actinium. Ac. 89. (227) s, m. 10.07. 1230. (Greek aktis, ray) aluminum. Al. 13. 26.98 s, m. 2.70. 660. (from alum, salts of the form KAl(SO4)2 12H2O) americium.
APPENDIX 2: Experimental Data 2A
THERMODYNAMIC DATA AT 25°C
Inorganic Substances Substance
Molar mass, M (gmol1)
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy,* Sm° (JK1mol1)
0 481.2 1582.35 — 628.8
24.35 — 79.04 — 91.84
28.33 321.7 50.92 — 110.67
45.69 232.78 337.80 401.94
Aluminum Al(s) Al3(aq) Al2O3(s) Al(OH)3(s) AlCl3(s)
26.98 26.98 101.96 78.00 133.33
Antimony Sb(s) SbH3(g) SbCl3(g) SbCl5(g)
121.76 124.78 228.11 299.01
0 145.11 313.8 394.34
0 147.75 301.2 334.29
25.23 41.05 76.69 121.13
Arsenic As(s), gray As2S3(s) AsO43(aq)
74.92 246.05 138.92
0 169.0 888.14
0 168.6 648.41
24.64 116.3 —
Barium Ba(s) Ba2(aq) BaO(s) BaCO3(s) BaCO3(aq)
137.33 137.33 153.33 197.34 197.34
0 537.64 553.5 1216.3 1214.78
0 560.77 525.1 1137.6 1088.59
28.07 — 47.78 85.35 —
62.8 9.6 70.42 112.1 47.3
Boron B(s) B2O3(s) BF3(g)
10.81 69.62 67.81
0 1272.8 1137.0
0 1193.7 1120.3
11.09 62.93 50.46
5.86 53.97 254.12
Bromine Br2(l) Br2(g) Br(g) Br(aq) HBr(g)
159.80 159.80 79.90 79.90 80.91
0 30.91 111.88 121.55 36.40
0 3.11 82.40 103.96 53.45
75.69 36.02 20.79 — 29.14
152.23 245.46 175.02 82.4 198.70
Calcium Ca(s) Ca(g) Ca2(aq)
40.08 40.08 40.08
0 178.2 542.83
0 144.3 553.58
25.31 20.79 —
41.42 154.88 53.1
0 524.7 1675.7 1276 704.2
35.1 163.6 162.8
(continued)
A11
A12
APPENDIX 2
Inorganic Substances (continued) Substance CaO(s) Ca(OH)2(s) Ca(OH)2(aq) CaCO3(s), calcite CaCO3(s), aragonite CaCO3(aq) CaF2(s) CaF2(aq) CaCl2(s) CaCl2(aq) CaBr2(s) CaC2(s) CaSO4(s) CaSO4(aq)
Molar mass, M (gmol1) 56.08 74.10 74.10 100.09 100.09 100.09 78.08 78.08 110.98 110.98 199.88 64.10 136.14 136.14
Enthalpy of formation, Hf° (kJmol1) 635.09 986.09 1002.82 1206.9 1207.1 1219.97 1219.6 1208.09 795.8 877.1 682.8 59.8 1434.11 1452.10
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy,* Sm° (JK1mol1)
604.03 898.49 868.07 1128.8 1127.8 1081.39 1167.3 1111.15 748.1 816.0 663.6 64.9 1321.79 1298.10
42.80 87.49 — 81.88 81.25 — 67.03 — 72.59 — 72.59 62.72 99.66 —
39.75 83.39 74.5 92.9 88.7 110.0 68.87 80.8 104.6 59.8 130 69.96 106.7 33.1
Carbon (for organic compounds, see the next table) C(s), graphite 12.01 0 C(s), diamond 12.01 1.895 C(g) 12.01 716.68 CO(g) 28.01 110.53 CO2(g) 44.01 393.51 CO32(aq) 60.01 677.14 CCl4(l) 153.81 135.44 CS2(l) 76.15 89.70 HCN(g) 27.03 135.1 HCN(l) 27.03 108.87 HCN(aq) 27.03 107.1
0 2.900 671.26 137.17 394.36 527.81 65.21 65.27 124.7 124.97 119.7
Cerium Ce(s) Ce3(aq) Ce4(aq)
140.12 140.12 140.12
0 696.2 537.2
0 672.0 503.8
26.94 — —
Chlorine Cl2(g) Cl(g) Cl(aq) HCl(g) HCl(aq)
70.90 35.45 35.45 36.46 36.46
0 121.68 167.16 92.31 167.16
0 105.68 131.23 95.30 131.23
33.91 21.84 — 29.12 —
223.07 165.20 56.5 186.91 56.5
63.55 63.55 63.55 143.10 79.55 159.61 249.69
0 71.67 64.77 168.6 157.3 771.36 2279.7
0 49.98 65.49 146.0 129.7 661.8 1879.7
24.44 — — 63.64 42.30 100.0 280
33.15 40.6 99.6 93.14 42.63 109 300.4
0 249.20 294.60
0 234.54 243.44
29.20 34.27 34.27
144.96 198.34 75.94
Copper Cu(s) Cu(aq) Cu2(aq) Cu2O(s) CuO(s) CuSO4(s) CuSO45H2O(s) Deuterium D2(g) D2O(g) D2O(l)
4.028 20.028 20.028
8.53 6.11 20.84 29.14 37.11 — 131.75 75.7 35.86 70.63 —
5.740 2.377 158.10 197.67 213.74 56.9 216.40 151.34 201.78 112.84 124.7
72.0 205 301
EXPERIMENTAL DATA
Substance Fluorine F2(g) F(aq) HF(g) HF(aq)
A13
Molar mass, M (gmol1)
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy,* Sm° (JK1mol1)
38.00 19.00 20.01 20.01
0 332.63 271.1 330.08
0 278.79 273.2 296.82
31.30 — 29.13 —
202.78 13.8 173.78 88.7
0 217.97 0 285.83 241.82 187.78 191.17 285.83
0 203.25 0 237.13 228.57 120.35 134.03 237.13
28.82 20.78 0 75.29 33.58 89.1 — 75.29
130.68 114.71 0 69.91 188.83 109.6 143.9 69.91
0 62.44 55.19 26.48
0 19.33 51.57 1.70
54.44 36.90 — 29.16
116.14 260.69 111.3 206.59
0 78.90 4.7 1015.4 742.2 100.4 6.9 166.9
25.10 — — 143.43 103.85 50.54 — 62.17
27.28 137.7 315.9 146.4 87.40 60.29 — 52.93
Hydrogen (see also Deuterium) H2(g) 2.0158 H(g) 1.0079 H(aq) 1.0079 H2O(l) 18.02 H2O(g) 18.02 H2O2(l) 34.02 H2O2(aq) 34.02 H3O(aq) 19.02 Iodine I2(s) I2(g) I(aq) HI(g)
253.80 253.80 126.90 127.91
Iron Fe(s) Fe2(aq) Fe3(aq) Fe3O4(s), magnetite Fe2O3(s), hematite FeS(s, ) FeS(aq) FeS2(s)
55.84 55.84 55.84 231.52 159.68 87.90 87.90 119.96
Lead Pb(s) Pb2(aq) PbO2(s) PbSO4(s) PbBr2(s) PbBr2(aq)
207.2 207.2 239.2 303.3 367.0 367.0
0 1.7 277.4 919.94 278.7 244.8
0 24.43 217.33 813.14 261.92 232.34
26.44 — 64.64 103.21 80.12 —
64.81 10.5 68.6 148.57 161.5 175.3
Magnesium Mg(s) Mg(g) Mg2(aq) MgO(s) MgCO3(s) MgBr2(s)
24.31 24.31 24.31 40.31 84.32 184.11
0 147.70 466.85 601.70 1095.8 524.3
0 113.10 454.8 569.43 1012.1 503.8
24.89 20.79 — 37.15 75.52 —
32.68 148.65 138.1 26.94 65.7 117.2
Mercury Hg(l) Hg(g) HgO(s) Hg2Cl2(s)
200.59 200.59 216.59 472.08
0 61.32 90.83 265.22
0 31.82 58.54 210.75
27.98 20.79 44.06 102
76.02 174.96 70.29 192.5
0 89.1 48.5 1118.4 824.2 100.0 — 178.2
(continued)
A14
APPENDIX 2
Inorganic Substances (continued) Molar mass, M (gmol1)
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy,* Sm° (JK1mol1)
28.02 30.01 44.02 46.01 92.02 63.02 63.02 62.02 17.03 17.03 18.04 33.03 43.04 32.05 80.05 53.49 117.49
0 90.25 82.05 33.18 9.16 174.10 207.36 205.0 46.11 80.29 132.51 114.2 294.1 50.63 365.56 314.43 295.31
0 86.55 104.20 51.31 97.89 80.71 111.25 108.74 16.45 26.50 79.31 — 328.1 149.34 183.87 202.87 88.75
29.12 29.84 38.45 37.20 77.28 109.87 — — 35.06 — — — 98.87 139.3 84.1 — —
191.61 210.76 219.85 240.06 304.29 155.60 146.4 146.4 192.45 111.3 113.4 — 238.97 121.21 151.08 94.6 186.2
32.00 48.00 17.01
0 142.7 229.99
0 163.2 157.24
29.36 39.29 —
205.14 238.93 10.75
Phosphorus P(s), white P4(g) PH3(g) P4O10(s) H3PO3(aq) H3PO4(l) H3PO4(aq) PCl3(l) PCl3(g) PCl5(g) PCl5(s)
30.97 123.88 33.99 283.88 81.99 97.99 97.99 137.32 137.32 208.22 208.22
0 58.91 5.4 2984.0 964.8 1266.9 1288.34 319.7 287.0 374.9 443.5
0 24.44 13.4 2697.0 — — 1142.54 272.3 267.8 305.0 —
23.84 67.15 37.11 — — — — — 71.84 112.8 —
41.09 279.98 210.23 228.86 — — 158.2 217.18 311.78 364.6 —
Potassium K(s) K(g) K(aq) KOH(s) KOH(aq) KF(s) KCl(s) KBr(s) KI(s) KClO3(s) KClO4(s) K2S(s) K2S(aq)
39.10 39.10 39.10 56.11 56.11 58.10 74.55 119.00 166.00 122.55 138.55 110.26 110.26
0 89.24 252.38 424.76 482.37 567.27 436.75 393.80 327.90 397.73 432.75 380.7 471.5
0 60.59 283.27 379.08 440.50 537.75 409.14 380.66 324.89 296.25 303.09 364.0 480.7
29.58 20.79 — 64.9 — 49.04 51.30 52.30 52.93 100.25 112.38 — —
64.18 160.34 102.5 78.9 91.6 66.57 82.59 95.90 106.32 143.1 151.0 105 190.4
Silicon Si(s) SiO2(s, )
28.09 60.09
0 910.94
0 856.64
20.00 44.43
18.83 41.84
Substance Nitrogen N2(g) NO(g) N2O(g) NO2(g) N2O4(g) HNO3(l) HNO3(aq) NO3(aq) NH3(g) NH3(aq) NH4(aq) NH2OH(s) HN3(g) N2H4(l) NH4NO3(s) NH4Cl(s) NH4ClO4(s) Oxygen O2(g) O3(g) OH(aq)
EXPERIMENTAL DATA
A15
Molar mass, M (gmol1)
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy,* Sm° (JK1mol1)
Silver Ag(s) Ag(aq) Ag2O(s) AgBr(s) AgBr(aq) AgCl(s) AgCl(aq) AgI(s) AgI(aq) AgNO3(s)
107.87 107.87 231.74 187.77 187.77 143.32 143.32 234.77 234.77 169.88
0 105.58 31.05 100.37 15.98 127.07 61.58 61.84 50.38 124.39
0 77.11 11.20 96.90 26.86 109.79 54.12 66.19 25.52 33.41
25.35 — 65.86 52.38 — 50.79 — 56.82 — 93.05
42.55 72.68 121.3 107.1 155.2 96.2 129.3 115.5 184.1 140.92
Sodium Na(s) Na(g) Na(aq) NaOH(s) NaOH(aq) NaCl(s) NaBr(s) NaI(s)
22.99 22.99 22.99 40.00 40.00 58.44 102.89 149.89
0 107.32 240.12 425.61 470.11 411.15 361.06 287.78
0 76.76 261.91 379.49 419.15 384.14 348.98 286.06
28.24 20.79 — 59.54 — 50.50 51.38 52.09
51.21 153.71 59.0 64.46 48.1 72.13 86.82 98.53
Sulfur S(s), rhombic S(s), monoclinic S2(aq) SO2(g) SO3(g) H2SO4(l) SO42(aq) HSO4(aq) H2S(g) H2S(aq) SF6(g)
32.06 32.06 32.06 64.06 80.06 98.08 96.06 97.07 34.08 34.08 146.06
0 0.33 33.1 296.83 395.72 813.99 909.27 887.34 20.63 39.7 1209
0 0.1 85.8 300.19 371.06 690.00 744.53 755.91 33.56 27.83 1105.3
22.64 23.6 — 39.87 50.67 138.9 — — 34.23 — 97.28
31.80 32.6 14.6 248.22 256.76 156.90 20.1 131.8 205.79 121 291.82
Tin Sn(s), white Sn(s), gray SnO(s) SnO2(s)
118.71 118.71 134.71 150.71
0 2.09 285.8 580.7
0 0.13 256.9 519.6
26.99 25.77 44.31 52.59
51.55 44.14 56.5 52.3
65.41 65.41 81.41
0 153.89 348.28
0 147.06 318.30
25.40 — 40.25
41.63 112.1 43.64
Substance
Zinc Zn(s) Zn2(aq) ZnO(s)
*The entropies of individual ions in solution are determined by setting the entropy of H in water equal to 0 and then defining the entropies of all other ions relative to this value; hence a negative entropy is one that is lower than the entropy of H in water. All absolute entropies are positive, and no sign need be given; all entropies of ions are relative to that of H and are listed here with a sign (either or ).
A16
APPENDIX 2
Organic Compounds
Substance
Molar mass, M (gmol1)
Enthalpy of combustion, Hc° (kJmol1)
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
Molar heat capacity, CP,m (JK1mol1)
Molar entropy, Sm° (JK1mol1)
16.04
890
74.81
50.72
35.31
186.26
26.04
1300
226.73
209.20
43.93
200.94
Hydrocarbons CH4(g), methane C2H2(g), ethyne (acetylene) C2H4(g), ethene (ethylene) C2H6(g), ethane C3H6(g), propene (propylene) C3H6(g), cyclopropane C3H8(g), propane C4H10(g), butane C5H12(g), pentane C6H6(l), benzene C6H6(g) C7H8(l), toluene C7H8(g) C6H12(l), cyclohexane C6H12(g) C8H18(l), octane
28.05 30.07
1411 1560
52.26 84.68
68.15 32.82
43.56 52.63
219.56 229.60
42.08 42.08 44.09 58.12 72.14 78.11 78.11 92.13 92.13 84.15 84.15 114.22
2058 2091 2220 2878 3537 3268 3302 3910 3953 3920 3953 5471
20.42 53.30 103.85 126.15 146.44 49.0 82.9 12.0 50.0 156.4 — 249.9
62.78 104.45 23.49 17.03 8.20 124.3 129.72 113.8 122.0 26.7 — 6.4
63.89 55.94 73.5 97.45 120.2 136.1 81.67 — 103.6 156.5 — —
266.6 237.4 270.2 310.1 349 173.3 269.31 221.0 320.7 204.4 — 358
Alcohols and phenols CH3OH(l), methanol CH3OH(g) C2H5OH(l), ethanol C2H5OH(g) C6H5OH(s), phenol
32.04 32.04 46.07 46.07 94.11
726 764 1368 1409 3054
238.86 200.66 277.69 235.10 164.6
166.27 161.96 174.78 168.49 50.42
81.6 43.89 111.46 65.44 —
126.8 239.81 160.7 282.70 144.0
46.02
255
424.72
361.35
99.04
128.95
60.05 60.05
875 —
484.5 485.76
389.9 396.46
124.3 —
159.8 86.6
90.04
254
827.2
697.9
117
120
122.12
3227
385.1
245.3
146.8
167.6
30.03
571
108.57
102.53
35.40
218.77
44.05 44.05
1166 1192
192.30 166.19
128.12 128.86
— 57.3
160.2 250.3
58.08
1790
248.1
155.4
124.7
Carboxylic acids HCOOH(l), formic acid CH3COOH(l), acetic acid CH3COOH(aq) (COOH)2(s), oxalic acid C6H5COOH(s), benzoic acid Aldehydes and ketones HCHO(g), methanal (formaldehyde) CH3CHO(l), ethanal (acetaldehyde) CH3CHO(g) CH3COCH3(l), propanone (acetone)
200
EXPERIMENTAL DATA
Substance Sugars C6H12O6(s), glucose C6H12O6(aq) C6H12O6(s), fructose C12H22O11(s), sucrose Nitrogen compounds CO(NH2)2(s), urea C6H5NH2(l), aniline NH2CH2COOH(s), glycine CH3NH2(g), methylamine
Molar mass, M (gmol1) 180.15 180.15 180.15 342.29
Enthalpy of combustion, Hc° (kJmol1) 2808 — 2810 5645
Enthalpy of formation, Hf° (kJmol1)
Gibbs free energy of formation, Gf° (kJmol1)
1268 — 1266 2222
910 917 — 1545
Molar heat capacity, CP,m (JK1mol1) — — — —
A17
Molar entropy, Sm° (JK1mol1) 212 — — 360
60.06 93.13
632 3393
333.51 31.6
197.33 149.1
93.14 —
104.60 191.3
75.07
969
532.9
373.4
99.2
103.51
31.06
1085
53.1
243.41
22.97
32.16
A18
2B
APPENDIX 2
STANDARD POTENTIALS AT 25°C
Potentials in Electrochemical Order Reduction half-reaction
E° (V)
Reduction half-reaction
E° (V)
Strongly oxidizing H4XeO6 2 H 2 e B XeO3 3 H2O F2 2 e B 2 F O3 2 H 2 e B O2 H2O S2O82 2 e B 2 SO42 Ag2 e B Ag Co3 e B Co2 H2O2 2 H 2 e B 2 H2O Au e B Au Pb4 2 e B Pb2 2 HClO 2 H 2 e B Cl2 2 H2O Ce4 e B Ce3 2 HBrO 2 H 2 e B Br2 2 H2O MnO4 8 H 5 e B Mn2 4 H2O Mn3 e B Mn2 Au3 3 e B Au Cl2 2 e B 2 Cl Cr2O72 14 H 6 e B 2 Cr3 7 H2O O3 H2O 2 e B O2 2 OH O2 4 H 4 e B 2 H2O MnO2 4 H 2 e B Mn2 2 H2O ClO4 2 H 2 e B ClO3 H2O Pt2 2 e B Pt Br2 2 e B 2 Br Pu4 e B Pu3 NO3 4 H 3 e B NO 2 H2O 2 Hg2 2 e B Hg22 ClO H2O 2 e B Cl 2 OH Hg2 2 e B Hg NO3 2 H e B NO2 H2O Ag e B Ag Hg22 2 e B 2 Hg AgF e B Ag F Fe3 e B Fe2 BrO H2O 2 e B Br 2 OH MnO42 2 H2O 2 e B MnO2 4 OH MnO4 e B MnO42 I2 2 e B 2 I I3 2 e B 3 I Cu e B Cu Ni(OH)3 e B Ni(OH)2 OH O2 2 H2O 4 e B 4 OH ClO4 H2O 2 e B ClO3 2 OH Cu2 2 e B Cu Hg2Cl2 2 e B 2 Hg 2 Cl AgCl e B Ag Cl Bi3 3 e B Bi SO42 4 H 2 e B H2SO3 H2O Cu2 e B Cu Sn4 2e B Sn2 AgBr e B Ag Br
3.0 2.87 2.07 2.05 1.98 1.81 1.78 1.69 1.67 1.63 1.61 1.60 1.51 1.51 1.40 1.36 1.33 1.24 1.23 1.23 1.23 1.20 1.09 0.97 0.96 0.92 0.89 0.85 0.80 0.80 0.79 0.78 0.77 0.76 0.60 0.56 0.54 0.53 0.52 0.49 0.40 0.36 0.34 0.27 0.22 0.20 0.17 0.15 0.15 0.07
NO3 H2O 2 e B NO2 2 OH Ti4 e B Ti3 2 H 2 e B H2 Fe3 3 e B Fe O2 H2O 2 e B HO2 OH Pb2 2 e B Pb In e B In Sn2 2 e B Sn AgI e B Ag I Ni2 2 e B Ni V3 e B V2 Co2 2 e B Co In3 3 e B In Tl e B Tl PbSO4 2 e B Pb SO42 Ti3 e B Ti2 In2 e B In Cd2 2 e B Cd Cr3 e B Cr2 Fe2 2 e B Fe In3 2 e B In S 2 e B S2 In3 e B In2 Ga e B Ga O2 e B O2 U4 e B U3 Se 2 e B Se2 Cr3 3 e B Cr Zn2 2 e B Zn Cd(OH)2 2 e B Cd 2 OH 2 H2O 2 e B H2 2 OH Te 2 e B Te2 Cr2 2 e B Cr Mn2 2 e B Mn V2 2 e B V Ti2 2 e B Ti Al3 3 e B Al U3 3 e B U Be2 2 e B Be Mg2 2 e B Mg Ce3 3 e B Ce La3 3 e B La Na e B Na Ca2 2 e B Ca Sr2 2 e B Sr Ba2 2 e B Ba Ra2 2 e B Ra Cs e B Cs Rb e B Rb K e B K Li e B Li Strongly reducing
0.01 0.00 0, by definition 0.04 0.08 0.13 0.14 0.14 0.15 0.23 0.26 0.28 0.34 0.34 0.36 0.37 0.40 0.40 0.41 0.44 0.44 0.48 0.49 0.53 0.56 0.61 0.67 0.74 0.76 0.81 0.83 0.84 0.91 1.18 1.19 1.63 1.66 1.79 1.85 2.36 2.48 2.52 2.71 2.87 2.89 2.91 2.92 2.92 2.93 2.93 3.05
EXPERIMENTAL DATA
A19
Potentials in Alphabetical Order Reduction half-reaction
E° (V)
Reduction half-reaction
E° (V)
Ag e B Ag Ag2 e B Ag AgBr e B Ag Br AgCl e B Ag Cl AgF e B Ag F AgI e B Ag I Al3 3 e B Al Au e B Au Au3 3 e B Au Ba2 2 e B Ba Be2 2 e B Be Bi3 3 e B Bi Br2 2 e B 2 Br BrO H2O 2 e B Br 2 OH Ca2 2 e B Ca Cd2 2 e B Cd Cd(OH)2 2 e B Cd 2 OH Ce3 3 e B Ce Ce4 e B Ce3 Cl2 2 e B 2 Cl ClO H2O 2 e B Cl 2 OH ClO4 2 H 2 e B ClO3 H2O ClO4 H2O 2 e B ClO3 2 OH Co2 2 e B Co Co3 e B Co2 Cr2 2 e B Cr Cr2O72 14 H 6 e B 2 Cr3 7 H2O Cr3 3 e B Cr Cr3 e B Cr2 Cs e B Cs Cu e B Cu Cu2 2 e B Cu Cu2 e B Cu F2 2 e B 2 F Fe2 2 e B Fe Fe3 3 e B Fe Fe2 e B Fe2 Ga e B Ga 2 H 2 e B H2 2 HBrO 2 H 2 e B Br2 2 H2O 2 HClO 2 H 2 e B Cl2 2 H2O 2 H2O 2 e B H2 2 OH H2O2 2 H 2 e B 2 H2O H4XeO6 2 H 2 e B XeO3 3 H2O Hg22 2 e B 2 Hg Hg2 2 e B Hg 2 Hg2 2 e B Hg22 Hg2Cl2 2 e B 2 Hg 2 Cl I2 2 e B 2 I I3 2 e B 3 I In e B In
0.80 1.98 0.07 0.22 0.78 0.15 1.66 1.69 1.40 2.91 1.85 0.20 1.09 0.76 2.87 0.40 0.81 2.48 1.61 1.36 0.89 1.23 0.36 0.28 1.81 0.91 1.33 0.74 0.41 2.92 0.52 0.34 0.15 2.87 0.44 0.04 0.77 0.53 0, by definition 1.60 1.63 0.83 1.78 3.0 0.79 0.85 0.92 0.27 0.54 0.53 0.14
In2 e B In In3 e B In2 In3 2 e B In In3 3 e B In K e B K La3 3 e B La Li e B Li Mg2 2 e B Mg Mn2 2 e B Mn Mn3 e B Mn2 MnO2 4 H 2 e B Mn2 2 H2O MnO4 e B MnO42 MnO4 8 H 5 e B Mn2 4 H2O MnO42 2 H2O 2 e B MnO2 4 OH NO3 2 H e B NO2 H2O NO3 4 H 3 e B NO 2 H2O NO3 H2O 2 e B NO2 2 OH Na e B Na Ni2 2 e B Ni Ni(OH)3 e B Ni(OH)2 OH O2 e B O2 O2 4 H 4 e B 2 H2O O2 H2O 2 e B HO2 OH O2 2 H2O 4 e B 4 OH O3 2 H 2 e B O2 H2O O3 H2O 2 e B O2 2 OH Pb2 2 e B Pb Pb4 2 e B Pb2 PbSO4 2 e B Pb SO42 Pt2 2 e B Pt Pu4 e B Pu3 Ra2 2 e B Ra Rb e B Rb S 2 e B S2 SO42 4 H 2 e B H2SO3 H2O S2O82 2 e B 2 SO42 Se 2 e B Se2 Sn2 2 e B Sn Sn4 2 e B Sn2 Sr2 2 e B Sr Te 2 e B Te2 Ti2 2 e B Ti Ti3 e B Ti2 Ti4 e B Ti3 Tl e B Tl U3 3 e B U U4 e B U3 V2 2 e B V V3 e B V2 Zn2 2 e B Zn
0.40 0.49 0.44 0.34 2.93 2.52 3.05 2.36 1.18 1.51 1.23 0.56 1.51 0.60 0.80 0.96 0.01 2.71 0.23 0.49 0.56 1.23 0.08 0.40 2.07 1.24 0.13 1.67 0.36 1.20 0.97 2.92 2.93 0.48 0.17 2.05 0.67 0.14 0.15 2.89 0.84 1.63 0.37 0.00 0.34 1.79 0.61 1.19 0.26 0.76
A20
APPENDIX 2
2C
GROUND-STATE ELECTRON CONFIGURATIONS*
Z
Symbol
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni
Configuration 1
1s 1s2 [He]2s1 [He]2s2 [He]2s22p1 [He]2s22p2 [He]2s22p3 [He]2s22p4 [He]2s22p5 [He]2s22p6 [Ne]3s1 [Ne]3s2 [Ne]3s23p1 [Ne]3s23p2 [Ne]3s23p3 [Ne]3s23p4 [Ne]3s23p5 [Ne]3s23p6 [Ar]4s1 [Ar]4s2 [Ar]3d14s2 [Ar]3d24s2 [Ar]3d34s2 [Ar]3d54s1 [Ar]3d54s2 [Ar]3d64s2 [Ar]3d74s2 [Ar]3d84s2
Z
Symbol
Configuration
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba
[Ar]3d104s1 [Ar]3d104s2 [Ar]3d104s24p1 [Ar]3d104s24p2 [Ar]3d104s24p3 [Ar]3d104s24p4 [Ar]3d104s24p5 [Ar]3d104s24p6 [Kr]5s1 [Kr]5s2 [Kr]4d15s2 [Kr]4d25s2 [Kr]4d45s1 [Kr]4d55s1 [Kr]4d55s2 [Kr]4d75s1 [Kr]4d85s1 [Kr]4d10 [Kr]4d105s1 [Kr]4d105s2 [Kr]4d105s25p1 [Kr]4d105s25p2 [Kr]4d105s25p3 [Kr]4d105s25p4 [Kr]4d105s25p5 [Kr]4d105s25p6 [Xe]6s1 [Xe]6s2
EXPERIMENTAL DATA
Z 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
Symbol La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po
Configuration 1
2
[Xe]5d 6s [Xe]4f 15d16s2 [Xe]4f 36s2 [Xe]4f 46s2 [Xe]4f 56s2 [Xe]4f 66s2 [Xe]4f 76s2 [Xe]4f 75d16s2 [Xe]4f 96s2 [Xe]4f 106s2 [Xe]4f 116s2 [Xe]4f 126s2 [Xe]4f 136s2 [Xe]4f 146s2 [Xe]4f 145d16s2 [Xe]4f145d26s2 [Xe]4f 145d36s2 [Xe]4f 145d46s2 [Xe]4f 145d56s2 [Xe]4f 145d66s2 [Xe]4f 145d76s2 [Xe]4f 145d96s1 [Xe]4f 145d106s1 [Xe]4f 145d106s2 [Xe]4f 145d106s26p1 [Xe]4f 145d106s26p2 [Xe]4f 145d106s26p3 [Xe]4f 145d106s26p4
Z
Symbol
Configuration
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg
[Xe]4f 145d106s26p5 [Xe]4f 145d106s26p6 [Rn]7s1 [Rn]7s2 [Rn]6d17s2 [Rn]6d27s2 [Rn]5f 26d17s2 [Rn]5f 36d17s2 [Rn]5f 46d17s2 [Rn]5f 67s2 [Rn]5f 77s2 [Rn]5f 76d17s2 [Rn]5f 97s2 [Rn]5f 107s2 [Rn]5f 117s2 [Rn]5f 127s2 [Rn]5f 137s2 [Rn]5f 147s2 [Rn]5f 146d17s2 [Rn]5f 146d27s2 (?) [Rn]5f 146d37s2 (?) [Rn]5f 146d47s2 (?) [Rn]5f 146d57s2 (?) [Rn]5f 146d67s2 (?) [Rn]5f 146d77s2 (?) [Rn]5f 146d87s2 (?) [Rn]5f 146d107s1 (?)
*The electron configurations followed by a question mark are speculative.
A21
A22
2D
APPENDIX 2
THE ELEMENTS Element
Symbol
Atomic number
Molar mass* (gmol1)
Normal state†
Density (gcm3)
Melting point (°C)
actinium (Greek aktis, ray) aluminum (from alum, salts of the form KAl(SO4)212H2O) americium (the Americas) antimony (probably a corruption of an old Arabic word; Latin stibium) argon (Greek argos, inactive)
Ac
89
(227)
s, m
10.07
1230
Al
13
26.98
s, m
2.70
660
Am
95
(243)
s, m
13.67
990
Sb
51
121.76
s, md
6.69
631
Ar
18
39.95
g, nm
1.66‡
arsenic (Greek arsenikos, male) astatine (Greek astatos, unstable) barium (Greek barys, heavy) berkelium (Berkeley, California) beryllium (from the mineral beryl, Be3Al2SiO18)
As
33
74.92
s, md
5.78
613§
At
85
(210)
s, nm
—
300
Ba
56
137.33
s, m
3.59
710
Bk
97
(247)
s, m
14.79
986
Be
4
9.01
s, m
1.85
1285
Bi
83
208.98
s, m
8.90
271
Bh
107
(264)
—
—
—
B
5
10.81
s, md
2.47
2300
Br
35
79.90
l, nm
3.12
7
Cd
48
112.41
s, m
8.65
321
Ca
20
40.08
s, m
1.53
840
Cf
98
(251)
s, m
—
—
C
6
12.01
s, nm
2.27
3700§
Ce
58
140.12
s, m
6.71
800
Cs
55
132.91
s, m
1.87
28
Cl
17
35.45
g, nm
1.66‡
101
Cr
24
52.00
s, m
7.19
1860
Co
27
58.93
s, m
8.80
1494
bismuth (German weisse Masse, white mass) bohrium (Niels Bohr) boron (Arabic buraq, borax, Na2B4O710H2O; bor(ax) (carb)on bromine (Greek bromos, stench) cadmium (Greek Cadmus, founder of Thebes) calcium (Latin calx, lime) californium (California) carbon (Latin carbo, coal or charcoal) cerium (the asteroid Ceres, discovered 2 days earlier) cesium (Latin caesius, sky blue) chlorine (Greek chloros, yellowish green) chromium (Greek chroma, color) cobalt (German Kobold, evil spirit; Greek kobalos, goblin)
189
A23
EXPERIMENTAL DATA
Boiling point (°C)
Ionization energies (kJmol1)
Electron affinity (kJmol1)
Atomic radius (pm)
Ionic radius™ (pm)
3200
499, 1170, 1900
—
1.1
3
188
118(3)
2467
577, 1817, 2744
43
1.6
3
143
54(3)
2600
578
—
1.3
3
173
107(3)
1750
834, 1794, 2443
103
2.1
3, 3, 5
141
89(3)
186
1520
0
—
0
174
—
125
222(3)
Electronegativity
Principal oxidation states
—
947, 1798
78
2.2
3, 3, 5
350
1037, 1600
270
2.0
1
—
227(1)
502, 965
14
0.89
2
217
135(2)
601
—
1.3
3
—
87(4)
2470
900, 1757
0
1.6
2
113
34(2)
1650
703, 1610, 2466
91
2.0
3, 5
155
96(3)
660
—
—
5
128#
83(5)#
799, 2427, 3660
27
2.0
3
83
23(3)
325
3.0
1, 1, 3, 4, 5, 7
114
196(1)
1640 —
— 3931
59
1140, 2104
765
868, 1631
0
1.7
2
149
103(2)
590, 1145, 4910
2
1.3
2
197
100(2)
—
608
—
1.3
3
169
117(2)
—
1090, 2352, 4620
122
2.6
4, 1, 2, 4
77
260(4)
3000
527, 1047, 1949
50
1.1
3, 4
183
107(3)
678
376, 2420
146
0.79
1
265
167(1)
234
1255, 2297
349
3.2
99
181(1)
125
84(2)
125
64(3)
1490
2600
653, 1592, 2987
64
1.7
1, 1, 3, 4, 5, 6, 7 2, 3
2900
760, 1646, 3232
64
1.9
3, 6
(continued)
A24
APPENDIX 2
Element copper (Latin cuprum, from Cyprus) curium (Marie Curie)
Symbol
Atomic number
Molar mass* (gmol1)
Normal state†
Density (gcm3)
Melting point (°C)
Cu
29
63.55
s, m
8.93
1083
Cm
96
(247)
s, m
13.30
1340
darmstadtium (town in Germany) dubnium (Dubna) dysprosium (Greek dysprositos, hard to get at) einsteinium (Albert Einstein) erbium (Ytterby, a town in Sweden)
Ds
110
—
—
Db
105
(262)
s, m
Dy
66
162.50
s, m
8.53
1410
Es
99
(252)
s, m
—
—
Er
68
167.26
s, m
9.04
1520
europium (Europe) fermium (Enrico Fermi, an Italian physicist) fluorine (Latin fluere, to flow) francium (France) gadolinium (Johann Gadolin, a Finnish chemist)
Eu
63
151.96
s, m
5.25
820
Fm
100
(257)
s, m
—
—
F
9
19.00
g, nm
1.51‡
220
Fr
87
(223)
s, m
—
27
Gd
64
157.25
s, m
7.87
1310
gallium (Latin Gallia, France; also a pun on the discoverer’s forename, Le Coq) germanium (Latin Germania, Germany) gold (Anglo-Saxon gold; Latin aurum, gold) hafnium (Latin Hafnia, Copenhagen) hassium (Hesse, the German state)
Ga
31
69.72
s, m
5.91
30
Ge
32
72.64
s, md
5.32
937
Au
79
196.97
s, m
19.28
1064
Hf
72
178.49
s, m
13.28
2230
Hs
108
(277)
—
—
—
He
2
4.00
g, nm
0.12‡
—
Ho
67
164.93
s, m
8.80
1470
H
1
1.0079
g, nm
0.070‡
259
In
49
114.82
s, m
7.29
156
I
53
126.90
s, nm
4.95
114
Ir
77
192.22
s, m
22.56
2447
Fe
26
55.84
s, m
7.87
1540
helium (Greek helios, the sun) holmium (Latin Holmia, Stockholm) hydrogen (Greek hydro genes, water-forming) indium (from the bright indigo line in its spectrum) iodine (Greek ioeide¯ s, violet) iridium (Greek and Latin iris, rainbow) iron (Anglo-Saxon iron; Latin ferrum)
—
29
— —
EXPERIMENTAL DATA
Boiling point (°C)
Ionization energies (kJmol1)
Electron affinity (kJmol1)
Electronegativity
2567
785, 1958, 3554
118
1.9
—
—
Atomic radius (pm)
Ionic radius™ (pm)
1, 2
128
72(2)
1.3
3
174
99(3)
—
—
—
—
—
640
—
—
5
139#
68(5)#
572, 1126, 2200
—
1.2
3
177
91(3)
581
— — 2600
A25
—
Principal oxidation states
—
619
50
1.3
3
203
98(3)
2600
589, 1151, 2194
50
1.2
3
176
89(3)
547, 1085, 2404
50
—
3
204
98(3)
—
1.3
3
—
91(3)
328
4.0
1
71
133(1)
400
44
0.7
1
270
180(1)
3000
592, 1167, 1990
50
1.2
2, 3
180
97(3)
2403
577, 1979, 2963
29
1.6
1, 3
122
62(3)
2830
784, 1557, 3302
116
2.0
2, 4
123
90(2)
2807
890, 1980
223
2.5
1, 3
144
91(3)
5300
642, 1440, 2250
0
1.3
4
156
84(3)
—
3
126#
80(4)#
0
—
0
128
—
177
89(3)
1450 — 188 677
—
627 1680, 3374
750
—
269
2370, 5250
2300
581, 1139
50
1.2
3
253
1310
73
2.2
1, 1
78
154(1)
2080
556, 1821
29
1.8
1, 3
163
80(3)
184
1008, 1846
295
2.7
1, 1, 3, 5, 7
133
220(1)
4550
880
151
2.2
3, 4
136
75(3)
2760
759, 1561, 2957
16
1.8
2, 3
124
82(2)
(continued)
A26
APPENDIX 2
Element krypton (Greek kryptos, hidden) lanthanum (Greek lanthanein, to lie hidden) lawrencium (Ernest Lawrence, an American physicist) lead (Anglo-Saxon lead; Latin plumbum) lithium (Greek lithos, stone) lutetium (Lutetia, ancient name of Paris) magnesium (Magnesia, a district in Thessaly, Greece) manganese (Greek and Latin magnes, magnet) meitnerium (Lise Meitner) mendelevium (D. Mendeleev) mercury (the planet Mercury; Latin hydrargyrum, liquid silver) molybdenum (Greek molybdos, lead) neodymium (Greek neos didymos, new twin) neon (Greek neos, new) neptunium (the planet Neptune) nickel (German Nickel, Old Nick, Satan) niobium (Niobe, daughter of Tantalus; see tantalum) nitrogen (Greek nitron genes, soda-forming) nobelium (Alfred Nobel, the founder of the Nobel prizes) osmium (Greek osme, a smell) oxygen (Greek oxys genes, acid forming) palladium (the asteroid Pallas, discovered at about the same time) phosphorus (Greek phosphoros, light bearing)
Symbol
Atomic number
Molar mass* (gmol1)
Normal state†
Density (gcm3)
Melting point (°C)
g, nm
3.00‡
157
Kr
36
83.80
La
57
138.91
s, m
6.17
Lr
103
(262)
s, m
—
Pb
82
207.2
s, m
11.34
328
Li
3
6.94
s, m
0.53
181
Lu
71
174.97
s, m
9.84
1700
Mg
12
24.31
s, m
1.74
650
Mn
25
54.94
s, m
7.47
1250
Mt
109
(268)
—
—
—
Md
101
(258)
—
—
—
Hg
80
200.59
l, m
13.55
39
Mo
42
95.94
s, m
10.22
2620
Nd
60
144.24
s, m
7.00
1024
Ne
10
20.18
g, nm
1.44‡
249
Np
93
(237)
s, m
20.45
640
Ni
28
58.69
s, m
8.91
1455
Nb
41
92.91
s, m
8.57
2425
N
7
14.01
g, nm
1.04‡
210
No
102
(259)
s, m
—
—
Os
76
190.23
s, m
22.58
3030
O
8
16.00
1.14‡
218
Pd
46
106.42
s, m
12.00
1554
P
15
30.97
s, nm
1.82
44
g, nm
920 —
EXPERIMENTAL DATA
Boiling point (°C)
Ionization energies (kJmol1)
153
1350, 2350
3450 —
Electron affinity (kJmol1)
Electronegativity
Principal oxidation states
A27
Atomic radius (pm)
Ionic radius™ (pm)
0
—
2
189
169(1)
538, 1067, 1850
50
1.1
3
188
122(3)
—
—
1.3
3
—
88(3)
1760
716, 1450
35
2.3
2, 4
175
132(2)
1347
519, 7298
60
1.0
1
152
76(1)
3400
524, 1340, 2022
50
1.3
3
173
85(3)
1100
736, 1451
0
1.3
2
160
72(2)
2120
717, 1509
0
1.6
2, 3, 4, 7
137
91(2)
—
840
—
—
2
—
83(2)
—
635
—
1.3
3
—
90(3)
357
1007, 1810
18
2.0
1, 2
160
112(2)
4830
685, 1558, 2621
72
2.2
4, 5, 6
136
92(2)
3100
530, 1035
0
1.1
3
182
104(3)
246
2080, 3952
0
—
0
—
—
—
1.4
5
150
88(5)
—
597
2150
737, 1753
156
1.9
2, 3
125
78(2)
5000
664, 1382
86
1.6
5
143
69(5)
196
1400, 2856
7
3.0
3, 3, 5
75
171(3)
—
642
—
1.3
2
—
113(2)
5000
840
106
2.2
3, 4
135
81(3)
183
1310, 3388
141, 844
3.4
2
73
140(2)
3000
805, 1875
54
2.2
2, 4
138
86(2)
1011, 1903, 2912
72
2.2
3, 3, 5
115
212(3)
280
(continued)
A28
APPENDIX 2
Element platinum (Spanish plata, silver) plutonium (the planetlike Pluto) polonium (Poland) potassium (from potash; Latin kalium and Arabic qali, alkali) praseodymium (Greek prasios didymos, green twin) promethium (Prometheus, the Greek god) protactinium (Greek protos aktis, first ray) radium (Latin radius, ray) radon (from radium) rhenium (Latin Rhenus, Rhine) rhodium (Greek rhodon, rose; its aqueous solutions are often rose-colored) roentgenium (W. Roentgen, discoverer of x-rays) rubidium (Latin rubidus, deep red, “flushed”) ruthenium (Latin Ruthenia, Russia) rutherfordium (Ernest Rutherford) samarium (from samarskite, a mineral) scandium (Latin Scandia, Scandinavia) seaborgium (Glenn Seaborg) selenium (Greek se¯le¯ne¯, the moon) silicon (Latin silex, flint) silver (Anglo-Saxon seolfor; Latin argentum) sodium (English soda; Latin natrium) strontium (Strontian, Scotland) sulfur (Sanskrit sulvere) tantalum (Tantalos, Greek mythological figure)
Symbol
Atomic number
Molar mass* (gmol1)
Normal state†
Density (gcm3)
Melting point (°C)
Pt
78
195.08
s, m
21.45
1772
Pu
94
(244)
s, m
19.81
640
Po
84
(209)
s, md
9.40
254
K
19
39.10
s, m
0.86
64
Pr
59
140.91
s, m
6.78
935
Pm
61
(145)
s, m
7.22
1168
Pa
91
231.04
s, m
15.37
1200
Ra
88
(226)
s, m
5.00
700
Rn
86
(222)
g, nm
4.40‡
71
Re
75
186.21
s, m
21.02
3180
Rh
45
102.90
s, m
12.42
1963
Rg
111
—
—
—
Rb
37
85.47
s, m
1.53
39
Ru
44
101.07
s, m
12.36
2310
Rf
104
(261)
—
—
—
Sm
62
150.36
s, m
7.54
1060
Sc
21
44.96
s, m
2.99
1540
Sg
106
(266)
—
—
—
Se
34
78.96
s, nm
4.79
220
Si
14
28.09
s, md
2.33
1410
Ag
47
107.87
s, m
10.50
962
Na
11
22.99
s, m
0.97
98
Sr
38
87.62
s, m
2.58
770
S
16
32.06
s, nm
2.09
115
Ta
73
180.95
s, m
16.65
3000
—
EXPERIMENTAL DATA
Boiling point (°C)
Ionization energies (kJmol1)
Electron affinity (kJmol1)
Electronegativity
Principal oxidation states
A29
Atomic radius (pm)
Ionic radius™ (pm)
205
2.3
2, 4
138
85(2)
585
—
1.3
3, 4
151
108(3)
960
812
174
2.0
2, 4
167
65(4)
774
418, 3051
48
0.82
1
227
138(1)
3000
523, 1018
50
1.1
3
183
106(3)
3300
536, 1052
50
—
3
181
106(3)
4000
568
—
1.5
5
161
89(5)
1500
509, 979
—
0.9
2
223
152(2)
62
1036, 1930
0
—
2
—
—
5600
760, 1260
14
1.9
4, 7
137
72(4)
3700
720, 1744
110
2.3
3
134
75(3)
—
—
—
—
—
3720
870, 1791
3200
—
—
688
402, 2632
47
0.82
1
248
152(1)
4100
711, 1617
101
2.2
2, 3, 4
134
77(3)
—
—
4
150#
67(4)#
—
490
1600
543, 1068
50
1.2
3
180
100(3)
2800
631, 1235
18
1.4
3
161
83(3)
—
—
6
132#
86(5)#
—
730
685
941, 2044
195
2.6
2, 4, 6
117
198(2)
2620
786, 1577
134
1.9
4
117
26(4)
2212
731, 2073
126
1.9
1
144
113(1)
883
494, 4562
53
0.93
1
154
102(1)
1380
548, 1064
5
0.95
2
215
118(2)
445
1000, 2251
200, 532
2.6
2, 4, 6
104
184(2)
14
1.5
5
143
72(3)
5400
761
(continued)
A30
APPENDIX 2
Element technetium (Greek techne¯tos, artificial) tellurium (Latin tellus, earth) terbium (Ytterby, a town in Sweden) thallium (Greek thallos, a green shoot) thorium (Thor, Norse god of thunder, weather, and crops) thulium (Thule, early name for Scandinavia) tin (Anglo-Saxon tin; Latin stannum) titanium (Titans, Greek mythological figures, sons of the Earth) tungsten (Swedish tung sten, heavy stone; from wolframite) uranium (the planet Uranus) vanadium (Vanadis, Scandinavian mythological figure) xenon (Greek xenos, stranger) ytterbium (Ytterby, a town in Sweden) yttrium (Ytterby, a town in Sweden) zinc (Anglo-Saxon zinc) zirconium (Arabic zargun, gold color)
Symbol
Atomic number
Molar mass* (gmol1)
Tc
43
(98)
Te
52
Tb
Normal state†
Density (gcm3)
Melting point (°C)
s, m
11.50
2200
127.60
s, md
6.25
450
65
158.93
s, m
8.27
1360
Tl
81
204.38
s, m
11.87
304
Th
90
232.04
s, m
11.73
1700
Tm
69
168.93
s, m
9.33
1550
Sn
50
118.71
s, m
7.29
232
Ti
22
47.87
s, m
4.55
1660
W
74
183.84
s, m
19.30
3387
U
92
238.03
s, m
18.95
1135
V
23
50.94
s, m
6.11
1920
Xe
54
131.29
g, nm
3.56‡
112
Yb
70
173.04
s, m
6.97
824
Y
39
88.91
s, m
4.48
1510
Zn
30
65.41
s, m
7.14
420
Zr
40
91.22
s, m
6.51
1850
EXPERIMENTAL DATA
Boiling point (°C)
Ionization energies (kJmol1)
Electron affinity (kJmol1)
4600
702, 1472
96
1.9
990
870, 1775
190
2500
565, 1112
1457
A31
Atomic radius (pm)
Ionic radius™ (pm)
4, 7
136
72(4)
2.1
2, 4
143
221(2)
50
—
3
178
97(3)
590, 1971
19
2.0
1, 3
170
105(3)
4500
587, 1110
—
1.3
4
180
99(4)
2000
597, 1163
50
1.2
3
175
94(3)
2720
707, 1412
116
2.0
2, 4
141
93(2)
3300
658, 1310
7.6
1.5
4
145
69(4)
5420
770
79
2.4
5, 6
137
62(6)
4000
584, 1420
—
1.4
6
154
80(6)
3400
650, 1414
51
1.6
4, 5
132
61(4)
108
1170, 2046
0
2.6
2, 4, 6
218
190(1)
1500
603, 1176
50
—
3
194
86(3)
3300
616, 1181
30
1.2
3
181
106(3)
907
906, 1733
9
1.6
2
133
83(2)
4400
660, 1267
41
1.3
4
160
87(4)
Electronegativity
Principal oxidation states
*Parentheses around molar mass indicate the most stable isotope of a radioactive element. †
The normal state is the state of the element at normal temperature and pressure (20°C and 1 atm). s denotes solid, l, liquid, and g, gas; m denotes metal, nm, nonmetal, and md, metalloid. ‡ The density quoted is for the liquid. § The solid sublimes. • Charge in parentheses. # Atomic and ionic radii are estimated.
A32
APPENDIX 2
2E THE TOP 23 CHEMICALS BY INDUSTRIAL PRODUCTION IN THE UNITED STATES IN 2005 Production data are compiled annually by the American Chemical Society and published in Chemical and Engineering News. This table is based on the information about production in 2005 that was published in the July 10, 2006, issue. Water, sodium chloride, and steel traditionally are not included and would outrank the rest if they were. Hydrogen is heavily used but almost always “on site” as soon as it has been prepared.
Rank
Name
1 2 3 4 5 6
sulfuric acid ethene (ethylene) polyethylene propene (propylene) phosphoric acid dichloroethane (ethylene dichoride) chlorine diammonium hydrogen phosphate ammonia sodium hydroxide polypropylene polyvinyl chloride and copolymers nitric acid ammonium nitrate urea ethylbenzene ammonium dihydrogen phosphate styrene hydrogen chloride cumene (isopropylbenzene) ethylene oxide polystyrene ammonium sulfate
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Annual production (109 kg)
Comment on source
36.5 24.0 16.3 15.3 11.6 11.3
contact process thermal cracking of petroleum polymerization of ethene thermal cracking of petroleum from phosphate rocks chlorination of ethene
10.2 10.0
electrolysis processing of phosphate rocks
9.8 8.4 8.1 6.9
Haber process electrolysis of brine polymerization of propylene polymerization of vinyl chloride
6.3 6.4 5.8 5.3 5.2
Ostwald process ammonia nitric acid ammonia carbon dioxide Friedel–Crafts alkylation of benzene processing of phosphate rocks
5.0 4.4 3.5 3.1 2.9 2.6
dehydration of ethylbenzene by-product of hydrocarbon chlorination alkylation of benzene addition of O2 to ethene polymerization of styrene ammonia sulfuric acid