Approximation Theorems for q-Bernstein-Kantorovich ... - CiteSeerX

3 downloads 0 Views 80KB Size Report
Voronovskaja type theorem for the q-Bernstein-Kantorovich operators in case 0 ...... [23] Trif T., Meyer-König and Zeller operators based on the q-integers, Rev.
Filomat 27:4 (2013), 721–730 DOI 10.2298/FIL1304721M

Published by Faculty of Sciences and Mathematics, University of Niˇs, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Approximation Theorems for q-Bernstein-Kantorovich Operators N. I. Mahmudova , P. Sabancigila a Eastern

Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey

Abstract. In the present paper we introduce a q-analogue of the Bernstein-Kantorovich operators and investigate their approximation properties. We study local and global approximation properties and Voronovskaja type theorem for the q-Bernstein-Kantorovich operators in case 0 < q < 1.

1. Introduction In the last two decades interesting generalizations of Bernstein polynomials were proposed by Lupas¸ [15] and by Phillips [20]. Generalizations of the Bernstein polynomials based on the q-integers attracted a lot of interest and was studied widely by a number of authors. A survey of the obtained results and references on the subject can be found in [19]. Recently some new generalizations of well known positive linear operators, based on q-integers were introduced and studied by several authors, see [23], [5], [6], [8], [21], [22], [16]. The classical Kantorovich operator B∗n , n = 1, 2, ... is defined by (cf. [14]) B∗n

(

∑ ) f ; x := (n + 1) n

(

k=0

)

n k

∫ x (1 − x)n−k

k+1/n+1

k

f (t) dt k/n+1

) ) ∫ 1 ( n ( ∑ k+t n n−k k f = x (1 − x) dt, k n+1 0

f : [0, 1] → R.

(1)

k=0

These operators have been extensively considered in the mathematical literature. Also, a number of generalizations have been introduced by different authors (see, for instance [24], [25], [26]). In this paper, inspired by (1), we introduce a q-type generalization of Bernstein-Kantorovich polynomial operators as follows. ( ) ∑ ( ) B∗n,q f, x := pn,k q; x n

k=0



(

1

f 0

) [k] + qk t dq t, [n + 1]

where f ∈ C [0, 1] , 0 < q < 1. 2010 Mathematics Subject Classification. Primary 41A46 ; Secondary 33D99, 41A25) Keywords. q-integers, positive operator, q-Bernstein-Kantorovich operator Received: 26 November 2011; Accepted: 8 December 2012 Communicated by Gradimir Milovanovic Email addresses: [email protected] (N. I. Mahmudov), [email protected] (P. Sabancigil)

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

722

The paper is organized as follows. In Section 2, we give standard notations that will be used throughout the paper, introduce q-Bernstein-Kantorovich operators and evaluate the moments of B∗n,q . In Section 3 we study local and global convergence properties of the q-Bernstein-Kantorovich operators and prove Voronovskaja-type asymptotic formula. In the final section we give statistical approximation result for the q-Bernstein-Kantorovich operators.

2. q-Bernstein-Kantorovich operators Let q > 0. For any n ∈ N ∪ {0}, the q-integer [n] = [n]q is defined by [n] := 1 + q + ... + qn−1 , [0] := 0; and the q-factorial [n]! = [n]q ! by [n]! := [1] [2] ... [n] ,

[0]! := 1.

For integers 0 ≤ k ≤ n, the q-binomial coefficient is defined by [

]

n k

:=

[n]! . [k]! [n − k]!

The q-analogue of integration in the interval [0, A] (see [13]) is defined by ∫

( ) ∑ ( n) n f (t) dq t := A 1 − q f Aq q , 0 < q < 1. ∞

A

0

n=0

Let 0 < q < 1. Based on the q-integration we propose the Kantorovich type q-Bernstein polynomial as follows.

B∗n,q

(

) ∑ ( ) pn,k q; x f, x = n

k=0

) ∫1 ( [k] + qk t f dq t, 0 ≤ x ≤ 1, n ∈ N [n + 1] 0

where pn,k

(

) q; x :=

[

n k

] x (1 − k

x)qn−k

, (1 −

x)nq

:=

n−1 ∏ (

) 1 − qs x .

s=0

It can be seen that for q → 1− the q-Bernstein-Kantorovich operator becomes the classical BernsteinKantorovich operator. Lemma 2.1. For all n ∈ N, x ∈ [0, 1] and 0 < q ≤ 1 we have B∗n,q (tm , x) =

) ) m−j ( m ( ∑ ∑ ( ) )i [n] j m− j ( n m q − 1 Bn,q t j+i , x . [ ] m i j [n + 1] m − j + 1 i=0 j=0

(2)

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

723

Proof. The recurrence formula can be derived by direct computation. B∗n,q

(t , x) = m

n ∑

pn,k

(

)∑ q; x m

k=0

=

n ∑

( ) pn,k q; x

k=0

=

m ( ∑ j=0

m j

m ( ∑ m = j j=0

m ( ∑ m = j j=0

=

m ( ∑ m j j=0

j=0 0 m ( ∑ j=0

)

∫1 (

m j

m j )

)

[k] j qk(m−j) tm−j dq t [n + 1]m

qk(m−j) [k] j [ ] [n + 1]m m − j + 1

n ( ∑ )m−j [k] j ( ) [n] j qk − 1 + 1 p q; x ] [ m j n,k [n + 1] m − j + 1 k=0 [n] ) ( ) m− j n ∑ ∑ )i [k] j ( ) [n] j m− j ( k q pn,k q; x − 1 [ ] m j i [n + 1] m − j + 1 k=0 i=0 [n] ) ) m−j ( n ∑ )i ∑ [k] j+i ( ) [n] j m− j ( n q −1 p q; x [ ] j+i n,k i [n + 1]m m − j + 1 i=0 k=0 [n] ) ) m−j ( ∑ ( ) )i [n] j m− j ( n q − 1 Bn,q t j+i , x . [ ] m i [n + 1] m − j + 1 i=0

Lemma 2.2. For all n ∈ N, x ∈ [0, 1] and 0 < q ≤ 1 we have 2q [n] 1 1 B∗n,q (1, x) = 1, B∗n,q (t, x) = x+ , [2] [n + 1] [2] [n + 1] ( ) ( ) q q + 2 q [n] [n − 1] 4q + 7q2 + q3 [n] 1 1 2 B∗n,q t2 , x = x + x+ . 2 2 [3] [2] [3] [3] [n + 1]2 [n + 1] [n + 1] Proof. Taking into account (2), by direct computation, we obtain explicit formulas for B∗n,q (t, x) and ( ) B∗n,q t2 , x as follows. ( ) ( ) [n] 1 Bn,q (1, x) + qn − 1 Bn,q (t, x) + Bn,q (t, x) [n + 1] [2] [n + 1] ( n ) q −1 2q [n] [n] 1 1 = + x+ = x+ [2] [n + 1] [n + 1] [2] [n + 1] [2] [n + 1] [2] [n + 1]

B∗n,q (t, x) =

and ( ) B∗n,q t2 , x =

(

1 [3] [n + 1]

2

( )) ( ) ( )2 Bn,q (1, x) + 2 qn − 1 Bn,q (t, x) + qn − 1 Bn,q t2 , x

( ) 2 B t , x n,q [2] [n + 1]2 [n + 1]2  ) ( ) ( )2  (  [n]2 2 [n] qn − 1 qn − 1  1 1   +  + + x2 =  1 − [n] [3] [n + 1]2 [n + 1]2 [2] [n + 1]2 [3] [n + 1]2  ( ) ( n )2 ( )   2 [n] qn − 1 q −1 2 qn − 1  [n]2 2 [n]   x +  + + + +  [n] [n + 1]2 [2] [n] [n + 1]2 [3] [n] [n + 1]2 [2] [n + 1]2 [3] [n + 1]2 +

=

2 [n]

( ( )) ( ) Bn,q (t, x) + qn − 1 Bn,q t2 , x +

[n]2

2q + 3q2 + q3 q [n] [n − 1] 2 4q + 7q2 + q3 [n] 1 x + x+ . 2 2 [2] [3] [2] [3] [n + 1] [n + 1] [3] [n + 1]2

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

724

Remark 2.3. It is observed from the above lemma that for q = 1, we get the moments of the Bernstein-Kantorovich operators. Lemma 2.4. For all n ∈ N, x ∈ [0, 1] and 0 < q ≤ 1 we have ( ) ( ) ( ) ( ) 4 1 1 C 2 4 ∗ ∗ Bn,q (t − x) , x ≤ x (1 − x) + , x (1 − x) + , Bn,q (t − x) , x ≤ [n] [n] [n]2 [n]2 where C is a positive absolute constant. Proof. Note that estimation of the moments for the q-Bernstein operators is given in [17]. The proof is based on the estimations of the second and fourth order central moments of the q-Bersntein polynomials. ( ) ( ) C 1 x (1 − x) , Bn,q (t − x)4 , x ≤ Bn,q (t − x)2 , x = x (1 − x) . [n] [n]2 Indeed

( ) B∗n,q (t − x)2 , x =

n ∑

( ) pn,k q; x

k=0

∫1 ( 0

)2 )2 ∫1 ( k n ∑ [k] + qk t qt qn [k] ( ) [k] − x dq t = pn,k q; x − + − x dq t [n + 1] [n + 1] [n] [n + 1] [n] k=0

0

)2 ∫1 ( n ∑ ( ) [k] dq t + 2 pn,k q; x − x dq t [n] k=0 k=0 0 0 ( ) 4 2 4 1 4 + + x (1 − x) ≤ x (1 − x) + . ≤ [n] [n] [3] [n + 1]2 [n + 1]2 [n]

n ∑ ( ) ≤ 2 pn,k q; x

∫1 (

qk t qn [k] − [n + 1] [n] [n + 1]

)2

A similar calculus reveals: ( ) B∗n,q (t − x)4 , x =

n ∑

( ) pn,k q; x

k=0

∫1 ( 0

)4 )4 ∫1 ( k n ∑ [k] + qk t qt qn [k] ( ) [k] pn,k q; x − x dq t = − + − x dq t [n + 1] [n + 1] [n] [n + 1] [n] 0

)4 ∫1 ( n ∑ ( ) [k] dq t + 4 pn,k q; x − x dq t [n] k=0 k=0 0 0 ( ) 32 32 4 C 1 ≤ + + Cx (1 − x) ≤ x (1 − x) + . [n]2 [n]2 [5] [n + 1]4 [n + 1]4 [n]2

n ∑ ( ) ≤ 4 pn,k q; x

∫1 (

k=0

qk t qn [k] − [n + 1] [n] [n + 1]

)4

Lemma 2.5. Assume that 0 < qn < 1, qn → 1 and qnn → a as n → ∞. Then we have 1+a 1 x+ , 2 2 ) ( 1 2 2 2 2 ∗ lim [n]qn Bn,qn (t − x) ; x = − x − ax + x. n→∞ 3 3 lim [n]qn B∗n,qn (t − x; x) = −

n→∞

( ) Proof. To prove the lemma we use formulas for B∗n,qn (t; x) and B∗n,qn t2 ; x given in Lemma 2.2. ( { } ) [n]qn 2qn [n]qn 1 ∗ −1 x+ lim [n]qn Bn,qn (t − x; x) = lim [n]qn n→∞ n→∞ [2]qn [n + 1]qn [2]qn [n + 1]qn { } [n]qn 1 + qn+1 [n]qn 1+a 1 1 n = lim − =− x+ x+ . n→∞ [n + 1]qn [2]qn [2]qn [n + 1]qn 2 2

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

725

( ) lim [n]qn B∗n,q (t − x)2 , x n→∞ ( ( ) ) = lim [n]qn B∗n,q t2 , x − x2 − 2xB∗n,q (t − x, x) n→∞   ( ) 2 3   qn qn + 2 [n]2qn − [n]qn  x2 + lim [n] 4qn + 7qn + qn [n]qn x − 1 = lim [n]qn   q n  n→∞ n→∞ [3]qn [2]qn [3]qn [n + 1]2q [n + 1]2qn n − lim [n]qn 2xB∗n,qn (t − x, x) n→∞

) ( ) 4qn + 7q2n + q3n ( )( x = lim qn 1 − qnn 2qn + q2n + 2 x2 − lim 4qn + 3q2n + 2q3n x2 + lim n→∞ n→∞ n→∞ [2]qn [3]qn − lim [n]qn 2xB∗n,qn (t − x, x) n→∞

5 (1 − a) x2 − 3x2 + 2x + (1 + a) x2 − x 3 1 2 = − x2 − ax2 + x. 3 3 =

3. Local and global approximation We begin by considering the following K-functional: {

} ( )





K2 f, δ2 := inf f − 1 + δ2 1′′ : 1 ∈ C2 [0, 1] , δ ≥ 0, where { } C2 [0, 1] := 1 : 1, 1′ , 1′′ ∈ C [0, 1] . Then, in view of a known result [7], there exists an absolute constant C0 > 0 such that ( ) ( ) K2 f, δ2 ≤ C0 ω2 f, δ where

( ) ω2 f, δ := sup sup f (x − h) − 2 f (x) + f (x + h) 0 0 such that )  (   √   1 + qn+1 x − 1    ( ) (x) δ n      + ω  f, B∗n,q f ; x − f (x) ≤ Cω2  f,  [2] [n + 1]  , [n]  where f ∈ C [0, 1], δn (x) = φ2 (x) +

1 , 0 ≤ x ≤ 1 and 0 < q < 1. [n]

Proof. Let ( ) ( ) e B∗n,q f ; x = B∗n,q f ; x + f (x) − f (an x + bn ) , where f ∈ C [0, 1], an =

2q [n] 1+q [n+1]

and bn = ∫

t

1 (t) = 1 (x) + 1′ (x) (t − x) + x

1 1 1+q [n+1] .

Using the Taylor formula

(t − s) 1′′ (s) ds,

1 ∈ C2 [0, 1] ,

(3)

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

726

we have ( ) e B∗n,q 1; x = 1 (x) + B∗n,q

(∫

t x

) ∫ (t − s) 1 (s) ds; x − ′′

an x+bn

(an x + bn − s) 1′′ (s) ds,

1 ∈ C2 [0, 1] .

x

Hence ) ∫ a x+b ( ∫ t n n ′′ ′′ |t − s| 1 (s) ds ; x + |an x + bn − s| 1 (s) ds x x ( )





2 2 ≤ 1′′ B∗n,q (t − x) ; x + 1′′ (an x + bn − x) ( ) } {



4 1 4 2 2 ′′ x (1 − x) + + x + ≤ 1 [n] [n] [n]2 [n]2

10

= δn (x) 1′′ . [n]

( ) e B∗n,q 1; x − 1 (x) ≤ B∗n,q

(4)

Using (4) and the uniform boundedness of e B∗n,q we get ( ) ∗ ( ) ( ) B∗n,q f ; x − f (x) ≤ e Bn,q 1; x − 1 (x) + f (x) − 1 (x) + f (an x + bn ) − f (x) B∗n,q f − 1; x + e



10



( ) ≤ 4 f − 1 + δn (x) 1′′ + ω f, |(an − 1) x + bn | . [n] Taking the infimum on the right hand side over all 1 ∈ C2 [0, 1], we obtain ( ) ( ) ( ) δ (x) B∗n,q f ; x − f (x) ≤ 10K2 f ; n + ω f, |(an − 1) x + bn | , [n] which together with (3) gives the proof of the theorem. Corollary 3.2. Assume that qn ∈ (0, 1) , qn → 1 as n → ∞. For any f ∈ C2 [0, 1] we have



( ) lim B∗n,qn f − f = 0. n→∞

We next present the direct global approximation theorem for the operators B∗n,q . In order to state the theorem we need the weighted K-functional of second order for f ∈ C[0, 1] defined by {

( )



( )} K2,ϕ f, δ2 := inf f − 1 + δ2 ϕ2 1′′ : 1 ∈ W 2 φ ,

δ ≥ 0, φ2 (x) = x (1 − x)

where } ( ) { W 2 φ := 1 ∈ C [0, 1] : 1′ ∈ AC [0, 1] , φ2 1′′ ∈ C [0, 1] , and 1′ ∈ AC [0, 1] means that 1 is differentiable and 1′ is absolutely continuous in [0, 1]. Moreover, the Ditzian-Totik modulus of second order is given by ( ) ) ( ) φ( sup f x − φ (x) h − 2 f (x) + f x + φ (x) h . ω2 f, δ := sup 0 0 such that ( ) ) (

( ) 1 1 → −

B∗n,q f − f

≤ Cωφ2 f, √ + ω ψ f, , [n] [n] where f ∈ C[0, 1], 0 < q < 1, φ2 (x) = x (1 − x), ψ (x) = 2x + 1. Proof. Let ( ) ( ) e B∗n,q f ; x = B∗n,q f ; x + f (x) − f (an x + bn ) , where f ∈ C [0, 1], an =

2q [n] 1+q [n+1]

and bn = ∫

t

1 (t) = 1 (x) + 1′ (x) (t − x) +

1 1 1+q [n+1] .

Using the Taylor formula ( ) 1 ∈ W2 φ ,

(t − s) 1′′ (s) ds,

x

we have ( ) e B∗n,q 1; x = 1 (x) + B∗n,q

(∫

Hence ( ) e B∗n,q 1; x − 1 (x) ≤ B∗n,q

t

) ∫ (t − s) 1′′ (s) ds; x −

x

an x+bn

(an x + bn − s) 1′′ (s) ds,

( ) 1 ∈ W2 φ .

x

) ∫ a x+b ( ∫ t n n ′′ ′′ |t − s| 1 (s) ds ; x + |an x + bn − s| 1 (s) ds . x x

(5)

Because the function δ2n is concave on [0, 1], we have for u = t + τ(x − t), τ ∈ [0, 1], the estimate τ |x − t| |x − t| |t − s| τ |x − t| ( )≤ 2 = 2 ≤ . 2 (t) 2 (x) 2 (t) δ2n (s) δn (s) δn (x) δn + τ δn − δn Hence, by (5), we find ) ( ∫ t





∫ an x+bn ( ) − s| |t ∗ 2 ′′ ∗ 2 ′′ 2 e Bn,q 1; x − 1 (x) ≤ δn 1 Bn,q ds ; x + δn 1 |an x + bn − s| /δn (s) ds x δ2n (s) x



( ) )

δ2n 1′′ ( ≤ 2 B∗n,q (t − x)2 ; x + (an x + bn − x)2 δ (x)

n

{ ( ) }

δ2n 1′′ 4 1 4 2 2 ≤ 2 x (1 − x) + + x + [n] δ (x) [n] [n]2 [n]2

n

{ ( )}

δ2n 1′′ 10 1 10

2 ′′

δ 1 . ≤ 2 x (1 − x) + = [n] [n] n δn (x) [n] Since



δ2n 1′′



φ2 1′′

+

1

′′

1 [n + 1]

we have ( )

10

( ) 1

′′

∗ 2 ′′ e Bn,q 1; x − 1 (x) ≤

φ 1 +

1 . [n] [n]

(6)

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

Using (6) and the uniform boundedness of e B∗n,q we get ( ) ( ) ∗ ( ) B∗n,q f ; x − f (x) ≤ e B∗n,q f − 1; x + e Bn,q 1; x − 1 (x) + f (x) − 1 (x) + f (an x + bn ) − f (x) ) (



10



1

′′

2 ′′

φ 1 +

1 + f (an x + bn ) − f (x) . ≤ 4 f − 1 + [n] [n] ( ) Taking the infimum on the right hand side over all 1 ∈ W 2 φ , we obtain ) ( ( ) 1 ∗ Bn,q f ; x − f (x) ≤ 10K2,φ f ; + f (an x + bn ) − f (x) . [n] On the other hand ( ) f (an x + bn ) − f (x) = f x + ψ (x) ((an − 1) x + bn ) − f (x) ( )) ( 1 + qn+1 1 x+ − f (x) ≤ sup f x + ψ (t) − ψ (x) [2] [n + 1] [2] [n + 1] ψ (x) ) ( n+1 1+q 1 − x+ ≤→ ω ψ f ; − ψ (x) [2] [n + 1] [2] [n + 1] ψ (x)   ∗ ) (  Bn,q (t; x) − x  → 2x + 1 → −  ≤ −  ≤ ω ψ  f ; . ω f ; ψ  ψ (x) [2] [n] ψ (x)

728

(7)

(8)

( √ ) ) ( φ 1 1 and the Ditzian-Totik modulus ω2 f, [n] we Hence, by (7) and (8), using the equivalence of K2,φ f, [n] get the desired estimate. Next we prove Voronovskaja type result for q-Bernstein-Kantorovich operators. Theorem 3.4. Assume that qn ∈ (0, 1) , qn → 1 and qnn → a as n → ∞. For any f ∈ C2 [0, 1] the following equality holds ( ) ( ) ( ) ( ) 1+a 1 1 1 2 lim [n]qn B∗n,qn f ; x − f (x) = f ′ (x) − + f ′′ (x) − x2 − ax2 + x x+ n→∞ 2 2 2 3 3 uniformly on [0, 1] . Proof. Let f ∈ C2 [0, 1] and x ∈ [0, 1] be fixed. By the Taylor formula we may write 1 ′′ f (x) (t − x)2 + r (t; x) (t − x)2 , (9) 2 where r (t; x) is the Peano form of the remainder, r (·; x) ∈ C [0, 1] and limt→x r (t; x) = 0. Applying B∗n,qn to (9) we obtain ( ) ( ) [n]qn B∗n,qn f ; x − f (x) = f ′ (x) [n]qn B∗n,qn (t − x; x) ) ( ) ( 1 + f ′′ (x) [n]qn B∗n,qn (t − x)2 ; x + [n]qn B∗n,qn r (t; x) (t − x)2 ; x . 2 By the Cauchy-Schwartz inequality, we have √ ) ( ) √ ( (10) B∗n,qn r (t; x) (t − x)2 ; x ≤ B∗n,qn (r2 (t; x) ; x) B∗n,qn (t − x)4 ; x . f (t) = f (x) + f ′ (x) (t − x) +

Observe that r2 (x; x) = 0 and r2 (·; x) ∈ C [0, 1] . Then it follows from Corollary 3.2 that ) ( lim B∗n,qn r2 (t; x) ; x = r2 (x; x) = 0 n→∞

uniformly with respect to x ∈ [0, 1] . Now from (10), (11) and Lemma 2.5 we get immediately ( ) lim [n]qn B∗n,qn r (t; x) (t − x)2 ; x = 0. n→∞

The proof is completed.

(11)

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

729

4. Statistical approximation At this moment, we recall the concept of statistical convergence. The density of a subset K of N is given n ∑ by δ(K) := limn→∞ n1 χK (k) , whenever the limit exists, where χK is the characteristic function of K. A k=1

sequence x = {xn }n∈N is said to be statistically convergent to L if for any ε > 0, δ {n ∈ N : |xn − L| ≥ ε} = 0 and it is denoted{by} st − lim x = L (see[10]). Assume that qn n∈N be sequence from (0, 1] such that st − lim qn = 1. n

{ } Observe that for any sequence qn n∈N ⊂ (0, 1], satisfying (12) and for fixed x ∈ [0, 1] , we have ) ( x − 1 1 + qn+1 n δn (x) = 0, st − lim = stA − lim n [n]q n [2]q [n + 1]q n n n

(12)

(13)

which yields   √  δn (x)    = 0, st − lim ω2  f, n [n]qn  and

)  (   1 + qn+1 x − 1  n   = 0 st − lim ω  f,  [2]qn [n + 1]qn  n

(14)

(15)

respectively. So, Theorem 3.1 gives the following statistical approximation theorem. { } Theorem 4.1. Assume that, qn n∈N is a sequence satisfying (12). Then, for all f ∈ C [0, 1] and fixed x ∈ [0, 1] , we have st − lim B∗n,q ( f ; x) − f (x) = 0. n

References [1] U. Abel, V. Gupta, An estimate of the rate of convergence of a Bezier variant of the Baskakov-Kantorovich operators for bounded variation functions, Demonstratio Math. 36 (2003) 123-136. [2] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994. [3] O. Agratini, On statistical approximation in spaces of continuous functions, Positivity 13 (2009) 735-743. [4] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge Univ. Press., 1999 [5] A. Aral, V. Gupta, On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Analysis 72 (2010) 1171-1180. [6] M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo Serie II 76 (2005) 269-290. [7] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987. V. Gupta, Monotonicity and the asymptotic estimate of Bleimann Butzer and Hahn operators based on q-integers, [8] O. Dogru, ˘ Georgian Math. J. 12 (2005) 415-422. [9] O. Duman, C. Orhan, Statistical approximation by positive linear operators, Studia Math. 161 (2006) 187-197. [10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244. [11] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002) 129–138. [12] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. 197 (2008) 172-178. [13] V. Kac, P. Cheung, Quantum calculus, Universitext, Springer-Verlag, New York, 2002. [14] G. G. Lorentz, Bernstein polynomials, Math. Expo. Vol. 8, Univ. of Toronto Press, Toronto, 1953. [15] A. Lupas , A q-Analogue of the Bernstein Operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca 9 (1987) 85–92. [16] N.I. Mahmudov, Korovkin-type Theorems and Applications, Central European Journal of Mathematics, 7 (2009) 348-356.

N. I. Mahmudov, P .Sabancigil / Filomat 27:4 (2013), 721–730

730

[17] N.I. Mahmudov, The moments for q-Bernstein operators in the case 0 < q < 1, Numer Algorithms, 53 (2010) 439-450. [18] N.I. Mahmudov, On q-parametric Sz´asz-Mirakjan operators, Mediterranen J. Math. 7 (2010) 297-311. [19] S. Ostrovska,, The first decade of the q-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory 2 (2007) 35-51. [20] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 )1997) 511-518. [21] C. Radu, On statistical approximation of a general class of positive linear operators extended in q-calculus, Applied Mathematics and Computation 215 (2009) 2317–2325. [22] C. Radu, Statistical approximation properties of Kantorovich operators based on q-integers, Creative Math and Inf. 17 (2008), 75-84. [23] Trif T., Meyer-Konig and Zeller operators based on the q-integers, Rev. Anal. Num´er. Th´eor. Approx., 29 (2000) 221-229. ¨ [24] Jia-Ding Cao, On Sikkema Kantorovich polynomials of order k, Approx. Theory Appl. 5 (1989) 99–109. [25] Jia-Ding Cao, A generalization of the Bernstein polynomials, J. Math. Anal. Appl. 209 (1997) 140–146. [26] J. Nagel, Kantorovich operators of second order, Monatsch. Math. 95 (1983) 33-44.

Suggest Documents