Assistive Technology for Students with Learning ...

35 downloads 327090 Views 576KB Size Report
student to concentrate on developing their ideas and planning their work. ... Calculators and math software-‐ Students with learning disabilities may have a history of ... Despite the enthusiasm that may surround the application of assistive ...
 

Assistive  Technology  for  Students  with  Learning  Disabilities:   An  Evidence-­‐based  Summary   Prepared  by  Gabrielle  Young,  Ph.D.,  Assistant  Professor,  Memorial  University  of  Newfoundland  and   Jeffrey  MacCormack,  M.Ed.,  Doctoral  Student,  Queen’s  University  

  Assistive  technology  refers  to  the  devices  and  services  that  are  used  to  increase,  maintain,  or  improve   the  capabilities  of  a  student  with  a  disability  (Dell,  Newton,  &  Petroff,  2012).  While  the  phrase  assistive   technology  may  make  us  think  of  computers  and  computerized  devices,  assistive  technology  can  also  be   very  low-­‐tech.  For  example,  pencil-­‐grips  (the  molded  plastic  grips  that  slip  over  a  pencil)  are  considered   assistive  technology.  Assistive  technology  that  helps  students  with  learning  disabilities  includes   computer  programs  and  tablet  applications  that  provide  text-­‐to-­‐speech  (e.g.,  Kurzweil  3000),  speech-­‐to-­‐ text  (e.g.,  Dragon  Naturally  Speaking),  word  prediction  capabilities  (e.g.,  WordQ),  and  graphic  organizers   (e.g.,  Inspiration).       In  comparison  to  other  interventions,  assistive  technology  may  have  a  significant  effect  in  helping   students  with  disabilities  progress  towards  the  goals  outlined  on  their  Individual  Education  Plans   (Watson,  Ito,  Smith,  &  Andersen,  2010).  Assistive  technology  helps  in  two  ways:  it  can  help  the  student   learn  how  to  complete  the  task  and  it  can  help  to  bypass  an  area  of  difficulty.  For  example,  when  a   student  decides  to  listen  to  a  digital  version  of  a  book,  they  are  bypassing  an  area  of  difficulty.  However,   if  the  student  focuses  on  the  computer  screen  as  highlighted  words  are  read  aloud,  they  can  learn   unfamiliar  words.     Assistive  technology  ranges  from  low-­‐  to  high-­‐tech.     Assistive   Technology   Assistive  technology  can  be  used  in  two  ways:  to  support  learning  and  to  bypass  a   challenging  task  such  as  handwriting.   Summary     In  order  to  be  effective,  assistive  technology  needs  to  be  embedded  within  quality   Points   instruction.    

Benefits  of  Assistive  Technology     Laptop  Computers  and  Computerized  Devices   Laptop  computers  and  tablet  devices  are  beneficial  for  students  with  learning  disabilities  because  they   are  portable  and  lightweight.  For  students  with  handwriting  difficulties,  being  able  to  take  notes  on  a   laptop  or  computerized  device  (such  as  an  iPad)  can  improve  the  quantity  and  quality  of  the  notes   (Vaughn  &  Bos,  2009).  Using  a  word  processor  can  help  students  to  complete  work  that  is  more   organized  and  includes  less  spelling  errors  than  handwritten  work  (Hetzroni  &  Shrieber,  2004).  In   addition,  students  may  identify  and  correct  more  errors  when  using  spell  check  than  when  editing  by   hand  (MacArthur,  Graham,  Haynes,  &  De  La  Paz,  1996;  McNaughton,  Hughes,  &  Ofiesh,  1997).  However,   obtaining  personal  access  to  laptops  and  computerized  devices  does  not  ensure  engagement  and   increased  academic  success  (Donovan,  Green,  &  Hartley,  2010).  For  many  students,  laptop  computers   and  computerized  devices  can  be  too  distracting.  Teachers  and  students  need  to  be  trained  in  how  to   meaningfully  integrate  technology  into  academic  contexts  so  that  the  devices  don’t  detract  from   learning  (Dell,  Newton,  &  Petroff,  2012).          

Computer-­‐assisted  Instruction     Computer-­‐assisted  instruction  refers  to  software  and  applications  that  have  been  designed  to  provide   instruction  and  practice  opportunities  on  a  wide  range  of  devices  (e.g.,  computer,  laptop,  iPad,  mobile   technology).  Computer-­‐assisted  instruction  provides  immediate  and  dynamic  feedback  and  students   with  learning  disabilities  can  benefit  from  this  nonjudgmental  computerized  drill  and  practice  (Stetter  &   Hughes,  2010).  Computer-­‐assisted  instruction  has  been  shown  to  be  helpful  for  students  with  learning   disabilities  in  spelling  and  expressive  writing  skills  (Wanzek  et  al.,  2006)  as  this  software  can  reduce   distractibility  (Hecker,  Burns,  Elkind,  Elkind,  &  Katz,  2002),  and  can  help  students  learn  to  read  (Lee  &   Vail,  2005)  and  achieve  other  academic  outcomes  (Chiang  &  Jacobs,  2009).  Computer-­‐assisted   instruction  is  also  an  effective  way  for  students  with  learning  disabilities  to  practice  math  drills  (Bouck  &   Flanagan,  2009),  as  students  who  used  computer-­‐assisted  instruction  to  practice  math  skills  were  able  to   memorize  math  facts  more  easily,  and  developed  a  more  positive  attitude  towards  math  than  students   who  did  not  use  computer-­‐assisted  instruction  (Adcock  et  al.,  2010).       Computer-­‐assisted  instruction  provides  students  with  dynamic  feedback.   Computer-­‐ Computer-­‐assisted  instruction  can  help  students  practice  spelling  and  multiplication   assisted   drills.   Instruction   In  order  to  prevent  the  technology  from  being  a  distraction,  students  need  to  be   Summary   taught  how  to  use  technology  to  support  their  learning.    

Points    

Software  Functions     Assistive  technology  can  improve  the  writing  skills  of  students  with  learning  disabilities  (Batorowicz,   Missiuna,  &  Pollock,  2012).  Assistive  technology  can  help  students  to  bypass  the  mechanical  aspects  of   writing.  Using  spell  check  and  grammar  features  can  help  students  focus  on  communicating  their  ideas   and  students  can  write  with  confidence  knowing  that  they  can  easily  make  changes.  In  addition,  being   able  to  submit  a  final  assignment  that  is  neater  and  better  organized  supports  positive  self-­‐esteem.  Text-­‐ to-­‐speech  (e.g.,  Kurzweil  3000),  speech-­‐to-­‐text  (e.g.,  Dragon  Naturally  Speaking),  word  prediction  (e.g.,   WordQ)  and  graphic  organizers  (e.g.,  Inspiration)  are  four  useful  software  functions  for  students  who   struggle  with  language-­‐based  learning  disabilities.     Figure  1:  Helping  students  through  assistive   technology    

We  may  not  consider  the  default  functions  of  word   processors  to  be  ground  breaking,  but  for  students  with   learning  disabilities,  functions  such  as  spell  check  and   text-­‐to-­‐speech  can  be  a  tremendous  help  when   composing  and  decoding  words.      

 

Text-­‐to-­‐speech  -­‐  Text-­‐to-­‐speech  software,  such  as  Kurzweil  3000,  can  read  aloud  digital  or  printed  text.   This  is  beneficial  as  students  are  more  likely  to  understand  text  when  unfamiliar  words  are  read  to  them   (MacArthur,  Ferreti,  Okolo,  &  Cavalier,  2001).  Text-­‐to-­‐speech  can  have  a  positive  effect  on  decoding  and   word  recognition  (Raskind  &  Higgins,  1999),  as  well  as  reading  fluency  and  reading  comprehension  (Izzo,   Yurick,  &  McArrell,  2009;  Montali  &  Lewandowski,  1996;  Stodden,  Roberts,  Takahishi,  Park,  &  Stodden,   2012).  Text-­‐to-­‐speech  software  can  be  especially  helpful  for  students  who  retain  more  information   through  listening  than  reading.  This  software  can  assist  students  with  monitoring  and  revising  their  

typed  work,  as  hearing  the  text  read  aloud  may  assist  students  in  catching  grammatical  errors  that  may   have  otherwise  gone  unnoticed  (Raskind  &  Higgins,  1995;  Rao,  Dowrick,  Yuen,  &  Boisvert,  2009;  Zhang,   2000).     After  reviewing  the  literature,  Strangman  and  Dalton  (2005)  reported  that  the  use  of  text-­‐to-­‐speech   software  can  improve  students’  sight  reading  and  decoding  abilities.  In  addition,  text-­‐to-­‐speech  software   can  improve  the  reading  comprehension  of  individuals  with  specific  deficits  in  phonological  processing   (difficulty  hearing  letter-­‐sounds)  as  students  can  learn  to  decode  new  words  when  they  are  highlighted   as  they  are  read  aloud  (Fasting  &  Halaas  Lyster,  2005;  Holmes  &  Silvestri,  2009).  Kurzweil  3000  provides   reading,  writing,  studying,  and  organizational  support  for  students  who  have  difficulty  reading  or  writing   (e.g.,  Elkind,  1998).  The  use  of  Kurweil  3000  software  also  improves  students’  perception  of  their  work   and  their  ability  to  write  expressively  (Chiang  &  Jacobs,  2009).  Programs  such  as  Kurzweil  3000  may   decrease  the  negative  emotions  students  associate  with  reading  and  provide  students  with  a  more   complete  comprehension  of  the  text  (Young,  2012),  and  as  a  result,  text-­‐to-­‐speech  programs  are   recommended  for  use  along  with  research-­‐supported  reading  intervention  practices.    

Speech-­‐to-­‐text  –  Writing  involves  low-­‐level  transcription  skills  (e.g.,  handwriting,  spelling,  punctuation,   and  grammar),  as  well  as  high-­‐level  composition  skills  (e.g.,  planning,  generating  content,  and  revising).   Speech-­‐to-­‐text  software  transcribes  spoken  word  into  computer  text,  allowing  the  student  to  bypass  the   demands  of  typing  or  handwriting;  freed  from  these  effortful  tasks,  students  may  compose  stories  that   are  longer,  more  complex,  and  contain  fewer  errors  (Graham,  1999).  Speech  recognition  accuracy   improves  with  use;  however,  new  users  can  become  frustrated  with  the  training  process,  and  they  may   lack  the  ability  to  efficiently  edit  the  program’s  text  output.  Titles  such  as  XpressLab  are  licensed  by  the   Ministry  of  Education  and  can  be  used  to  improve  expressive  oral  language  for  students  in  grade  7-­‐12.       Voice  recognition  software  can  improve  word  recognition,  spelling,  and  reading  comprehension  skills  for   students  with  learning  disabilities  (Higgins  &  Raskind,  2000).  MacArthur  and  Cavalier  (2004)  found  that   for  students  with  learning  disabilities,  essays  dictated  using  Dragon  Naturally  Speaking  were  better  than   handwritten  essays,  but  essays  dictated  to  a  scribe  were  even  better.  These  authors  found  a  differential   impact  on  students  with  and  without  disabilities,  providing  evidence  that  this  technology  removes  a   barrier  based  on  disability.         Word  Prediction  -­‐  Word  prediction  software  was  originally  designed  for  students  with  physical   disabilities  who  experienced  difficulty  typing.  However,  word  prediction  with  text-­‐to-­‐speech  is  also   effective  for  students  with  learning  disabilities  because  it  reduces  the  need  for  handwriting,  and   improves  students’  spelling  accuracy  and  writing  skills  (Cullen,  Richards,  &  Frank,  2008;  Evmenova,  Graff,   Jerome  &  Behrman,  2010;  Handley-­‐More,  Dietz,  Billingsley  &  Coggins,  2003;  Lewis,  Graves,  Ashton,  &   Kieley,  1998;  Silió  &  Barbetta,  2010).  In  addition,  students  may  find  it  enjoyable  to  have  the  words   recommended  through  word  prediction  and  be  able  to  form  sentences  without  having  to  worry  about   spelling  and  word-­‐choice  (Evmenova  et  al.,  2010).     An  analysis  of  25  years  of  research  found  that  word  prediction  increases  transcription  accuracy  and  may   also  increase  word  fluency  and  compositional  quality  of  writing  for  students  with  learning  and  academic   difficulties  (Peterson-­‐Karlan,  2011).  In  one  particular  study,  children  and  their  families  generally  found   WordQ  to  be  helpful,  and  reported  improved  vocabulary  use  and  increased  independence,  productivity,   and  motivation  to  write  (Tam,  Archer,  Mays,  &  Skidmore,  2005).  While  there  are  potential  benefits  to   the  use  of  WordQ,  a  basic  foundation  of  phonological  awareness  is  required  as  students  who  are  unable   to  identify  the  beginning  sound  of  words  will  not  benefit  from  using  word  prediction  software  because  

the  user  has  to  provide  the  first  letters  of  the  word  (MacArthur,  1999).  In  addition,  word  prediction   demands  a  fairly  high  level  of  attention  to  make  use  of  the  suggested  words  (MacArthur,  1998);  and  as  a   result,  each  child  must  be  considered  on  an  individual  basis  in  order  to  select  the  appropriate   technology  for  his  or  her  learning  needs.     Text-­‐to-­‐speech  software  helps  students  to  bypass  the  task  of  decoding  words.   Software   Seeing  individual  words  highlighted  as  the  text  is  read  aloud  may  help  to  improve   Summary   students’  sight  word  vocabulary.   Points   Speech-­‐to-­‐text  software  bypasses  the  tasks  of  handwriting  and  spelling,  allowing  the   student  to  concentrate  on  developing  their  ideas  and  planning  their  work.     Word  prediction  software  can  make  writing  more  enjoyable  and  can  increase  the   quality  of  expressive  writing  for  students  with  learning  disabilities.   You  can  access  a  list  of  Ministry  of  Education  approved  software  titles  at:   http://www.osapac.org/db/software_search.php?lang=en.     Mid-­‐tech  Devices   Mid-­‐tech  devices  such  as  audio  recorders,  portable  note  takers,  mp3  players,  calculators,  and  pentop   computers  (such  as  LiveScribe  smartpen)  can  be  useful  without  the  cost  associated  with  high-­‐tech   devices.  For  example,  the  AlphaSmart  is  a  note-­‐taking  device  that  can  provide  basic  word-­‐processing,   without  the  cost  related  to  the  purchase  and  maintenance  of  a  laptop.  AlphaSmart  devices  were   discontinued  in  2013,  but  NEO  Direct  still  provides  support  for  users.       Figure  2:  Exploring  technology  for  students  with  learning   disabilities  

 

 

While  assistive  technology  can  be  low  or  high-­‐tech,  most   of  the  assistive  technology  for  students  with  learning   disabilities  is  high-­‐tech  (Lewis,  1998).  Teachers  should   become  familiar  with  assistive  technology  and  understand   how  it  can  be  incorporated  within  their  teaching  to   support  an  inclusive  learning  environment.  

    Graphic  Organizers  –  Graphic  organizers  benefit  individuals  who  experience  difficulty  expressing  their   thoughts  on  paper  as  well  as  visual  learners  who  need  to  see  their  ideas  mapped  out.  While  graphic   organizers  completed  without  technology  can  help  students  with  learning  disabilities  to  improve  the   quality  of  writing  (Institute  for  the  Advancement  of  Research  in  Education,  2003),  electronic  versions,   such  as  Inspiration,  allow  students  to  arrange  their  thoughts  on  the  computer  screen  without  worrying   about  order,  level  of  importance  or  categories  because  the  text  can  be  easily  manipulated.  Graphic   organizers  provide  an  organizational  framework  to  help  writers  generate  topics  and  content  for  writing   projects  and  can  assist  with  the  planning  and  organizational  stages  of  writing,  and  using  concept   mapping  software  can  increase  the  quality  and  quantity  of  writing  (Sturm  &  Rankin-­‐Erickson,  2002).   Using  a  web-­‐based  graphic  organizer  with  procedural  prompts  enabled  students  to  produce  better   organized  and  higher  quality  papers,  than  they  could  produce  with  handwritten  organizers  (Englert,  Wu   &  Zhao,  2005;  Englert,  Zhao,  Dunsmore,  Collings,  &  Woblers,  2007).  Being  taught  a  strategy  to  plan  and   organize  writing  can  improve  the  compositions  of  students  with  learning  disabilities  (MacArthur,  2009).   For  more  information  about  graphic  organizers,  please  click  here.    

Pentop  computers  -­‐  Pentop  computers,  such  as  LiveScribe  smart  pens,  are  cheaper  than  high-­‐tech   devices  like  iPads  but  can  provide  text-­‐to-­‐speech,  strategy  feedback,  and  other  organizational  functions.   As  cost-­‐effective  and  self-­‐regulated  reading  aides,  pentop  computers  may  be  a  useful  tool  for  students   with  reading  disabilities  (Schmitt,  McCallum,  Hennessey,  Lovelace,  &  Hawkins,  2012).  Pentop  computers   are  also  useful  because  they  utilize  instruction  strategies  such  as  providing  auditory  feedback  during   composition  or  math  work.  Handheld  computerized  devices  that  provide  feedback  have  shown  to  be   helpful  for  students  with  learning  disabilities  for  essay  composition  (Bouck,  Bassette,  Taber-­‐Doughty,   Flanagan,  &  Szwed,  2009),  and  receptive  note-­‐taking  and  multiplication  skills  (Bouck,  Flanagan,  Miller,  &   Bassette,  2009).  For  example,  pentop  computers  are  able  to  provide  reminders  such  as  “don’t  forget  to   carry”  during  multiplication  questions  (Doughty,  Bouck,  Bassette,  Szwed,  &  Flanagan,  2013).         Calculators  and  math  software-­‐  Students  with  learning  disabilities  may  have  a  history  of  academic   failure,  which  contributed  to  their  development  of  learned  helplessness  in  math.  For  some  students,  a   fear  of  failure  and  low  academic  self-­‐concept  can  lead  to  math  related  anxiety.  While  the  use  of   calculators  can  level  the  playing  field  for  students  with  learning  disabilities,  some  research  has  shown   that  calculators  may  provide  unfair  advantage  (Bouck  &  Flanagan,  2009).  Graphing  calculators  may  be   particularly  effective  because  they  provide  visual  conformation  of  the  graph-­‐shape.  The  added   advantage  of  visual  data  can  be  highly  motivating  for  students  with  learning  disabilities  (Bethell  &  Miller,   1998).  Math  drill  programs  can  be  an  effective  way  for  students  to  learn  to  mentally  solve  math   questions  (Adcock  et  al.,  2010),  they  are  also  effective  in  increasing  motivation  and  the  addition  and   subtraction  skills  of  students  with  dyscalculia  (Amiripour,  Bijan-­‐zadeh,  Pezeshki,  &  Najafi,  2011).  Math   Trek  1,2,3  is  an  example  of  software  licensed  by  the  Ministry  of  Education  for  use  in  classroom.  You  can   find  the  full  list  of  approved  software  titles  here:   http://www.osapac.org/db/software_search.php?lang=en.       Concept  organizers,  whether  completed  electronically  or  by  hand,  may  contribute   Mid-­‐tech   to  better  writing  in  students  with  learning  disabilities.     Devices   Pentop  computers  can  be  used  for  reading  (text-­‐to-­‐speech),  writing  (digitizing   Summary   written  words),  and  math  (strategy  feedback).     Points Calculators  can  help  students  with  learning  disabilities  demonstrate  their   understanding  of  mathematical  computations.  Graphing  calculators  can  provide   additional  support  as  they  verify  graph  shapes  and  help  solve  algebraic  equations.      

 

Considerations     Much  needs  to  be  done  to  improve  the  quality  of  special  education  technology  research  (Edyburn,   2009).  Little  research  has  been  conducted  on  the  use  of  assistive  technology  in  inclusive  schools   (Watson,  Ito,  Smith,  &  Andersen,  2010),  and  only  a  few  researchers  are  conducting  systematic,  well-­‐ designed  research  that  can  lead  to  confident  conclusions  on  how  the  use  of  assistive  technology  affects   learning  (Edyburn  &  Gersten,  2007;  MacArthur,  Ferretti,  Okolo,  &  Cavalier,  2001;  Wanzek  et  al.,  2006).   In  addition,  research  cannot  be  produced  quickly  enough  to  match  the  rate  of  technological  innovations,   and  as  a  result,  educators  tend  to  rely  on  the  claims  of  the  producers  of  the  technologies  rather  than   evidence-­‐based  research  (Blackhurst,  2005).       Despite  the  enthusiasm  that  may  surround  the  application  of  assistive  technology  in  the  classroom,   assistive  technology  is  not  a  panacea.  Lack  of  common  vision,  limited  training,  access  to  support   services,  insufficient  funding,  and  lack  of  teacher  time  are  commonly  cited  problems  in  regards  to  the   implementation  of  assistive  technology  (Ault,  Bausch,  &  McLaren,  2013;  Flanagan,  Bouck,  &  Richardson,  

2013;  Morrison,  2007;  Okolo  &  Diedrich,  2014).  Researchers  have  noted  that  there  is  still  an  enormous   gap  between  the  potential  of  assistive  technology  and  how  much  it  actually  helps  (Burne,  Knafelc,   Melonis,  &  Heyn,  2011).     Assistive  technology  can  reduce  students’  dependence  on  others  to  read,  write,  and  organize  their  work   (MacArthur,  Ferretti,  Okolo,  &  Cavalier,  2001;  Mull  &  Sitlington,  2003).  When  provided  with  effective   strategy  instruction,  outlining  programs  and  concept  mapping  software  can  help  with  planning,  and   word  processing,  spell  check,  word  prediction,  and  speech  recognition  can  offer  support  for   transcription  and  revision  (MacArthur,  2009).  While  assistive  technology  can  support  struggling  learners,   MacArthur  (2009)  cautions  that  technology  by  itself  has  little  impact  on  learning.  In  order  for  students  to   benefit  from  the  technology,  educators  must  have  an  understanding  of  assistive  technology  and  how  to   embedded  it  within  quality  instruction  (Batorowicz,  Missiuana,  &  Pollock,  2012;  Lee  &  Vega,  2005;   Marino,  Marino,  &  Shaw,  2006;  Michaels  &  McDermott,  2003).     Staff  Training     In  a  large  scale  survey  study  nearly  three-­‐quarters  of  respondents  indicated  that  improved  staff  training   and  knowledge  were  the  most  important  actions  that  could  be  taken  to  promote  technology  use  (Okolo   &  Diedrich,  2014).  Assistive  technology  devices  and  services  have  to  be  coupled  with  context-­‐ appropriate  instruction  from  trained  teachers  (Specht,  Howell,  &  Young,  2007),  as  students’  successful   implementation  of  assistive  technology  is  directly  related  to  the  knowledge,  skills,  and  dispositions  of   special  education  teachers  (Michaels  &  McDermott,  2003).  While  educators  acknowledge  the  potential   of  assistive  technology,  they  may  feel  overwhelmed  by  the  responsibility  of  understanding  and  using  this   technology  with  their  students  (Lee  &  Vega,  2005;  Ludlow,  2001).  Many  teachers  feel  that  they  lack  the   knowledge  and  support  to  more  fully  integrate  assistive  technology  into  the  curriculum  (Okolo  &   Diedrich,  2014).  This  is  not  surprizing  given  that  only  a  third  of  special  education  programs  surveyed  by   Judge  and  Simms  (2009)  addressed  assistive  technology,  and  few  workshops  or  professional   development  opportunities  exist  to  continually  support  teachers’  use  of  assistive  technology  during   instruction  (Lee  &  Vega,  2005;  Ludlow,  2001;  Michaels  &  McDermott,  2003).  Teachers’  use  and   understanding  of  assistive  technology  may  increase  when  provided  with  effective  instruction  during  pre-­‐ service  education  or  professional  development  opportunities  (Flanagan,  Bouck,  &  Richardson,  2013;  Lee   &  Vega,  2005).  General  educators  and  special  educators  need  to  become  familiar  with  assistive  and   instructional  technology  so  that  they  can  embed  this  technology  within  their  instruction  to  meet  the   needs  of  all  their  students  (Chmiliar,  2007;  Chmiliar  &  Cheung,  2007;  Flanagan,  Bouck,  &  Richardson,   2013).     When  recommending  the  use  of  assistive  technology,  one  must  consider  how  training  can  be  provided   for  students,  parents,  and  teachers  to  become  competent  with  the  technology,  as  well  as  environmental   factors  that  will  continue  to  support  the  child  in  using  technology  (Specht,  Howell,  &  Young,  2007).   Funding  should  be  allotted  for  the  training  of  teachers  to  effectively  facilitate  assistive  technology  use   (Burne,  Knafelc,  Melonis,  &  Heyn,  2011),  and  all  educators  who  support  an  individual  student  should  be   knowledgeable  about  that  child’s  assistive  technology  and  be  able  to  embed  the  use  of  the  technology   within  instruction  (Nelson,  2006;  Okolo  &  Diedrich,  2014).  Computers  shouldn’t  be  restricted  to  a   specific  subject  area,  and  the  use  of  technology  should  not  solely  occur  within  a  computer  lab;  rather,   assistive  and  instructional  technology  should  be  an  integral  part  of  all  subjects  and  the  use  of  these  tools   should  be  built  into  the  curriculum.  Schools  should  encourage  teaching  staff  to  assume  the  role  of   technology  co-­‐ordinators  as  they  understand  the  demands  of  the  curriculum  and  may  be  best  equipped   to  find  free  or  low  cost  educational  solutions  to  help  students  meet  curricular  expectations.  

 

Considerations   Summary     Points  

Due  to  the  limited  evidence-­‐based  research,  teachers  tend  to  make  decision  about   assistive  technology  based  on  claims  from  the  software  companies.   In  order  to  be  effective,  assistive  technology  has  to  be  coupled  with  quality   instruction.     Teachers  require  training  to  support  their  implementation  of  assistive  technology.  

   

 

Examples  of  Assistive  Technology  by  Domain     Receptive  

Low-­‐  to  Mid-­‐tech  

Mid-­‐  to  High-­‐tech  

Notepad  –  Notepads  are  an  excellent  way   to  record  information.  Students  with   learning  disabilities  (LDs)  may  appreciate   having  the  information  colour-­‐coded   based  on  the  purpose,  topic,  or  function   of  the  information.    

Audio  recorders  –  Audio  recorders  that   store  hundreds  of  hours  of  audio  can  be   purchased  as  cheaply  as  $30-­‐$40.      

Talking  dictionary  –  Students  with  LDs   can  use  talking  dictionaries  to  verify   definitions  and  spelling.  Talking   dictionaries  are  small  enough  to  be   carried  in  a  pencil  case  and  are  not  as   expensive  as  computers  or  tablets.    

Apps  for  Mobile  Devices   Audiobooks  –  Provides  a  simple   way  to  listen  to  many  of  the  best   classic  books  and  modern  titles.   Let  me  try  it.  

 

Speaking  

Cue  cards  –  Cue  cards  provide  helpful   hints  for  the  oral  presentation  of   information,  and  the  process  of   composing  cue  cards  can  help  organize   the  information  before-­‐hand.      

Reading  

Highlighter  strips  –  Translucent  rectangles   of  colour  can  help  eliminate  extra  visual   clutter  by  blocking  out  the  rest  of  the  text.       Sticky  notes  –  Students  with  LDs  may  find   it  useful  to  summarize  the  main  ideas  of   the  text  with  sticky  notes  which  can  be   stuck  directly  on  the  page.    

Visuwords  –  This  free  online  dictionary   allows  students  to  look  up  words  to  find   their  meanings  and  associations  with   other  words  and  concepts.   Tell  me  about  it.   Let  me  try  it.   Prezi  –  A  free  3D  graphic  organizer   which  can  be  used  to  create   presentations.  Prezis  can  be   collaborative  as  students  can  comment   and  build  upon  other  Prezis.       Tell  me  about  it.   Kurzweil  3000  –  Text-­‐to-­‐speech   software,  such  as  Kurzweil  3000,  can   read  aloud  digital  or  printed  text.     Tell  me  about  it.   Let  me  try  it.  

ShowMe  Interactive  Whiteboard  –     In  order  to  reduce  anxiety,  students   may  opt  to  record  presentations  on   their  iPad  beforehand.  Video   recordings  can  be  uploaded  on   YouTube  or  a  more  private  domain.       Tell  me  about  it.   Let  me  try  it.   Speak  Selection  –Located  in  the   accessibility  features  of  Apple   devices,  Speak  Selection  can  be   used  to  read  aloud  electronic  text.   Tell  me  about  it.  

Storyline  Online  –  A  free  online   streaming  video  program  featuring   books  read  aloud.  Each  book  includes   accompanying  activities  and  lesson   ideas.                            Let  me  try  it.  

Free  Books  –  This  app  contains   more  than  23,000  free  books     Notes,  highlight  option,  bookmark   and  dictionary  tools  are  provided.   Let  me  try  it.  

 

 

Project  Gutenberg  –  Over  45,000  free   e-­‐books.                  Let  me  try  it.  

10  Best  PDF  Reader  Apps   GoodReader  –  This  PDF  reader   allows  you  to  add  sticky  notes,   highlight  and  take  notes.     Let  me  try  it.      

 

 

Writing  

Pencil  grips  –  For  students  who  struggle   with  handwriting,  pencil  grips  can  provide   a  surface  that  is  easier  to  manipulate.       Computerized  pens  –  These  pens  can   automatically  transmit  handwriting  into   digital  text.  Some  computerized  pens   have  audio-­‐recording  functions  that  allow   the  writer  to  listen  to  specific  sections  of   the  audio  file  by  tapping  on  the  written   notes.    

Wikipedia  –  The  Simple  English  function   on  Wikipedia  allows  content  to  be   “translated”  into  plain  English  which  is   easier  to  read.   Let  me  try  it.   Word  processing  –  Functions  such  as   spell  check,  dictionary  options,   synonym  support,  and  word-­‐prediction   features  are  helpful  for  students  with   learning  disabilities.  

 

Pages  –  The  Pages  app  allows  you   to  compose,  edit  work  and  share.  It   also  includes  word  prediction,   speech-­‐to-­‐text,  and  spell  check   functions.      Let  me  try  it.    

iWordQ  –  iWordQ  provides  reading   assistance,  word  choice  and  proof   reading  functions.     Tell  me  about  it.   Let  me  try  it.    

Dragon  Dictation  –  This  easy-­‐to-­‐use   voice  recognition  application  allows   you  to  speak  and  instantly  see  your   text  or  e-­‐mail  messages.  You  must   be  connected  to  the  Internet  for   this  application  to  work.                     Let  me  try  it.  

Reasoning  

Graphic  organizers  –  Organizing  ideas   visually  allows  students  with  LDs  to  see   the  connections  between  ideas.       Audio  recorders  –  Many  students  with  LD   experience  difficulty  translating  oral   language  into  written  text.  Recording   ideas  early  in  the  thinking  process  can   provide  a  record  for  later  recall  and   clarification.    

Math  

4-­‐function  calculator  –  Depending  on  the   type  of  work  being  done,  a  4-­‐function   calculator  can  be  a  great  help  without   providing  disproportionate  advantage  to   students  with  LDs.      

 

 

Inspiration  –  This  software  helps   students  organize  ideas  visually  without   the  challenge  of  handwriting  or  spelling   requirements.  The  content  can  be   instantly  translated  into  outlines  for   essays  or  compositions.     Tell  me  about  it.   Let  me  try  it.     Spark-­‐Space  –  This  software  supports   the  writing  of  students  who  are  visual   learners  through  the  use  of  functions   such  as  idea  mapping  essay  writer  tool.   Tell  me  about  it.     Audacity  –  Audacity  is  a  free  software   program  which  allows  you  to  record   and  edit  sounds.   Tell  me  about  it.   Let  me  try  it.   Graphing  calculator  -­‐  Graphing   computers  can  solve  complex   equations,  and  the  dynamic  display   screen  allows  the  student  to  verify  the   results  before  solving  on  paper.       Math  Dictionary  for  Kids  –  An   animated,  interactive  online  math   dictionary  that  explains  over  600   common  mathematical  terms  in  simple   language.   Tell  me  about  it.   Let  me  try  it.     Braining  Camp  –  Animated  lessons  and   interactive  activities  to  assess  student   understanding.   Tell  me  about  it.   Let  me  try  it.     IXL  Math  -­‐  IXL's  math  practice  skills  are   aligned  with  pre-­‐K  through  Grade  8   provincial  curricula,  and  students'   performance  is  assessed  on  each   objective.          Let  me  try  it.       Sumdog  –  Sumdog's  learning  engine   adapts  its  math  questions  to  each   student's  ability.  Covering  number   operations  through  to  simple  algebra,  it   is  designed  for  students  age  6  to  14.   Tell  me  about  it.   Let  me  try  it.  

SimpleMind+  –  This  app  allows  you   to  brainstorm  and  organize  your   ideas.  Completed  concept  maps   can  be  automatically  converted  to   an  outline.    Let  me  try  it.    

ShowMe  and  ScreenChomp  –   These  apps  provide  an  interactive   whiteboard  interface  to  solve   problems.  The  actions  on  the   screen  and  audio  can  be  recorded   and  shared  as  a  video  file.     Tell  me  about  it.   Let  me  try  it.  

References   Adcock,  W.,  Luna,  E.,  Parkhurst,  J.,  Poncy,  B.,  Skinner,  C.,  &  Yaw,  J.  (2010).  Effective  class-­‐wide   remediation:  Using  technology  to  identify  idiosyncratic  math  facts  for  additional  automaticity   drills.  The  International  Journal  of  Behavioral  Consultation  and  Therapy,  6,  111-­‐123.   Amiripour,  P.,  Bijan-­‐zadeh,  M.  H.,    Pezeshki,  P.,  &  Najafi,  M.  (2011).  Effects  of  assistive  technology   instruction  on  increasing  motivation  and  capacity  of  mathematical  problem  solving  in  dyscalcula   student.  Educational  Research,  2(10),  1611-­‐1618.   Ault,  M.  J.,  Bausch,  M.  E.,  &  McLaren,  E.  M.  (2013).  Assistive  technology  service  delivery  in  rural  school   districts.  Rural  Special  Education  Quarterly,  32(2),  15-­‐22.  Retrieved  from   http://search.proquest.com/docview/1420524203?accountid=6180     Batorowicz,  B.,  Missiuna,  C.  A.,  &  Pollock,  N.  A.  (2012).  Technology  supporting  written  productivity  in   children  with  learning  disabilities:  A  critical  review.  Canadian  Journal  of  Occupational  Therapy,   79(4),  211-­‐224.  doi:10.2182/cjot.2012.79.4.3   Bethell,  S.  &  Miller,  N.  (1998).  From  an  E  to  an  A  in  first  year  algebra  with  the  help  of  a  graphing   calculator.  Mathematics  Teacher,  91,  118-­‐119.   Blackhurst,  A.  (2005).  Perspectives  on  applications  of  technology  in  the  field  of  learning  disabilities.   Learning  Disabilities  Quarterly,  28,  175-­‐178.  doi:10.2307/1593622     Bouck,  E.  C.,  Bassette,  L.,  Taber-­‐Doughty,  T.,  Flanagan,  S.  M.,  &  Szwed,  K.  (2009).  Pentop  computers  as   tools  for  teaching  multiplication  to  students  with  mild  intellectual  disabilities.  Education  and   Training  in  Developmental  Disabilities,  44,  367–380.   Bouck,  E.  &  Flanagan,  S.  (2009).  Assistive  technology  and  mathematics:  What  is  there  and  where  can  we   go  in  special  education.  Journal  of  Special  Education  Technology,  24,  24-­‐30.   Bouck,  E.,  Flanagan,  S.,  Miller,  B.,  &  Bassette,  L.  (2012).  Technology  In  Action.  Journal  of  Special   Education  Technology,  27,  47-­‐57.   Burne,  B.,  Knafelc,  V.,  Melonis,  M.  &  Heyn,  P.  (2011).  The  use  and  application  of  assistive  technology  to   promote  literacy  in  early  childhood:  a  systematic  review.  Disability  and  Rehabilitation:  Assistive   Technology,  6,  207-­‐213.  doi:10.3109/17483107.2010.522684     Chiang,  H.,  &  Jacobs,  K.  (2009).  Effect  of  computer-­‐based  instruction  on  students’  self-­‐perception  and   functional  task  performance.  Disability  and  Rehabilitation:  Assistive  Technology,  4(2),  106-­‐118.   doi:10.1080/17483100802613693   Chmiliar,  L.  (2007).  Perspectives  on  assistive  technology:  What  teachers,  health  professionals  and   speech  language  pathologists  have  to  say.  Developmental  Disabilities  Bulletin,  35(1),  1-­‐17.   Chmiliar,  L.,  &  Cheung,  B.  (2007).  Assistive  technology  training  for  teachers  –  Innovation  and  accessibility   online.  Developmental  Disabilities  Bulletin,  35(1),  18-­‐28.   Cullen,  J.,  Richards,  S.  B.,  &  Frank,  C.  L.  (2008).  Using  software  to  enhance  the  writing  skills  of  students   with  special  needs.  Journal  of  Special  Education  Technology,  23,  33-­‐44.   Dell,  A.,  Newton,  D.,  &  Petroff,  J.  (2012).  Assistive  technology  in  the  classroom:  Enhancing  the  school   experiences  of  students  with  disabilities  (2nd  ed.).  Boston,  MA:  Pearson.     Donovan,  L.,  Green,  T.,  &  Hartley,  K.  (2010).  An  examination  of  one-­‐to-­‐one  computing  in  the  middle   school:  Does  increased  access  bring  about  increased  student  engagement?  Journal  of  Educational   Computing  Research,  42,  423-­‐441.  doi:10.2190/EC.42.4.d     Doughty,  T.,  Bouck,  E.,  Bassette,  L.,  Szwed,  K.  &  Flanagan,  S.  (2013).  Spelling  on  the  fly:  Investigating  a   pentop  computer  to  improve  the  spelling  skills  of  three  elementary  students  with  disabilities.   Assistive  Technology,  25,  166-­‐175.  doi:10.1080/10400435.2012.743491   Edyburn,  D.  (2009).  Using  research  to  inform  practice.  Special  Education  Technology  Practice,  11(5),  21-­‐ 28.  doi:10.1080/09362830902805699  

Edyburn,  D.,  Gersten,  R.  (2007).  Defining  quality  indicators  in  special  education  technology  research.   Journal  of  Special  Education  Technology,  22(3),  3-­‐18.  doi:10.1598/RRQ.42.1.7   Elkind,  J.  (1998).  Computer  reading  machines  for  poor  readers.  Perspectives  International  Dyslexia   Association,  24,    9-­‐13.   Englert,  C.  S.,  Wu,  X.,  &  Zhao,  Y.  (2005).  Cognitive  tools  for  writing:  Scaffolding  the  performance  of   students  through  technology.  Learning  Disabilities  Research  and  Practice,  20,  184-­‐198.   doi:10.1111/j.1540-­‐5826.2005.00132.x   Englert,  C.  S.,  Zhao,  Y.,  Dunsmore,  K.,  Collings,  N.  Y.,  &  Woblers,  K.  (2007).  Scaffolding  the  writing  of   students  with  disabilities  through  procedural  facilitation:  Using  an  Internet-­‐based  technology  to   improve  performance.  Learning  Disability  Quarterly,  30,  9-­‐29.  doi:10.2307/30035513   Evmenova,  A.,  Graff,  H.,  Jerome,  M.,  &  Behrmann,  M.  (2010).  Word  prediction  programs  with  phonetic   spelling  support:  Performance  comparisons  and  impact  on  journal  writing  for  students  with   writing  difficulties.  Learning  Disabilities  Research  &  Practice,  25(4),  170–182.  doi:10.1111/j.1540-­‐ 5826.2010.00315.x   Fasting,  R.  B.,  &  Halaas  Lyster,  S.  (2005).  The  effects  of  computer  technology  in  assisting  the   development  of  literacy  in  young  struggling  readers  and  spellers.  European  Journal  of  Special   Needs  Education,  20(1),  21-­‐40.  doi:10.1080/0885625042000319061   Flanagan,  S.,  Bouck,  E.  G.,  &  Richardson,  J.  (2013).  Middle  school  special  education  teachers’  perceptions   and  use  of  assistive  technology  in  literacy  instruction.  Assistive  Technology,  25(1),  24-­‐30.   doi:10.1080/10400435.2012.682697   Forgrave,  K.  (2002).  Assistive  technology  empowering  students  with  learning  disabilities.  Assistive   Technology,  75,  122-­‐126.  doi:10.1080/00098650209599250     Graham,  S.  (1999).  The  role  of  text  production  skills  in  writing  development:  A  special  issue.  Learning   Disabilities  Quarterly,  22,  75-­‐77.  doi:10.2307/1511267   Handley-­‐More,  D.,  Dietz,  J.,  Billingsley,  F.,  &  Coggins,  T.  (2003).  Facilitating  written  work  using  computer   word  processing  and  word  prediction.  The  American  Journal  of  Occupational  Therapy,  57,  139-­‐ 151.  doi:10.5014/ajot.57.2.139   Hecker,  L.,  Burns,  L.,  Elkind,  J.,  Elkind,  K.,  &  Katz,  L.  (2002).  Benefits  of  assistive  reading  software  for   students  with  attention  disorders.  Annals  of  Dyslexia,  52,  243–272.  doi:10.1007/s11881-­‐002-­‐ 0015-­‐8   Hetzroni,  O.  E.,  &  Shrieber,  B.  (2004).  Word  processing  as  an  assistive  technology  tool  for  enhancing   academic  outcomes  of  students  with  writing  disabilities  in  the  general  classroom.  Journal  of   Learning  Disabilities,  37,  143-­‐154.  doi:10.1177/0022221940403   Higgins,  E.  L.,  &  Raskind,  M.  H.  (2000).  Speaking  to  read:  A  comparison  of  continuous  vs.  discrete  speech   recognition  in  the  remediation  of  learning  disabilities.  Journal  of  Special  Education  Technology,  15,   19-­‐30.     Holmes,  A.,  &  Silvestri,  R.  (2009).  Text-­‐to-­‐voice  technology  in  adult  aboriginal  sample  with  reading   difficulties:  Examination  of  the  efficacy.  Toronto,  ON:  Aboriginal  Office  of  the  Ministry  of   Education  and  Ministry  of  Training,  Colleges,  and  Universities.   Institute  for  the  Advancement  of  Research  in  Education.  (2003).  Graphic  organizers:  A  review  of   scientifically  based  research.  Prepared  for  Inspiration  Software  at  AEL.   Izzo,  M.,  Yurick,  A.,  &  McArrell,  B.  (2009).  Supported  eText:  Effects  of  text-­‐to-­‐speech  on  access  and   achievement  for  high  school  students  with  disabilities.  Journal  of  Special  Education  Technology,   24,  9-­‐20.   Judge,  S.,  &  Simms,  K.  A.  (2009).  Assistive  technology  at  the  pre-­‐service  level.  Teacher  Education  and   Special  Education,  32,  33-­‐44.   Langova,  Anna.  (n.d.)  Word  help.  [Photograph]  Retrieved  from  http://all-­‐free-­‐download.com/free-­‐ photos/word_help_185278_download.html  

Lee,  Y.,  &  Vail,  C.  O.  (2005).  Computer-­‐based  reading  instruction  for  young  children  with  disabilities.   Journal  of  Special  Education  Technology,  20,  5–18.   Lee,  Y.,  &  Vega,  L.  A.  (2005).  Perceived  knowledge,  attitudes  and  challenges  of  AT  use  in  special   education.  Journal  of  Special  Education  Technology,  20,  60-­‐63.   Lewis,  R.  (1998).  Assistive  technology  and  learning  disabilities:  Today’s  realities  and  tomorrow’s   promises.  Journal  of  Learning  Disabilities,  31,  16-­‐26.   Lewis,  R.,  Graves,  A.,  Ashton,  T.,    &  Kieley,  C.  (1998).  Word  processing  tools  for  students  with  learning   disabilities:  A  comparison  of  strategies  to  increase  text  entry  speed.  Learning  Disabilities  Research   and  Practice,  13,  95-­‐108.   Ludlow,  B.  L.  (2001).  Technology  and  teacher  education  in  special  education.  Disaster  or  deliverance?   Teacher  Education  and  Special  Education,  24,  143-­‐163.  doi:10.1177/088840640102400209   MacArthur,  C.A.  (1998).  Word  processing  with  speech  synthesis  and  word  prediction:  Effects  on  the   dialogue  journal  writing  of  students  with  learning  disabilities.  Learning  Disability  Quarterly,  21,  1-­‐ 16.  doi:10.2307/1511342   MacArthur,  C.  A.  (1999).  Word  prediction  for  students  with  severe  spelling  problems.  Learning  Disability   Quarterly,  22,  158–172.  doi:10.2307/1511283   MacArthur,  C.  (2009).  Reflections  on  research  on  writing  and  technology  for  struggling  writers.  Learning   Disabilities  Research  &  Practice,  24(2),  93–103.  doi:10.1111/j.1540-­‐5826.2009.00283.x   MacArthur,  C.,  &  Cavalier,  A.  (2004).  Dictation  and  speech  recognition  technology  as  test   accommodations.  Exceptional  Children,  71(1),  43-­‐58.  doi:10.1177/001440290407100103   MacArthur,  C.  A.,  Ferretti,  R.  P.,  Okolo,  C.  M.,  &  Cavalier,  A.  R.  (2001).  Technology       applications  for  students  with  literacy  problems:  A  critical  review.  The  Elementary  School  Journal,   101(3),  273-­‐301.  doi:10.1086/499669   MacArthur,  C.  A.,  Graham,  S.,  Haynes,  J.  B.,  &  De  La  Paz,  S.  (1996).  Spelling  checkers  and  students  with   learning  disabilities:  Performance  comparisons  and  impact  on  spelling.  Journal  of  Special   Education,  21,  22-­‐42.  doi:10.1177/002246699603000103   Marino,  M.  T.,  Marino,  E.  C.,  &  Shaw,  S.  F.  (2006).  Making  informed  assistive  technology  decisions  for   students  with  high  incidence  disabilities.  Teaching  Exceptional  Children,  38(6),  18-­‐25.   McNaughton,  D.,  Hughes,  C.,  &  Ofiesh,  N.  (1997).  Proofreading  for  students  with  learning  disabilities:   Integrating  computer  and  strategy  use.  Learning  Disabilities  Research  and  Practice,  12,  16-­‐28.   Michaels,  C.  A.,  &  McDermott,  J.  (2003).  Assistive  technology  integration  in  special  education  teacher   preparation:  Program  coordinators’  perceptions  of  current  attainment  and  importance.  Journal  of   Special  Education  Technology,  18,  29-­‐41.   Montali,  J.,  &  Lewandowski,  L.    J.  (1996).  Bimodal  reading:  Benefits  of  a  talking  computer  for  average   and  less  skilled  readers.  Journal  of  Learning  Disabilities,  29,  271-­‐279.   doi:10.1177/002221949602900305   Morrison,  K.  (2007).  Implementation  of  assistive  computer  technology:  A  model  for  school  systems.   International  Journal  of  Special  Education,  22(1),  83-­‐95.   Mull,  C.  A.,  &  Sitlington,  P.  L.  (2003).  The  role  of  technology  in  the  transition  to  postsecondary  education   of  students  with  learning  disabilities.  Journal  of  Special  Education,  37(1),  26-­‐32.   doi:10.1177/00224669030370010301   Nelson,  B.  (2006).  On  your  mark,  get  set,  wait!  Are  your  teacher  candidates  prepared  to  embed  assistive   technology  in  teaching  and  learning?  College  Student  Journal,  40(3),  485  –  494.   Okolo,  C.  M.,  &  Diedrich,  J.  (2014).  Twenty-­‐five  years  later:  How  is  technology  used  in  the  education  of   students  with  disabilities?  Results  of  a  statewide  study.  Journal  of  Special  Education  Technology,   29(1),  1-­‐20.  

Peterson-­‐Karlan,  G.  R.  (2011).  Technology  to  support  writing  by  students  with  learning  and  academic   disabilities:  Recent  research  trends  and  findings.  Assistive  Technology  Outcomes  and  Benefits,   7(1),  39-­‐62.   Raskind,  M.  &  Higgins,  E.  (1995).  Effects  of  speech  synthesis  on  the  proofreading  efficiency  of   postsecondary  students  with  learning  disabilities,  Learning  Disability  Quarterly,  18,  141-­‐158.   doi:10.2307/1511201   Raskind,  M.  &  Higgins,  E.  (1999).  Speaking  to  read:  The  effects  of  speech  recognition  technology  on  the   reading  and  spelling  performance  of  children  with  learning  disabilities.  Annals  of  Dyslexia,  49,     251-­‐281.  doi:10.1007/s11881-­‐999-­‐0026-­‐9   Rao,  K.,  Dowrick,  P.,  Yuen,  J.,  &  Boisvert,  P.  (2009).  Writing  in  a  multimedia  environment:  Pilot  outcomes   for  high  school  students  in  special  education.  Journal  of  Special  Education  Technology,  24,  27-­‐38.   Schmitt,  A.,  McCallum,  E.,  Hennessey,  J.,  Lovelace,  T.,  &  Hawkins,  R.  (2012).  Use  of  reading  pen  assistive   technology  to  accommodate  post-­‐secondary  students  with  reading  disabilities.  Assistive   Technology,  24,  229-­‐239.  doi:10.1080/10400435.2012.659956   Silió,  M.  C.,  &  Barbetta,  P.  M.  (2010).  The  effects  of  word  prediction  and  text-­‐to-­‐speech  technologies  on   the  narrative  writing  skills  of  Hispanic  students  with  specific  learning  disabilities.  Journal  of  Special   Education  Technology,  25,  17-­‐32.   Specht,  J.,  Howell,  G.,  &  Young,  G.  (2007).  Students  with  special  education  needs  and  their  use  of   assistive  technology  during  the  transition  to  secondary  school.  Childhood  Education,  International   Focus  Issue,  83,  385-­‐389.  doi:10.1080/00094056.2007.10522956   Stetter,  M.  E.,  &  Hughes,  M.  T.  (2010).  Computer-­‐assisted  instruction  to  enhance  the  reading   comprehension  of  struggling  readers:  A  review  of  the  literature.  Journal  of  Special  Education   Technology,  25(4),  1-­‐16.   Stodden,  R.  A.,  Roberts,  K.  D.,  Takahishi,  K.,  Park,  H.  J.,  &  Stodden,  N.  J.  (2012).  The  use  of  text-­‐to-­‐speech   software  to  improve  reading  skills  of  high  school  struggling  readers.  Procedia  Computer  Science,   14,  359-­‐362.  doi:10.1016/j.procs.2012.10.041   Strangman,  N.,  &  Dalton,  B.  (2005).  Using  technology  to  support  struggling  readers:  A  review  of  the   research.  In  D.  Edyburn,  K.  Higgins,  &  R.  Boone  (Eds.),  Handbook  of  special  education  technology   research  and  practice  (pp.  325-­‐334).  Whitefish  Bay,  WI:  Knowledge  by  Design,  Inc.   Sturm,  J.  M.,  &  Rankin-­‐Erickson,  J.  L.  (2002).  Effects  of  hand-­‐drawn  and  computer-­‐generated  concept   mapping  on  the  expository  writing  of  students  with  learning  disabilities.  Learning  Disabilities   Research  and  Practice,  17,  124-­‐129.  doi:10.1111/1540-­‐5826.00039   Tam,  C.,  Archer,  J.,  Mays,  J.,  &  Skidmore,  G.  (2005).  Measuring  the  outcomes  of  word  cueing  technology.   The  Canadian  Journal  of  Occupational  Therapy,  72(5),  301-­‐308.   doi:10.1177/000841740507200507   Wanzek,  J.,  Vaughn,  S.,  Wexler,  J.,  Swanson,  E.,  Edmonds,  M.,  &  Kim,  A.  (2006).  A  synthesis  of  spelling   and  reading  interventions  and  their  effects  on  the  spelling  outcomes  of  students  with  LD.  Journal   of  Learning  Disabilities,  39,  528-­‐543.  doi:10.1177/00222194060390060501   Watkins,  M.  (1989).  Computerized  drill-­‐and-­‐practice  and  academic  attitudes  of  learning  disabled   students.  Journal  of  Special  Education  Technology,  9,  167-­‐172.   Watson,  A.  H.,  Ito,  M.,  Smith,  R.  O.,  &  Andersen,  L.  T.  (2010).  Effect  of  assistive  technology  in  a  public   school  setting.  American  Journal  of  Occupational  Therapy,  64,  18-­‐29.  doi:10.5014/ajot.64.1.18   Vaughn,  S.  &  Bos,  C.  (2009).  Strategies  for  teaching  students  with  learning  and  behaviour  problems  (7th   ed.).  Upper  Saddle  River,  NJ,  Pearson.     Young,  G.  (2012).  Examining  assistive  technology  use,  self-­‐concept,  and  motivation,  as  students  with   learning  disabilities  transition  from  a  demonstration  school  into  inclusive  classrooms.  Unpublished   Doctoral  thesis,  Western  University,  London,  Ontario,  Canada.  Retrieved  from   http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=2316&context=etd  

Zhang,  Y.  (2000).  Technology  and  the  writing  skills  of  students  with  learning  disabilities.  Journal  of   Research  on  Computing  in  Education,  32,  467-­‐478.   Zcool.com.cn.  (n.d.)  Modern  science  and  technology  picture  02  hd  pictures  [Photograph].  Retrieved   from  http://all-­‐free-­‐download.com/free-­‐ photos/modern_science_and_technology_picture_02_hd_pictures_168754_download.html