Antony van der Ent et al. 2013

32 downloads 0 Views 179KB Size Report
hyperaccumulators in Sabah (Malaysia), a tropical region with over 3500 km2 of ... have taken place in the US, Italy and South Africa (Robinson et al., 1997a and b). ... The analytical package consisted of Ni, Co, Cr, Cu, Zn, Mn, Fe, Mg, Ca, Na, K, S ... The soil samples (300 mg) were digested using freshly prepared Aqua ...
Discovery  of  nickel  hyperaccumulators  from   Kinabalu  Park,  Sabah  (Malaysia)  for  potential   utilization  in  phytomining   Antony  van  der  Ent*,  David  Mulligan  &  Peter  Erskine   Centre  for  Mined  Land  Rehabilitation,  Sustainable  Minerals  Institute,  The  University  of   Queensland,  Brisbane,  PhD  Research  Scholar,  +61  (7)  3346  4055,  [email protected]   Centre  for  Mined  Land  Rehabilitation,  Sustainable  Minerals  Institute,  The  University  of   Queensland,  Brisbane,  Director,  +61  (7)  3346  4005,  [email protected]   Centre  for  Mined  Land  Rehabilitation,  Sustainable  Minerals  Institute,  The  University  of   Queensland,  Brisbane,  Senior  Research  Fellow,  +61  (7)  3346  4065,  [email protected]   ABSTRACT   Ultramafic   soils   are   naturally   enriched   in   nickel   and   form   major   mining   targets   for   this   metal   in   tropical  regions  such  as  Indonesia  and  New  Caledonia.  These  soils  also  host  unique  plants  termed   nickel  hyperaccumulators  that  are  able  to  sequester  and  accumulate  nickel  in  excess  of  0.1%  in  their   leaves.   Some   of   these   remarkable   plants   can   achieve   up   3%   in   leaves   and   this   observation   has   prompted  the  development  of  nickel  phytomining  technology,  which  aims  at  growing  such  plants   at   an   agricultural   scale   to   harvest   a   ‘nickel   crop’.   However,   nickel   hyperaccumulation   is   a   rare   phenomenon,   and   despite   the   knowledge   of   the   plant   diversity,   records   for   nickel   hyperaccumulators   in   Sabah   (Malaysia),   a   tropical   region   with   over   3500   km2   of   ultramafic   soils,   were   scant,   with   only   six   species   previously   known.   Identification   of   nickel   hyperaccumulators   is   necessary   to   facilitate   their   potential   utilization   in   nickel   phytomining.   In   this   study,   we   screened   for   nickel   hyperaccumulation   in   the   flora   of   Kinabalu   Park   in   Sabah,   and   discovered   nine   new   nickel  hyperaccumulator  species.  Some  of  these  are  among  the  strongest  known  globally  and  have   high   potential   for   utilization   in   future   phytomining.   The   results   also   show   that   nickel   hyperaccumulators   occur   on   soils   with   circum-­‐‑neutral   pH   and   relatively   high   DTPA   extractable   nickel  concentrations.           *Corresponding   author:   Sustainable   Minerals   Institute,   CMLR,   PhD   Research   Scholar,   The   University   of   Queensland,   St   Lucia   QLD   4072.   Phone:   +61   (7)   3346   4055.   Email:   [email protected]     Keywords:  nickel  hyperaccumulators,  phytomining,  Sabah.     INTRODUCTION     Ultramafic   soils   are   derived   from   ultramafic   bedrock   and   occur   all   around   the   world.   These   soils   are  naturally  enriched  in  certain  trace  elements,  mainly  nickel,  cobalt  and  chromium  and  are  hence   –1–  

primary   targets   for   nickel   mining   operations,   particularly   in   tropical   regions.   These   soils   are   considered   adverse   to   many   plants   species   because   of   the   high   concentrations   of   potentially   toxic   trace  elements  (mainly  nickel),  and  because  of  cation  imbalances  and  nutrient  deficiencies  (Brooks,   1987;   Proctor,   2003).   However,   some   plants   restricted   to   ultramafic   soils   have   evolved   to   accumulate  nickel  in  their  leaves  (and  other  tissues),  and  are  called  nickel  hyperaccumulators  when   having   in   excess   of   0.1%   nickel   in   their   leaves   (Reeves,   1992;   Van   der   Ent   et   al.,   2012).   This   phenomenon  is  rare,  and  known  from  around  450  plant  species  globally.  Nickel  hyperaccumulators   are   represented   in   many   different   plant   families,   although   on   a   global   scale   the   strongest   represented   are   the   Brassicaceae,   Euphorbiaceae   (inclusive   of   what   is   now   the   Phyllanthaceae),   Asteraceae,   Flacourtiaceae   (now   mostly   Salicaceae),   Buxaceae   and   Rubiaceae   (Reeves,   2006).   The   growth  forms  of  nickel  hyperaccumulators  in  tropical  regions  are  mainly  (large)  trees,  shrubs,  and   occasionally  climbers.       Table  1  Nickel  hyperaccumulators  previously  reported  from  the  region.     Hyperaccumulator  

Ni  %  (leaves)  

Occurrence  

Source  

Rinorea  bengalensis  

1.8  

Throughout  SE  Asia  

Brooks  &  Wither,   1977  

Rinorea  javanica  

0.2  

Throughout  SE  Asia  

Brooks  et  al.,  1977  

Phyllanthus  balgooyi  

1.6  

Dichapetalum  gelonioides  

2.7  

Psychotria  cf.  gracilis  

1.06  

Sabah,  Malaysia,   Philippines   Philippines  and  Sabah,   Malaysia   Sabah,  Malaysia  

Shorea  tenuiramulosa  

0.1  

Sabah,  Malaysia  

Hoffman  et  al.,  2003   Baker  et  al.,  1992   Reeves,  2003   Proctor  et  al.,  1989  

  The   high   concentrations   of   nickel   in   hyperaccumulators   prompted   the   development   of   phytomining   technology,   which   aims   at   growing   such   plants   on   an   agricultural   scale   to   produce   ‘bio-­‐‑ore’   from   harvested   biomass   (Chaney,   1983;   1998).   As   a   part   of   phytomining,   selected   hyperaccumulators   are   cultivated   on   ultramafic   soils,   followed   by   harvesting   of   the   biomass   and   incineration   to   generate   ash   (Brooks   et   al.,   1998;   Nicks   &   Chambers,   1998).   Successful   scientific   phytomining  trials  have  taken  place  in  the  US,  Italy  and  South  Africa  (Robinson  et  al.,  1997a  and  b).   However   tropical   regions   have   the   greatest   potential   for   phytomining   because   these   regions   (for   example  in  Indonesia  and  New  Caledonia)  have  some  of  the  world’s  largest  exposures  of  ultramafic   soils  and  also  form  the  habitat  of  native  nickel  hyperaccumulator  plants  (Van  der  Ent  et  al.,  2013).   The   ideal   ‘phytomining   crop’   has   high   biomass,   high   growth   rate   and   high   levels   of   nickel   hyperaccumulation   (Angle   et   al.,   2001;   Chaney   et   al.,   2007).   As   suggested   by   Reeves   (2003),   most   tropical   nickel   hyperaccumulators   are   relatively   fast-­‐‑growing   woody   shrubs   (1–5   m),   and   have   therefore  potential  for  rehabilitation  or  phytomining  on  ultramafic  soils.  This  therefore  presents  an   incentive  for  greater  screening  of  native  plants  in  their  habitat  in  tropical  regions  on  ultramafic  soils   aimed  at  finding  potential  candidate  nickel  hyperaccumulators  for  future  phytomining  operations.     Sabah  (Malaysia)  on  the  island  of  Borneo  has  very  extensive  ultramafic  soils  totaling  over  3,500  km2   (Proctor,  et  al.  1988)  and  this  region  is  known  for  high  species  richness  (Beaman  &  Beaman,  1990;   Beaman   et   al.,   2005).   Therefore,   the   region   could   have   a   high   potential   for   the   discovery   of   new   –2–  

nickel   hyperaccumulator   species.   Prior   to   this   project,   six   nickel   hyperaccumulators   were   known   from  Sabah  (Table  1).  The  objective  of  this  study  was  to  screen  the  flora  of  ultramafic  outcrops  in   Sabah,  mainly  Kinabalu  Park,  for  the  occurrence  of  nickel  hyperaccumulators.       METHODOLOGY     Study  area  and  field  collection     Plants   were   screened   for   nickel   hyperaccumulation   in   Kinabalu   Park   in   Sabah,   Malaysia.   In   the   field,   the   leaves   were   pressed   against   white   test   paper   impregnated   with   the   nickel-­‐‑specific   colorimetric-­‐‑reagent   dimethylglyoxime   (‘DMG’).   Approximately   5,000   plant   samples   have   been   tested  using  this  method.  All  samples  that  tested  visually  positive  were  re-­‐‑collected  (full-­‐‑grown  sun   leaves,  at  least  2  m  above  the  soil)  by  hand.  Fresh  plant  leaves  were  put  in  paper  bags  to  prevent   decomposition   before   transport   to   the   field   station.   Leaves   were   thoroughly   washed   with   demineralised   water   to   remove   soil   contamination   and   then   dried   at   70°C   for   5   days   in   a   drying   oven,   packed   for   transport   to   Australia   and   gamma   irradiated   at   Steritech   Pty.   Ltd.   in   Brisbane   following   Australian   Quarantine   Regulations.   Soil   samples   (near   the   base   of   the   plant   in   mineral   soil)  were  also  collected  for  analysis.       Chemical  analyses  of  plant  tissue  samples     Foliar  samples  were  crushed  and  ground,  and  a    subsample  digested  using  4  mL  concentrated  nitric   acid  (70%)  and  1  mL  hydrogen  peroxide  (30%)  in  a  microwave  oven,  and  diluted  to  45  mL  with  TDI   water   before   analysis   with   ICP-­‐‑AES   (Varian   Vista   Pro   II).   Quality   controls   included   NIST   and   internal  standards.  The  analytical  package  consisted  of  Ni,  Co,  Cr,  Cu,  Zn,  Mn,  Fe,  Mg,  Ca,  Na,  K,  S   and  P.       Chemical  analyses  of  soil  samples     The  soil  samples  (300  mg)  were  digested  using  freshly  prepared  Aqua  Regia  (4  mL  70%  nitric  acid   and  3  mL  37%  hydrochloric  acid  per  sample)  in  a  digestion  block  for  2  hours  and  diluted  to  45  mL   before  analysis  to  give  ‘pseudo-­‐‑total’  concentrations.  The  method  followed  Rayment  &  Higginson   (1992)   method   17B1.   Soil   pH   and   electrical   conductivity   (EC)   was   obtained   in   a   1:2.5   soil:   water   mixture.   Phytoavailable   nickel   (and   other   elements)   was   extracted   with   Diethylene   triamine   pentaacetic   acid   (DTPA)   according   to   Lindsay   &   Norvell   (1969),   but   with   modifications   from   Bequer  et  al.  (1995)  (excluding  TEA,  buffered  at  pH  5.3).  Exchangeable  cations  were  extracted  with   silver-­‐‑thiorea   (Dohrmann,   2006)   over   16   hours.   All   soil   extractions   were   undertaken   in   50   mL   polypropylene  (PP)  centrifuge  tubes.  Soil  samples  were  weighted  using  a  four-­‐‑decimal  balance  and   weights  recorded  for  correction  of  precise  weights  in  the  mass  balance  calculations.  Samples  were   agitated   for   method-­‐‑specific   times   using   an   end-­‐‑over-­‐‑end   shaker   at   400   rpm   and   subsequently   centrifuged  (10  minutes  at  4000  rpm)  and  the  supernatant  was  collected  in  10  mL  PP  tubes.  All  soil   samples  were  analysed  with  ICP-­‐‑AES  (Varian  Vista  Pro  II)  for  Ni,  Co,  Cu,  Zn,  Mn,  Fe,  Mg,  Ca,  Na,   K,  S  and  P.       RESULTS  AND  DISCUSSION     Discovery  and  confirmation  of  nickel  hyperaccumulators   –3–  

  Laboratory   analysis   with   ICP-­‐‑AES   confirmed   the   tentative   testing   in   the   field   with   dimethylglyoxime   (DMG).   Field-­‐‑testing   with   DMG-­‐‑paper   therefore   remains   a   reliable   quick   method  for  nickel  hyperaccumulator  reconnaissance.  The  levels  of  nickel  hyperaccumulation  (up  to   2.3   %   in   Cleistanthus   sp.   nov.)   are   amongst   the   highest   globally   (Table   2).   The   majority   of   these   species   are   relatively   fast-­‐‑growing   shrubs   with   a   high   potential   for   phytomining.   Nickel   hyperaccumulators  in  Sabah  appear  to  prefer  open,  bare  ultramafic  soils  that  are  difficult  for  most   plants   to   colonize.   In   such   habitats,   colonizing   plants   are   especially   susceptible   to   herbivores.   Therefore,  as  a  result  of  extremely  high  foliar  nickel  concentrations  (able  to  be  isolated  from  critical   plant   metabolic   functions   but   still   presented   as   toxic   at   whole   leaf   level),   the   capacity   to   hyperaccumulate  (in  this  case  nickel)  may  have  evolved  as  an  adaptation  to  reduce  insect  herbivory   (‘elemental   herbivory   defense’)   (Martens   &   Boyd,   1994;   Martens   &   Boyd,   2002).   However,   this   hypothesis  needs  to  be  further  tested  experimentally.       Table  2  Newly  discovered  and  confirmed  nickel  hyperaccumulators  in  Sabah.     Nickel   Ni   Accumulation   Nickel  %   pH   (pseudo-­‐‑ (DTPA   factor  (foliar   SPECIES   (foliar)   (soil)   total  soil   soil   nickel/soil   mg/kg)   mg/kg)   nickel)   Cleistanthus  sp.  nov.   1.1   7.0   2025   226   5.4   Flacourtia  kinabaluensis  

0.3  

7.3  

1216  

157  

2.4  

Glochidion  mindorense  

0.1  

7.4  

322  

146  

3.1  

Kibara  coriacea  

0.4  

5.8  

1510  

196  

2.6  

Mischocarpus  sundaicus  

0.3  

6.9  

2135  

69  

1.4  

Phyllanthus  balgooyi  

0.8  

6.2  

1455  

29  

5.5  

Phyllanthus  cf.  securinegoides  

2.3  

5.6  

1520  

110  

15.1  

Psychotria  sarmentosa  

0.7  

6.3  

2481  

90  

2.8  

Rinorea  bengalensis  

0.5  

6.8  

3401  

442  

1.4  

Rinorea  javanica  

0.6  

6.8  

2004  

122  

2.9  

Walsura  pinnata  

0.4  

6.9  

1015  

166  

3.9  

Xylosma  luzoniensis  

0.1  

6.7  

2863  

169  

0.3  

  Nickel  hyperaccumulator  soils  chemistry       Foliar   nickel   hyperaccumulation   is   generally   in   excess   of   (pseudo)-­‐‑total   soil   nickel   concentrations   (Table  2).  Compared  with  nickel  concentrations  in  ultramafic  soils  elsewhere  in  the  region  (Proctor,   2003;   Van   der   Ent   et   al.,   2013),   pseudo-­‐‑total   nickel   concentrations   in   Sabah   are   relatively   low.   However,   potential   plant-­‐‑available   nickel   (as   DTPA-­‐‑extractable)   concentrations   are   high.   The   soil   pH  is  circum-­‐‑neutral  (5.6  -­‐‑  7.4  with  mean  of  6.6).     CONCLUSIONS  AND  RECOMMENDATIONS     Given   that   only   approximately   10%   of   the   total   flora   has   been   screened,   it   is   expected   that   more   species  with  such  characteristics  will  be  recorded  in  the  near  future.  However,  the  fact  that  nickel   –4–  

hyperaccumulators   are   confined   to   ultramafic   soils,   which   are   principal   mining   targets,   indicates   that  these  species  are  potentially  under  threat  (Baker  et  al.,  2010).  The  nickel  mining  industry  could   capitalize   on   hyperaccumulator   species   that   might   occur   on   mine   leases   by   developing   phytomining  trials.  As  such,  this  could  offer  opportunities  to  reduce  the  legacy  of  strip-­‐‑mining  and   gain   income   from   progressive   rehabilitation.   Unfortunately,   as   of   yet,   phytomining   has   not   been   developed   or   widely   trialed   in   tropical   regions.   Indonesia,   in   particular,   has   a   high   potential   for   nickel   phytomining   because   of   the   concomitant   situation   of   large   swaths   of   ultramafic   soils,   rich   biodiversity  and  large-­‐‑scale  strip-­‐‑mining  creating  land  in  need  of  rehabilitation  (Van  der  Ent  et  al.,   2013).       ACKNOWLEDGEMENTS     We   wish   to   thank   Rimi   Repin,   Rositti   Karim,   Sukaibin   Sumail   (Sabah   Parks)   and   John   Sugau   and   Postar  Miun  (Sabah  Forestry  Department)  for  their  support.  We  would  like  to  express  our  gratitude   to   Sabah   Parks   for   their   support   and   thank   the   SaBC   for   granting   permission   for   conducting   research  in  Sabah.  The  University  of  Queensland  is  gratefully  acknowledged  for  financial  support   that  made  this  project  possible.  Antony  van  der  Ent  is  the  recipient  of  IPRS  and  UQRS  scholarships   in  Australia.     REFERENCES     Angle,   J.,   Chaney,   R.,   Baker,   A.,   Li,   Y.,   Reeves,   R.,   Volk,   V.,   Roseberg,   R.,   Brewer,   E.,   Burke,   S.,   Nelkin,   J.   (2001)   Developing   commercial   phytoextraction   technologies:   practical   considerations.  South  African  Journal  Of  Science,  97(11-­‐‑12),  619–623.     Baker   A.J.M.,   Proctor   J.,   Van   Balgooy   M.M.J.,   Reeves   R.D.   (1992)   Hyperaccumulation   of   nickel   by   the  flora  of  the  ultramafics  of  Palawan,  Republic  of  the  Philippines.  In:  ‘The   vegetation   of   ultramafic  (serpentine)  soils’.  (Eds  AJM  Baker,  J  Proctor,  RD  Reeves),  (Intercept:  Andover,   UK),  291–304.   Baker,  A.J.M.,  Ernst,  W.H.O.,  Van  der  Ent,  A.,  Malaisse,  F.,    Ginocchio,  R.  (2010)  Metallophytes:  the   unique   biological   resource,   its   ecology   and   conservational   status   in   Europe,   central   Africa   and   Latin   America.   In:   ‘Ecology   of   industrial   pollution’.   Cambridge   University   Press,   Cambridge,  7–40.   Becquer,  T.,  Bourdon,  E.,  Pétard,  J.  (1995)  Disponibilité  du  nickel  le  long  d'ʹune  toposéquence  de  sols   développés   sur   roches   ultramafiques   de   Nouvelle-­‐‑Calédonie.   Comptes   rendus   de   l'ʹAcadémie  des  sciences.  Série  2.  Sciences  de  la  terre  et  des  planètes,  321(7),  585–592.   Beaman   J.H.   (2005)   Mount   Kinabalu:   Hotspot   of   plant   diversity   in   Borneo.   Biologiske   Skrifter   55,   103-­‐‑127.   Beaman  J.H.,  Beaman  R.S.  (1990)  Diversity  and  distribution  patterns  in  the  flora  of  Mount  Kinabalu.   In:   Baas,   P,   Kalkman,   K,   Geesink,   R.   (eds.)   ‘The   plant   diversity   of   Malesia’.   Kluwer   Academic  Publishers,  147-­‐‑160.   Brooks,  R.R.  1987.  Serpentine  and  its  vegetation:  A  multidisciplinary  approach.  Dioscorides  Press,   Portland,  Oregon.  

–5–  

Brooks  R.R.,  Wither  E.D.  (1977)  Nickel  accumulation  by  Rinorea  bengalensis  (Wall)  O.K.  Journal  of   Geochemical  Exploration  (7),  295-­‐‑300.   Brooks,  R.R.,  Wither,  E.D,  &  Zepernick,  B.  (1977).  Cobalt  and  nickel  in  Rinorea  species.  Plant  And   Soil,  47(3),  707–712.   Brooks,  R.,  Chambers,  M.,  Nicks,  L.,  Robinson,  B.  (1998)  Phytomining.  Trends  in  Plant  Science,  3(9),   359–362.   Chaney,  R.L.  (1983)  Plant  uptake  of  inorganic  waste  constituents.  In:  Parr,  J.F.,  Marsh,  P.D.,  Kla,  J.M.   (Eds.),  Land  Treatment  of  Hazadous  Wastes.  Noyes  Data  Corporation,  Park  Ridge,  NJ,  50– 76.   Chaney,   R.L.,   Angle,   J.S.,   Baker,   A.J.M.,   Li,   J.M.   (1998)   Method   for   phytomining   of   Nickel,   cobalt   and  other  metals  from  soil.  U.S.  Patent  #  5,711,784.   Chaney,   R.L.,   Angle,   J.S.,   Broadhurst,   C.L.,   Peters,   C.A.,   Tappero,   R.V.,   Sparks,   D.L.   (2007)   Improved   understanding   of   hyperaccumulation   yields   commercial   phytoextraction   and   phytomining  technologies.  Journal  of  Environmental  Quality  36,  1429.   Dohrmann,   R.   (2006).   Cation   exchange   capacity   methodology   II:   A   modified   silver-­‐‑thiourea   method.  Applied  Clay  Science,  34(1-­‐‑4),  38–46.     Hoffmann,  P.,  Baker,  A.  J.  M.,  Proctor,  J.,  Madulid,  D.  (2008)  Phyllanthus  balgooyi  (Euphorbiaceae   s.l.),  a  new  nickel-­‐‑hyperaccumulating  species  from  Palawan  and  Sabah.  Blumea  48(1),  183-­‐‑ 186.   Lindsay,  W.L.  and  Norvell,  W.A.  (1978)  Development  of  DTPA  soil  test  for  zinc,  iron,  manganese,   and  copper.  Soil  Science  Society  of  America  Journal.  42,  421–428.   Martens,   S.   N.,   and   Boyd,   R.   S.   (1994)   The   ecological   significance   of   nickel   hyperaccumulation:   a   plant  chemical  defense.  Oecologia,  98(3),  379–384.   Martens,  S.  N.,  and  Boyd,  R.  S.  (2002)  The  defensive  role  of  Ni  hyperaccumulation  by  plants:  a  field   experiment.  American  Journal  of  Botany,  89(6),  998-­‐‑1003.   Nicks,   L.J.   and   Chambers,   M.F.   (1998)   A   pioneering   study   of   the   potential   of   phytomining   for   nickel.   In:   ‘Plants   that   Hyperaccumulate   Heavy   Metals’   (Brooks,   R.R.,   eds.),   pp.   313–326,   CAB  International.   Proctor,   J.   (2003)   Vegetation   and   soil   and   plant   chemistry   on   ultramafic   rocks   in   the   tropical   Far   East.  Perspectives  In  Plant  Ecology  Evolution  And  Systematics,  6(1-­‐‑2),  105–124.   Proctor,   J.,   Phillipps,   C.,   Duff,   G.,   Heaney,   A.,   Robertson,   F.   (1988)   Ecological   studies   on   Gunung   Silam,  a  small  ultrabasic  mountain  in  Sabah,  Malaysia.  I.  Environment,  forest  structure  and   floristics.  Journal  Of  Ecology,  76(2),  320–340.   Proctor,   J.,   Phillipps,   C.,   Duff,   G.K.,   Heaney,   A.,   Robertson,   F.M.   (1989)   Ecological   studies   on   Gunung   Silam,   a   small   ultrabasic   mountain   in   Sabah,   Malaysia.   II.   Some   forest   processes.   Journal  of  Ecology,  77(2),  317–331.   Rayment,   G.E.   and   Higginson,   F.R.   (1992)   Australian   Laboratory   Handbook   of   Soil   and   Water   Chemical  Methods.  Inkata  Press,  Melbourne.   Reeves   R.D.   (1992)   Hyperaccumulation   of   nickel   by   serpentine   plants.   In:   Baker   AJM,   Proctor   J,   Reeves   R.D.   (eds.)   The   vegetation   of   ultramafic   (serpentine)   soils.   Intercept,   Andover   UK,   253–277.   –6–  

Reeves,   R.D.   (2003)   Tropical   hyperaccumulators   of   metals   and   their   potential   for   phytoextraction.   Plant  And  Soil,  249(1),  57–65.   Reeves,  R.D.  (2006)  Hyperaccumulation  of  trace  elements  by  plants.  In:  'ʹPhytoremediation  of  Metal-­‐‑ Contaminated  Soils'ʹ.  NATO  Science,  (68),  25-­‐‑52.   Robinson,  B.H.,  Brooks,  R.R.,  Howes,  A.W.,  Kirkman,  J.H.,  Gregg,  P.E.H.,  (1997a)  The  potential  of   the   high-­‐‑biomass   nickel   hyperaccumulator   Berkheya   coddii   for   phytoremediation   and   phytomining.  Journal  of  Geochemical  Exploration  (60),  115–126.   Robinson,  B.H.,  Chiarucci,  A.,  Brooks,  R.R.,  Petit,  D.,  Kirkman,  J.H.,  Gregg,  P.E.H.,  De  Dominicis,  V.   (1997b)   The   nickel   hyperaccumulator   plant   Alyssum   bertolonii   as   a   potential   agent   for   phytoremediation  and  phytomining  of  nickel.  Journal  of  Geochemical  Exploration  (59),  75– 86.   Van   der   Ent,   A.,   Baker,   A.J.M.,   Reeves,   R.D.,   Pollard,   A.J.,   Schat,   H.   (2012)   Hyperaccumulators   of   metal  and  metalloid  trace  elements:  Facts  and  fiction.  Plant  And  Soil,  1–16.   Van   der   Ent,   A.,   Baker,   A.J.M.,   van   Balgooy,   M.M.J.,   Tjoa,   A.   (2013)   Ultramafic   nickel   laterites   in   Indonesia  (Sulawesi,  Halmahera):  Mining,  nickel  hyperaccumulators  and  opportunities  for   phytomining.  Journal  Of  Geochemical  Exploration,  (128),  72–79.    

–7–