Aquatic Microbial Ecology ppe:dix

10 downloads 0 Views 91KB Size Report
*Email: lancelot@ulb.ac.be ..... Lancelot & Mathot 1985a, Mathot et al. 1992) k NF. cR ..... Series G, Ecol Sci 41:209–224, Clarendon Press, Oxford. Lancelot C ...
The following appendices (1 to 5) accompany the article

Modelling diatom and Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model C. Lancelot1,*, Y. Spitz2, N. Gypens1, K. Ruddick3, S. Becquevort1, V. Rousseau1, G. Lacroix 3, G. Billen4 1

2

Université Libre de Bruxelles, Ecologie des Systèmes Aquatiques, CP-221, Boulevard du Triomphe, 1050 Brussels, Belgium Oregon State University, College of Oceanic and Atmospheric Sciences, 104 COAS Admin. Bldg., Corvallis, Oregon 97331, USA 3 Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Gulledelle 100, 1200 Brussels, Belgium 4 Université Pierre & Marie Curie (Paris VI), UMR-CNRS 7619 Sisyphe, 4 Place Jussieu, 75005 Paris, France *Email: [email protected] Marine Ecology Progress Series 289:63–78 (2005)

Appendix 1. MIRO model: the 32 state variables Variable Biological state variables: Diatoms: DA = DAF + DAS + DAR Functional and structural metabolites Monomers Reserves Nanoflagellates: NF = NFF + NFS + NFR Functional and structural metabolites Monomers Reserve products Phaeocystis colonies: OP = OPF + OPS + OPR + OPM Functional and structural Monomers Reserve products Mucous matrix Bacteria Microzooplankton Copepods Organic matter: Monomeric: carbon, nitrogen Dissolved polymers (high biodegradability): carbon (C), nitrogen (N), phosphorus (P) Dissolved polymers (low biodegradability): C, N, P Particulate organic matter (high biodegradability): C, N, P Particulate organic matter (low biodegradability): C, N, P Detrital biogenic silica: Si Inorganic nutrients: Nitrate Ammonium Phosphate Silicic acid

Symbol

DAF DAS DAR NFF NFS NFR OPF OPS OPR OPM BC MZ CP BSC, BSN DC1, DN1, DP1 DC2, DN2, DP2 PC1, PN1, PP1 PC2, PN2, PP2 BSi NO3 NH4 PO4 DSi

Appendix 2. The MIRO model: processes Description

Symbol

Phytoplankton: Photosynthesis Growth Reserve/mucus synthesis Reserve/mucus catabolism Exudation Respiration Autolysis Colony lysis Sedimentation Nutrient uptake

ϕi ; i = DA, NF, OP μi ; i = DA, NF, OP s i ; i = DAR, NFR, OPR, OPM c i ; i = DAR, NFR, OPR, OPM e i ; i = DAS, NFS, OPS resp i ; i = DA, NF, OP lys; i = DA, NF, OP lyscol sed i ; i = DA, OP k upt PHY ; k = NO3, NH4, PO4, SiO; PHY = DA + NF + OP

Zooplankton: Grazing

gl/q ; l = MZ, CP for l = MZ, q = BC, NF for l = CP, q = DA, MZ μi ; l = MZ, CP lys l ; l = MZ, CP eg l ; l = MZ, CP reg lk; l = MZ, CP; k = NH4, PO4

Growth Natural mortality Egestion Nutrient regeneration Microbial loop: C and nutrient uptake Growth Natural mortality Ammonification Nitrification Denitrification Ectoenzymatic hydrolysis of DOM Hydrolysis of POM Dissolution of BSi Sedimentation of POM Benthos: Nitrification PO4/NH4-adsorption/desorption Nutrient exchanges at the sediment-water interface

k upt BC ; k = BSC, BSN, NH4, PO4 μ BC lys BC 4 reg NH BC ni dni elys Di ; Di = DC1, 2 = DN1, 2 = DP1, 2 elys Di ; Pi = PC1, 2 = PN1, 2 = PP1, 2 lys BSi sed Pi ; Pi = PC1, 2 = PN1, 2 = PP1, 2

ni B ads KB : k = NH4, PO4 J k; k = NO3, NH4, PO4, SiO

Appendix 3. The MIRO model: conservation equations Phytoplankton Diatoms: DA = DAF + DAS + DAR; z = depth dDAF dt

= μ DA − ⎡⎢gCP /DA + lys DA + 1 sedDA ⎤⎥ ⋅ DAF ⎣

z

⎦ DA

dDAS 1 ⎡ ⎤ DAS = ϕ DA − eDAS − s DAR + c DAR − μ DA − respDA − ⎢g CP /DA + lys DA + sedDA ⎥ ⋅ ⎣ ⎦ DA z dt dDAR 1 ⎡ ⎤ DAR = s DAR − c DAR − ⎢g CP /DA + lys DA + sedDA ⎥ ⋅ ⎣ ⎦ DA dt z

Nanophytoflagellates: NF = NFF + NFS + NFR dNFF NFF OPF = μ NF − [g MZ / NF + lys NF ] ⋅ + [(1 − aggr ) ⋅ lyscol ] ⋅ dt NF OP dNFS NFS OPS = ϕ NF − eNFS − s NF R + c NFR − μ NF − respNF − [g MZ / NF + lys NF ] ⋅ + [(1 − aggr ) ⋅ lyscol ] ⋅ dt NF OP dNFR NFR OPR = s NF R − c NFR − [g MZ / NF + lys NF ] ⋅ + [(1 − aggr ) ⋅ lyscol ] ⋅ dt NF OP

Phaeocystis colonies: OP = OPF + OPS + OPR + OPM dOPF OPF 1 = μOP − ⎡⎢lysOP + sedOP + lyscol ⎤⎥ ⋅ ⎣ ⎦ OP dt z dOPS OPS 1 = ϕOP − eOPS − sOPR + cOPR − sOPM + cOPM − μOP − respOP − ⎡⎢lysOP + sedOP + lyscol ⎤⎥ ⋅ ⎣ ⎦ OP dt z dOPR OPR 1 = sOPR − cOPR − ⎡⎢lysOP + sedOP + lyscol ⎤⎥ ⋅ ⎣ ⎦ OP dt z dOPM OPM 1 = sOPM − cOPM − ⎡⎢lysOP + sedOP + lyscol ⎤⎥ ⋅ ⎣ ⎦ OP dt z

Appendix 3 (continued) Zooplankton Microzooplankton: MZ dMZ = μ MZ − lys MZ − g CP / MZ dt

Copepods: CP dCP = μCP − lysCP dt

Microbial loop Bacteria: BC dBC = μ BC − lys BC − g MZ / BC dt

Organic matter: BSC, BSN, DCi, DNi, DPi , PCi, PNi, PPi (i = 1, 2) Organic carbon dBSC DAS NFS OPS BSC = elys DC 1 + elys DC 2 + lys DA + lys NF + lysOP + eDA + eNF + eOP − upt BC dt DA NF OP dDCi OPM = εdi lys BIO + γ di eg ZOO − elys DCi + elys PCi + τdi [1 − aggr ] ⋅ lyscol dt OP 1 dPCi = ε pi lys BIO + γ pi eg ZOO − elys PCi − sedPCi + τ pi [aggr ] ⋅ lyscol z dt wherre DAF + DAR OPF + OPR NFF + NFR lys BIO = lys DA + lys NF + lysOP + lys BC + lys MZ DA OP NF eg ZOO = eg CP + eg MZ + lysCP

Organic nitrogen dBSN BSN = elys DN 1 + elys DN 2 − upt BC dt dDNi = εdi lysN BIO + γ di egN ZOO − elys DNi + elys PNi dt dPNi OPF 1 = εpi lysN BIO + γ pi egN ZOO + τ pi [aggr ] ⋅ lyscol ⋅ − elys PNi − sedPNi dt CN PHY z where lysN BIO =

lys MZ 1 DAF NFF OPF ⎤ lys BC ⋅ ⎡ lys ⋅ + lys NF ⋅ + lysOP + + CN PHY ⎢⎣ DA DA NF OP ⎥⎦ CN BC CN ZOO

1 egN ZOO = ƒpCP ⋅ ⎡⎢ ⎣ CN PHY

NFF DAF ⋅ ⎡g MZ /NF ⋅ + g CP /DA ⋅ ⎢⎣ NF DA

⎤ ⎤ + 1 ⋅ [g CP /MZ + g MZ /BC + lysCP ]⎥ ⎥⎦ CN ⎦ CP

Organic phosphorus dDPi = εdi lysPBIO + γdi eg ZOO − elys DPi + elys PPi dt dPPi OPF 1 = εpi lysPBIO + γ pi egPZOO + τpi [aggr ] ⋅ lyscol ⋅ − elys PPi − sedPPi dt CPPHY z where lysPBIO =

1 DAF NFF OPF ⎤ lys BC lys MZ ⋅ ⎡ lys ⋅ + lys NF ⋅ + lysOP + + CPPHY ⎣⎢ DA DA NF OP ⎦⎥ CPBC CPZOO

1 1 NFF DAF ⎤ ⋅ ⎡g MZ /NF ⋅ + g CP /DA ⋅ egPZOO = ƒpCP ⋅ ⎡⎢ + ⋅ [ g CP /MZ + g MZ /BC + lysCP ]⎤⎥ NF DA ⎥⎦ CPCP ⎣ CPPHY ⎢⎣ ⎦

Nutrients dNO 3 1 NO 3 = − upt PHY + ni − J NO 3 dt z dNH 4 1 NH 4 NH 4 NH 4 NH 4 + reg CP = − upt PHY − ni − J NH 4 + reg BC + reg MZ dt z dPO 4 1 PO 4 PO 4 PO 4 PO 4 + reg CP = − upt PHY − upt BC − J PO 4 + elys DPi + elys PPi + reg MZ dt z dDSi DSi = − upt DA + lys BSi dt 1 ⎡ 1 dBSi DAF = − kbSi BSi + ⋅ g CP /DA + sedDA ⎤ ⋅ ⎦⎥ DA dt CSi ⎣⎢ z

Appendix 4. The MIRO model: kinetic equations of processes Phytoplankton i = DA, NF, OP Photosynthesis −α I ⎡ ⎤ i i ϕ i = kmax ⎢1 − e kmax ⎥ ⋅ i F ⎢⎣ ⎥⎦ i

(1)

i where α i = kmax and Iki = light adaptation I ki

I = I 0 [1 − asea ] ⋅ e − ηz

αsea: sea surface albedo I 0: incident PAR [µmol m–2 s–1]; z: depth [m] 1 [DAF + NFF + OPF ] η = ηm + ηself CChl Lysis and exudation i lysi = k lys ·i i i  = k lys where k lys min [1 + 7.5 ⋅ (1 − N i )] lyscol = klyscol · OP ei = ε · iS

(2) (3) (4)

Synthesis (s) and catabolism (c) of intracellular reserve products Si =

iS S i2 i − ks where s i = srmax ⋅ iF 2 iF S i + kS2

(5)

i c i = kcR ⋅ iR

(6)

Synthesis (s) and catabolism (c) of Phaeocystis mucus S2 sOP = smumax 2 i 2 ⋅OPF S i + kS i cOP = kcR ⋅ [OPM − OPM min ] where

μ i = μ imax

S i2

S i2 ⋅ N˜ i ⋅ iF + kS2

(7) (8)

Growth and respiration μ i = μ imax

S i2

S i2 ⋅ N˜ i ⋅ iF + kS2

where DIN = NO 3 + NH 4 N DA = N NF ,OP

(9)

DIN ⋅ PO4 ⋅ DSi DA kPDA ⋅ DIN ⋅ DSi + kNDA ⋅ PO4 ⋅ DSi + kSi ⋅ DIN ⋅ PO4 + DIN ⋅ PO4 ⋅ DSi DIN ⋅ PO4 = NF ,OP kN ⋅ PO4 + kPNF ,OP ⋅ DIN + DIN ⋅ PO4

respi = k fi · iF + ξμi

(10)

where ξ = ecs NH 4 ⎡⎣1 − ƒNO3 ⎤⎦ + ecs NO 3 ƒNO 3

(metabolic cost)

Sedimentation (diatoms, biogenic silica) DA sedDA = ksed DA

(11)

DA sedBSi = ksed BSi

(12)

DA DA ˜ = ksed where ksed min [1 + 5 ⋅ (1 − N DA )]

Nutrient uptake ƒNO 3 3 upt NO PHY = CN PHY

∑ μi

I m NH 4 where ƒNO 3 = 1 − NH 4 + k i 1 − ƒ NO 3 NH 4 = upt PHY ∑ μi CN PHY i Si upt DA = μ DA SiC PO 4 = upt PHY

1 CP

∑ μi i

(13)

i

(14) (15) (16)

Appendix 4 (continued) Microzooplankton Grazing gMZ = gMZ/BC + gMZ/NF where: MZ /BC g MZ /BC = g max

MZ /NF g MZ /NF = g max

BC 2

[kgMZ /BC ]

2

+ BC 2

NF 2

[

]

2 kgMZ /BC

+ NF 2

MZ

(17)

MZ

(18)

Growth μMZ = yMZ/BC ·gMZ/BC + yMZ/NF ·gMZ/NF

(19)

Natural mortality (lysis) lys MZ = kdMZ ⋅ MZ

(20)

Egestion egMZ = ƒpMZ · gMZ

(21)

Excretion and nutrient regeneration ex MZ = [1 − ƒ p ] ⋅ g MZ − μ MZ

(22)

1 1 1 NH 4 reg MZ = [1 − ƒ p ] ⋅ ⎡ g MZ / BC + g MZ / NF NFF / NF ⎤ − μ MZ ⎣⎢CN BC ⎦⎥ CN MZ CN PHY

(23)

1 1 1 PO 4 reg MZ = [1 − ƒ p ] ⋅ ⎡ g + g NFF / NF ⎤ − μ ⎢⎣CPBC MZ / BC CPPHY MZ / NF ⎥⎦ CPMZ MZ

(24)

Copepods Grazing g CP = g CP max

DA2 + MZ 2

[

2 kgCP

] + DA2 + MZ 2

CP

(25)

DA DA + MZ MZ = g CP DA + MZ

g CP / DA = g CP g CP / MZ

Growth μCP = yCP · gCP

(26)

Mortality lysCP = kdCP · CP 2

(27)

Egestion egCP = ƒpCP · gCP

(28)

Excretion and nutrient regeneration exCP = [1 − ƒ p ]g CP − μCP

(29)

1 1 1 NH 4 reg CP = [1 − ƒ p ] ⋅ ⎡ g + g DAF / DA ⎤ − μ ⎢⎣CN MZ CP / MZ CN PHY CP / DA ⎥⎦ CN CP CP

(30)

1 1 1 PO 4 reg CP = [1 − ƒ p ] ⋅ ⎡ g + g DAF / DA ⎤ − μ ⎢⎣CPMZ CP / MZ CPPHY CP / DA ⎥⎦ CPCP CP

(31)

Microbial loop Bacteria Growth μBC = yBC · uptBC Carbon and nutrient uptake S ut BSC upt BC = bmax ut BC S + kBSC where S ut = BSC – 0.1 · kBSC

(32)

(33)

Appendix 4 (continued) Carbon and nutrient uptake (continued) N uptake N BSC upt BC = upt BC ⋅

BSN BSC

(34)

P uptake PO 4 upt BC =

1 μ BC CPBC

(35)

N regeneration (ammonification) NH 4 N = upt BC − reg BC

1 μ BC CN BC

(36)

Nitrification ni = ni max

NH 4 NH 4 NH 4 + k ni

(37)

Lysis lys BC = kdBC BC

(38)

Organic matter i : (1) labile polymers; (2) semi-labile polymers Ecto-hydrolysis of dissolved polymers elys DCi = eimax

DCi BC DCi + ki h

(39)

elys DNi = elys DCi

DNi DCi

(40)

elys DPi = elys DCi

DPi DCi

(41)

Hydrolysis of particulate organic matter lysPCi = ki b · PCi lysPNi = ki b · PNi lysPPi = ki b · PPi lysBSi = ki b · BSi

(42) (43) (44) (45)

Sedimentation of particulate organic matter sedPCi = ksed · PCi sedPNi = ksed · PNi sedPPi = ksed · PPi

(46) (47) (48)

Benthic processes (other than organic matter degradation) Nitrification B ni B = nimax NH 4

(49)

Ammonium adsorption/desorption B ads NH 4 = kam NH 4

(50)

Phosphate adsorption/desorption Oxic layer B ads PO 4 = k pa PO4

(51)

Anoxic layer B ads PO 4 = k pe PO4

(52)

Temperature dependence of physiological parameters p = p∗ ⋅ e

2⎤ ⎡ ⎡T −T opt ⎤⎦ ⎥ ⎢− ⎣ ⎢ ⎥ dti 2 ⎣ ⎦

(53)

Appendix 5. The MIRO model: parameters. *Temperature-dependent; **nutrient stress-dependent. State variables: F (functional and structural metabolites), R (reserve products), S (monomers) Symbol

Description

Phytoplankton Carbon metabolism losses k DA Max. photosynthetic capacity rate of DA at optimal max* temperature

Unit

Value

Origin and source

h–1

0.12

Estimated from photosynthesis–light relationship data (C. Lancelot & V. Rousseau unpubl.)

NF * k max

Max. photosynthetic capacity rate of NF at optimal temperature

h–1

0.10

Estimated from photosynthesis–light relationship data (C. Lancelot & V. Rousseau unpubl. )

OP * k max

Max. photosynthetic capacity rate of OP at optimal temperature

h–1

0.30

Estimated from photosynthesis–light relationship data (Lancelot & Mathot 1987)

Ik

Light adaptation parameter

µmol m–2 s–1

20 to 65

smu max*

Max. rate of OP mucus synthesis

h–1

0.20

Estimated from photosynthesis–light relationship data (Lancelot & Mathot 1987)

μ DA max*

Max. F synthesis rate of DA at optimal temperature

h–1

0.05

Estimated from temperature dependence (protein synthesis) experiments (Lancelot et al. 1998)

NF * μ max

Max. F synthesis rate of NF at optimal temperature

h–1

0.09

Estimated from temperature dependence (protein synthesis) experiments (Lancelot et al. 1998)

OP * μmax

Max. F synthesis rate of OP at optimal temperature

h–1

0.09

Estimated from temperature dependence (protein synthesis) experiments (Lancelot et al. 1998, Schoemann et al. 2004)

DA * sr max

Max. R synthesis rate of DA at optimal temperature

h–1

0.10

Estimated from best fitting of 14C time-course exp. (e.g. Lancelot & Mathot 1985a, Mathot et al. 1992) using AQUAPHY equations

NF * sr max

Max. R synthesis rate of NF at optimal temperature

h–1

0.10

Estimated from best fitting of 14C time-course exp. (e.g. Mathot et al. 1992) using AQUAPHY’s equations

sr OP max*

Max. R synthesis rate of OP at optimal temperature

h–1

0.10

Estimated from best fitting of 14C time-course exp. (e.g. Lancelot & Mathot 1985b, Mathot et al. 1992) using AQUAPHY equations

ks

Half saturation constant of S assimilation

mgC:mgC

0.06

Adjusted from 14C experiments (Mathot et al. 1992)

k DA cR

Specific rate of DAR catabolism

h–1

0.06

Estimated from best fitting of 14C time-course experiment using AQUAPHY equations (e.g. Lancelot & Mathot 1985a, Mathot et al. 1992)

NF k cR

Specific rate of NFR catabolism

h–1

0.06

Estimated from best fitting of 14C time-course exp. (e.g. Mathot et al. 1992) using AQUAPHY equations

OP k cR

Specific rate of OPR catabolism

h–1

0.06

Estimated from best fitting of 14C time-course exp. (e.g. Lancelot & Mathot 1985b, Mathot et al. 1992) using AQUAPHY equations

k DA F

Constant of DA cell maintenance

h–1

0.0004

Diatoms cultures in the dark (Verity 1982)

k FNF

Constant of NF cell maintenance

h–1

0.0008

Estimated

k FOP

Constant of OP cell maintenance

h–1

0.0008

Estimated

ecsNO3

Energy cost of F synthesis (NO3 source)

mol C:mol C

0.8

ecsNO4

Energy cost of F synthesis (NH4 source)

mol C:mol C

0.4

ε

Excretion constant

h–1

0.001

Average from photosynthesis/excretion light curves (Lancelot 1979, 1983)

k DA lys **min

Minimum specific rate of DA cellular autolysis

h–1

0.0016

Adjusted based on Brussaard et al. (1995)

NF **min k lys

Minimum specific rate of NF cellular autolysis

h–1

0.0025

Adjusted based on Brussaard et al. (1995)

OPC **min k lys

Minimum specific rate of 0P cellular autolysis

h–1

0.003

Adjusted based on Brussaard et al. (1995)

klyscol min

Minimum specific rate of colony lysis

h–1

0.002

Adjusted

h–1

0.02

OPF

> 1.7

klyscol max

Max. specific rate of colony lysis for

aggr k DA sed**min OP **min k sed

Fraction of colony lysis products that aggregates Minimum diatom (DA) sinking rate Minimum Phaecystis colony (OP) sinking rate

OPM

Dimensionless 0.25 m h–1 0.0085 m h–1 0.0085

Photo-adaptation to ambient light (Lancelot et al. 1991)

Penning-De Vries et al. (1974) Penning-De Vries et al. (1974)

Adjusted SetCol experiments (Lancelot et al. 2004) SetCol experiments (Lancelot et al. 2004)

Appendix 5 (continued) Symbol

Description

Unit

Value

Nutrient uptake k DA Half saturation constant for DIN uptake (DA) N

mmol N m–3

0.80

NF kN

Half saturation constant for DIN uptake (NF)

mmol N m–3

0.50

OP kN

Half saturation constant for DIN uptake (OP)

mmol N m–3

2

im

Max. rate of NO3 uptake inhibition by NH4

ki

Half saturation constant of NO3 uptake inhibition by NH4

Origin and source

Size-adjusted from literature (Stolte 1996) Size-adjusted from literature (Stolte 1996) Size-adjusted from literature (Lancelot et al. 1986, Stolte 1996)

mmol N:mmol N

0.8

Elskens et al. (1997)

mmol N m-3

0.57

Tungeraza (2000)

k DA P

Half saturation constant for PO4 uptake (DA)

mmol P m–3

0.3

Size-adjusted from literature

k PNF

Half saturation constant for PO4 uptake (NF)

mmol P m–3

0.1

Size-adjusted from literature

k OP

Half saturation constant for PO4 uptake (OP)

mmol P m–3

0.001

Chosen very low to consider ability to use organic P (Veldhuis et al. 1991)

k DA DSi

Half saturation constant for Si uptake (DA)

mmol Si m–3

0.40

Adjusted to average minimum ambient concentration at 330

mg chl:mg C

0.04

Estimated from biochemical composition of field phytoplankton (growing phase) (Lancelot-Van Beveren 1980) Estimated from protein and chl a content of field phytoplankton (growing phase) (Lancelot-Van Beveren 1980)

Cellular stoichiometry CChl Chl a:C ratio for F metabolites

CNPHY

C:N ratio for F metabolites

mmol C:mmol N

4.10

CPPHY

C:P ratio for F metabolites

mmol C:mmol P

65

SiC

Si:C ratio for DAF metabolites Days 1 to 150 early spring diatom Days 151 to 365: spring-summer diatoms

mmol Si:mmol C

Temperature adaptation DA optimal growth temperature T DA opt Days 1 to 150 early spring diatom Days 151 to 365: spring-summer diatoms

Biochemical composition (LancelotVan Beveren 1980, Redfield et al. 1963) Rousseau et al. (2002)

0.36 0.11 °C

5.5 15

Lancelot et al. (1998), Rousseau (2000)

NF T opt OP T opt

NF optimal growth temperature OP optimal growth temperature

°C °C

15 15

Lancelot et al. (1998), Schoemann et al. (2004) Lancelot et al. (1998), Schoemann et al. (2004)

dTDA

DA temperature interval Days 1 to 150 Days 151 to 365

°C

1.6 12

Lancelot et al. (1998), Rousseau (2000)

dTNF

NF temperature interval

°C

12

Lancelot et al. (1998), Schoemann et al. (2004)

dTOP

OP temperature interval

°C

12

Lancelot et al. 1998; Schoemann et al. (2004)

Carbon metabolism and losses MZ/BC * Max. specific grazing rate on bacteria BC (optimal g max temperature)

h–1

0.05

Adjusted from grazing experiments (Becquevort 1999)

MZ/NF * g max

Max. grazing rate on nanoflagellates NF (optimal temperature)

h–1

0.04

Adjusted from grazing experiments (Weisse & Scheffel-Möser 1990, Becquevort 1999)

k MZ/BC g

Half saturation constant for grazing on BC

mg C m–3

40

Adjusted from grazing experiments (Becquevort 1999)

k MZ/NF g

Half saturation constant for grazing on NF

mg C m–3

5

Adjusted from grazing experiments (Weisse & Scheffel-Möser 1990, Becquevort 1999)

yMZ/NF

Growth efficiency (prey = NF)

Dimensionless

0.35

Estimated from Hansen (1992)

yMZ/BC

Growth efficiency (prey = BC)

Dimensionless

0.1

Estimated (= 0.3 × 0.3)

ƒpMZ

Egested fraction of ingestion

Dimensionless

0.25

Arbitrary

k dMZ*

Mortality rate

h–1

0.002

Estimated from Billen et al (1990)

Microzooplankton MZ

Cellular stoichiometry CNMZ

C:N ratio

mg C:mmol N

63

Redfield et al. (1963)

NPMZ

N:P ratio

mol N:mol P

16

Redfield et al. (1963)

CPMZ

C:P ratio

mg C:mmol P

1008

Redfield et al. (1963)

Temperature adaptation T MZ opt

Optimal temperature

°C

15

Adjusted to prey temperature dependence

dT MZ

Temperature interval

°C

12

Adjusted to prey temperature dependence

Appendix 5 (continued) Symbol

Description

Unit

Value

Origin and source

Copepods: CP Carbon metabolism and losses Max. specific grazing rate (optimal temperature) g CP max* Half-saturation constant for grazing on DA+ MZ kCP g Growth efficiency yCP Egested fraction of ingestion ƒpCP Mortality rate kdCP*

h–1 0.04 mg C m–3 50 Dimensionless 0.25 Dimensionless 0.25 h–1 0.0003

Estimated from grazing data (Daro 1985) Estimated from grazing data (Daro 1985) Hecq (1981) Average from literature Adjusted (quadratic closure term)

Cellular stoichiometry C:N ratio CNCP N:P ratio NPCP C:P ratio CPCP

mg C:mmol N mol N:mol P mg C:mmol P

63 16 1008

Redfield et al. (1963) Redfield et al. (1963) Redfield et al. (1963)

Temperature adaptation Optimal growth temperature T CP opt

°C

16

Adjusted from observed seasonal cycle (Hecq 1981)

dTCP

°C

12

Adjusted from observed seasonal cycle (Hecq 1981)

Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless

0.3 0.2 0.1 0.4 0.5 0.5 0.1 0.2 0.3 0.4

Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted Adjusted

Bacterioplankton Max. specific rate of D1 ecto-enzymatic hydrolysis at e1max* optimal temperature

h–1

0.75

Microbial bio-assay (Billen & Servais 1989)

e2max*

Max. specific rate of D2 ecto-enzymatic hydrolysis at optimal temperature

h–1

0.25

Microbial bio-assay (Billen & Servais 1989)

k1h

Half saturation constant for D1 ecto- enzymatic hydrolysis

mg C m–3

250

Microbial bio-assay (Billen & Servais 1989)

k2h

Half saturation constant for D2 ecto- enzymatic hydrolysis

mg C m–3

2500

Microbial bio-assay (Billen & Servais 1989)

bmax*

Max. specific rate of BS uptake at optimal temperature

h–1

0.6

Microbial bio-assay (Billen & Servais 1989)

kBSC yBC

Half saturation constant for BSC uptake Growth efficiency

mg C m–3 Dimensionless

25 0.2

Microbial bio-assay (Billen & Servais 1989) Mean estimate from North Sea data (Billen et al. 1991)

kdBSC* ni max NH4 k ni

Autolysis specific rate at optimal temperatue Max. rate of nitrification Half saturation constant for nitrification

h–1 mmol N m–3 h–1 mmol N m–3

0.01 0.03 5

Adjusted Unknown & Adjusted for BCZ Unknown & Adjusted for BCZ

mg C:mmol N mol N:mol P mg C:mmol P

56 16 896

Compilation (Kirchman 2000) Redfield et al. (1963) Redfield et al. (1963), Kirchman (2000)

Temperature adaptation BC Optimal temperature T opt

°C

30

Compilation for temperate systems (Billen et al. 1991)

dTBC

°C

18

Compilation for temperate systems (Billen et al. 1991)

m2 h–1 m2 h–1 h–1 h–1 h–1 h–1 h–1 Dimensionless Dimensionless Dimensionless Dimensionless °C °C

1.8 × 10–5 1.8 × 10–6 0.005 0.00025 0.05 0.0025 0.0002 1 6 1 0.5 30 18

Temperature interval

Microbial loop Organic matter Labile DOM (D1) share of lysis products εD1 Semi-labile DOM (D2) share of lysis products εD2 Labile POM (P1) share of lysis products εP1 Semi-labile POM (P2) share of lysis products εP2 Labile DOM share of OPM lysis products τd1 Labile POM share of OP aggregates τp1 Labile DOM share of fecal pellets γ CP,MZ D1 CP,MZ Semi-labile DOM share of fecal pellets γ D2 Labile POM share of fecal pellets γ CP,MZ P1 CP,MZ Semi-labile POM share of fecal pellets γ P2

Cellular stoichiometry C:N ratio CNBC N:P ratio NPBC C:P ratio CPBC

Temperature interval

POM degradation and benthic diagenesis Apparent diffusion coefficient (interstitial phase) Di Mixing coefficient (solid phase) Ds Hydrolysis rate of PC1 at Topt k1b* Hydrolysis rate of PC2 k2b Hydrolysis rate of PP1 at Topt k1p* Hydrolysis rate of PP2 k2p Biogenic silica dissolution rate kBSi Benthic nitrification constant ni Bmax NH4 adsorption constant kam PO4 adsorption constant (oxic layer) kpa PO4 adsorption constant (anoxic layer) kpe BC Optimal temperature T opt Temperature interval dTBC

Fick’s law Fick’s law Billen et al. (1989) Billen et al. (1989) Billen et al. (1989) Billen et al. (1989) Adjusted Billen et al. (1989) Adjusted from Krom & Berner (1980a) Adjusted Adjusted from Krom & Berner (1980a,b) Identical to planktonic bacteria Identical to planktonic bacteria

Appendix 5 (continued) LITERATURE CITED Becquevort S (1999) Importance du réseau trophique microbien dans l’Océan Antarctique: rôle du protozooplancton. PhD thesis, Université Libre de Bruxelles, Brussels Billen G, Servais P (1989) Modélisation des processus de dégradation bactérienne de la matière organique en milieu aquatique. In: Bianchi M, Marty D, Bertrand JC, Caumette P, Gauthier M (eds) Micro-organismes dans les écosystèmes océaniques. Masson, Paris, p 219–245 Billen G, Dessery S, Lancelot C, Meybeck M (1989) Seasonal and interannual variations of nitrogen diagenesis in the sediments of a recently impounded basin. Biogeochemistry 8:73–100 Billen G, Servais P, Becquevort S (1990) Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207:37–42 Billen G, Joiris C, Meyer-Reil L, Lindeboom H (1991) Ecological role of bacteria in the North Sea ecosystem. Neth J Sea Res 26(2–4):265–293 Brussaard C, Riegman R, Noordeloos A, Cadée G and 5 others (1995) Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar Ecol Prog Ser 123:259–271 Daro MH (1985) Field study of the diel, selective and efficiency feeding of the marine copepod Temora longicornis in the Southern Bight of the North Sea. In: Van Grieken R, Wollast R (eds) Proc Conf Progress in Belgian Oceanographic Research, Brussels, p 250–259 Elskens M, Goeyens L, Dehairs F, Joint I, Baeyens W, Rees J (1997) Improved estimation of f-ratio in natural phytoplankton assemblages. In: Dehairs F, Elskens M, Goeyens L (eds) Integrated marine system analysis. Vrij Universiteit Brussels Publishers, Brussels, p 139–152 Hansen FC (1992) Zooplankton-grazing an Phaeocystis mit besonderer Berücksichtigung der calanoiden Copepoden. PhD thesis, University of Kiel, Germany Hecq JH (1981) Distribution et dynamique des communautés zooplanctoniques en relation avec le cycle du carbone en Baie sud de la mer du Nord. PhD thesis, Université de Liège Kirchman DL (2000) Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria. In: Kirchman DL (ed) Microbial ecology of the oceans. p 261–288 Krom MD, Berner RA (1980a) The diffusion coefficients of sulfate, ammonium, and phosphate ions in anoxic marine sediments. Limnol Oceanogr 25(5):327–337 Krom MD, Berner RA (1980b) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25(5): 797–806 Lancelot C (1979) Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the southern North Sea, as determined by short-term kinetics. Mar Ecol Prog Ser 1:179–186 Lancelot C (1983) Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea. Mar Ecol Prog Ser 12:115–121 Lancelot C, Mathot S (1985a) Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14 C-bicarbonate. I. Mixed diatom population. Mar Biol 86(3):219–226 Lancelot C, Mathot S (1985b) Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14 C-bicarbonate. II. Phaeocystis pouchetii colonial population. Mar Biol 86(3):227–232

Lancelot C, Mathot S (1987) Dynamics of a Phaeocystisdominated spring bloom in Belgian coastal waters. I. Phytoplanktonic activities and related parameters. Mar Ecol Prog Ser 37:239–248 Lancelot C, Mathot S, Owens NJP (1986) Modelling protein synthesis, a step to an accurate estimate ot net primary production: Phaeocystis pouchetii colonies in Belgian coastal waters. Mar Ecol Prog Ser 32:193–202 Lancelot C, Veth C, Mathot S (1991) Modelling ice edge phytoplankton bloom in the Scotia–Weddell Sea sector of the Southern Ocean during spring 1988. J Mar Syst 2:333–346 Lancelot C, Keller M, Rousseau V, Smith WO Jr, Mathot S (1998) Autoecology of the marine haptophyte Phaeocystis sp. In: Anderson DA, Cembella AM, Hallegraef G (eds) NATO Advanced Workshop on the physiological ecology of harmful algal blooms. NATO-ASI Series, Series G, Ecol Sci 41:209–224, Clarendon Press, Oxford Lancelot C, Rousseau V, Becquevort S, Parent JY and 9 others (2004) Study and modelling of eutrophicationrelated changes in coastal planktonic food-webs: a contribution of the AMORE (Advanced MOdeling and Research on Eutrophication) consortium. Final report. In: Scientific support plan for a sustainable development policy–sustainalble management of the North Sea. Belgian Science Policy, Brussels Lancelot-Van Beveren C (1980) A statistical method to estimate the biochemical composition of phytoplankton in the Southern Bight of the North Sea. Estuar Coast Mar Sci 10:467–478 Mathot S, Lancelot C, Dandois JM (1992) Gross and net primary production in the Scotia Weddell sector of the Southern Ocean during spring 1988. Polar Biol 12: 321–332 Penning-De Vries FWT, Brunsting AHM, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45: 339–377 Redfield AC, Ketchum BA, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, Vol 2. Wiley, New York, p 26–77 Rousseau V (2000) Dynamics of Phaeocystis and diatom blooms in the eutrophicated coastal waters of the Southern Bight of the North Sea. PhD thesis, Université Libre de Bruxelles, Brussels Rousseau V, Leynaert A, Daoud N, Lancelot C (2002) Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern Bight of the North Sea). Mar Ecol Prog Ser 236:61–73 Schoemann V, Becquevort S, Stefels J, Rousseau, V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66 Stolte W (1996 ) Size-dependent restrictions on competition for nutrients by marine phytoplankton. PhD thesis, University of Groningen Tungeraza CT (2000) Investigation of environmental changes caused by increasing nitrogen and response of phytoplankton in the North Sea. PhD thesis, Vrij Universiteit Brussel, Brussels Veldhuis MJW, Colijn F, Admiraal W (1991) Phosphate utilization in Phaeocystis pouchetii (Haptophyceae). Mar Ecol Prog Ser 12:53–62 Verity PG (1982) Effects of temperature, irradiance and daylength on the marine diatom Leptocylindricus danicus Cleve. 4. Growth. J Exp Mar Biol Ecol 60:209–222 Weisse T, Scheffel-Möser U (1990) Growth and grazing loss in single-celled Phaeocystis sp. (Prymnesiophyceae). Mar Biol 106:153–158