Assessing the effects of measurement errors in line ... - CiteSeerX

2 downloads 0 Views 934KB Size Report
problem of measurement errors using some data from Robinette et al. (1974). Their analysis suggests that considerable measurement and rounding errors ...


0'

n Mrt,men\ StatistiCS The l\btafY of \be vet'" " \'oa State UmvefS1t'J North Cam'
.

..

.... ". . ..

~

..

~ 0

g D

~ D

~

5

10

15

g.. ~

j

~

0

d

..

,,"

"[. ~"r" vl,,: "

"1

0

g . ~

j

C!

0

x

""

~

: v xxx'"

xX

0

g •

~

A

i

x

.. ~

~ C! 0

D

~

..,

15

Go • 0 ,

..

-.•

0:::' -z>: • • • • 01.:

0

5

10

~



~

i

"1

~

..

5

10

Observer#S

g

- ...• .•

10

15

• ~



~

~

~

..

o



0



• •

"'."r·-··• .....•-

•• •

••

0

5

10

lNe alslance

Observer # 9

Observer # 10

." • •• •

i

i

~ 10

15

20

20

....•

••

15

lNecllstanc:e

g

20

0

"1

20

.•. ••



15

Observer#7

••



• .. ..-•.,-.:.,; ....,..;... •.•..... .':_.-•...• • 0

20



0

15

lNe cI1stance



5

00 0 0

o

lNecllstanc:e

.. .......,. ., •

0

C!

0

20

"1

g

...." " "" "'" " " " " " " . "



• .• • • ,. • •

~

20

" "

+

15

Observer # 6

10

5

10

Observer # 5

-':.::~.......... 'X-

0

5

lNe alslance

.. ..

"1

g

15

•• . •. •

..



"1

llUecllstanc:e

5

~

++

Observer # 4

10

._ l'

..

+

.;

Observer # 3

5

~

i



+ T

+.t.t+ .;>.... ++. + +. + +. '+ +

20

"1

0

~

lNe cfostanea

..

~

...

• .~

lNecllstanc:e

'S< x xx X X X xm. .Ii\: x x xX"'ll'" x X' xx'llC x

~

~

~

~

~

a

•a.

~a~a.a



..

.. a

a a a a. a

20

••

a

a

a

uj

0

5

10

15

20

lNe alslance

lNe cIlstane:e

Observer # 11

g

.. ~D

~

~

:.\~~ I"" 0

'S-.A'...... •• • • • 5

10

lNecllstanee

• •1 •

15

Figure 1: Deviations from the true distance 20

Figure·2a. Exploratory data analysis for measurement errors based on true distance. ~

i

.... ... Ii)

~

~

i

Cl

Ii)

..,a

i

0

2

a

III

a

q

III•.

_II

-

-1.0

·0.0

,

~

...~ Ii)

a ..... .., 0

~

~

)(

...cl

~

cl

-;

~

Cl

a

-1.5

~

aCl

2

a

..1 111-1.0

45

0.0

~

======

, -

........:......

0.5

Ii)

..,.....a

~

2

C)

-1.0

It

0.0

~

~

:l

...cl

..

... Ii)

Cl

a

0

2

..,.....

S!

~

a

~

__I -2.0

-1.0 enor

Cl

1-

0.0

1.0

-;

III -;

f"

Cl

-1.0

0.0

.1.0

-2

-1

0

1

2

QuanllIes 01 Stlndard No(lt18l

::! III C)

...

cl

~

=1=

:l

)(

~

"":

-L

"I C)

--

~

C)

Cl -;

-0.5

0.5

-2

::!

• ........:......

.. -1

0

1

2

QuanllIesolStlndardNonnU

on

cl

~

C)

3

C)

~

~

:;l

2

C)

enar

Ii)

1

~

-1.5

C)

0

Cl

)(

0.5

...

-1

~

enor

...,

-3 -2

OuanllIes 01 Standard Normal

C)

__III

.....

~

Cl

S!

0

1.5

error

:;l

...,

0.5

::!

error

~ Ii)

-0.5 error

i

S!

~

N

Cl

1.0

:;l

'

aC!

enor

Ii!

.

~

::!

~

;

Cl C)

C!

...

C)

on

"'! C)

)(

"': C)

q

Cl

-;

~

..

III

-;

Cl

C)

-2.0

-1.0 lnat

0.0

1.0

-2

-1

0

1

2

QuanllIes oIStlndard Normal

Figure 2b. Exploratory data analysis for measurement errors based on observed average of the distances. ~

~

...t ~

E! lQ

c

1tI

Ii!

cS

i

0

~

2 0

___.1 1.__-1.0

0.0

~ ~

,I

1tI

0

cS

i : ;

1tI

~

q

~

=

~ ";"

~

>

Suggest Documents