Automatic Feature Selection in Neuroevolution Shimon Whiteson
Peter Stone
Kenneth O. Stanley
Dept. of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233
Dept. of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233
Dept. of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233
[email protected]
[email protected]
[email protected]
Risto Miikkulainen
Nate Kohl
Dept. of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233
Dept. of Computer Sciences University of Texas at Austin 1 University Station, C0500 Austin, TX 78712-0233
[email protected]
[email protected]
ABSTRACT
!" !"
# $ %
% % !" &
!" !" & % ' % !"$ Æ Categories and Subject Descriptors &() * +, - .
General Terms ! Keywords % %
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. GECCO’05, June 25–29, 2005, Washington, DC, USA. Copyright 2005 ACM 1-59593-010-8/05/0006 .../5.00.
1. INTRODUCTION % % '
% %
0%
' ' '
1 & % % % '
& %
1 % 2 % 0 % '
3 $ & 4 5%
0 % % ' % & % - *)+ ' , *6% 7+ 8 &% 8
% (997
& % % '
# %
*:% ;+
-
0 % '
< '
%
! "
4 !"5 !"
0%
% % !" ! "
4 !"5 *69+%
!" = *6>+
% !"
, !" Æ *69% 66+ !" !" $
? % $ %
% 0 *>+ % !"% ' 8 & *6@+% !" " !"
4 5 "
% !" % 2 !" ' =
%
8 < 3 !" &
!" 4 5
!
!"%
& %
!" !" ,
A"A *6(+
% !" !" & % !" ' 8 ( !" !" @ A"A !" !" > 7
2. METHOD !" & !"%
!" 2.1 NeuroEvolution of Augmenting Topologies & %
= ' *6>+%
8 % '
' ! "
4 !"5 *69+ ' '
&%
!"
, !" % *69+ & % !" %
% *66+
!" & % !" 2 < !" *69+ 2.1.1 Genetic Encoding with Historical Markings
! ' 2 ! !" % ! %
% % 4 5% % !" B !" C
6
% (
% % 8
% Outputs Add Node Hidden Nodes
Mutation
Inputs
Outputs Add Link Hidden Nodes
Mutation
Inputs
! " "
& %
% !" =
4 5% = % % % D % $ = % D
% ' % 0 !"
D 8 8 %
*E+ 2.1.2 Speciation
& % 0 % !"
%
%
8
0
Æ 4 5 3 45 %
4 5, ½ Æ F G ¾ G ¿ 465 Æ ½ % ¾ % ¿ 3 % %
% 8 8 D < $ Æ % % !
% !" *(+% %
2.1.3 Minimizing Dimensionality
?
*@% 6>+ !"
% 2 !" ' =
%
8 < 3 2.2 Feature Selective NeuroEvolution of Augmenting Topologies !"$ % % 2 & % 0 % & % !" 8 !" !" , " !"% 0% !" !" ,
! 8
H
0 % 1 %
%
% !" @
!" !" "
% !" !"*69+ & % !"$ 0 %
C
%
Outputs
%
0
H &
% !" &
% !" % !" % ;9 4 6;9 5% & % ;9 %
*9 6+ % $ % 6)( & !" % !"% 6)(
Inputs Regular NEAT
FS−NEAT
# " $! % ! & $! % & !" %
& % %
3.
EXPERIMENTS A " A 4A"A5 *6(+% I ' & % A"A % Æ
' A"A $ % >%
3 $
' & ( ($ & ) % * + , % % & %
, $ $ & % (999 J %K 7 Æ 4 % % 5 %
3 $ " F ( % A"A % !" 69 < $
!" ? % !" !" % 69 % (99 8 ) ! % 69 % !"
Score of Best Net Per Generation 18000 16000 14000
Scores
12000 10000 8000 6000 4000 2000
- ./ $!
% ) $! % * !" &
% $ % E7L % !" !" : % %
A !" 6)( !" & % !"$
)7% 6:7L !" % 69L !"$ )7% >)L (99% ((EL !" ; % % 8 % 8 4 5
!" !" = !"$ )7% E:L !"$ = (99% !"$ 6;7L !"$ & % !" 6) %
% ;9 % 0
!" !" H 0 !" H !"$
H ' % 8
% ;9 % 7% (9% >9% 6)9 & % '
FS-NEAT Regular NEAT 0 0
50
100 Generations
150
0 ! $! ( ($ 0 %" 12 %
! % "& " % % 2 3& ! $! & " ! " 8 6(% >(% ;(% @((
8 % 69 % (99 E 8 % 8% % ! 6( % !" " 8 % !"
# % !" Æ 69 % A !" !" ! 8 % !"$ % 66 8 8 !"$ % !"$ 8 % !" !" % % 4. DISCUSSION % !" !" & %
200
Connected Inputs of Best Net Per Generation
Size of Best Net Per Generation
180
800
160
700
140
600
500 100
Sizes
Connected Inputs
120
400
80 300 60 200
40
100
20 FS-NEAT Regular NEAT
FS-NEAT Regular NEAT
0
0 0
50
100
150
Generations
4 "
"& $! ( ($ 0 %"
" " ! ( & 0 " $! %% " & 8 1 ' 8 !"
% )
)7 0 % : ; 8 !"$ (99 $
J K 8 H C % !" !" 0% % & % )7
% % 8
!" % % !" 8 & % !" , 8 & %
, % !"
= !"
200
0
50
100 Generations
150
1 5
%% "& $!
( ($ 0 %"
" ) & * " " $! %% & %
8, 699 = !"
0 % A"A & %
8 !" !"
(7 !"
!" 0% A"A% !"$ !"$ 8 " % % !"$ E !"$ % % B % 8 !"$
8% !"$ % Æ !" 5. FUTURE WORK " ' !" 0 % % A"A % & % $
200
Score of Best Net Per Run
Connected Inputs of Best Net Per Run 350
21000
FS-NEAT Regular NEAT 300
19000
250 Connected Inputs
20000
Scores
18000
17000
16000
200
150
100
15000
50 FS-NEAT Regular NEAT
14000
0 0
50
100
150
200
250
300
350
0
50
Number of Available Inputs
100
150 200 Number of Available Inputs
250
300
6 !
$! ! 5
% "& " % % 2 ! & $! & &
2 " $! ! , 5 "
" % % 2 ( &
%" $!
& "
0 % %
& % %
- %
% 0% !" 1 % !"
0 % %
%
!"$ %
% 8 8 8 % % 8 8 & % % & % =
!"
Æ
6. CONCLUSION !"% !" ?
% !" ! % !" !" & % ! 8 !"$ Æ #
%
!" !"
Acknowledgments
?"% C"A!!A &&9(@:)EE% B APPENDIX A.
NEAT AND FS-NEAT SYSTEM PARAMETERS
8 699 ! ' 69 % 6999 Æ ½ F 69% ¾ F 69% ¿ F @9 Æ F @9
350
*@+ D% = % - " & I A O 8% ! D % # % A - A % %
Size of Best Net Per Run 1400 FS-NEAT Regular NEAT 1200
!!)* + % % ;6N;E B& % 6EE)
1000
Size
800
600
400
200
0 0
50
100
150
200
250
300
Number of Available Inputs
5 $! , 5 5 " % % 2 ( "
5 & " %" ! $! " & & 5 997 99( 96 B. REFERENCES *6+ # M # " = & !!"
# $ % & & ' #$%&&(!"% >(N79% % %
6EE> *(+ ! D I A D
8 &
$ # % % 6>;N67>% 6E;:
350
*>+ A 0% B #
% I # !
& ,--, % 6;:;N6;;@% (99( *7+ O O - A "
& . # / 0 % " % B % 6EE( B O *)+ - & %%%# +
$ 1 % 6EE> *:+ B O " # . % (),E6:NE((% 6E:: *;+ I % % I O 1 0 % 67,666EN66(7% 6EE> *E+ I A D
8 & % 6465,):NE9% 6EE@ *69+ O 1 A B !
% 694(5,EEN6(:% (99( *66+ O 1 A B C 2 % #
1 % (6% (99> &
*6(+ B ! % 6EE7 *6@+ = % O 1 % A B " &
,--"*
3 ' $ 4 % I (99>
*6>+ P Q ! #% ;:4E5,6>(@N6>>:% 6EEE