AN4604 Application Note Rev. 2.0 5/2013. 2. Freescale Semiconductor i.MX53
Microprocessor Overview. 3 i.MX53 Microprocessor Overview. The i.MX53 ...
Freescale Semiconductor Application Note
AN4604 Rev. 2.0, 5/2013
Interfacing the MC34709 with the i.MX53 Microprocessor
1
Purpose
The present document shows the reader how to supply and interface the i.MX53 with the Freescale MC34709 PMIC, as well as showing an example of the system implementation at schematic level.
2
Introduction
The MC34709 is a multi-channel power management IC prepared to supply power to various members of the i.MX family, including the i.MX53 processor. It provides all require voltage domains as well as configurable power-up sequence to fulfill the processor requirements. Freescale analog ICs are manufactured using the SMARTMOS process, a combinational BiCMOS manufacturing flow that integrates precision analog, power functions and dense CMOS logic together on a single cost-effective die.
© Freescale Semiconductor, Inc., 2013. All rights reserved.
Contents 1
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 i.MX53 Microprocessor Overview . . . . . . . . 2 4 MC34709 Overview . . . . . . . . . . . . . . . . . . . . 9 5 Interfacing the i.MX53 with the MC34709. . 13 6 Application Example . . . . . . . . . . . . . . . . . . 18 7 Migrating from MC34708 to MC34709 . . . . 22 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . 29 9 Revision History . . . . . . . . . . . . . . . . . . . . . 30
i.MX53 Microprocessor Overview
3
i.MX53 Microprocessor Overview
The i.MX53 multimedia applications processors constitute Freescale Semiconductor's latest addition to a growing family of multimedia-focused products offering high performance processing optimized for lowest power consumption. The i.MX53 processors features Freescale's advanced implementation of the ARM Cortex-A8™ core, which operates at speeds as high as 1.0 GHz, and interfaces with DDR2-800, LVDDR2-800 or DDR3-800 DRAM memories. This device is suitable for applications such as the following: • • • • • • •
Automotive navigation and entertainment (see automotive datasheet, IMX53AEC) High-end Mobile Internet Devices (MID), High-end PDAs Netbooks (web tablets) Nettops (internet desktop devices) High-end portable media players (PMP) with HD video capability Portable navigation devices (PND) Gaming consoles
The flexibility of the i.MX53 architecture allows it to be used in a wide variety of applications. As the heart of the application chipset, the i.MX53 processor provides all the interfaces for connecting peripherals, such as WLAN, BluetoothTM, GPS, camera sensors and dual displays. i.MX53 power requirements are summarized in the following table. Table 1. i.MX53 Power Requirements Voltage Domain Name
i.MX535/i.MX538
i.MX537
V
mA
V
mA
V
mA
fARM ≤ 167 MHz
0.90
-
-
-
-
-
fARM ≤ 400 MHz
0.95
-
-
-
0.95
-
fARM ≤ 800 MHz
1.10
-
1.10
1450
1.10
1450
fARM ≤ 1000 MHz
1.25
1700
-
-
-
-
fARM ≤ 1200 MHz
1.35
2200
-
-
-
-
Stop Mode
0.85
-
0.85
-
0.85
-
Peripherals Supply
1.30
800
1.30
800
1.30
800
Stop Mode
0.95
-
0.95
-
0.95
-
VDDA VDDAL1
Memory Arrays
1.30
100
1.30
100
1.30
100
Stop Mode
0.95
-
0.95
-
0.95
-
VDD_DIG_PLL
PLL Digital Supply
1.30
10
1.30
10
1.30
10
VDD_ANA_PLL
PLL Analog Supply
1.80
10
1.80
10
1.80
10
NVCC_CKIH
FUSE Supply and UHVIO Bias.
1.80
Note (1)
1.80
Note (1)
1.80
Note (1)
NVCC_LCD
GPIO digital power supplies
1.80 or 2.775
Note (1)
VDDGP
VCC
NVCC_JTAG
Description
i.MX534/i.MX536
1.875 or 2.775 Note (1) 1.80 or 2.775 Note (1) Note (1)
Note (1)
Note (1)
AN4604 Application Note Rev. 2.0 5/2013 2
Freescale Semiconductor
i.MX53 Microprocessor Overview
Table 1. i.MX53 Power Requirements Voltage Domain Name
i.MX535/i.MX538
Description
i.MX534/i.MX536
i.MX537
V
mA
V
mA
V
mA
NVCC_LVDS
LVDS Supply
2.50
Note (1)
2.50
Note (1)
2.50
Note (1)
NVCC_LVDS_BG
LVDS Band Gap Supply
2.50
Note (1)
2.50
Note (1)
2.50
Note (1)
NVCC_EMI_DRAM
DDR2
1.80
800
1.80
800
1.80
800
LPDDR2
1.20
250
1.20
250
1.20
250
LV-DDR2
1.55
-
1.55
-
1.55
-
DDR3
1.50
650
1.50
650
1.50
650
120
3.0 - 3.3
120
3.0 - 3.3
120
VDD_FUSE
Fusebox Supply
3.0-3.3
NVCC_NANDF
UHVIO Supplies • UHVIO_L • UHVIO_H • UHVIO_UH
1.875 2.775 3.30
NVCC_SD1 NVCC_SD2
Note (1)
Note (1) 1.80 2.775 3.30
Note (1) 1.80 2.775 3.30
NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_CSI TVDAC_DHVDD TVE Digital and TVDAC_AHVDDRGB Analog Supply
2.75
200
GPIO (TVE not in use) 1.875 or 2.775 SRTC Core
NVCC_RESET
LVIO
USB_H1_VDDA25
USB_PHY Analog Supply.
2.50
50
2.50
NVCC_XTAL
Oscillator Amplifier Supply
2.50
25
USB_H1_VDDA33
USB PHY I/O Analog Supply
3.30
20
USB_OTG_VDDA33
200
1.80 or 2.775
NVCC_SRTC_POW
USB_OTG_VDDA25
1.30
2.75
0
I/O Supplies below or equal to 2.8 V nom./3.1 V max. (in any order, after NVCC_CKIH ramp up start, if needed)
90%
't > 0 I/O Supplies above 2.8 V nom./3.1 V max (in any order, if needed)
90%
't > 0 VDD_REG
't > 0 90%
't > 0 NVCC_EMI_DRAM
90%
't > 0 VP, VPH (in any order)
90%
VDDA,VDDAL1,VDDGP (in any order)
90%
't > 0
't > 0
POR_B
Figure 2. i.MX53 Power-up Timing diagram Power-down sequence should follow one of the following two options: Option 1: Switch all supplies down simultaneously with further free discharge. A deviation of few microseconds of actual power-down of the different power rails is acceptable. Option 2: Switch down supplies, in any order, keeping the following rules: •
• •
NVCC_CKIH must be powered down at the same time or after the UHVIO IO cell supplies (for full supply list, refer to Table 9, Ultra High voltage I/O (UHVIO) supplies). A deviation of few microseconds of actual power-down of the different power rails is acceptable. VDD_REG must be powered down at the same time or after NVCC_EMI_DRAM supply. A deviation of few microseconds of actual power-down of the different power rails is acceptable. If all of the following conditions are met: — VDD_REG is powered down to 0V (Not Hi-Z) — VDD_DIG_PLL and VDD_ANA_PLL are provided externally, — VDD_REG is powered down before VDD_DIG_PLL and VDD_ANA_PLL
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
7
i.MX53 Microprocessor Overview
Then the following rule should be kept: VDD_REG output impedance must be higher than 1.0 k, when inactive (or tie 1.0 K current limiting resistor between the supply source and VDD_REG).
3.2
i.MX53 Internal LDOs
The i.MX53 integrates two internal LDOs to supply each of the PLL voltage domains. These LDOs are supplied from the VDD_REG pin and deliver 1.3V for the VDD_DIG_PLL and 1.8 V for the VDD_ANA_PLL. The 1.3 V regulator outputs its voltage on the VDD_DIG_PLL pin. VDDA, VDDAL1, and VP can be supplied externally from this pin, care must be taken to place a ferrite in order to avoid noise coupling between voltage domains. The analog supply LDO can be software configured through the PLL1P8_VREG[4:0] bits for an output voltage from 1.5 to 2.275 V in 25 mV steps, being the default 1.8 V, and has an output current capability up to 125 mA. The digital supply LDO can be configured by means of the PLL1P2_VREG[4:0] bits from 0.8 to 1.575 V in 25m V steps. Its default voltage is 1.2 V and it is able to supply up to 125 mA. This LDO must be programmed to 1.3 V after boot up. The LDO default state is controlled through eFuses on i.MX53. By default, the internal LDOs is used. • •
LDO_DIS[0]: Controls Analog PLL supply. LDO_DIS[1]: Controls Digital PLL supply.
If any of these bits is 0, the respective PLL supply is provided by internal LDO source, if it is set to 1, the fuse is blown and the PLL supply is provided by the external pad, which is not recommended due to possible noise injections or other issues.
i.MX53 VDD_REG 1.8V
2.5V
VDD_ANA_PLL
NVCC_RESET
1.3V
VDD_DIG_PLL
VDDA VDDAL1 VP Figure 3. Internal PLL supply.
AN4604 Application Note Rev. 2.0 5/2013 8
Freescale Semiconductor
MC34709 Overview
4
MC34709 Overview
The MC34709 is a power management IC that includes the necessary sources to supply the i.MX53. Its main features are: • • • • • • • • • • •
10 bit ADC for monitoring. Four-wire resistive touchscreen interface Five Buck regulators for direct supply of the processor core and memory One Boost regulator for USB OTG support Eight LDO regulators with internal and external pass devices for thermal budget optimization Power control logic with processor interface and event detection Real time clock and crystal oscillator circuitry with coin cell backup Support for external secure real time clock on a companion system processor IC Single SPI/I2C bus for control & register access Four general purpose low voltage I/Os with interrupt capability Two PWM outputs
4.1
MC34709 Voltage supplies Table 2. MC34709 Voltage Supplies Summary
Supply
Purpose (typical application)
Output Voltage (in V)
Load Capability (in mA)
SW1
Buck regulator for processor VDDGP domain 0.650 - 1.4375
2000
SW2
Buck regulator for processor VCC domain
1000
SW3
Buck regulator for processor VDD domain and 0.650 - 1.425 peripherals
500
SW4A
Buck regulator for DDR memory and peripherals
1.200 – 1.975: 2.5/3.15/3.3
500
SW4B
Buck regulator for DDR memory and peripherals
1.200 – 1.975: 2.5/3.15/3.3
500
SW5
Buck regulator for I/O domain
1.200 – 1.975
1000
SWBST
Boost regulator for USB OTG
5.00/5.05/5.10/5.15
380
VSRTC
Secure Real Time Clock supply
1.2
0.05
VPLL
Quiet Analog supply
1.2/1.25/1.5/1.8
50
VREFDDR DDR Ref supply
0.6-0.9V
10
VDAC
TV DAC supply, external PNP
2.5/2.6/2.7/2.775
250
VUSB2
VUSB/peripherals supply, internal PMOS
2.5/2.6/2.75/3.0
65
VUSB/peripherals external PNP
2.5/2.6/2.75/3.0
350
VGEN1
General peripherals supply #1
1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55
250
VGEN2
General peripherals supply #2, internal PMOS 2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3
50
General peripherals supply #2, external PNP
2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3
250
USB Transceiver supply
3.3
100
VUSB
0.650 - 1.4375
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
9
MC34709 Overview
4.2
MC34709 Power-up Sequence
The MC34709 has five PUMS signals that enable to program the power-up sequence as well as the default output voltage for specific rails, making the part suitable to supply DDR2, DDR3, LPDDR2, LVDDR3 memories with the correct power-up sequence for many processors of the i.MX family. The following table shows the power-up sequence and all possible voltage combinations to supply the i.MX53 in all possible modes. Table 3. Configurable Power-up Sequence for MC34709 i.MX53
Sequence
LPM
DDR2
DDR3
LVDDR3
LPDDR2
0101
0110
0111
1000
1001
PUMS5=0 VUSB2 VGEN2
Ext PNP
Ext PNP
Ext PNP
Ext PNP
Ext PNP
PUMS5=1 VUSB2 VGEN2
Internal PMOS
Internal PMOS
Internal PMOS
Internal PMOS
Internal PMOS
PUMS[4:1]
VSRTC
Always on
1.2
1.3
1.3
1.3
1.3
SW2 (2) (VCC)
1
1.225
1.3
1.3
1.3
1.3
VPLL
2
1.8
1.8
1.8
1.8
1.8
VGEN2
3
2.5
2.5
2.5
2.5
2.5
SW1A (VDDGP)
4
1.1
1.1
1.1
1.1
1.1
SW1B (VDDGP)
4
1.1
1.1
1.1
1.1
1.1
SW4A (2) (DDR/SYS)
5
1.5
1.8
1.5
1.35
1.2
SW4B (2) (DDR/SYS)
5
1.5
1.8
1.5
1.35
1.2
VREFDDR
5
On
On
On
On
On
SW5 (2) (I/O)
6
1.8
1.8
1.8
1.8
1.8
VUSB
Note (3)
3.3
3.3
3.3
3.3
3.3
VUSB2
7
2.5
2.5
2.5
2.5
2.5
VDAC
8
2.775
2.775
2.775
2.775
2.775
AN4604 Application Note Rev. 2.0 5/2013 10
Freescale Semiconductor
MC34709 Overview
Table 3. Configurable Power-up Sequence for MC34709 (continued) i.MX53 PUMS[4:1]
Sequence
LPM
DDR2
DDR3
LVDDR3
LPDDR2
0101
0110
0111
1000
1001
Not used on system SW3(2) (VDDA)
1.2
1.3
1.2
1.2
1.2
VGEN1
1.2
1.3
1.3
1.3
1.3
SWBST
Off
Off
Off
Off
Off
Notes 2.The SWx node are activated in APS mode when enabled by the start-up sequencer. 3.VUSB is turned on by enabling the SWBST block (auto or PFM) and the VUSBEN bit though I2C/SPI. If SWBST is not used, leave the SWBSTIN connected to BP, SWBSTFB connected to ground and SWBSTLX unconnected. Make sure VUSBIN has a valid 5.0 V before enabling VUSB.
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
11
MC34709 Overview
VSRTC* Power on event
SW2 VPLL VGEN2
SW1A/B SW4A/B VREFDDR
SW5
VUSB2 VDAC VUSB**
2ms 2ms
4ms
2ms
4ms
2ms 2ms
* VSRTC is turned on right after Main supply is powered up. ** VUSB is turned of via I2C/SPI as required.
Figure 4. MC3709 Power-up Sequence for i.MX53 processors.
AN4604 Application Note Rev. 2.0 5/2013 12
Freescale Semiconductor
Interfacing the i.MX53 with the MC34709
5
Interfacing the i.MX53 with the MC34709
Table 4 shows all the i.MX voltage rails, their power requirements and their associated MC34709 regulator. Most of the supply domains have flexible voltage and could be adjusted or supplied with a different regulator depending on each application needs Table 4. i,MX53 Voltage Domain Supplies with the MC34709 I.MX53
MC34709 Nominal Voltage
Units
Associated Regulator
fARM ≤ 167 MHz
0.90
V
SW1A/B
1.1
2000
mA
5
fARM ≤ 400 MHz
0.95
V
fARM ≤ 800 MHz
1.10
V
fARM ≤ 1000 MHz
1.25
V
fARM ≤ 1200 MHz
1.35
V
Stop Mode
0.85
V
Peripheral supply Voltage
1.30
V
SW2
1.3
1000
mA
1
Stop Mode
0.95
V
Memory array voltage
1.30
V
i.MX Internal
-
-
-
-
Stop Mode
0.95
V
VDD_DIG_PLL
1.30
V
i.MX Internal
-
-
-
-
VDD_ANA_PLL
1.80
V
i.MX Internal
-
-
-
-
NVCC_CKIH
1.80
V
VPLL
1.8
50
mA
2
NVCC_LCD
1.875 or 2.775
V
VDAC
2.775
250
mA
10
NVCC_JTAG
1.875 or 2.775
V
SW5
1.8
1000
mA
8
NVCC_LVDS
2.5
V
VGEN2
2.5
250
mA
3
DDR2
1.8
V
SW4A/B
1.8
1000
mA
6
PVDDR2
1.2
V
1.2
LV-DDR2
1.55
V
1.55
LV-DDR2
1.5
V
1.5
DDR3
1.5
V
1.5
3.15
V
1000
mA
VDDGP
VCC
VDDA VDDAL1
0111 Current Units DDR3
PUS
NVCC_LVDS_BG NVCC_EMI_DRAM
VDD_FUSE
EXT DC-DC
3.2
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
13
Interfacing the i.MX53 with the MC34709
Table 4. i,MX53 Voltage Domain Supplies with the MC34709 (continued) I.MX53
MC34709 Nominal Voltage
NVCC_NANDF NVCC_SD1 NVCC_SD2
(UHVIO) supplies UHVIO_L UHVIO_H UHVIO_UH
1.875 2.775 3.3
Units
V
Associated Regulator
0111 Current Units DDR3
PUS
SW5
1.8
1000
mA
8
VUSB
3.3
100
mA
Note (4)
SW5
1.8
1000
mA
8
VDAC
2.775
250
mA
10
NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_CSI TVDAC_DHVDD TVDAC_AHVDDRGB
2.775
V
1.875 or 2.775
V
1.3
V
VSRTC
1.3
0.05
mA
ON
1.875 or 2.775
V
SW5
1.8
1000
mA
8
USB_H1_VDDA25
2.5
V
VUSB2
2.5
250
mA
9
USB_OTG_VDDA25
2.5
V
NVCC_XTAL
2.5
V
USB_H1_VDDA33
3.3
V
VUSB
3.3
100
mA
Note (4)
USB_OTG_VDDA33
3.3
V
VDD_REG
2.5
V
VGEN2
2.5
250
mA
3
VP
1.3
V
i.MX Internal
-
-
-
-
VPH
2.5
V
VGEN2
2.5
250
mA
3
NVCC_SRTC_POW NVCC_RESET
Notes
4.Turn on via I2C/SPI
AN4604 Application Note Rev. 2.0 5/2013 14
Freescale Semiconductor
Interfacing the i.MX53 with the MC34709
5.1
Interfacing Block Diagram
The following block diagrams show all the power connections needed for the interface, as well as how the communication signals must be connected between the i.MX53 and MC34709.
MC34709
i.MX53
SW1A/B
VDDGP
SW2
VCC
SW4A/B
NVCC_EIM_DRAM USB_H1_VDDA33
VUSB
USB_OTG_VDDA33 NVCC_RESET NVCC_JTAG
SW5
NVCC_NANDF
5.0V
NVCC_CKIH NVCC_CSI
VPLL Buck Regulator or Battery
BP
VDD_ANA_PLL NVCC_RESET VDD_DIG_PLL
FB
VDDA VDDAL1 VP VDD_REG
VGEN2
NVCC_LVDS NVCC_LVDS_BG VPH NVCC_XTAL USB_H1_VDDA25 USB_OTG_VDDA25
VUSB2
TVDAC_DHVDD TVDAC_AHVDDRGB
VDAC
NVCC_LCD NVCC_SRTC_POW
VSRTC
NVCC_SD1 NVCC_SD2 NVCC_KEYPAD NVCC_EIM_MAIN NVCC_EIM_SEC NVCC_PATA NVCC_GPIO NVCC_FEC
Peripherals External DC/DC regulator
3.2V
CODEC HDMI ETHERNET 3G PCIe RS-232
Figure 5. i.MX53 Power Interface with MC34709 Block Diagram AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
15
Interfacing the i.MX53 with the MC34709
SWx
MC34709
i.MX53 POR_B
RESETBMCU
RESET_IN_B
RESETB
PMIC_STBY_REQ
STANDBY POWERON1
PMIC_ON_REQ SWx
WDI
GPIOX_X
INT
GPIOX_X SWx
UID
USB_OTG_ID
CLK
KEY_COL3 KEY_ROW3
MISO/SDA
CLK32MCU
CLK
PUMS1 PUMS2
VDC
PUMS3 PUMS4 PUMS5
Figure 6. i.MX53 Control Interface with MC34709 Block Diagram
AN4604 Application Note Rev. 2.0 5/2013 16
Freescale Semiconductor
Interfacing the i.MX53 with the MC34709
5.2
Interface Power-up Sequence
The resulting power-up sequence of the interface is shown in the following figure
NVCC_SRTC_POW
VSRTC
VCC
SW2
NVCC_CKIH
VPLL VGEN2
VPH VDD_REG NVCC_LVDS NVCC_LVDS_BG
VDD_ANA_PLL VDD_DIG_PLL
VDDA VDDAL1 VP NVCC_RESET
VDDGP
NVCC_EMI_DRAM
NVCC_SD1 NVCC_SD2 NVCC_PATA NVCC_KEYPAD NVCC_GPIO NVCC_FEC NVCC_EIM_MAIN NVCC_EIM_SEC
NVCC_LCD NVCC_JTAG NVCC_NANDF NVCC_CSI NVCC_RESET
USB_H1_VDDA25 USB_OTG_VDDA25 NVCC_XTAL
TVDAC_DHVDD TVADC_AHVDDRGB
USB_H1_VDDA33 USB_OTG_VDDA33
SW1A SW1B
SW4A SW4B VREFDDR
3.2 V DC-DC Converter
SW5
VUSB2
VDAC
VUSB*
* VUSB is turned on via I2C/SPI
Figure 7. Power-up Sequence Flow Chart
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
17
Application Example
6
Application Example
The following schematic is simplified application example for interfacing the MC34709 with an i.MX53 processor. note that this schematic only includes the block related to the power section as well as power management controlling signals. i.MX53 - POWER A1 A2 A11 A13 A18 A22 A23 B1 B11 B13 B18 B23 C12 C20 C21 D19 E19 F19 F20 F21 F22 G7 G19 H8 H10 H12 J9 J11 J13 J15 J17 J20 K8 K10 K12 K14 K16 K21 L7 L9 L11 L13 L15 M8 M10 M12 M14 M16 N9 N11 N13 N15 P7 P8 P10 P12 P14 P16 P21 R9 R11 R13 R15 R17 R20 T8 T10 AA11 T14 T16 U15 U19 V15 V18 V19 V20 V21 V22 W19 Y14 Y15 Y19 AA15 AA20 AA21 AB1 AB18 AB23 AC1 AC2 AC18 AC22 AC23 AB22 AB2
GND1 GND5 GND2 GND3 GND4 GND6 GND7 GND22 GND23 GND24 GND25 GND26 GND27 GND28 GND29 GND30 GND31 GND32 GND33 GND34 GND35 GND37 GND36 GND40 GND38 GND39 GND46 GND41 GND42 GND43 GND44 GND45 GND52 GND47 GND48 GND49 GND50 GND51 GND56 GND57 GND53 GND54 GND55 GND62 GND58 GND59 GND60 GND61 GND66 GND63 GND64 GND65 GND72 GND73 GND67 GND68 GND69 GND70 GND71 GND79 GND74 GND75 GND76 GND77 GND78 GND83 GND80 GND8 GND81 GND82 GND84 GND85 GND86 GND87 GND88 GND89 GND90 GND91 GND92 GND93 GND94 GND95 GND9 GND10 GND11 GND12 GND13 GND16 GND17 GND19 GND18 GND20 GND21 GND15 GND14
VDDGP3 VDDGP1 VDDGP2 VDDGP5 VDDGP6 VDDGP4 VDDGP9 VDDGP7 VDDGP8 VDDGP11 VDDGP12 VDDGP10 VDDGP15 VDDGP13 VDDGP14 SVDDGP VCC1 VCC2 VCC3 VCC4 VCC5 VCC6 VCC7 VCC11 VCC8 VCC9 VCC10 VCC16 VCC12 VCC13 VCC14 VCC15 VCC20 VCC17 VCC18 VCC19 VCC25 VCC21 VCC22 VCC23 VCC24 VCC30 VCC31 VCC26 VCC27 VCC28 VCC29 VCC33 VCC32 SVCC VDDA1 VDDA3 VDDA2 VDDA4 VDDAL1 VDD_REG
C9
C10
C11
C12
C13
C14
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
C18
C19
C20
0.22UF
0.22UF
47UF
GND C17
C16
0.22UF
0.22UF
VDDGP
To SW1A/B @1.1V 2A max
VCC_1V3
To SW2 @1.3V 1A max.
C15 22UF
GND H13 J14 J16 K13 K15 L14 L16 M9 M11 M13 M15 N8 N10 N12 N14 N16 P9 P11 P13 P15 R8 R10 R12 R14 R16 T7 T9 T11 T13 T15 T17 U8 U18 B22
Place on TOP TP1
SVDDGP
C21
C22
C23
C24
C25
C26
C27
C28
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
10UF
GND C29
C30
C31
C32
C33
C34
C35
C36
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
0.22UF
47UF
To VGEN1 @1.3V 250mA max
VDDA_1V3
GND
C37
C38
C39
C40
C41
0.22UF
0.22UF
0.22UF
10UF
22UF
GND
To VGEN1 @1.3V 250mA max
VDDAL_1V3
Place on TOP TP2
C42
C43
0.22UF
0.22UF
SVCC
G12 M7 M17 U12
IMX_VDDA_1V2 GND
VDD_REG_2V5
F9
C44
G18
0.1UF
22UF DDR_1.5V
NVCC_EMI_DRAM1 NVCC_EMI_DRAM2 NVCC_EMI_DRAM3 NVCC_EMI_DRAM4 NVCC_EMI_DRAM5 NVCC_NANDF NVCC_EIM_MAIN2 NVCC_EIM_MAIN1 NVCC_EIM_SEC NVCC_RESET NVCC_SD1 NVCC_SD2 NVCC_PATA NVCC_LCD1 NVCC_LCD2 NVCC_CSI NVCC_FEC NVCC_GPIO NVCC_JTAG NVCC_KEYPAD VDD_FUSE NVCC_CKIH VDD_ANA_PLL VDD_DIG_PLL NVCC_XTAL
FASTR_ANA FASTR_DIG
H18 K17 N17 P17 T18 T12
To VGEN2 @2.5V 250mA max.
C45
GND
NVCC_SRTC_POW
GND
G8 G10 G11 H7 H9 H11 J8 J10 J12 K7 K9 K11 L8 L10 L12 B2
To SW4 @1.5V 1A max.
GND
C46
C47
C48
C49
C50
C51
0.1UF
0.1UF
0.01UF
0.01UF
0.01UF
22UF
1.8V GND
U9 U10 U7
3.3V 3.3V 3.3V
H16 H15 H14 N7 J6 J7 R7 F11 F8 G9 F7
1.8V 3.3V 3.3V 3.3V 2.775V 2.775V 1.8V 3.3V 3.3V 1.8V 3.3V VDD_FUSE
DCDC_3V2
To DCDC_3V2 @3.2V 2A max.
C54
C55
C56
C57
C58
C59
C60
C61
0.1UF
0.1UF
0.1UF
0.1UF
0.1UF
0.1UF
0.1UF
0.1UF
GND 2V775_VDAC
G15 G17
1.8V
G16 H17
1.8V
ANA_PLL_1.8V DIG_PLL_INT
V12
2.5V
IMX_NVCC_XTAL
V11
1.2V
C62
C63
0.1UF
0.1UF
To VDAC @2.775V 250mA max. To SW5 @1.8V 1.0A max.
GND E18 E17
FASTR_SIG FASTR_SIG
1V8_SW5 C64
C65
C70
C71
0.22UF
22UF
0.1UF
22UF
PCIMX535DVV1C GND
GND
GND
C67
C68
C52
C53
0.1UF
0.1UF
0.1UF
0.1UF
GND GND 1V8_VPLL
NVCC_XTAL_2V5 L2 1
C66 2
120OHM
0.1UF
C69 0.1UF
To VPLL @1.8V 50mA max.
GND
GND
NVCC_SRTC
C72 0.1UF GND
Figure 8. i.MX53 Voltage Domain Distribution AN4604 Application Note Rev. 2.0 5/2013 18
Freescale Semiconductor
Application Example
U27C VCC_BP VCC_BP
F15
SWBSTIN
G14
SW1IN1 SW1IN2
SWBSTFB
SW1 0.650-1.4375V 2000mA Buck
VCC_BP GND
P7
SW5IN
C204 C203 0.1UF
4.7uF
R8
1V8_SW5 1UH
(PUS_8) 2
SW5LX
SW1BLX
SW1FB
SW5 1.200-1.85V 1000mA Buck
SW5LX
GND
1
C201 0.1UF 1V1_SW1(PUS_5)
SW1ALX H15
C200 4.7uF
SWBST 5.00, 5.05, 5.10, 5.15V 380mA Boost
SWBSTLX
P11 P10
R9
SW1LX
BRL3225 2 L29
1
GND
C207
C208
22UF
22UF
2V775_VDAC
R11 R34 200K TP63
P13 GND
SW1PWGD SW1CFG
K10
VCOREDIG
L12 VCOREDIG for Parallel Single Phase Mode VCORE for Parallel Dual Phase Mode
L16 C202
VCC_BP
22UF
SW2IN1
M8
VCC_BP
P5
GND
R6
SW4ALX GND
1UH 2
SW4B 1.200-1.85, 2.5, 3.15V 500mA Buck
SW4BLX
L14 1
C210 0.1UF
4.7uF
C199 0.1UF
1V5_SW4
(PUS_6)
C209
SW4BIN
C198 4.7uF
B11
SW5FB
SW2 0.650-1.4375V 1000mA Buck
GND
1V3_SW2
1UH
SW2LX1
A10
1
SW2LX
(PUS_1) 2
L17
TP64
C205
DCDC_3V2
C230
P2
VCC_BP
SW4BFB
22UF
SW2PWGD
P4 GND
SW2FB
SW4AIN
C188
SW3IN1
C187 0.1UF
4.7uF
SW4A 1.200-1.85, 2.5, 3.15V 500mA Buck
GND
R3
SW4ALX
22UF R26 200K
A13 VCC_BP
GND
E14
SW3 0.650-1.4375V 500mA Buck
SW4ALX SW3LX1
N2
VCOREDIG
A12
D15
SW4AFB
M6
SW4CFG
SW3FB
MC34709
B13 GND
VCOREDIG for Parallel Single Phase Mode
PC34709VK
U27B VCC_BP 1V5_SW4
J14 DDR_VREF
K15
LDOVDD
0.1UF
C226 0.1UF
C227
J15
Support source for VUSB2,VDAC and VGEN2
VREFDDR VREFDDR
C228 1uF
N15
VINREFDDR
MC34709
0.6-0.9V 10mA LDO VHALF
VCC_BP
GND
VUSB2 2.5, 2.6, 2.75, 3.0V
4
VCC_BP Q8
3
NSS12100XV6T1G
P14
VUSB2DRV
6 5 2 1
R14
VUSB2
65mA INT. 350mA EXT. PNP
L15 C218 2.2UF
1V8_VPLL
(PUS_2)
50mA LDO
VPLL
K14
GND
1V8_SW5
VCC_BP
H14
VINGEN1
GND 1V3_VGEN1
H12
(PUS_8)
VGEN1 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55V
VDAC LDO 2.5, 2.6, 2.7, 2.775V
4
C222 2.2UF
VUSB2DRV
VINPLL
VDACDRV VDAC
VGEN1
250mA INT
N14 VDACDRV
D1 D2 C206 2.2UF
VINUSB VUSB
100mA INT.
VGEN2 LDO 2.5, 2.7, 2.8, 2.9, 3.0, 3.1, 3.15, 3.3V,
(PUS_10)
50mA INT. 250mA EXT. PNP
VCC_BP
4
VUSB LDO 3.3V
GND
2V775_VDAC
C224 2.2UF
VGEN2DRV VGEN2
L14
VGEN2DRV
GND Q16 NSS12100XV6T1G
3
2V5_VGEN2
(PUS_3)
M15
1 2 5 6
5V_MAIN
3V3_VUSB
GND
250mA
C231 2.2UF
(PUS_9)
Q17 NSS12100XV6T1G
3
P15
C221 2.2UF
1 2 5 6
2V5_VUSB2
(PUS_9)
VPLL LDO 1.2, 1.25, 1.5, 1.8V
C220 2.2UF
GND VCC_BP
VCC_BP
VCC_BP
GND
PC34709VK
GND
For BUSB2
For VDAC
C229 0.1UF
C223 0.1UF GND
For VGEN2 C225 0.1UF GND
Figure 9. MC34709 Power Supplies Schematic
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
19
Application Example
RESET
RESET_IN_B 14
SW3 2
1.8V
1
TL1015AF160QG DNP
1V8_SW5
DCDC_3V2
GND
C132 14
R36 0 DNP
POR_B
0.1UF
U2C
GND
R221 4.7K
i.MX53 - CONTROL PINS
C131
R222 4.7K
1.8V
1V8_SW5
BOOT_MODE0 BOOT_MODE1
C18 B20
TEST_MODE
D17
GND
RESET_IN POR BOOT_MODE0 BOOT_MODE1
NVCC_RESET
A21 C19 GND
NVCC_JTAG
0.1UF R37 4.7K
TEST_MODE
NVCC_SRTC
PMIC_ON_REQ CKIH1 CKIH2
TP3 TP12
B21 D18
TP4
R42 49.9 DNP
CKIH1 CKIH2
NVCC_CKIH
TVDAC_1
14
PMIC_STBY_REQ PMIC_ON_REQ
NVCC_GPIO
W15 W14
PMIC_STBY_REQ
R43 49.9 DNP
GND
"LCD" A
AC10 AB10 SH36
D13 BLUE
ECKIL CKIL
NVCC_SRTC
D9 A8 B8 A7 E9 C9
JTAG_TCK 16 JTAG_TMS 16 JTAG_TDI 16 JTAG_TDO 16 JTAG_nTRST 16
GPIO_0 GPIO_1 GPIO_2 GPIO_3 GPIO_4 GPIO_5 GPIO_6 GPIO_7 GPIO_8 GPIO_9 GPIO_10 GPIO_11 GPIO_12 GPIO_13 GPIO_14
NVCC_GPIO
GPIO_16 GPIO_17 GPIO_18
NVCC_KEYPAD
GPIO_19
NVCC_XTAL
EXTAL XTAL
C8 B7 C7 A6 D8 A5 B6 A4 B5 E8
DCDC_3V2
GPIO_0(CLK0) 9,13 DISP0_CONTRAST 11,13
I2C3_SDA
R41 10K GND
I2C3_SCL 11 SATA_CLK_GPEN
10
SYSTEM_DOWN (GPIO_5) 6,14
11 PCLOCK
WDT_OUTPUT
W16 V17 W17 AA18 W18
DCDC_3V2
R168 10K
C6 A3 D7 B4
AB11 AC11
13
WDT_OUTPUT 14
SPDIF_TX
13
MX53_EXTAL MX53_XTAL R45 10M DNP
PCIMX535DVV1C
C
Y1
0 LCD_LED
R38 0 DNP JTAG_MOD R40 4.7K
TP5 14
JTAG_TCK JTAG_TMS JTAG_TDI JTAG_TDO JTAG_TRST JTAG_MOD
14
1
4 GND
ECKIL
2
3 24MHz
GND R176 1.0K
C133
C134
18pF
A
GND
18pF GND
Figure 10. i.MX53 Control Signals
AN4604 Application Note Rev. 2.0 5/2013 20
Freescale Semiconductor
Application Example
2V5_VUSB2
U27A R396 10.0K
R397 10.0K VCC_BP
13 13
H6
PORT_ID0
ADIN9 BP
J5
PORT_ID1
ADIN10
J6
General Purpose ADCs
ADIN11
NC_1
USB/Audio
NC_2 2.2UF
GND
K6
C271
TOUCH_X0
K5
13
TOUCH_X1
L4
13
TOUCH_Y0
L6
13
TOUCH_Y1
L3
13
TSREF
NC_3
TSX1/ADIN12 TSX2/ADIN13
GPIOVDD GPIOLV0
A4
SPIVCC GPIOLV1
B2 I2C1_SCL I2C1_SDA
CS
B1
SPI/I2C Interface
CLK
A2
GPIOLV2 GPIOLV3
MOSI CLK32K
Control Logic
CLK32KMCU
GND
CLK32KVCC
VCOREDIG
VSRTC L1
0
1.5V
VCOREDIG
J1
2.775V
VCORE
J2
1.2V
PWM1 16 1.8V logic level
A7
C8
1V8_SW5
C7 B7 B9 E10
E3 G3
Output, 0~1V2_RTC ECKIL
F3
6
3V3_VUSB
H2
1V3_RTC C262
VDDLP
0.1UF
Reference Generation
VCOREDIG VCORE
K1
REFCORE
A8
MISO
B3
DNP VCORE R149
B15
TSY2/ADIN15
1V8_SW5
13,16
A14
TSY1/ADIN14
PWM2
13,16
R1
Touch Screen Interface
PWM1
VCOREDIG
N1
GND
VCOREREF
Output, 0~SPIVCC DCDC_3V2
C266 C267 C268 C270 VDDLP 0.1UF 1uF
1uF
100pF R226 100K
A 1
MBR0520LT1G
U30
VOUT
CE
5 2
C275 0.1UF
NCP4682 TAB_GND GND
D22 C
VIN
3
GND A
C
LICELL
4 D23
MBR0520LT1G
WDI
C259 0.1UF
C274 0.1UF
3.3V GPIO9 (NVCC_GPIO)
Coincell
M2
Battery Backup
SDWN RESET
C D24
A
BP
GND
RESETBMCU
MBR0520LT1G
INT
GND
STANDBY GLBRST PWRON1 PWRON2 G1
XTAL2
E1
PUMS1
Crystal Oscillator
PUMS2
XTAL1
PUMS3
QZ2 1
PUMS4
2
PUMS5 32.768KHZ
ICTEST
C258
C257
15pF
15pF
K3
WDT_OUTPUT
D6
SYSTEM_DOWN (GPIO_5) RESETB
B5 D5
RESETBMCU
B4
PMIC_INT
P1
STANDBY
PMIC_STBY_REQ
A5
GLBRST
A6
PWNON1
E5
PWRON2
G6
1
PUMS1
G5
1
PUMS2
F6
1
F5
0
PUMS4
E6
0
PUMS5
VCOREDIG
PUMS3
Power Up Mode (DDR3)
A9 GND
MC34709
VCOREDIG DNP R151 SH37
0
R150 DNP 0
PC34709VK GND 0
GND PMIC_ICTEST
POWER ON/OFF
13
RESET SW7 2
1
GLBRST
PWRON1/2 - Pullup to VCOREDIG (1.5V) TL1015AF160QG
1V3_RTC 5
1
VCC
4
GND
GND
PMIC_ON_REQ
2 PWRON2
1V8_SW5
U7
R229 68K
1.3V GPIO (NVCC_SRTC_POW)
R227 68K
3 RESETBMCU
NC7SP125P5X
POR_B
GND
RESET_IN_B
SW6 C272 PWNON1
2
1
TL1015AF160QG
RESETB
D21 BAT54A-7-F 1
GND
0.1UF 3
16
GND
2
JTAG_nSRST
Power Up Sequence: 0) VSRTC 1) SW2 2) VPLL 3) VGEN2 4) SW3 5) SW1A/B 6) SW4A/B 7) VGEN1, SW5 8) VUSB2, VUSB 9) VDAC
GND
GND
SW1VSSSNS GNDSW2
GNDSW1B1
GNDSW4B GNDSW4A GNDSW1A1
GNDSW5
GNDSWBST
GNDSW3 D14
R13 B10
P12
P6 P3 P9
P8
F14
GNDREG1 GNDREG2 GNDREF1 GNDREF2 M14 J12 N9 B12
GNDSPI GNDCORE GNDREF GNDUSB GNDGPIO GNDRTC GNDCTRL
GNDADC
A3 H1 M1 C1 C9 F1 B6
SUBSLDO SUBSGND SUBSPWR SUBSPWR3 SUBSPWR2 SUBSPWR1_8 SUBSPWR1_7 SUBSPWR1_6 SUBSPWR1_5 SUBSPWR1_4 SUBSPWR1_3 SUBSPWR1_2 SUBSPWR1_1
H5
K8 K12 F10
H10 J8 K9 G10 E11 J9 H9 H8 G9 G8 F9 F8 E8
SUBSREF SUBSANA1 SUBSANA2
U27D
PC34709VK
Figure 11. MC34709 System/Control signals If an external battery charger is required, it is recommended to use a charger with power path management which isolates the battery from the system node while charging. The main system voltage from the charger is connected directly to the BP node while the external charging voltage and the battery are connected on the charger’s end.
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
21
Migrating from MC34708 to MC34709
7
Migrating from MC34708 to MC34709
For customers migrating from the MC34708 platform to the MC34709 a very low design effort is required due to the high compatibility system between the to devices. Table 5 shows the main difference between both power management devices. Table 5. MC34708 and MC34709 difference Features
MC34708
MC34709
Power control logic with processor interface and event detection
Yes
Yes
Single SPI/I2C bus for control & register access
Yes
Yes
Real time clock and crystal oscillator circuitry with coin cell backup
Yes
Yes
Support for external secure real time clock on a companion system processor IC
Yes
Yes
Four-wire resistive touchscreen interface
Yes
Yes
Seven External ADC inputs.
Yes
Yes
Dedicated ADC channel for battery voltage sensing
Yes
No
Dedicated ADC channel for battery current sensing
Yes
No
Dedicated ADC channel for BP voltage
Yes
No
Dedicated ADC channel for die temperature
Yes
Yes
Dedicated ADC channel for VBUS voltage. (USB device detection)
Yes
No
Dedicated ADC channel for coin cell voltage
Yes
Yes
Five Buck regulator
Yes
Yes
One Boost regulator
Yes
Yes
Eight LDO Regulators with internal and external pass devices.
Yes
Yes
USB/UART/Audio switching for mini-micro USB connector
Yes
No
Four general purpose low voltage I/Os with interrupt capability
Yes
Yes
Two PWM outputs
Yes
Yes
Two General purpose LED drivers
Yes
No
Control Logic
10-bit ADC
Power Supplies(5)
Auxiliary Circuits
AN4604 Application Note Rev. 2.0 5/2013 22
Freescale Semiconductor
Migrating from MC34708 to MC34709
Table 5. MC34708 and MC34709 difference (continued) Features
MC34708
MC34709
206 MAPBGA - 8.0 x 8.0 mm - 0.5 mm pitch
Yes
No
206 MAPBGA - 13 x 13 mm - 0.8 mm pitch
Yes
No
130 MAPBGA - 8.0 x 8.0 mm - 0.5 mm Pitch
No
Yes
Package
Notes: 5.All Power supplies have the same voltage and current rating on both devices.
Firmware portability is straightforward, since register maps are bit to bit compatible. However, the MC34709 uses a reduced set of registers which eliminate all registers/bits related to the functionality not supported on the MC34709, therefore care must be taken that RESERVED registers/bits are not addressed on the firmware when porting the application to the MC34709.
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
23
Migrating from MC34708 to MC34709
7.1
MC34709 layout example
The following is a layout example of the MC34709 implemented on a four layer board with all components on the top layer and using standard 8.0 mil vias.
2
16
BH2 VSWBST_SENSE1
J122
J125
BH1
12
2
15
11
1
D20 C A 6
8
1
C A D23 R141 C A R142 C75 D18 C A R140 C76 D19 C A R143 C74 D24 C A D22 C A D21
D25 C A
1
5 J124
2 8
1
R138 C77
R160
C72
R156
R157
R139 C73
R161
R162
R164
R163
R165
1
1 J68 J120 J3
8
1
J2
1 R32 1
R136 C71
R31 R34
SWBSTLX1 C34
C26 C14
+
D3
A
+
+
C
6
R121 C62
2 1
5
C60
1
R130 R57
1
C50 C38 C39 Y1 R64 1
C33
1
J64
C53
TSREF1
J37
J69
C45
C7
6
R55
5
C8
2
R126
1
R59
1
1
2
C57
R52
1
C41 R58 R127
J58 CLKVCC1
19
20
SW3LX1
L10 D9 R48 R47 GNDSW4A1 D10 1C66 C6 1 U1 GNDSW3 A BC D16 R124 J21 DE C59 C28 FG R65 1 C3 1 HJ C32 KL C30 C49 C40 Q3 M C31 C23 C46 VGEN2 VHALF1 PN C22 Q4 C44 C21 C20 D11R VREFDDR1 VDAC1 C58 D13 D7 C37 R49 C15 L7 R53 C27 C13 D12 1 D8 C9 TSY2 LDOVDD1 L8 L9 J52 J56 VUSB2 1 Q6 C16 B 1 1 1 1 1 1 B SW4ALX1 C Q5 C19 GNDSWBST1 GNDSW4B1 1 C25 2 2 SW4BLX1 R125 R60 R128 VPLL1 Q2 J32 J43 1 J47 1 BAT1 1 1 Q1 1 J78 J79 J77 1 R41 1 J81 R44 SW1ALX1 SW1BLX1 1 R43 1 C R40 L2 L3 1 R38 R42 R35 J76 R37 A
J40
J65
ADIN11
R66 R67
R152
R153
PWRON2
1 J25
ADIN9
GNDSWBST2 SW3FB2 L5
C11
1
2
SW2LX1
R56 R129
GNDSW2 VUSB1
6 J123
J118
SW2FB1
J30 1
ADIN10
R46
1
PWRON1
1
J31
GNDSW1B1
VSRTC1
1 1 INT1
SW4 5
REFCORE1
BP_SENSE1
R16 L4 R15 R122 R51 C61 R14 C64
3 U5
J74 1
STANDBY1
PWM1
GLBRST1 J29
1
1
2 PWM2
4
J67
J62 1
SW3
SW2
R150 5
C80
2
TP_XTAL2
VDDLP1
R151 C84
1
A
VCORE1 J60 1
C79 R145 R144 C78 C68
C86
1
1 R33
WDI1
2
C85
L12
Q7
C D4
TP_XTAL1
C67
5 J121
A
VCOREDIG1
1 36 37 R131 48 4 3
R135 R137
S2
S4
Q8
C81 13 12 U6
1 Y2 2 1
A D5
BH5
L11
S1
C
C90
D17
1
S3
1 C
4 U4 5
RESETBMCU1
24 25
C91 C89 C87 R132 C88 A
R133 C69
+
C94
C95
5 TP1
F1
C92
U7 3
4 U2 5
R147 R146 R148 R149
C93 R155 R154 4
C82 R158 R159
R134 C70
4 U3 5 C83
BH6
SW1FB1
GNDSW5
TSY1
GNDSW1A1
SW5LX1
C29
R45
2
1
R36
KIT34709VKEVBE
R39
2012 FREESCALE
TSX2 TSX1 J80
S/N 1
1
1
J72
J117
1
9
16
700-XXXXX REV X
J73
J71
J70 1
20
19 J66
SW1
SCH-XXXXX REV X
1
8
1
BH4
STANDOFFS REQUIRED
BH3
Figure 12. KIT34709VKEVBE FAB Drawing
AN4604 Application Note Rev. 2.0 5/2013 24
Freescale Semiconductor
Migrating from MC34708 to MC34709
Figure 13. KIT34709VKEVBE Top Layer
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
25
Migrating from MC34708 to MC34709
Figure 14. KIT34709VKEVBE Layer 2
AN4604 Application Note Rev. 2.0 5/2013 26
Freescale Semiconductor
Migrating from MC34708 to MC34709
Figure 15. KIT34709VKEVBE Layer 3
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
27
Migrating from MC34708 to MC34709
A VER 83372-071
Figure 16. KIT34709VKEVBE Bottom Layer
AN4604 Application Note Rev. 2.0 5/2013 28
Freescale Semiconductor
References
8
References Document Description
URL
MC34709
Data sheet
http://www.freescale.com/files/analog/doc/data_sheet/MC34709.pdf
IMX53AEC
Data sheet
http://www.freescale.com/files/32bit/doc/data_sheet/IMX53AEC.pdf
IMX53IEC
Data sheet
http://www.freescale.com/files/32bit/doc/data_sheet/IMX53IEC.pdf
IMX53CEC
Data sheet
http://www.freescale.com/files/32bit/doc/data_sheet/IMX53CEC.pdf
IMX53UG
User’s Guide
http://www.freescale.com/files/32bit/doc/user_guide/MX53UG.pdf
Freescale.com Support Pages
URL
i.MX53 Product Summary Page
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX53_FAMILY
Analog Home Page
http://www.freescale.com/analog
Automotive Home Page
http://www.freescale.com/automotive
AN4604 Application Note Rev. 2.0 5/2013 Freescale Semiconductor
29
Revision History
9
Revision History Revision
Date
Description of Changes
1.0
1/2013
• Initial release
2.0
4/2013
• Annotate tables 3 and 4 • Update figures 4 and 7
AN4604 Application Note Rev. 2.0 5/2013 30
Freescale Semiconductor
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use Freescale products.
Home Page: freescale.com
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based
Web Support: freescale.com/support
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
on the information in this document.
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.
Document Number: AN4604 Rev. 2.0 5/2013