Oct 12, 2010 - Autonomous Distributed V2G (Vehicle-to-Grid) considering Charging Request and Battery Condition. Yutaka Ota, Haruhito Taniguchi, Tatsuhito ...
1/8
Autonomous Distributed V2G (Vehicle‐to‐Grid) considering Charging Request considering Charging Request and Battery Condition Yutaka Ota, Haruhito Taniguchi, Tatsuhito Nakajima Jumpei Baba, and Akihiko Yokoyama (The University of Tokyo, Japan) K. M. Liyanage (University of Peradeniya, Sri Lanka) IEEE PES Conference on Innovative Smart Grid Technologies Europe 2010 2043111, 12:30‐15:00, PP14: Grid Solutions for Plug‐in Vehicles October 12, 2010, Gothenburg, Sweden
Integration of RESs toward future low carbon power grid Issues : reverse power flow, excess energy, frequency regulation… p , gy, q y g
New electricity demand with energy storage Heat Pump Water Heater, Plug‐in Electric Vehicle Pump Storage Hydro
Ubiquitous Power Grid
Thermal
Nuclear
WASA based on PMU/WAMS Interconnected System Tie-line
Distribution System MicroGrid
Bulk Power System
Smart Charging and V2G (Vehicle-to-Grid) Considering Charging Request
ECU / BMU
Battery
DC-DC DC DC Converter
Charger Inverter
Load Dispatching Center
Coordinated C di t d Control C t l Strategy St t to be Virtual Power Storage Regional Energy Management System Wind Park
Battery SCADA Battery Energy Storage System
Distribution System MicroGrid
Mega Solar
Motor Plug-in ug Hybrid yb d Vehicle e ce Electric Vehicle
Distributed Generator Photovoltaic Generation Heat Storage
Heat Pump Water Heater
Load
2/8
Integration of RESs toward future low carbon power grid Issues : reverse power flow, excess energy, frequency regulation… p , gy, q y g
New electricity demand with energy storage Heat Pump Water Heater, Plug‐in Electric Vehicle Pump Storage
WASA based on Control PMU/WAMS Autonomous Distributed V2G (Vehicle‐to‐Grid) Interconnected based on self‐terminal frequency and SOC (State‐of‐Charge) Ubiquitous Power Grid System Hydro
Thermal
Nuclear
Tie-line 1. Replying vehicle use’s charging request 2. Managing battery condition through utility grid Distribution System Load Dispatching MicroGrid 3. Contributing the power grid as a spinning reserve Center Bulk Power System
Coordinated C di t d Control C t l Strategy St t to be Virtual Power Storage Regional Energy
Smart Charging and V2G (Vehicle-to-Grid) Considering Charging Request
ECU / BMU
Battery
DC-DC DC DC Converter
Charger Inverter
Management System Wind Park
Battery SCADA Battery Energy Storage System
Distribution System MicroGrid
Mega Solar
Motor Plug-in ug Hybrid yb d Vehicle e ce Electric Vehicle
Distributed Generator Photovoltaic Generation Heat Storage
Heat Pump Water Heater
Load
3/8
V2G control scheme
4/8
(a) V2G gain according to Δf
(b) SOC balance control
0
Δf max
V2G
SOC balance control b l l Charge restraint in high SOC Discharge restraint in low SOC
V2G gain [kW W/0.1Hz]
Char ge
+
K max
Δfsp V1G
V1G (one‐way charge control) Frequency deviation [Hz]
Spinning Reserve Mode
V1G Charge
K max
Droop Kmax Limiter ΔPmax
Discharge D
V2G po wer [kW]
P max
V2G Discharge
0
10
20
30
40
V2G Charge
50
Battery SOC [%]
(c) V2G power output under sinusoidal frequency input Charg e
V2G (SOC:30%) V2G (SOC:50%)
V1G
V2G (SOC:70%) V1G
0 Diusccharge
V2G powe r [kW]
60
V2G (SOC:30%) V2G (SOC:50%) V2G (SOC:70%) Time
70
80
90 100
V2G model and parameters Battery pack (cell)
V2G pool (one vehicle) in Grid‐A
Nominal Voltage Vnom
325.6 (3.7) [V]
Number of V2G vehicles
40,000 ,
Nominal Capacity Cnom
50 (50) [Ah]
Maximum power Pmax
200[MW] (5 [kW]) 200[MW / 0.025Hz]
Energy Capacity
16.28 (0.185) [kWh]
V2G gain Kmax
Internal Resistance Rint
0.352 (0.004) [Ohm] ( )[ h ]
Δfsp
d SOC =I dt αRT ⎛ SOC OCV = V nom + ln ⎜⎜ F ⎝ C nom − SOC CCV = OCV + R int I
Batteery voltage [V V]
5/8
4.3 4.2 4.1 4 3.9 38 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 27 2.7 2.6
‐ 0.1[Hz]
Plug‐in, Plug‐out
⎞ ⎟⎟ ⎠
30[%] ‐> 90[%] Grid‐B (7090[MW])
200V, 25A
Tie-line
CV(4.1V)-Charge
Grid‐A (33090[MW]) CC(50A)-Charge
OCV
200V, 25A ,
V2G pool (one vehicle) in Grid‐B
CC(50A)-Discharge
Number of V2G vehicles
10,000
Maximum power Pmax
50[MW] (5 [kW])
V2G gain Kmax
50[MW / 0.025Hz]
Δfsp 0
10
20
30
40 50 60 70 Battery SOC [%]
80
90
100 91.6%
Plug‐in, Plug‐out
‐ 0.1[Hz] 0 1[Hz] 50[%] ‐> 50[%]
Power grid model with RESs and LFC by thermals V2G 200[MW/0.025Hz] (5[kW]*40,000)
Δfa
Load_a
Random Noise Governor free
Grid‐A Grid A
ΔPV2Ga
V2G_a
1213 [MW] with LPF
1213[MW] (5[%]) [ ] ( [ ]) 20[puMW/puHz]
33090[MW] 2[puMW/puHz]
Renewable_a
ΔPa
1 8.58[s]Ma.s
Δfa
Fl t F Flat Frequency Control C t l
Δfa ARa
496[MW] (1.5[%] of load) PI control : 1, 0.1 System constant : 5
FFC
ARa
ΔPtha
Δfa
Inertia_a
Thermal_a
Dispatching p g Center
Tie‐line Tie line
ΔPt
14
Kab s
Tie‐line Bias Control 106[MW] (1.5[%] of load) PI control : 1, 0.1 System constant : 5
ΔPt ARb Δfb
TBC
Governor free Governor free 278[MW] (5[%]) 20[puMW/puHz]
ARb Δfb
ΔPthb
Thermal_b Renewable_b
50[MW/0.025Hz] (5[kW]*10,000)
1 9.02[s]Mb.s Inertia_b
Random Noise 278 [MW] with LPF
V2G
ΔPb
Δfb
ΔPV2Gb
V2G_b
7090[MW] Load b 2[puMW/puHz] Load_b
Grid‐B
Δfb
6/8
No V2G control
V2G / V1G
V1G (Smart Charging) 7/8
Δfa[H Hz]
0.12 0.06 Grid-A:Freq. 0 -0.06 -0.12 0 1 2 3 0.12 Grid B:Freq 0 06 Grid-B:Freq. 0.06 0 -0.06 -0.12 0 1 2 3 800 400 Tie-line Power 0 -400 -800 0 1 2 3 1800 900 Grid-A:Outputs 0 -900 Renewable Thermal -1800 0 1 2 3 800 400 Grid-B:Outputs 0 -400 400 Renewable Thermal -800 0 1 2 3 6 4 Grid-A:One Vehicle 2 0 -2 Plugged‐in with 30% -4 -6 0 1 2 3 6 4 Grid Grid-B: B:One Vehicle 2 0 -2 Plugged‐in with 50% -4 -6 0 1 2 3
V2G control
5
6
7
8
9
10
11
12
13
14
15
16
4
5
6
7
8
9
10
11
12
13
14
15
16
4
5
6
7
8
9
10
11
12
13
14
15
16
7
8
9
10
11
12
13
14
15
16
16 100 80 60 40 20 0 16 100 80 60 40 20 0 16 [ hour]
Δ ΔPa[MW]
ΔPt[MW]
Δfb[Hz ]
4
Load V2G 5
6
Load V2G 5
6
7
8
9
10
11
12
13
14
15
4
5
6
7
8
9
10
11
12
13
14
15
4
5
6
7
8
9
10
11
12
13
14
15
SOCaa[%]
4
SOCb[% %]
V2Ga[[kW]
V2Gb[kW W]
Discharge Ch harge Discharge e Charge
ΔP Pb[MW]
4
8/8
Conclusions A tonomo s Distrib ted V2G (Vehicle to Grid) Autonomous Distributed V2G (Vehicle‐to‐Grid) 1. Replying charging request by grid‐friendly smart charging 2. Balancing battery SOC by trickle charge/discharge 2. Balancing battery SOC by trickle charge/discharge 3. Supplying distributed spinning reserve for the grid
Communication is not used for control.
Future works Future works Utility want to know the amount of available V2G pool ‐>> Identification of system constant Identification of system constant
Implementation into Plug‐in Electric Vehicles ‐>> Experiment of few types of Li Experiment of few types of Li‐ION ION batteries batteries ‐> Development of V2G available charger/discharger