Document not found! Please try again

Autonomous Distributed V2G (Vehicle-to-Grid) considering Charging ...

10 downloads 0 Views 775KB Size Report
Oct 12, 2010 - Autonomous Distributed V2G (Vehicle-to-Grid) considering Charging Request and Battery Condition. Yutaka Ota, Haruhito Taniguchi, Tatsuhito ...
1/8

Autonomous Distributed V2G (Vehicle‐to‐Grid) considering Charging Request considering Charging Request and Battery Condition Yutaka Ota, Haruhito Taniguchi, Tatsuhito Nakajima Jumpei Baba, and Akihiko Yokoyama (The University of Tokyo, Japan) K. M. Liyanage (University of Peradeniya, Sri Lanka) IEEE PES Conference on Innovative Smart Grid Technologies Europe 2010 2043111, 12:30‐15:00, PP14: Grid Solutions for Plug‐in Vehicles October 12, 2010, Gothenburg, Sweden

Integration of RESs toward future low carbon power grid Issues : reverse power flow, excess energy, frequency regulation… p , gy, q y g

New electricity demand with energy storage  Heat Pump Water Heater, Plug‐in Electric Vehicle Pump Storage Hydro

Ubiquitous Power Grid

Thermal

Nuclear

WASA based on PMU/WAMS Interconnected System Tie-line

Distribution System MicroGrid

Bulk Power System

Smart Charging and V2G (Vehicle-to-Grid) Considering Charging Request

ECU / BMU

Battery

DC-DC DC DC Converter

Charger Inverter

Load Dispatching Center

Coordinated C di t d Control C t l Strategy St t to be Virtual Power Storage Regional Energy Management System Wind Park

Battery SCADA Battery Energy Storage System

Distribution System MicroGrid

Mega Solar

Motor Plug-in ug Hybrid yb d Vehicle e ce Electric Vehicle

Distributed Generator Photovoltaic Generation Heat Storage

Heat Pump Water Heater

Load

2/8

Integration of RESs toward future low carbon power grid Issues : reverse power flow, excess energy, frequency regulation… p , gy, q y g

New electricity demand with energy storage  Heat Pump Water Heater, Plug‐in Electric Vehicle Pump Storage

WASA based on Control PMU/WAMS Autonomous Distributed V2G (Vehicle‐to‐Grid) Interconnected based on self‐terminal frequency and SOC  (State‐of‐Charge) Ubiquitous Power Grid System Hydro

Thermal

Nuclear

Tie-line 1. Replying vehicle use’s charging request 2. Managing battery condition through utility grid Distribution System Load Dispatching MicroGrid 3. Contributing the power grid as a spinning reserve Center Bulk Power System

Coordinated C di t d Control C t l Strategy St t to be Virtual Power Storage Regional Energy

Smart Charging and V2G (Vehicle-to-Grid) Considering Charging Request

ECU / BMU

Battery

DC-DC DC DC Converter

Charger Inverter

Management System Wind Park

Battery SCADA Battery Energy Storage System

Distribution System MicroGrid

Mega Solar

Motor Plug-in ug Hybrid yb d Vehicle e ce Electric Vehicle

Distributed Generator Photovoltaic Generation Heat Storage

Heat Pump Water Heater

Load

3/8

V2G control scheme

4/8

(a) V2G gain according to Δf

(b) SOC balance control

0

Δf max

V2G

SOC balance control b l l Charge restraint in high SOC Discharge restraint in low SOC

V2G gain [kW W/0.1Hz]

Char ge

+

K max

Δfsp V1G

V1G (one‐way charge control) Frequency deviation [Hz]

Spinning Reserve Mode

V1G Charge

K max

Droop Kmax Limiter ΔPmax

Discharge D

V2G po wer [kW]

P max

V2G Discharge

0

10

20

30

40

V2G Charge

50

Battery SOC [%]

(c) V2G power output under sinusoidal frequency input Charg e

V2G (SOC:30%) V2G (SOC:50%)

V1G

V2G (SOC:70%) V1G

0 Diusccharge

V2G powe r [kW]

60

V2G (SOC:30%) V2G (SOC:50%) V2G (SOC:70%) Time

70

80

90 100

V2G model and parameters Battery pack (cell)

V2G pool (one vehicle) in Grid‐A

Nominal Voltage Vnom

325.6 (3.7) [V]

Number of V2G vehicles

40,000 ,

Nominal Capacity Cnom

50 (50) [Ah]

Maximum power Pmax

200[MW] (5 [kW]) 200[MW / 0.025Hz]

Energy Capacity

16.28 (0.185) [kWh]

V2G gain Kmax

Internal Resistance  Rint

0.352 (0.004) [Ohm] ( )[ h ]

Δfsp

d SOC =I dt αRT ⎛ SOC OCV = V nom + ln ⎜⎜ F ⎝ C nom − SOC CCV = OCV + R int I

Batteery voltage [V V]

5/8

4.3 4.2 4.1 4 3.9 38 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 27 2.7 2.6

‐ 0.1[Hz] 

Plug‐in, Plug‐out

⎞ ⎟⎟ ⎠

30[%] ‐> 90[%]  Grid‐B (7090[MW])

200V, 25A

Tie-line

CV(4.1V)-Charge

Grid‐A (33090[MW]) CC(50A)-Charge

OCV

200V, 25A ,

V2G pool (one vehicle) in Grid‐B

CC(50A)-Discharge

Number of V2G vehicles

10,000

Maximum power Pmax

50[MW] (5 [kW])

V2G gain Kmax

50[MW / 0.025Hz]

Δfsp 0

10

20

30

40 50 60 70 Battery SOC [%]

80

90

100 91.6%

Plug‐in, Plug‐out

‐ 0.1[Hz]  0 1[Hz] 50[%] ‐> 50[%] 

Power grid model with RESs and LFC by thermals V2G 200[MW/0.025Hz] (5[kW]*40,000)

Δfa

Load_a

Random Noise Governor free

Grid‐A Grid A

ΔPV2Ga

V2G_a

1213 [MW] with LPF

1213[MW] (5[%]) [ ] ( [ ]) 20[puMW/puHz]

33090[MW]  2[puMW/puHz]

Renewable_a

ΔPa

1 8.58[s]Ma.s

Δfa

Fl t F Flat Frequency Control C t l

Δfa ARa

496[MW] (1.5[%] of load) PI control : 1, 0.1 System constant : 5

FFC

ARa

ΔPtha

Δfa

Inertia_a

Thermal_a

Dispatching p g Center

Tie‐line Tie line

ΔPt

14

Kab s

Tie‐line Bias Control 106[MW] (1.5[%] of load) PI control : 1, 0.1 System constant : 5

ΔPt ARb Δfb

TBC

Governor free Governor free 278[MW] (5[%]) 20[puMW/puHz]

ARb Δfb

ΔPthb

Thermal_b Renewable_b

50[MW/0.025Hz] (5[kW]*10,000)

1 9.02[s]Mb.s Inertia_b

Random Noise 278 [MW] with LPF

V2G

ΔPb

Δfb

ΔPV2Gb

V2G_b

7090[MW] Load b 2[puMW/puHz] Load_b

Grid‐B

Δfb

6/8

No V2G control

V2G / V1G

V1G (Smart Charging) 7/8

Δfa[H Hz]

0.12 0.06 Grid-A:Freq. 0 -0.06 -0.12 0 1 2 3 0.12 Grid B:Freq 0 06 Grid-B:Freq. 0.06 0 -0.06 -0.12 0 1 2 3 800 400 Tie-line Power 0 -400 -800 0 1 2 3 1800 900 Grid-A:Outputs 0 -900 Renewable Thermal -1800 0 1 2 3 800 400 Grid-B:Outputs 0 -400 400 Renewable Thermal -800 0 1 2 3 6 4 Grid-A:One Vehicle 2 0 -2 Plugged‐in with 30% -4 -6 0 1 2 3 6 4 Grid Grid-B: B:One Vehicle 2 0 -2 Plugged‐in with 50% -4 -6 0 1 2 3

V2G control

5

6

7

8

9

10

11

12

13

14

15

16

4

5

6

7

8

9

10

11

12

13

14

15

16

4

5

6

7

8

9

10

11

12

13

14

15

16

7

8

9

10

11

12

13

14

15

16

16 100 80 60 40 20 0 16 100 80 60 40 20 0 16 [ hour]

Δ ΔPa[MW]

ΔPt[MW]

Δfb[Hz ]

4

Load V2G 5

6

Load V2G 5

6

7

8

9

10

11

12

13

14

15

4

5

6

7

8

9

10

11

12

13

14

15

4

5

6

7

8

9

10

11

12

13

14

15

SOCaa[%]

4

SOCb[% %]

V2Ga[[kW]

V2Gb[kW W]

Discharge Ch harge Discharge e Charge

ΔP Pb[MW]

4

8/8

Conclusions A tonomo s Distrib ted V2G (Vehicle to Grid) Autonomous Distributed V2G (Vehicle‐to‐Grid) 1. Replying charging request by grid‐friendly smart charging 2. Balancing battery SOC by trickle charge/discharge 2. Balancing battery SOC by trickle charge/discharge 3. Supplying distributed spinning reserve for the grid

Communication is not used for control.

Future works Future works Utility want to know the amount of available V2G pool ‐>> Identification of system constant Identification of system constant

Implementation into Plug‐in Electric Vehicles ‐>> Experiment of few types of Li Experiment of few types of Li‐ION ION batteries batteries ‐> Development of V2G available charger/discharger

Suggest Documents