corrs'ructively the fixed noints of F by means of the following !-termed transfinite sequences : The I terat'ion sequonce fi,t: I starting uitLt o e Ln is the lr-termecl.
METHODS ITERATIVE ASYNCHRONOUS OF MONOTONE FORSOLVINGA FIXED POINTSYSTEM LATTICE IN A COMPLETI EQUATIONS Patr i ck Cousot R .R . B 8
l
RAFPORT
lanl-
DE
omlrno
L Y I
I
REGT-!ERCHE
's ' U ' N ' J d q p a p o d d n s s E M 1 r o m s r q l 6ITt0 anbTleulroJuI-dIV +uPr3 raPun ' ' ' S'U' N' C np aqc"raqcag aP oqce+lv Lou orcossv adroleJoqE'I
' /i,-rouauLqlT^4 sPoqleul 6spoql.l'll a^T+e'ralT snou aArleJe+T snouoJt{cudse -oaqcudse sacT++eT alelduoc e ur suoTlenbe ouolououl : SaseJqd pue spJon /tEl go uralsds '1u1od paxTJ
ou qtrrrvl;:l:;:t::":::l:;;fi:; uoT+ezTuo,rqcuds uaer"rtraq
p o suorlenbe 1o uralsds aq1 Sutnlos Joi uqlr'-ro81e u asaqJ 1a11e"red e o1 puodseJ.roc spoqlau o^rlPJalT '(suorlTpuoc se qcns) sasaql ureqc ,:o dltnulluoc JeqleJ aql TeuorlTppP ou asn s;:oo"rd Tecruqcol q tr suorlenba auulouolu Jo uels^s c u c + e :t ruru{vgv 1 9 3 P
-oddq
eJL++EL
lurod pexTJ e anTos o] pasn aq uec A'lououlqlr^l spoq+eu anrfp.ratrT snouoJqcu{se pue spoq}au e^T+e"ra+T 'lf,PJlSqV snouoJr{cuz{se3:o ssPTc aqf, treq} u!\oqs st }I
(LL6I aequaldaSl acueJ,f oxapac aTqoueJe Th08t eJTolPJoqPT
0S'dB''3'1,,1'S'n'anbrlpur.roJulrP LJled *lOSnOJ Il
lSlrlvl lrlldhol v NI sN0lrvnbSlNol0Nolll0 UoJS0oHIllllAIIvusII SnoilouHlllAsv HIISASINI0d olxll V 9N:iA10S
l l l
I I I l l
I I I I I I I I, I I I I I
'-
[*
ANDNOTATIONS 1 . INTRODUCTION Let L(s,1,r,L1,[1) be a non-empty conplete Latlice w:-th partial otde=, Least upper. bounrl"t.l, gneatest Lodev, i>ound n. The inlimun t
rtnq
of L is [1L, the supremumr of L is Ut. l.r
into
from L"(E,r,r,ll,ll) TarskifT-lrs to
theorenr stale:r
the equation
Let
u be the
candinai-ity
X=F(X)) is
corrs'ructively
the fixed
The I terat'ion
the
vX,YeLn, {xcY} set
{F(x)sF(Y)}).
points
of fired
of
a non-empty complete lattice
than the
l,n. Cousotl3]
of
cardinality
F by means of
of
with
E.
the
defines
following
sequonce fi,t: I
o e Ln is
uitLt
starting
the
lr-termecl
A
secuence of rn
ordering
l-he 1s l
1I
' { [ ]= .r-gl Put TPuTpJo Jossarcns P sT I JT 11u olnpour [)+r i=of Pue TPurP.ro lTurTT P Jo Jossaccns sT I 'ro o} }uaTe^lnba s1 Poq}au uor+eJa}T s'Tapras-ssnP9 seeJaqA ' r t } g A 1 S u l s o o q c u T s + s T S L ' o cp c ) q } a u u o T l p J a l T s r r q o c e f T=9 JT {T}=gf "''T {t {tu '
} = o -6 '
'( sacuanbas alrurJ JoJ
;9l1.raeof, ur uanr8 sT uoTfTurJap
JeTrurs
e stsdleup
TPcrJaunu uI) 9>0
Id taJ^9
r n t r r n
[ IJU.LPLTU + !u].1 L
f
- ^ ^ ^
4vJ
1\dd/\o
A.rena puP rlrg [PuTp,ro Jossaccns nerand'luj f
Ol-,T
- ^ ^ ^
^ r r h
d a ^
r b r r r n l n
, { r r a r
r n c e - ^ ^ n -
r n
r
v T 1 rr Dn T
( , ^ X ) ' J = To "x r-Y J
(ol-{u""'t})tT 1'
d.reaa pue rl 39 TeuTp.ro "lossaccns r{;rane .ro3-
X = T' X
r- 9"
9" 0
: sr4oTToJ Se UorsJncaJ acuanbes pout.rel-rt oql sT ( {( a:]ruTJSuPr+ l{q pauTJap rl
' rt r g eur p.to l,rulT T f.rane T
.rossaccns
^v x t l = y^ x
.ro3
rt?g TeurPJo d.rana pue {ut ' ' 't T }-tI .{.rar'a ,-ro;.
T
( -_ n X) ' J T_ \
n
T
= :x Y -
v
-
0
aeuenLas uoTlP"ralT aq.I
^ ^a, ,u - L +J^a^ P u a q ] s T :. ^r ^q p I q l T ^ , r3 u 1 f . r e l s I r o i
'( gt ecuanbas aql Jo uraf q1-g eq+ g:o luauoduoc qt-T aqt =r lx ^ X t Y v t e c u a n b a s p a u . r a e l - r te s r a"ToJadaql'LuJal q]-9 s+T solouep
we have
tiorrs that F is continuou.s (for ' ^-L\ -'C') l|. and Lhat the )ength of t( ri L ) i
the periods of.J0r6ep>
i. I: i I u r , i f o r n r l y b o u n d e d{ g m e o : { Y 6 e u , V i e { 1 r . . . , r } , / '
( i . " 1- 0- r) jr j r. A
.,u
Also
in
the model of
X: (irJ-)
are evaluated
zed Darallel
in tenm of
to
rtion
this
account
bet'nieen cooperating
An important conlained
in
opt-imization
paper
alf
components r . , u - Iiterate X and this
o n DhJr r sD qt vr svr eo lr : l
nrocess
srrnr-hroni-
vt
plv\srs-
oyr19l
compiete
lattice.
is
previous
implementation
Most often
iterative
point
to
wj-thout major revision
global
these
of
restrictions
that
are based on sequenti,rl implementation
of
the the
evol-ution
classical
iterative
processes. of
the
in
a
can be solved program
algorithms
on a multiprocessor
between cooperating follow
techniques
equations all
T
I ,and
analysis
monotone equations
such systems of
t
l t
the results
program
I
iterative
synchronization
of
conpiling
system of
methods implies
a paraIIel
synchronization
application
the one of
Showing that
wr"itters
the
computen system without
a fixed
methods which
are amenable to
eliminate
domain of possible
solving
by asynchronous
to
processes.
techniques.
in
is
the parallel
for
paper
this
consist
compiler
the previous
r uiltPuLqLrutr
methods on a muftiprocessor
without
iterations
processes.
The purpose of and mainly
g o e u : ( 6 < o < 6 + m )a n d
I
m h( r: . uduor lns e uhyr r q- D^ l-r 'r -y ^, ! -u r u f urrrr s l u
analysis
chaotic
A
,u \
was
t t t
This
hardware
system enables
technology
known techniques.
the
t t"
t' t" I
t'
2 . ASYIICHRONOUS ITERATIONS 2 . 1 D E IFNI Ti O N
l ,
A
L e t < J - , 6 e O r d > b e an Ord-termed such that
sequence of
subsetsof {1r...rn]
:
( , r ) { V 6 e O r d , V j € {,1. . . r n ) :
f,o)6 : ieJ*]
A L e t < S - , 6 e O r d > b e an Ord-termed +L-+ A
( b ) { v i € { 1 , . . . , n .} V 6 e O r d . S : < 6 ] a
sequence of
elements
of
Ord^' such
I I I lI.
uoTlpnrela SulpuodsaJJoo
s T q . [ ' T x , { . r o u . r a ua q + u t aql
aJoJaJaqI'gfrT
struauoduroc TTp Jo uoTlenTp^a E g aulT+ 1P +eql aql
aql
ua}+rJn
enTp^ dlsnoauefue}sur "T ;x uialsds aql Jo T
qcTL$a.roJ suorlenba;:o aleuTui.ral sdossaaoJd
satretrs 1 '3 uo]lTuTJaP
uaql
g:o ,:aqlnu
'suoT lenba
urp1.rac
3:o ura1s.,{s
aql o1 pau8tsse sT .rossacoud e Jo +uauoduroc fue g:o uoTlpnfela 'aceld aJaq/'1 a{e1 X g:o luauoduoc a{ros 3:o 3u111.rr'r ,.ro Sutppal
aTpT ueq{ sluplsur
aurT+ Jo acuanbas Sutspa.rcuT up sp rl Y N x).'rr
T e u T p J o + T t l r T T. { ; a n a . r o g ;
pul] g Teurpdo Jossacilns
d"rar'a .f:T J AJaAe .roJ
t, l
I, I I, l
1 I: I I I I
gX
{ ( . . u) . . " " ' u.
(^f-1u" "eT))11 f"raaa v pup g TeurpJo Jossacons d.raaa .ro3;
S''
I t
'X)'J = :VX
T
T
L
L
JS V
T. X - T' X r- 9" 9
o: ox
: sr"roIToJ sp ucrs.rnca.r alruTJSueu:l ,{q peuTJap .p.rgrg'^Xt J
^ ^,,^^T- ^d Judrrue>
^ ^,
youlda]-pclO
aq+
pue Y
sT
(
nq pau'LJ';,r
d J
'TlnTA] =
5 rrtS
t*
'pror9'BAl (tr)
e sT !] t 9 > € P u e T P u r p ; 1 e+ T t i l T T T
{tis>9
' g < D A }: g < g E ' { u ' " ' ' T } - T A ' p ' r o r g A(J' )
I l l: - / I - l
I ]
,
s
in neading the value X1
of X: consisted ,
t
of the memory X1 at time
A
^6 r s ., n 'An anq writing
o6
, c b the va.Iue Xl=fr(X1 rA
which jdJ"
The components X. of X for Notice
l ,...
ane nrt
.6 b r*rt)
time 6 in Xt'
at time 6 .
modified
of every" value ) ,li ^ """U 6 in the^ computation 6 >l --or -6 , " ',Xr.,n) is takes place before the value x!=rrtxr'
I
wr-itten in X.. This justifies Acconding to definition
condition 2.1-.(b). between the coope-
2.1 no synchnonization
pnocesses is needed, and the scheduting policy
the scheduring poJ-icy must be fair
so that
(specifying opened. However
which processors evaluate which components) is left condition
imposes
2'1'(a)
no component can be abandoned foreven
that
W e a l s o a s s u m et h a t
Sg S6 the evaluation of every fi(Xlt r...r*r,t) bounded) peniod of tirne and that
(but not necessarily
takes a finite if
at
the reading
that
A of X] necessanily
rating
i
i n - n e a d i n g Xrnr a t t i m e S' i , i n a p p r y i n g t h e o p e r a t o r F t t o
si:..., -o 5 ,, r AI :...
'
il il
a pnocesson collapses
will
task perfonmed by the remaining
onder to have its ^
the scheduling policy
'
Thenefor"e
processons.
A
every 6, max(6-Sl) must be bound (but not necessarily
for
in
be modified
uniforrnly).
r - f
such that
states that for any 6 thene exists
2.1.(c)
Consequently condition
can terminate
time B no processor
aften
B
that
a computation
began at time 6. A
In pnactive is
after
stationary
that
for
we should also nequine that
example this
chain condition. termination
of the computations
limit
(that
It
is
we state that condition
t t t L
t t
the ascending
ane not unique it practical
from a
is better limitation
and
I
L-
ordinals.
is the evaluation
I
hypotheses guaranteeing the
of view to ignone this
our plausible
t t
immediat fnom what follows
would be the case when L satisfies
The considenation eliminate
time e.
Since the possible
mathematical point consider
a finite
the sequence
r r1
of an infinite hypothesis
computation that
the elementany computations
of a conponent) must last 2.L.(d)
sequence does not
a finite
time.
Hence
is necessany to take account of this
:
sJ"lOrToJ Sp uoTS(Inca(I
a+TUTJSUEJf
fq paul3:ap s+uauaTe Jo d'rouraurq l T A 1u1od paxt;e.rd p q+TA 8ur1.rels ,r'l t u ' u - ' acuanbas uoTle.ra+T snouo,:qcudse ue JapTsuoc al'l 3u1no11og: a q + u r v
t' l3 U0 lHI l3 NI9 U3 A N0 t3' t 'I'Z aTqpqrdcsap
lou
suotlelnduoc
aql
(9x)r= r
u o T + 1 u 1 g i a{ pq
J o uolllsodurocap TeJnleu p sT ricTqr4
= grt-l( ox)B r+exI r= o xI
,*sI i
r= ;^l : suor+PJe+r
TPda+ETToc ofi+ aq+
o+
r r* l -: rLp-a-r 'n l r a +
er
.
Y ) r -\( Y c 91\ I+9"'*
uJnf
a - rr rQ l
uI
X z+g' ,t ' X
T =
T=
ox
sr q}Til
JoJ AJoueur
I
u o r l e , r a + Ta l q l s s o d v . ( l ) q n ( x ) B = ( I . x ) J a r a q m( ( ) ( o o J ) s ? l = r c ) ( J ) s ? . t ueql '{(X)qn(X)3=(X)J ',,T3XA} asoddnsalduexa aog + E q + '(a)(t)s'tt
alnduroc o+ J o+ Sutpuodsa.r.roc .r{uouiaurq+T$ poq+au aAr+pJa+T snouc,.rqc -udsp dup esn uec a $ u a q J ' ( 0 ) ( o o J ) s ' I T = ( 0 ) ( J ) s ' 1 7 + e q + q a n s
, r T < -u r ( u T ) e J
l. I
10
tl hypothesis Dr=Z] and Vjei1r...,m), i m p l i e s F - ( o ( D ) ) = F .(.Z l , . . . , 2 * )
3y transfinite
D E Z J . B y m o n o t o n yo f F . t h i s
so that by transitivity
we have
End of Proof.
Proof -
{ V 6 eO n d , X 6 = L i s ( F o o ) ( D ) i
:
Let us recat-t-(cousotl3]) and is a fixed
point
tnat since D=F(o(D)), Lis(t"o)(D)
of Foo greater
exists
than D. Hence the leruna is tnue
for 6=0 since X0=D. -
Assume that -
If
the l_emmais true
6 is a limit
fon all
8 acuanbas aql
ST e
Q
rr
D
T 9JT
T+(
un
: u 9
^ t t) V U =
II Il Il I -
i
t t II I
t t t t t
9>p
TPuTP,ro ITuITT e TEUrpdo Jossacsns P
U
9 = o u
T-V
U
: s A o T T o J s P u o T S J n c a J a + T u T J s u E . r + dq paulg:ap sTpurpJo ;o
acuanbas pau;al-pd6
'g'€'t
aq+ sT 9'(9)Y [ r t : € i u l u t= ( 9 ) Y t \D>/>v : dq paulJap (g)y rpuTpro ue s-r adaqf 'p.ro;g d.raaaroJ +pq1 salldurr (c)'T'e uoTtTpuoJ 'n'e'e NOIJII,II-{X0
{
IT
I
I
t t t t t t t t
T2
Crzse 2. is true
Assume that
every 6' ecuanbes uot1e,-ralT aq+ +pL{} ([e]+osnoC) l,lou>iay : ]ooaa1 '(0)( ooJ)s'L/ sT +TurTTslT ..6.reuor1e1s sT J Jo C +urod paxr3:a.rd e qlT$ 3u11.re+s puE **(,r1 )3J Jo+p.rado aq1 o1 Surpuodsa.r,roc d.rouaur u1 q+T$ acuanbas uol+E,ro+r snouo.rqcu.fse uV . OT. t. e i,,lgUOgHJ 3CN3OUSANOJ
'Joo,za . Jo puA {'X=OA} .: {gu, g f.ra,re JoJ anlTl sr 6. g. 0 euuaf JT +pq+ peao.rd alpq er,l ( g ' e ' Z ' g ' T ' e s a s e r ) I u o u o T + c n p u Ta + r u r J s u p . r +f g 'gx5gg apnTcuoo an d11,r1+Tsuerl ,{q 1eq1 os g>D
gto>gU
= = gg saTTdul s1q1 .o* =gg aleq a/rl grojgu n X = o X [ 1 pX n d,:aaa JoJ +pql pup TeuTpro +TrIlrT e sT g ]pq+ aurnssv .g.g asDS
'jx = (r2" "'
,z)rt = ((gslolTr=le
duolouourdq 1aE afi ([e]]osnoC; Eulsea.rcuTsT e1ru6....tlr[6 slsaqloa,cq a c u a n b e sa q + a c u r s ' t z = g s os + p q + -r .' (r :- sl * = l tY ) . eJr { f . { u . . . . 6 T } r ) t 1. u o T + c n p u fTq a . r o 3 : a . r a q {rx.....tirlrt fSir'u suorlTpuoc aq+ ueq+ ,releaa8 ou TpuTpdolrrurr leQ+ ''fTdurT (p)-(q)T'g
. 6 1 1 c 1 us1Ts g e c u r s ' ( * z " " - r r l T , r = j x p u e ""r" jx=r_jx=ia nf>T
'}x=ia uer{+ u6 ...'T=TA a,loid eA .oxi'g alpq a^l gro>gu gf/T JI .,{.raaaJoJ }eq+ pue TpuTpJo Jossaccns p sT g +pq+ aunssv .A.t asDJ
l l
I l l l l:
I I I I
T {
t t
'gx398 guro apnTcuoc am i{11a1+Tsupr+ z{q 1eq1 os g
utlLl n
I
uX
=
9
g>,l =
lux
eroJa.raql
'{OLr>^tr
oX
,
rg'gA 'C'f fq P a U T P + q oa s o q + J o u o - t l P z t 1 e , . r a u a 3 1'7 uollTuTJap uT : nOTTSII,,I
p se papJeEa.r aq upc s+Tnsa.r dpau otr uirou{un sem qerq$ (1161 aunp 3ecue.rg 6alqoua.rg 6alqoua.rg ap afecrpg!,1 +a anb13:1+uaTcsatrTSJaArun tL'V'-i 'BLaou anbl.raung asr{leuyrp a.rreururgs t auo+ouoa aouabaaauoo ap sV4VVzdarc ap sawt41t,to677) +Tnsal srfloTTSII,i 'f,'l o+ uorluatr+E dur 8ut.^ae,-rp : uo'?.+DtD7ao(.
I 1 T I I I I
T
t {
t l
t; (
tl
r
dtpuT>t .roJ IUggOg sto5ue.rJ o+ apn+Tle;8 du ssa.rdxa o+ +ue& I : (lt6t
'97 aaqaaaoN) ulnpu'dppv
{
I,
t I,