2

VPH VDD_REG NVCC_LVDS NVCC_LVDS_BG

VDD_ANA_PLL VDD_DIG_PLL

VDDA VDDAL1 VP NVCC_RESET

VDDGP

NVCC_EMI_DRAM

NVCC_SD1 NVCC_SD2 NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC

NVCC_LCD NVCC_JTAG NVCC_NANDF NVCC_CSI NVCC_RESET

USB_H1_VDDA25 USB_OTG_VDDA25 NVCC_XTAL

TVDAC_DHVDD TVADC_AHVDDRGB

USB_H1_VDDA33 USB_OTG_VDDA33

SW1A SW1B

SW4A SW4B VREFDDR

3.2 V DC-DC Converter

SW5

VUSB2

VDAC

VUSB*

* VUSB is turned on via I2C/SPI

Figure 7. Power-up Sequence Flow Chart

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

17

Application Example

6

Application Example

The following schematic is simplified application example for interfacing the MC34709 with an i.MX53 processor. note that this schematic only includes the block related to the power section as well as power management controlling signals. i.MX53 - POWER A1 A2 A11 A13 A18 A22 A23 B1 B11 B13 B18 B23 C12 C20 C21 D19 E19 F19 F20 F21 F22 G7 G19 H8 H10 H12 J9 J11 J13 J15 J17 J20 K8 K10 K12 K14 K16 K21 L7 L9 L11 L13 L15 M8 M10 M12 M14 M16 N9 N11 N13 N15 P7 P8 P10 P12 P14 P16 P21 R9 R11 R13 R15 R17 R20 T8 T10 AA11 T14 T16 U15 U19 V15 V18 V19 V20 V21 V22 W19 Y14 Y15 Y19 AA15 AA20 AA21 AB1 AB18 AB23 AC1 AC2 AC18 AC22 AC23 AB22 AB2

GND1 GND5 GND2 GND3 GND4 GND6 GND7 GND22 GND23 GND24 GND25 GND26 GND27 GND28 GND29 GND30 GND31 GND32 GND33 GND34 GND35 GND37 GND36 GND40 GND38 GND39 GND46 GND41 GND42 GND43 GND44 GND45 GND52 GND47 GND48 GND49 GND50 GND51 GND56 GND57 GND53 GND54 GND55 GND62 GND58 GND59 GND60 GND61 GND66 GND63 GND64 GND65 GND72 GND73 GND67 GND68 GND69 GND70 GND71 GND79 GND74 GND75 GND76 GND77 GND78 GND83 GND80 GND8 GND81 GND82 GND84 GND85 GND86 GND87 GND88 GND89 GND90 GND91 GND92 GND93 GND94 GND95 GND9 GND10 GND11 GND12 GND13 GND16 GND17 GND19 GND18 GND20 GND21 GND15 GND14

VDDGP3 VDDGP1 VDDGP2 VDDGP5 VDDGP6 VDDGP4 VDDGP9 VDDGP7 VDDGP8 VDDGP11 VDDGP12 VDDGP10 VDDGP15 VDDGP13 VDDGP14 SVDDGP VCC1 VCC2 VCC3 VCC4 VCC5 VCC6 VCC7 VCC11 VCC8 VCC9 VCC10 VCC16 VCC12 VCC13 VCC14 VCC15 VCC20 VCC17 VCC18 VCC19 VCC25 VCC21 VCC22 VCC23 VCC24 VCC30 VCC31 VCC26 VCC27 VCC28 VCC29 VCC33 VCC32 SVCC VDDA1 VDDA3 VDDA2 VDDA4 VDDAL1 VDD_REG

C9

C10

C11

C12

C13

C14

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

C18

C19

C20

0.22UF

0.22UF

47UF

GND C17

C16

0.22UF

0.22UF

VDDGP

To SW1A/B @1.1V 2A max

VCC_1V3

To SW2 @1.3V 1A max.

C15 22UF

GND H13 J14 J16 K13 K15 L14 L16 M9 M11 M13 M15 N8 N10 N12 N14 N16 P9 P11 P13 P15 R8 R10 R12 R14 R16 T7 T9 T11 T13 T15 T17 U8 U18 B22

Place on TOP TP1

SVDDGP

C21

C22

C23

C24

C25

C26

C27

C28

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

10UF

GND C29

C30

C31

C32

C33

C34

C35

C36

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

0.22UF

47UF

To VGEN1 @1.3V 250mA max

VDDA_1V3

GND

C37

C38

C39

C40

C41

0.22UF

0.22UF

0.22UF

10UF

22UF

GND

To VGEN1 @1.3V 250mA max

VDDAL_1V3

Place on TOP TP2

C42

C43

0.22UF

0.22UF

SVCC

G12 M7 M17 U12

IMX_VDDA_1V2 GND

VDD_REG_2V5

F9

C44

G18

0.1UF

22UF DDR_1.5V

NVCC_EMI_DRAM1 NVCC_EMI_DRAM2 NVCC_EMI_DRAM3 NVCC_EMI_DRAM4 NVCC_EMI_DRAM5 NVCC_NANDF NVCC_EIM_MAIN2 NVCC_EIM_MAIN1 NVCC_EIM_SEC NVCC_RESET NVCC_SD1 NVCC_SD2 NVCC_PATA NVCC_LCD1 NVCC_LCD2 NVCC_CSI NVCC_FEC NVCC_GPIO NVCC_JTAG NVCC_KEYPAD VDD_FUSE NVCC_CKIH VDD_ANA_PLL VDD_DIG_PLL NVCC_XTAL

FASTR_ANA FASTR_DIG

H18 K17 N17 P17 T18 T12

To VGEN2 @2.5V 250mA max.

C45

GND

NVCC_SRTC_POW

GND

G8 G10 G11 H7 H9 H11 J8 J10 J12 K7 K9 K11 L8 L10 L12 B2

To SW4 @1.5V 1A max.

GND

C46

C47

C48

C49

C50

C51

0.1UF

0.1UF

0.01UF

0.01UF

0.01UF

22UF

1.8V GND

U9 U10 U7

3.3V 3.3V 3.3V

H16 H15 H14 N7 J6 J7 R7 F11 F8 G9 F7

1.8V 3.3V 3.3V 3.3V 2.775V 2.775V 1.8V 3.3V 3.3V 1.8V 3.3V VDD_FUSE

DCDC_3V2

To DCDC_3V2 @3.2V 2A max.

C54

C55

C56

C57

C58

C59

C60

C61

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

0.1UF

GND 2V775_VDAC

G15 G17

1.8V

G16 H17

1.8V

ANA_PLL_1.8V DIG_PLL_INT

V12

2.5V

IMX_NVCC_XTAL

V11

1.2V

C62

C63

0.1UF

0.1UF

To VDAC @2.775V 250mA max. To SW5 @1.8V 1.0A max.

GND E18 E17

FASTR_SIG FASTR_SIG

1V8_SW5 C64

C65

C70

C71

0.22UF

22UF

0.1UF

22UF

PCIMX535DVV1C GND

GND

GND

C67

C68

C52

C53

0.1UF

0.1UF

0.1UF

0.1UF

GND GND 1V8_VPLL

NVCC_XTAL_2V5 L2 1

C66 2

120OHM

0.1UF

C69 0.1UF

To VPLL @1.8V 50mA max.

GND

GND

NVCC_SRTC

C72 0.1UF GND

Figure 8. i.MX53 Voltage Domain Distribution AN4604 Application Note Rev. 2.0 5/2013 18

Freescale Semiconductor

Application Example

U27C VCC_BP VCC_BP

F15

SWBSTIN

G14

SW1IN1 SW1IN2

SWBSTFB

SW1 0.650-1.4375V 2000mA Buck

VCC_BP GND

P7

SW5IN

C204 C203 0.1UF

4.7uF

R8

1V8_SW5 1UH

(PUS_8) 2

SW5LX

SW1BLX

SW1FB

SW5 1.200-1.85V 1000mA Buck

SW5LX

GND

1

C201 0.1UF 1V1_SW1(PUS_5)

SW1ALX H15

C200 4.7uF

SWBST 5.00, 5.05, 5.10, 5.15V 380mA Boost

SWBSTLX

P11 P10

R9

SW1LX

BRL3225 2 L29

1

GND

C207

C208

22UF

22UF

2V775_VDAC

R11 R34 200K TP63

P13 GND

SW1PWGD SW1CFG

K10

VCOREDIG

L12 VCOREDIG for Parallel Single Phase Mode VCORE for Parallel Dual Phase Mode

L16 C202

VCC_BP

22UF

SW2IN1

M8

VCC_BP

P5

GND

R6

SW4ALX GND

1UH 2

SW4B 1.200-1.85, 2.5, 3.15V 500mA Buck

SW4BLX

L14 1

C210 0.1UF

4.7uF

C199 0.1UF

1V5_SW4

(PUS_6)

C209

SW4BIN

C198 4.7uF

B11

SW5FB

SW2 0.650-1.4375V 1000mA Buck

GND

1V3_SW2

1UH

SW2LX1

A10

1

SW2LX

(PUS_1) 2

L17

TP64

C205

DCDC_3V2

C230

P2

VCC_BP

SW4BFB

22UF

SW2PWGD

P4 GND

SW2FB

SW4AIN

C188

SW3IN1

C187 0.1UF

4.7uF

SW4A 1.200-1.85, 2.5, 3.15V 500mA Buck

GND

R3

SW4ALX

22UF R26 200K

A13 VCC_BP

GND

E14

SW3 0.650-1.4375V 500mA Buck

SW4ALX SW3LX1

N2

VCOREDIG

A12

D15

SW4AFB

M6

SW4CFG

SW3FB

MC34709

B13 GND

VCOREDIG for Parallel Single Phase Mode

PC34709VK

U27B VCC_BP 1V5_SW4

J14 DDR_VREF

K15

LDOVDD

0.1UF

C226 0.1UF

C227

J15

Support source for VUSB2,VDAC and VGEN2

VREFDDR VREFDDR

C228 1uF

N15

VINREFDDR

MC34709

0.6-0.9V 10mA LDO VHALF

VCC_BP

GND

VUSB2 2.5, 2.6, 2.75, 3.0V

4

VCC_BP Q8

3

NSS12100XV6T1G

P14

VUSB2DRV

6 5 2 1

R14

VUSB2

65mA INT. 350mA EXT. PNP

L15 C218 2.2UF

1V8_VPLL

(PUS_2)

50mA LDO

VPLL

K14

GND

1V8_SW5

VCC_BP

H14

VINGEN1

GND 1V3_VGEN1

H12

(PUS_8)

VGEN1 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55V

VDAC LDO 2.5, 2.6, 2.7, 2.775V

4

C222 2.2UF

VUSB2DRV

VINPLL

VDACDRV VDAC

VGEN1

250mA INT

N14 VDACDRV

D1 D2 C206 2.2UF

VINUSB VUSB

100mA INT.

VGEN2 LDO 2.5, 2.7, 2.8, 2.9, 3.0, 3.1, 3.15, 3.3V,

(PUS_10)

50mA INT. 250mA EXT. PNP

VCC_BP

4

VUSB LDO 3.3V

GND

2V775_VDAC

C224 2.2UF

VGEN2DRV VGEN2

L14

VGEN2DRV

GND Q16 NSS12100XV6T1G

3

2V5_VGEN2

(PUS_3)

M15

1 2 5 6

5V_MAIN

3V3_VUSB

GND

250mA

C231 2.2UF

(PUS_9)

Q17 NSS12100XV6T1G

3

P15

C221 2.2UF

1 2 5 6

2V5_VUSB2

(PUS_9)

VPLL LDO 1.2, 1.25, 1.5, 1.8V

C220 2.2UF

GND VCC_BP

VCC_BP

VCC_BP

GND

PC34709VK

GND

For BUSB2

For VDAC

C229 0.1UF

C223 0.1UF GND

For VGEN2 C225 0.1UF GND

Figure 9. MC34709 Power Supplies Schematic

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

19

Application Example

RESET

RESET_IN_B 14

SW3 2

1.8V

1

TL1015AF160QG DNP

1V8_SW5

DCDC_3V2

GND

C132 14

R36 0 DNP

POR_B

0.1UF

U2C

GND

R221 4.7K

i.MX53 - CONTROL PINS

C131

R222 4.7K

1.8V

1V8_SW5

BOOT_MODE0 BOOT_MODE1

C18 B20

TEST_MODE

D17

GND

RESET_IN POR BOOT_MODE0 BOOT_MODE1

NVCC_RESET

A21 C19 GND

NVCC_JTAG

0.1UF R37 4.7K

TEST_MODE

NVCC_SRTC

PMIC_ON_REQ CKIH1 CKIH2

TP3 TP12

B21 D18

TP4

R42 49.9 DNP

CKIH1 CKIH2

NVCC_CKIH

TVDAC_1

14

PMIC_STBY_REQ PMIC_ON_REQ

NVCC_GPIO

W15 W14

PMIC_STBY_REQ

R43 49.9 DNP

GND

"LCD" A

AC10 AB10 SH36

D13 BLUE

ECKIL CKIL

NVCC_SRTC

D9 A8 B8 A7 E9 C9

JTAG_TCK 16 JTAG_TMS 16 JTAG_TDI 16 JTAG_TDO 16 JTAG_nTRST 16

GPIO_0 GPIO_1 GPIO_2 GPIO_3 GPIO_4 GPIO_5 GPIO_6 GPIO_7 GPIO_8 GPIO_9 GPIO_10 GPIO_11 GPIO_12 GPIO_13 GPIO_14

NVCC_GPIO

GPIO_16 GPIO_17 GPIO_18

NVCC_KEYPAD

GPIO_19

NVCC_XTAL

EXTAL XTAL

C8 B7 C7 A6 D8 A5 B6 A4 B5 E8

DCDC_3V2

GPIO_0(CLK0) 9,13 DISP0_CONTRAST 11,13

I2C3_SDA

R41 10K GND

I2C3_SCL 11 SATA_CLK_GPEN

10

SYSTEM_DOWN (GPIO_5) 6,14

11 PCLOCK

WDT_OUTPUT

W16 V17 W17 AA18 W18

DCDC_3V2

R168 10K

C6 A3 D7 B4

AB11 AC11

13

WDT_OUTPUT 14

SPDIF_TX

13

MX53_EXTAL MX53_XTAL R45 10M DNP

PCIMX535DVV1C

C

Y1

0 LCD_LED

R38 0 DNP JTAG_MOD R40 4.7K

TP5 14

JTAG_TCK JTAG_TMS JTAG_TDI JTAG_TDO JTAG_TRST JTAG_MOD

14

1

4 GND

ECKIL

2

3 24MHz

GND R176 1.0K

C133

C134

18pF

A

GND

18pF GND

Figure 10. i.MX53 Control Signals

AN4604 Application Note Rev. 2.0 5/2013 20

Freescale Semiconductor

Application Example

2V5_VUSB2

U27A R396 10.0K

R397 10.0K VCC_BP

13 13

H6

PORT_ID0

ADIN9 BP

J5

PORT_ID1

ADIN10

J6

General Purpose ADCs

ADIN11

NC_1

USB/Audio

NC_2 2.2UF

GND

K6

C271

TOUCH_X0

K5

13

TOUCH_X1

L4

13

TOUCH_Y0

L6

13

TOUCH_Y1

L3

13

TSREF

NC_3

TSX1/ADIN12 TSX2/ADIN13

GPIOVDD GPIOLV0

A4

SPIVCC GPIOLV1

B2 I2C1_SCL I2C1_SDA

CS

B1

SPI/I2C Interface

CLK

A2

GPIOLV2 GPIOLV3

MOSI CLK32K

Control Logic

CLK32KMCU

GND

CLK32KVCC

VCOREDIG

VSRTC L1

0

1.5V

VCOREDIG

J1

2.775V

VCORE

J2

1.2V

PWM1 16 1.8V logic level

A7

C8

1V8_SW5

C7 B7 B9 E10

E3 G3

Output, 0~1V2_RTC ECKIL

F3

6

3V3_VUSB

H2

1V3_RTC C262

VDDLP

0.1UF

Reference Generation

VCOREDIG VCORE

K1

REFCORE

A8

MISO

B3

DNP VCORE R149

B15

TSY2/ADIN15

1V8_SW5

13,16

A14

TSY1/ADIN14

PWM2

13,16

R1

Touch Screen Interface

PWM1

VCOREDIG

N1

GND

VCOREREF

Output, 0~SPIVCC DCDC_3V2

C266 C267 C268 C270 VDDLP 0.1UF 1uF

1uF

100pF R226 100K

A 1

MBR0520LT1G

U30

VOUT

CE

5 2

C275 0.1UF

NCP4682 TAB_GND GND

D22 C

VIN

3

GND A

C

LICELL

4 D23

MBR0520LT1G

WDI

C259 0.1UF

C274 0.1UF

3.3V GPIO9 (NVCC_GPIO)

Coincell

M2

Battery Backup

SDWN RESET

C D24

A

BP

GND

RESETBMCU

MBR0520LT1G

INT

GND

STANDBY GLBRST PWRON1 PWRON2 G1

XTAL2

E1

PUMS1

Crystal Oscillator

PUMS2

XTAL1

PUMS3

QZ2 1

PUMS4

2

PUMS5 32.768KHZ

ICTEST

C258

C257

15pF

15pF

K3

WDT_OUTPUT

D6

SYSTEM_DOWN (GPIO_5) RESETB

B5 D5

RESETBMCU

B4

PMIC_INT

P1

STANDBY

PMIC_STBY_REQ

A5

GLBRST

A6

PWNON1

E5

PWRON2

G6

1

PUMS1

G5

1

PUMS2

F6

1

F5

0

PUMS4

E6

0

PUMS5

VCOREDIG

PUMS3

Power Up Mode (DDR3)

A9 GND

MC34709

VCOREDIG DNP R151 SH37

0

R150 DNP 0

PC34709VK GND 0

GND PMIC_ICTEST

POWER ON/OFF

13

RESET SW7 2

1

GLBRST

PWRON1/2 - Pullup to VCOREDIG (1.5V) TL1015AF160QG

1V3_RTC 5

1

VCC

4

GND

GND

PMIC_ON_REQ

2 PWRON2

1V8_SW5

U7

R229 68K

1.3V GPIO (NVCC_SRTC_POW)

R227 68K

3 RESETBMCU

NC7SP125P5X

POR_B

GND

RESET_IN_B

SW6 C272 PWNON1

2

1

TL1015AF160QG

RESETB

D21 BAT54A-7-F 1

GND

0.1UF 3

16

GND

2

JTAG_nSRST

Power Up Sequence: 0) VSRTC 1) SW2 2) VPLL 3) VGEN2 4) SW3 5) SW1A/B 6) SW4A/B 7) VGEN1, SW5 8) VUSB2, VUSB 9) VDAC

GND

GND

SW1VSSSNS GNDSW2

GNDSW1B1

GNDSW4B GNDSW4A GNDSW1A1

GNDSW5

GNDSWBST

GNDSW3 D14

R13 B10

P12

P6 P3 P9

P8

F14

GNDREG1 GNDREG2 GNDREF1 GNDREF2 M14 J12 N9 B12

GNDSPI GNDCORE GNDREF GNDUSB GNDGPIO GNDRTC GNDCTRL

GNDADC

A3 H1 M1 C1 C9 F1 B6

SUBSLDO SUBSGND SUBSPWR SUBSPWR3 SUBSPWR2 SUBSPWR1_8 SUBSPWR1_7 SUBSPWR1_6 SUBSPWR1_5 SUBSPWR1_4 SUBSPWR1_3 SUBSPWR1_2 SUBSPWR1_1

H5

K8 K12 F10

H10 J8 K9 G10 E11 J9 H9 H8 G9 G8 F9 F8 E8

SUBSREF SUBSANA1 SUBSANA2

U27D

PC34709VK

Figure 11. MC34709 System/Control signals If an external battery charger is required, it is recommended to use a charger with power path management which isolates the battery from the system node while charging. The main system voltage from the charger is connected directly to the BP node while the external charging voltage and the battery are connected on the charger’s end.

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

21

Migrating from MC34708 to MC34709

7

Migrating from MC34708 to MC34709

For customers migrating from the MC34708 platform to the MC34709 a very low design effort is required due to the high compatibility system between the to devices. Table 5 shows the main difference between both power management devices. Table 5. MC34708 and MC34709 difference Features

MC34708

MC34709

Power control logic with processor interface and event detection

Yes

Yes

Single SPI/I2C bus for control & register access

Yes

Yes

Real time clock and crystal oscillator circuitry with coin cell backup

Yes

Yes

Support for external secure real time clock on a companion system processor IC

Yes

Yes

Four-wire resistive touchscreen interface

Yes

Yes

Seven External ADC inputs.

Yes

Yes

Dedicated ADC channel for battery voltage sensing

Yes

No

Dedicated ADC channel for battery current sensing

Yes

No

Dedicated ADC channel for BP voltage

Yes

No

Dedicated ADC channel for die temperature

Yes

Yes

Dedicated ADC channel for VBUS voltage. (USB device detection)

Yes

No

Dedicated ADC channel for coin cell voltage

Yes

Yes

Five Buck regulator

Yes

Yes

One Boost regulator

Yes

Yes

Eight LDO Regulators with internal and external pass devices.

Yes

Yes

USB/UART/Audio switching for mini-micro USB connector

Yes

No

Four general purpose low voltage I/Os with interrupt capability

Yes

Yes

Two PWM outputs

Yes

Yes

Two General purpose LED drivers

Yes

No

Control Logic

10-bit ADC

Power Supplies(5)

Auxiliary Circuits

AN4604 Application Note Rev. 2.0 5/2013 22

Freescale Semiconductor

Migrating from MC34708 to MC34709

Table 5. MC34708 and MC34709 difference (continued) Features

MC34708

MC34709

206 MAPBGA - 8.0 x 8.0 mm - 0.5 mm pitch

Yes

No

206 MAPBGA - 13 x 13 mm - 0.8 mm pitch

Yes

No

130 MAPBGA - 8.0 x 8.0 mm - 0.5 mm Pitch

No

Yes

Package

Notes: 5.All Power supplies have the same voltage and current rating on both devices.

Firmware portability is straightforward, since register maps are bit to bit compatible. However, the MC34709 uses a reduced set of registers which eliminate all registers/bits related to the functionality not supported on the MC34709, therefore care must be taken that RESERVED registers/bits are not addressed on the firmware when porting the application to the MC34709.

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

23

Migrating from MC34708 to MC34709

7.1

MC34709 layout example

The following is a layout example of the MC34709 implemented on a four layer board with all components on the top layer and using standard 8.0 mil vias.

2

16

BH2 VSWBST_SENSE1

J122

J125

BH1

12

2

15

11

1

D20 C A 6

8

1

C A D23 R141 C A R142 C75 D18 C A R140 C76 D19 C A R143 C74 D24 C A D22 C A D21

D25 C A

1

5 J124

2 8

1

R138 C77

R160

C72

R156

R157

R139 C73

R161

R162

R164

R163

R165

1

1 J68 J120 J3

8

1

J2

1 R32 1

R136 C71

R31 R34

SWBSTLX1 C34

C26 C14

+

D3

A

+

+

C

6

R121 C62

2 1

5

C60

1

R130 R57

1

C50 C38 C39 Y1 R64 1

C33

1

J64

C53

TSREF1

J37

J69

C45

C7

6

R55

5

C8

2

R126

1

R59

1

1

2

C57

R52

1

C41 R58 R127

J58 CLKVCC1

19

20

SW3LX1

L10 D9 R48 R47 GNDSW4A1 D10 1C66 C6 1 U1 GNDSW3 A BC D16 R124 J21 DE C59 C28 FG R65 1 C3 1 HJ C32 KL C30 C49 C40 Q3 M C31 C23 C46 VGEN2 VHALF1 PN C22 Q4 C44 C21 C20 D11R VREFDDR1 VDAC1 C58 D13 D7 C37 R49 C15 L7 R53 C27 C13 D12 1 D8 C9 TSY2 LDOVDD1 L8 L9 J52 J56 VUSB2 1 Q6 C16 B 1 1 1 1 1 1 B SW4ALX1 C Q5 C19 GNDSWBST1 GNDSW4B1 1 C25 2 2 SW4BLX1 R125 R60 R128 VPLL1 Q2 J32 J43 1 J47 1 BAT1 1 1 Q1 1 J78 J79 J77 1 R41 1 J81 R44 SW1ALX1 SW1BLX1 1 R43 1 C R40 L2 L3 1 R38 R42 R35 J76 R37 A

J40

J65

ADIN11

R66 R67

R152

R153

PWRON2

1 J25

ADIN9

GNDSWBST2 SW3FB2 L5

C11

1

2

SW2LX1

R56 R129

GNDSW2 VUSB1

6 J123

J118

SW2FB1

J30 1

ADIN10

R46

1

PWRON1

1

J31

GNDSW1B1

VSRTC1

1 1 INT1

SW4 5

REFCORE1

BP_SENSE1

R16 L4 R15 R122 R51 C61 R14 C64

3 U5

J74 1

STANDBY1

PWM1

GLBRST1 J29

1

1

2 PWM2

4

J67

J62 1

SW3

SW2

R150 5

C80

2

TP_XTAL2

VDDLP1

R151 C84

1

A

VCORE1 J60 1

C79 R145 R144 C78 C68

C86

1

1 R33

WDI1

2

C85

L12

Q7

C D4

TP_XTAL1

C67

5 J121

A

VCOREDIG1

1 36 37 R131 48 4 3

R135 R137

S2

S4

Q8

C81 13 12 U6

1 Y2 2 1

A D5

BH5

L11

S1

C

C90

D17

1

S3

1 C

4 U4 5

RESETBMCU1

24 25

C91 C89 C87 R132 C88 A

R133 C69

+

C94

C95

5 TP1

F1

C92

U7 3

4 U2 5

R147 R146 R148 R149

C93 R155 R154 4

C82 R158 R159

R134 C70

4 U3 5 C83

BH6

SW1FB1

GNDSW5

TSY1

GNDSW1A1

SW5LX1

C29

R45

2

1

R36

KIT34709VKEVBE

R39

2012 FREESCALE

TSX2 TSX1 J80

S/N 1

1

1

J72

J117

1

9

16

700-XXXXX REV X

J73

J71

J70 1

20

19 J66

SW1

SCH-XXXXX REV X

1

8

1

BH4

STANDOFFS REQUIRED

BH3

Figure 12. KIT34709VKEVBE FAB Drawing

AN4604 Application Note Rev. 2.0 5/2013 24

Freescale Semiconductor

Migrating from MC34708 to MC34709

Figure 13. KIT34709VKEVBE Top Layer

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

25

Migrating from MC34708 to MC34709

Figure 14. KIT34709VKEVBE Layer 2

AN4604 Application Note Rev. 2.0 5/2013 26

Freescale Semiconductor

Migrating from MC34708 to MC34709

Figure 15. KIT34709VKEVBE Layer 3

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

27

Migrating from MC34708 to MC34709

A VER 83372-071

Figure 16. KIT34709VKEVBE Bottom Layer

AN4604 Application Note Rev. 2.0 5/2013 28

Freescale Semiconductor

References

8

References Document Description

URL

MC34709

Data sheet

http://www.freescale.com/files/analog/doc/data_sheet/MC34709.pdf

IMX53AEC

Data sheet

http://www.freescale.com/files/32bit/doc/data_sheet/IMX53AEC.pdf

IMX53IEC

Data sheet

http://www.freescale.com/files/32bit/doc/data_sheet/IMX53IEC.pdf

IMX53CEC

Data sheet

http://www.freescale.com/files/32bit/doc/data_sheet/IMX53CEC.pdf

IMX53UG

User’s Guide

http://www.freescale.com/files/32bit/doc/user_guide/MX53UG.pdf

Freescale.com Support Pages

URL

i.MX53 Product Summary Page

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX53_FAMILY

Analog Home Page

http://www.freescale.com/analog

Automotive Home Page

http://www.freescale.com/automotive

AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor

29

Revision History

9

Revision History Revision

Date

Description of Changes

1.0

1/2013

• Initial release

2.0

4/2013

• Annotate tables 3 and 4 • Update figures 4 and 7

AN4604 Application Note Rev. 2.0 5/2013 30

Freescale Semiconductor

How to Reach Us:

Information in this document is provided solely to enable system and software implementers to use Freescale products.

Home Page: freescale.com

There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based

Web Support: freescale.com/support

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no

on the information in this document.

warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.

Document Number: AN4604 Rev. 2.0 5/2013

Suggest Documents